
1 
 

Bayesian hierarchical EMAX model for dose-response in early phase efficacy clinical trials 

 

Byron J. Gajewski
1
, Caitlyn Meinzer

2
, Scott M. Berry

1,3
, Gaylan L. Rockswold

4
, William G. 

Barsan
5
, Frederick K. Korley

5
, Renee‟ H. Martin

2 

 

 

1. Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160 

 

2. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 

29425 

 

3. Berry Consultants, LLC, Austin, Texas 78746 

 

4. Hennepin County Medical Center, Minneapolis, MN 55415.  

 

5. Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48106 

 

 

 

 

 

 

 

*Correspondence: Department of Biostatistics, University of Kansas Medical Center, Mail Stop 

1026, 3901 Rainbow Blvd., Kansas City, KS 66160 USA. Phone: 913-588-1603, Fax 913-588-

0252, Email: bgajewski@kumc.edu 

 

 

Short Title: Bayesian hierarchical EMAX model for dose-response 

 

Submitted to Statistics in Medicine, 10/2/2018  

Revised and Resubmitted to Statistics in Medicine, 3/14/2019  

Accepted by Statistics in Medicine, 3/14/2019   

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/sim.8167

mailto:bgajewski@kumc.edu
http://dx.doi.org/10.1002/sim.8167
http://dx.doi.org/10.1002/sim.8167


2 
 

Abstract  

A primary goal of a phase II dose-ranging trial is to identify a correct dose before moving 

forward to a phase III confirmatory trial. A correct dose is one that is actually better than control. 

A popular model in phase II is an independent model that puts no structure on the dose-response 

relationship.  Unfortunately, the independent model does not efficiently use information from 

related doses. One very successful alternate model improves power using a pre-specified dose-

response structure. Past research indicates that EMAX models are broadly successful and 

therefore attractive for designing dose-response trials. However, there may be instances of slight 

risk of non-monotone trends that need to be addressed when planning a clinical trial design. We 

propose to add hierarchical parameters to the EMAX model. The added layer allows information 

about the treatment effect in one dose to be „borrowed‟ when estimating the treatment effect in 

another dose. This is referred to as the hierarchical EMAX model.  Our paper compares three 

different models (independent, EMAX, and hierarchical EMAX) and two different design 

strategies. The first design considered is Bayesian with a fixed trial design, it has a fixed 

schedule for randomization.  The second design is Bayesian but adaptive, it uses response 

adaptive randomization. In this article, a randomized trial of severe traumatic brain injury 

patients is provided as a motivating example. 

 

Keywords: Dosing design, Bayesian models; hierarchical models; EMAX; logistic  
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1. Introduction 

Phase II dose-ranging studies can have multiple learning objectives.  While this can be 

phrased as “understanding the dose-response curve,” we typically are interested in identifying 

the best therapeutic dose and understanding whether that best dose provides a therapeutic benefit 

worthy of conducting confirmatory phase III trials.  Statistical identification of a dose and 

whether it is effective enough to move forward depends on the modeling assumptions about the 

dose-response relationship.  As early phase trials tend to be smaller in size, dose-response 

modeling can improve the strength of these decisions.  In this paper we present a strong yet 

flexible dose-response model that can have general use in many dose-ranging trials.  We 

demonstrate its use in a dose-ranging trial of hyperbaric oxygen for the treatment of severe 

traumatic brain injury (TBI).  

An important initial step in the design of a phase II trial having quantitative doses is to 

identify the functional form that will be used in the primary analysis. One of the most popular 

dose-response models is the pairwise independent model, whereby individual doses are 

considered independent and for analysis purposes are individually compared to each other and to 

control.  This pairwise independent model has no structure between doses. From the Bayesian 

framework when using a flat prior, this independent model has similar properties to several 

Fisher‟s exact tests for categorical data.
1
 This lack of structure between the doses can have 

inefficiencies when there is smoothness to the dose-response curve. This can result in lower 

power for identification of the correct dose, as well as wider intervals relative to alternative 

model strategies.  The risk of assuming a relationship is the misspecification of the model, 

potentially leading to poor inferences.  
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Alternatively, with the addition of assumptions regarding the dose response relationship 

into the modeling framework (i.e. response improves with increasing dose up to some threshold) 

there can be improved precision in the estimation of the efficacy at each dose, leading to better 

dose selection and better go/no-go decision.  There are many options for the functional form of 

models that one can choose for inferences, including, but not limited to, EMAX, logistic, double 

logistic, exponential, normal dynamic linear, and quadratic.
2
 While all of these models have their 

particular benefits and drawbacks depending on the true functional form, the EMAX model with 

“Hill” parameter close to 1.0
1
 has been shown to provide good empirical fit for designing and 

analyzing dose-response data across a wide range of pharmaceutical studies
3
. The impressive 

empirical success of the parametric EMAX model makes it quite attractive for dose-ranging 

trials and can provide improved power and precision when appropriate. Bretz et al.
 2

 provide an 

approach that is a hybrid of a multiple comparisons (through statistical testing) and modeling 

techniques. This “blend” of modeling approaches is called multiple comparison procedure or by 

using a modeling approach (MCPMod)
 4

 and demonstrated strong in proof of activity 

probabilities, including the EMAX model.  Thus, parametric EMAX models should be 

considered in the design of future dose-response studies, especially when there is strong belief in 

a monotonic dose-response relationship.   

Unlike the situations where the EMAX model has been successful, there may be dose 

response examples where non-monotonic or non- EMAX relationships may be plausible.  Such 

examples include the situation where a higher dose may cause decreased tolerability or practical 

implementation issues (e.g. more intense intervention mitigates increased side effects and 

decreases response) causing decreased efficacy or a plateau effect.  This risk of non-monotonic 

                                                           
1
 The EMAX with Hill parameter=1  is called “hyperbolic EMAX” model in the literature but we refer to it as 

“EMAX.”  
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dose-response potential motivated the need for more flexible, yet powerful, models. An 

alternative strategy is proposed which includes a single dose-response model that reacts to 

possible non-monotonic relationships yet preserves the efficiencies in power and precision of the 

EMAX model.  One approach that preserves functional model efficiencies but is fairly robust to 

non-monotonicity utilizes the EMAX model with the addition of random effect parameters for 

each dose that represent variations from the EMAX curve per dose. Each of the random effects 

per dose are modeled hierarchically. Essentially, the random effect deviations for each dose are 

added to the EMAX curve. Because this off-curve effect for dose is modeled hierarchically with 

a mean of zero
5
 their estimates shrink towards zero, and the amount of shrinkage depends 

dynamically on how well the EMAX model captures the overall trend in the empirical dose-

response data. For example, if the EMAX model fit the data perfectly the random effect 

parameters will have strong shrinkage towards zero and the dose response-curve will be an 

EMAX. However, if there is deviation from the EMAX model then the off-curve effects will 

shrink less towards zero, creating a more flexible fit of the dose-response. Use of the hierarchical 

EMAX model provides a robust means to have some of the efficiencies in power and precision 

of the EMAX model, while also allowing increased flexibility to the model to address deviations 

if necessary.  

The focus of this article is to present and discuss the hierarchical EMAX model and its 

use for an ongoing early phase dose selection study.  The motivating example is a randomized 

trial of severe traumatic brain injury patients with the goal of selecting among seven possible 

active doses compared to control to achieve favorable functional outcomes. Three different 

models and two different design strategies are compared. The three models compared are: 1) 

pairwise independent, 2) EMAX, and 3) hierarchical EMAX. Each of these models are compared 
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across two different designs:1) fixed randomization and 2) response adaptive randomization 

(RAR). Results of a simulation study can be discussed more generally, where the same general 

approach also applies to other randomized dose-ranging trials.   

2. Methods 

2.1. Motivating Trial 

The motivating trial is the Hyperbaric Oxygen Brain Injury Treatment (HOBIT) trial 

(NCT02407028
6
).  This is a phase II Bayesian adaptive clinical trial for selecting the optimal 

dose regimen of hyperbaric oxygen treatment, defined as the regimen (hyperbaric oxygen at 

different pressure levels with or without normobaric hyperoxia) which produces the greatest 

improvement in the rate of good neurological outcome versus standard of care for subjects with 

severe traumatic brain injury (TBI). A second goal of this phase II trial is to determine if there is 

any hyperbaric treatment that has at least a 50% probability of demonstrating improvement in the 

rate of good neurological outcome versus a control (i.e. standard care) in a subsequent phase III 

confirmatory trial, assumed to be 500 in the control and 500 in the arm treated with the selected 

optimal dose regimen of hyperbaric oxygen.  

HOBIT is designed as a multicenter, prospective, randomized, adaptive phase II clinical 

trial.  The primary outcome is a sliding dichotomized severity
7
 adjusted GOS-E at 6 months (26 

weeks).  The trial will explore seven different active treatment arms for relative efficacy in 

comparison of the control arm.  Subjects may be randomized to hyperbaric oxygen at one of four 

possible atmospheric pressures (1.0, 1.5, 2.0 and 2.5 atmospheres absolute (ATA)) with or 

without additional 100% normobaric oxygen (NBH).  

2.1.1. Dose  

This article is protected by copyright. All rights reserved.
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The original study design
6
 uses a Bayesian adaptive design with response adaptive 

randomization, early stopping for success or futility, and longitudinal modeling to handle the 

missing data for subjects with incomplete data at the time of an interim analysis. The primary 

outcome uses a pairwise independent model (described later) as the primary analysis.  Following 

NIH peer review suggestion, it was decided to improve efficiency with a more structured dose-

response model. Two possible definitions of dose were considered – one in which the two factors 

of treatment – 4 levels of atmospheric pressure, and added use of NBH – were modeled 

separately, and secondarily where the dose was defined as a singular monotonic dose as a 

function of the total oxygen toxicity acquired during treatment. We chose the latter because of its 

strong power and precision. Table 1 defines the eight treatment arms considered in the trial. Dose 

strength as defined in Table 1 is the daily oxygen toxicity units per 100 (OTU/100). See 

Appendix for specific calculations of OTU dose strength.  

Dose index 

d 

 

Arm Name 

OTUs 

       

Dose strength  

   

d=1 Control (1.0 ATA) N/A* N/A* 

d=2 1.5 ATA 260   =2.60 

d=3 2 ATA 417   =4.17 

d=4 NBH (100% FiO2 at 1.0 ATA) 540   =5.40 

d=5 2.5 ATA 592   =5.92 

d=6 1.5 ATA+NBH 620   =6.20 

d=7 2 ATA+NBH 776   =7.76 

d=8 2.5 ATA+NBH 952   =9.52 

Table 1.  Dosing each of the arms in the traumatic brain injury (TBI) trial.  
 

*NOTE: In the control arm, subjects will be at 1.0 ATA, however the percent of FiO2 will not be 

regulated. Thus, it is theoretically possible that these subjects are accumulating OTUs. For the purposes 

of this study they will consider the “dose” to be zero and this arm will be modeled separately. The FiO2 

will be recorded throughout the study. Patients will receive at least 21% O2 outside of the chamber, but 

the level of oxygen supplementation may be higher though not typically exceeding 50%. 

 

2.2. Models 
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The probability an individual subject has a favorable outcome, Pd, is modeled for each 

dose, where dose is indexed   *     +. We use    *                               + as 

the effective dose strength, for example        , for the dose indexed d=2. The probability of 

a favorable outcome across doses is modeled with three different dose-response models for all 

inferences in the trial.  Assume all of the nd subjects randomized to dose index d have a summed 

binomial outcome Yd:  

           (     ). 

The log-odds of the probability of favorable outcomes,        .
  

    
/, are modeled.  In 

addition, for all models the single control arm (indexed d=1) is modeled separately from the 

active doses and has a prior distribution of     (        
 ).  This vague prior on the    scale 

has a median of 0.40 and 95% equal-tailed interval of .09-.83.  

In the following sections, the three different dose-response models for the active doses 

are described.  

2.2.1. Independent model  

The pairwise independent model has no structure in the active dose portion of the 

model.  Specifically, we model the active doses with independent prior distributions: 

    (       
 )               *     +. 

2.2.2. EMAX model  

The specification of the EMAX model is:  

      
    
     

               *     + 

where νd is the effective dose strength. The EMAX parameters are ϕ1, ϕ2, and ϕ3: 

This article is protected by copyright. All rights reserved.
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 ϕ1 is a constant offset, and the logistic response when the effective dose strength is 0. The 

prior distribution is     (       
 ). 

 ϕ2 is a scalar coefficient of the fraction of the response due to the effective dose strength.  

It is the theoretical maximum effect above the constant offset that can be achieved.  The 

prior distribution is     (   
 ). 

 ϕ3 is a positive scalar representing the effective dose strength that achieves 50% of the 

theoretical maximal effect. The prior distribution is     
 (     ). The notation N

+
 

represents a positively truncated normal distribution.  

As dose tends to infinity the theoretical maximum efficacy on the logit scale is        (   

    

     
 )         thus is called the EMAX. For an effective dose-strength of   =   the log-

odds is    
  

 
.   

2.2.3. Hierarchical EMAX model  

The Hierarchical EMAX model builds on the EMAX using the following structure: 

      
    

     
                  *     +. 

Where νd is the effective dose strength and the individual dose effects are modeled as: 

    (    
 ),                      d  *2,…,8}. 

The hyperparameters are constrained such that      . The prior distribution is    

 (    
 ) where the hyper prior   

               (         ). All other priors are the 

same as defined in the EMAX model.  

The model has a mean curve that is the EMAX model, but with an additional additive 

term per dose,   , for an off-curve effect that allows for a more flexible model. The additive    

terms are considered hierarchical because a priori they share a common normal distribution 
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having a hyperprior. The beauty of the random effect modeling is that when the EMAX provides 

a good fit to the data the random effect parameters,   , are shrunk toward 0, hence gaining the 

power of the EMAX structure.  When there are significant deviations from the EMAX model, 

the hyperparameter   
  will be larger and there is less shrinkage towards the EMAX model, 

allowing the individual dose effects to create a custom fit.  At the extremes,   
    the model is 

the EMAX model, and when   
    the model is the pairwise independent model. The 

hierarchical EMAX model will be like the EMAX model, unless the data deviates from the 

EMAX relationship, then it will respond accordingly.  This feature suggests that its power lies 

between the independent and EMAX models but is more robust to model misspecifications.  

It‟s worth a bit more discussion as to how the prior distribution for the hyper prior 

  
               (         ) was derived. One rational is to specify   

          

     .
  

 
 
  
   

 
/, where    is the hierarchical prior central value and    is the hierarchical 

prior weight. One must select these parameters carefully to avoid over or under fitting of the 

model.
9
 A very sound strategy is to specify    as a reasonable value of the upper limit in the 

difference in responses on the logit scale.  In our application to the HOBIT trial design we found 

      to be reasonable.  For the prior weight we find that in general   =1 is a very good start, 

however, after some tweaking through simulations we ultimately went with      .  The 

choices for the specification of these parameters will depend on outcome type and expectation of 

the dose-response for the particular application.      

2.3.Bayesian Quantities of Interest 

In order to draw conclusions from the above model, the posterior probability for each of 

the doses is converted to quantities of interest related to the main questions: the probability that 

each dose is the maximal effective dose, the probability each dose is superior to the control, and 
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the predictive probability a dose would win a phase III trial compared to control. The Bayesian 

quantities rely on calculating the joint posterior distribution of the probability of a favorable 

outcome for each dose.  These joint posteriors are calculated using standard Markov chain Monte 

Carlo (MCMC) algorithms.  The quantities of interest are as follows.  

2.3.1. Posterior Probability of Treatment Difference 

For each active dose, d=2,…,8 the posterior probability that the dose is superior to 

control, P(Pd – P1 >0) is calculated.  The estimate of this quantity is the proportion of MCMC 

samples in which Pd > P1.  

2.3.2. Maximum Effective Dose 

The maximum effective dose (DMax) is the dose with the greatest probability of a 

favorable outcome.  The posterior probability each dose is the maximally effective dose, 

Pr(DMax), is calculated as the frequency of the MCMC samples in which each dose is the 

maximum.  

2.3.3. Posterior Predictive Probability of Future Trial Success 

We assume a future phase III trial would be a fixed design, equally randomized 1000 

subjects between control and one active dose, with a final analysis a test of superiority.   

Thereby, for each active dose, the predictive probability of success in a future hypothetical trial 

is calculated as Pr(Phase III Success; n = 500,α = 0.025,δ = 0). For each dose this is calculated 

by averaging the power function over the posterior distribution for each dose and the control 

probabilities of favorable outcomes.  This is different from the power for such a trial, in that the 

power calculations typically assume a fixed treatment effect, whereas the predictive probability 

of success averages over the posterior distribution of the treatment effect. Thus, knowledge of 

the treatment effect and the uncertainty in that knowledge are formally incorporated.  

This article is protected by copyright. All rights reserved.
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2.4.Final Evaluation Criteria 

At the final analysis, the trial is considered successful if all of the following criteria are 

satisfied: 

Pr(Pd  > P1)> β for d = greatest Pr(DMax) ,and 

Pr(Phase III Success; n = 500,α = 0.025,δ = 0) > 0.5 for d  =  greatest Pr(DMax). 

Note, for fixed β the type I error rate changes depending on the model choice for the final 

analysis.  Thus so that all models have the same type I error rate β will vary by the choice of 

model used.  To provide 10% type I error rates across models, β is set to 0.975, 0.92, and 

0.922for independent, EMAX, and hierarchical EMAX models respectively.  

3. Results 

3.1.  Illustrative Examples  

In this section, three single simulated trials are used as examples to illustrate the 

differences between independent, EMAX, and hierarchical EMAX models. These example 

datasets were created for illustrative purposes and then fitted using the Windows Bayesian 

inference Using Gibbs Sampling (WinBUGS)
 8

 code in the Supporting Material. In these 

examples, the total sample size is 200 with 39 allocated to control and the rest equally allocated 

to the seven active doses.  

Figure 1 and Table 2 depict the three single simulated datasets whereby it is assumed that 

there is a large monotonic dose effect, an effect for the NBH dose only, and an over dose effect.  

The large monotonic effect is a scenario in which favorable response increases with dose in the 

active arms in a large monotone fashion. The second example is a scenario in which higher 

responses in the active doses take place in a monotonic fashion but only in those doses that 

involve NBH.  The third example is a scenario in which toxicity is involved and results in an 
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upside down U-shape distribution.  Here toxicity prevails in doses with higher oxygen toxicity 

units and thus causes a high number of poor responses at higher doses.   

Figure 1.  Illustrative data for the exploration of posterior distributions for assumed responses. 

 
 

 
Dose 

Strength 
d=1 

Control 

d=2 

2.60 

d=3 

4.17 

d=4 

5.40 

d=5 

5.92 

d=6 

6.20 

d=7 

7.76 

d=8 

9.52 

 n 39 23 23 23 23 23 23 23 

Large Monotone           

Response y 16 8 10 11 12 14 16 18 

%Response 100*y/n 41.0% 34.8% 43.5% 47.8% 52.2% 60.9% 69.6% 78.3% 

NBH Only           

Response y 16 8 8 18 8 18 18 18 

%Response 100*y/n 41.0% 34.8% 34.8% 78.3% 34.8% 78.3% 78.3% 78.3% 

Over-Dose          

Response y 16 8 10 12 18 12 4 2 

%Response 100*y/n 41.0% 34.8% 43.5% 52.2% 78.3% 52.2% 17.4% 8.7% 

 

Table 2. Illustrative data for the exploration of posterior distributions for assumed responses.  

 

3.1.1. Example 1: Large Monotone Effect  

Figure 2 provides the median of the posterior distribution and 95% credible intervals with 

the observed rates for the three models. For a non-Bayesian this is analogous to a point estimate 

and 95% confidence interval. The independent model has wider credible intervals than the 

EMAX and the hierarchical EMAX models.  The latter two models are very similar in location 

and width, demonstrating better precision than the independent model. The monotonic increase 
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of the response and intervals, as well as the observed rates, are covered by all models.  The 

reason that the latter two models appear so similar to one another is because the EMAX portion 

in both models follows the monotone pattern and the off-curve effect at each dose is essentially 

zero as illustrated by its posterior median.  With respect to the Bayesian quantities of interest 

across dose as shown in Table 3, the posterior probability of treatment difference and posterior 

predictive probability of future trial success are all very similar across EMAX and hierarchical 

EMAX and doses, but different for the independent model as it spreads P(DMax) across the three 

highest doses. For all three models d =greatest Pr(DMax)=8, which has an effective dose strength 

of ν8 =9.52, and at that dose all of the models have Bayesian quantities that lead to trial success, 

specifically Pr(Pd  > P1)> 0.975, 0.92, and 0.922 for independent, EMAX, and hierarchical 

EMAX models respectively, and Pr(Phase III Success; n = 500,α = 0.025,δ = 0) > 0.5 for d =8.  

In summary for the large monotonic effect, the EMAX and hierarchical EMAX model provide 

similar conclusions and both are preferable over the independent model.   

Figure 2. Results for fitting models in the large effect example. The „‟ in the first three frames 

represent the observed rate and the shaded regions are the 2.5%-tile and 97.5%-tile from models 

(e.g. 95% intervals) for Pd for all models.  The last frame shows the 50%-tile (point estimate) and 

2.5%-tile and 97.5%-tile for ψd in the hierarchical EMAX model.  

This article is protected by copyright. All rights reserved.



15 
 

 

Large Effect  
d=1 

Control 

d=2 

2.60 

d=3 

4.17 

d=4 

5.40 

d=5 

5.92 

d=6 

6.20 

d=7 

7.76 

d=8 

9.52 

P(DMax) Independent 0.00 0.00 0.00 0.01 0.02 0.07 0.24 0.66 

 EMAX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

 Hierarchical EMAX 0.00 0.00 0.00 0.00 0.01 0.01 0.08 0.89 

Pr(Pd  > P1 ) Independent 0.00 0.32 0.57 0.69 0.79 0.92 0.98 1.00 

 EMAX 0.00 0.43 0.81 0.95 0.98 0.98 1.00 1.00 

 Hierarchical EMAX 0.00 0.43 0.79 0.93 0.96 0.98 0.99 1.00 

Pr (Phase III 

Success)  
Independent 

0.02 0.17 0.37 0.49 0.61 0.81 0.93 0.98 

 EMAX 0.03 0.22 0.57 0.82 0.88 0.90 0.97 0.99 

 Hierarchical EMAX 0.03 0.23 0.55 0.78 0.85 0.89 0.97 0.99 

Table 3. Bayesian quantity results from fitting the large monotonic effect example.  

 

3.1.2. Example 2: NBH Effect  

As with the previous example, Figure 3 illustrates the median of the posterior distribution 

and 95% credible intervals with the observed rates for the independent, EMAX, and hierarchical 

EMAX models. In this case, the independent model covers all of the point estimates but has wide 

intervals. The nonlinear response is not well represented by the EMAX model.  It under 
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estimates two of the early doses that use NBH and overestimates some of the other doses that do 

not have NBH. However, the added flexibility of the hierarchical EMAX model follows the 

patterns quite well, covering all of the observed rates. As shown in the fourth panel of Figure 3, 

the hierarchical model has better coverage because the off-curve effect is larger than zero at each 

if the four NBH doses. The Bayesian quantities of interest across doses shown in Tables 4 also 

provide information about the utility of these three models.  The maximum effective dose is 

essentially zero for all the doses except the highest for the EMAX, whereas the hierarchical 

EMAX model spreads the probability across more of the doses with NBH.  In addition, the 

posterior probability of future trial success has a notable divergence in agreement at dose 5.92 

across the two parametric models. However, when going to three digits, just like in the previous 

example, all three models d =greatest Pr(DMax)=8, which has an effective dose strength of ν8 

=9.52, and at that dose all of the models have Bayesian quantities that lead to trial success, 

specifically Pr(Pd  > P1)> 0.975, 0.92, and 0.922 for independent, EMAX, and hierarchical 

EMAX models respectively, and Pr(Phase III Success; n = 500,α = 0.025,δ = 0) > 0.5 for d=8.  In 

this situation, the hierarchical EMAX model provides more flexibility and thus investigators 

would have increased insight into the best dose to carry forward into the future trial.     

Figure 3. Results for fitting models in the NBH only effect example. The „‟ in the first three 

frames represent the observed rate and the shaded regions are the 2.5%-tile and 97.5%-tile from 

models (e.g. 95% intervals) for Pd for all models.  The last frame shows the 50%-tile (point 

estimate) and 2.5%-tile and 97.5%-tile for ψd in the hierarchical EMAX model. 

This article is protected by copyright. All rights reserved.
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NBH Only  
d=1 

Control 

d=2 

2.60 

d=3 

4.17 

d=4 

5.40 

d=5 

5.92 

d=6 

6.20 

d=7 

7.76 

d=8 

9.52 

P(DMax) Independent 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25 

 EMAX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

 Hierarchical EMAX 0.00 0.00 0.00 0.16 0.00 0.18 0.25 0.40 

Pr(Pd  > P1 ) Independent 0.00 0.32 0.32 1.00 0.32 1.00 1.00 1.00 

 EMAX 0.00 0.49 0.90 0.99 0.99 1.00 1.00 1.00 

 Hierarchical EMAX 0.00 0.43 0.54 1.00 0.61 1.00 1.00 1.00 

Pr(Phase III 

Success) 
Independent 

0.02 0.18 0.17 0.98 0.17 0.98 0.98 0.98 

 EMAX 0.03 0.27 0.71 0.92 0.96 0.97 0.99 1.00 

 Hierarchical EMAX 0.03 0.24 0.35 0.98 0.44 0.99 0.99 0.99 

Table 4. Bayesian quantity results from fitting the NBH only example.  
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3.1.3. Example 3: Over Dose  

Figure 4 provides the median of the posterior distribution and 95% credible intervals with 

the observed rates for the independent, EMAX, and hierarchical EMAX models for the over dose 

example. Again the independent covers the observed rates but with wide intervals. Further, the 

nonlinear response is not well modeled at all by the EMAX model.  It severely under estimates 

one of the middle doses before the dose becomes harmful. However, as in the NBH example the 

flexibility of the hierarchical EMAX model follows the patterns quite well, covering all of the 

observed rates. The reason that the hierarchical EMAX model does a better job of coverage is 

because as shown in the fourth panel of Figure 4 the off-curve effect is bumped up at the middle 

dose and then goes down during the more harmful later doses. Table 5 presents the Bayesian 

quantities of interest across doses.  In this scenario, the maximum effective dose is too small for 

detection by the EMAX model, whereas the hierarchical EMAX model correctly identifies the 

middle dose as the best.  In addition, the posterior probabilities correctly reflect what is expected 

given this scenario of toxicity.  The hierarchical EMAX model choses the middle dose as having 

over twice the probability of being better than control relative to the EMAX model.  Lastly, the 

probability of future trial success has a notable difference in this dose across the two models. 

Turning to the independent model, in terms of the results in Figure 4 and Table 5, it has very 

similar results to the hierarchical EMAX, suggesting that both may behave similarly in this over 

dose effect shape. In this example the three models resulted in different trial conclusions. For 

both the independent as well as the hierarchical EMAX models d =greatest Pr(DMax)=5, which 

has an effective dose strength of ν5 =5.92.  The EMAX model has a lower dose with d =greatest 

Pr(DMax)=2, which has an effective dose strength of ν2 =2.60. However, only the independent and 

the hierarchical EMAX achieve trial success because Pr(Pd  > P1)> 0.975 and 0.922, respectively 
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and Pr(Phase III Success; n = 500,α = 0.025,δ = 0) > 0.5 for d=5. The EMAX does not achieve 

trial success as both Pr(Pd  > P1)<0.92 and Pr(Phase III Success; n = 500,α = 0.025,δ = 0) <0.5 

for d=2.  We will further explore this result in the next section using several simulated datasets. 

In the situation of toxicity, the hierarchical EMAX model would provide investigators with a 

clear dose winner that reflects the nonlinear trend in the observed rates.   

Figure 4. Results for fitting models in the over dose effect example. The „‟ in the first three 

frames represent the observed rate and the shaded regions are the 2.5%-tile and 97.5%-tile from 

models (e.g. 95% intervals) for Pd for all models.  The last frame shows the 50%-tile (point 

estimate) and 2.5%-tile and 97.5%-tile for ψd in the hierarchical EMAX model. 

 

Over dose  
d=1 

Control 

d=2 

2.60 

d=3 

4.17 

d=4 

5.40 

d=5 

5.92 

d=6 

6.20 

d=7 

7.76 

d=8 

9.52 

P(DMax) Independent 0.00 0.00 0.01 0.04 0.92 0.04 0.00 0.00 

 EMAX 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.07 

 Hierarchical EMAX 0.00 0.00 0.01 0.04 0.91 0.04 0.00 0.00 

Pr(Pd  > P1 ) Independent 0.00 0.32 0.57 0.79 1.00 0.79 0.04 0.01 

 EMAX 0.00 0.79 0.65 0.52 0.46 0.43 0.31 0.23 
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 Hierarchical EMAX 0.00 0.34 0.57 0.77 0.99 0.77 0.04 0.01 

Pr(Phase III 

Success) 
Independent 

0.03 0.17 0.37 0.61 0.98 0.61 0.01 0.00 

 EMAX 0.03 0.58 0.38 0.25 0.21 0.20 0.13 0.09 

 Hierarchical EMAX 0.03 0.19 0.37 0.59 0.97 0.59 0.01 0.00 

 

Table 5. Bayesian quantity results from fitting the over dose example.  

 

3.2 Simulation Study 

The previous section provided an illustration of the properties of the three different 

models using a single simulated dataset.  A more thorough investigation of the relative properties 

of these models (independent, EMAX, and hierarchical EMAX), and the trial operating 

characteristics such as fitted response, proportion dose was identified as having the largest 

P(DMax), average sample size, and proportion of time we select the correct dose (e.g. power) are 

evaluated through repeated simulations using different assumptions of the dose-response curves 

(“large monotone”, “NBH only”, and “over-dose”).   

The trial operating characteristics were calculated using commercial software Fixed 

and Adaptive Clinical Trial Simulator 6.2 (FACTS) (Berry Consultants, Austin, TX). In each 

scenario, 10,000 simulated trials are used. We considered two designs both having n=200.   

First, a fixed allocation ratio of 1:4 control to active doses, spread evenly across active 

doses. As reported in the examples, to provide 10% type I error rates across models, β is set to 

0.975, 0.92, and 0.922 for independent, EMAX, and hierarchical EMAX models respectively. 

Second, a response adaptive randomization (RAR) allocation
9
 is used with the same 

allocation ratio of 1:4 control to active dose, but after the first 53 randomized the allocation 

among active doses changes. Instead of being spread evenly across active doses, the allocation 

among active doses was proportional to: 

√
   (  )   (      )

(    )
. 
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This RAR is updated after every 21 subjects are enrolled. For the RAR design, to provide 10% 

type I error rates across models, β was slightly modified to 0.970, 0.925, and 0.925 for 

independent, EMAX, and hierarchical EMAX models respectively. 

The true response rates assumed for each scenario are shown in Table 6. In choosing 

effect sizes to evaluate the models, the “large” response (Table 6) is expected to favor the 

EMAX since it is monotone; however, for “NBH” and “over-dose” there is a nonlinear effect 

caused by NBH or an over dose of oxygen.  Thus these dose response effects are expected to 

favor the hierarchical EMAX or independent models.   

 

Effect 

d=1 

Control 

d=2 

2.60 

d=3 

4.17 

d=4 

5.40 

d=5 

5.92 

d=6 

6.20 

d=7 

7.76 

d=8 

9.52 

Large 0.40 0.59 0.60 0.61 0.62 0.63 0.64 0.65 

NBH 0.40 0.40 0.40 0.70 0.40 0.70 0.70 0.70 

Over Dose 0.40 0.40 0.50 0.55 0.70 0.40 0.35 0.30 

Table 6. Favorable response rates assumptions used for simulations.  Shaded regions are doses 

expected to be better than control (e.g. correct arm).   

 

3.2.1. Fitted Response and P(DMax) Selection Across Simulations  

In order to evaluate how well each model fits the proposed dose response effect, Figures 

5, 6, and 7 show the estimated means with 2.5% and 97.5% quantities for the probabilities of 

response and the proportion of simulations a dose was identified as having the largest P(DMax) for 

the fixed design (there are similar plots for the adaptive design but for brevity not shown). These 

are presented so that we can understand how well the models fit the data and how these models 

result in a dose as being selected as maximum response relative to control and a candidate to 

move forward to phase III.  Recall the dose with maximum response relative to control has to 

also achieve the success criteria presented in section 2.4. Previously it was shown that the 

amount of deviation from a monotone model in the Bayesian hierarchical EMAX model is 

determined by the data, i.e. the greater the deviation, the greater the spread in the drift-

parameters. Thus the hierarchical EMAX model more readily responds to deviations than the 
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EMAX. The large effect scenario (Figure 5) shows similarities between the hierarchical EMAX 

and EMAX.  The point estimates and the 95% quantiles are almost identical.  The independent 

model has similar point estimates but the 95% quantiles are much wider. In addition, compared 

to the independent model, the EMAX and hierarchical EMAX models have a higher frequency 

of correctly identifying the highest dose as having the having the largest P(DMax).  

Figure 5. Large monotone effect.  

Independent 

 
EMAX 

 
hierarchical EMAX 
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The NBH only scenario (Figure 6) shows deviations between the hierarchical EMAX and 

the EMAX models in that the hierarchical EMAX reacts to the non-linear spikes in the responses 

as the point estimates and quantiles cover the true response probabilities whereas the EMAX 

model misses four doses. Like the hierarchical EMAX model, the independent model has close 

point estimates and intervals that cover the truth for all doses but the intervals are wider than the 

hierarchical model. However, as identified by the P(DMax), the independent model has a slightly 

higher chance of selecting NBH than the hierarchical EMAX, conversely hierarchical EMAX 

leans more towards the highest dose than the independent model does.  

Figure 6. NBH only.  

Independent 
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EMAX 

 
hierarchical EMAX  

 
The over dose scenario (Figure 7) also shows deviations between the hierarchical EMAX 

and the EMAX models in that the hierarchical reacts to the non-linear spikes in the responses as 

the point estimates and quantiles cover the true response probabilities whereas the EMAX model 

severely misses two doses. The point estimates and interval widths are similar in this scenario 

between hierarchical EMAX and independent models.  In fact, it looks like the independent 

model does pretty well in this case.  The hierarchical EMAX does much better at quantifying the 

maximum probability at the middle highest response rate than the EMAX. The independent 

model does the best in choosing the best dose.  

Figure 7. Over dose.  
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Independent  

 
EMAX 

 
hierarchical EMAX 

 
 

3.2.2. Probability a Correct or Incorrect Arm is Selected: Fixed Trial 
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In evaluating the doses, the interest is the probability of selecting a treatment dose that 

actually is better than control (e.g. a correct arm).  For these simulations, the “correct” dose, 

defined as concluding efficacy where Pd> P1, is dependent on the effect assumed, and is shown 

in Table 6 as a shaded region. The proportion of correct decisions, as well as the probability of 

selecting an incorrect arm, for each model across the scenarios are provided in Table 7. The 

EMAX model is close to or has the highest probability of choosing a correct dose, in all 

scenarios, except for the „over dose‟, where it is fails miserably having 0 correct decisions.  But 

it also has unacceptable probability of incorrect doses. The hierarchical EMAX has a much 

higher probability of selecting a correct dose than the independent model in all scenarios except 

over dose case. The independent model is the only one that performs reasonably well in the over 

dose scenario.  Although the probability of choosing the correct dose in the other scenarios is not 

as high as the other models, it does still perform very well.    

Fixed Independent 

 

Emax 

 

Hierarchical 

EMAX 

 Effect P(Correct) P(Incorrect) P(Correct) P(Incorrect) P(Correct) P(Incorrect) 

Large 0.808 0.000 0.939 0.000 0.936 0.000 

NBH Only 0.899 0.003 0.950 0.012 0.960 0.004 

Over Dose 0.635 0.008 0.000 0.317 0.450 0.091 

Table 7. Operating characteristics of the models for fixed design (n=200). All designs are 

calibrated to have a Type I error rate of 10%. 

 

3.2.3. Probability a Correct or Incorrect Arm is Selected: RAR Trial 

Table 8 also shows the probability of choosing a correct arm and the probability of 

choosing an incorrect arm for each model across the scenarios. The EMAX model has the 

highest probability of choosing a correct arm in the first two scenarios, but as with the fixed 

design it does not provide acceptable probabilities for correct selection for the over dose 

scenario.  The hierarchical EMAX more likely to pick a correct arm than independent model in 

all scenarios except over dose case.   The hierarchical EMAX model has a lower probability of 
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choosing an incorrect dose than the EMAX does. The independent model, while slightly worse 

for the large and NBH only dose response effects, offers significantly greater protection in the 

case where the over-dose scenario is the true treatment effect.  

 

Adaptive Independent 

 

Emax 

 

 

Hierarchical 

EMAX 

 

Effect P(Correct) P(Incorrect) P(Correct) 

P(Incorrect

) P(Correct) 

P(Incorrect

) 

Large 0.847 0.000 0.944 0.000 0.933 0.000 

NBH Only 0.945 0.001 0.979 0.002 0.972 0.004 

Over Dose 0.769 0.004 0.000 0.087 0.554 0.064 

 

Table 8. Operating characteristics of the models for adaptive design with longitudinal modeling 

(nmax=200). All designs are calibrated to have a Type I error rate of 10. 

 

 

4. Discussion 

The HOBIT trial, as in many dose response phase II trials, has a clinical goal for 

identifying the treatment dose that produces best outcomes for sick patients, in this case severe 

TBI.  It is strongly believed that higher doses of oxygen will improve outcomes in a 

monotonically increasing fashion. However, these high doses have not been explicitly tested in 

the clinical setting, so it is important for statisticians and clinicians to think about how models 

will react to possible deviations from monotonicity. That is why we investigated the up and 

down scenarios provided by the NBH and the over dose.  It allowed us to see if our model choice 

is robust to risky deviations in dose response structures. Not surprisingly there was not a clear 

winner across the scenarios.  In thinking about the results, on the one hand obtaining a good fit 

across all parameters puts us in a better place if we don‟t want to select the highest dose, power 

is important but maybe not if the models differ by a few percentages, and the same with sample 
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size- there is a tradeoff between risk to the patient, duration/cost of trial, but there may need to be 

additional information for estimating safety and for secondary data analysis plans.  

Because of the strong opinion of monotone structure, in this case (and many) of dose-

response phase II trials a very good starting point is to use the EMAX approach.  However, 

deciding whether to add the hierarchical and how to borrow across groups depends on how much 

you think the true dose-response curve is likely to deviate from the EMAX. For example, is there 

a strong or weak possibility of an over dose or other mechanisms that may cause non-monotone 

patterns? If there is no possibility of non-monotone patterns one should go with the EMAX.  It is 

the clear winner. If there is a weak possibility of non-monotone patterns one should go with the 

hierarchical EMAX. In this case the amount of shrinkage or lack of reaction to irregularities is 

determined by an inverse gamma hyperprior on the variance term for the off-curve effect. The 

parameters in this model can be decided based on careful scenario construction and simulation 

can be used to investigate the balance between power and robustness. Finally, if there are strong 

possibilities of non-monotone patterns, one should go with the independent model.  These 

decisions can be made by investigating scenarios and simulation results can be reviewed and 

discussed among investigators, DSMB, and other stakeholders such as the sponsor. These groups 

should investigate power, probability of getting the correct (or incorrect) dose and the best dose, 

the sample size, and the time in which it takes to finish the trial. A possible way to discuss this is 

by presenting plots such as the one in Figure 8 that shows the tradeoff off of identifying correct 

or incorrect doses as a function of possibility of non-monotone patterns. 

Figure 8. Presented is the probability of identifying correct dose minus the probability of 

identifying incorrect dose as a function of possibility of a non-monotone scenario.  The 

possibility of non-monotone pattern produces a combination of the effects Large, NBH Only, 

and Over Dose.  Let   be the probability of a non-monotone pattern (this probability is split 

between the two non-monotone patterns NBH Only and Over Dose), then the difference in 

probability correct (Pc) and probability of incorrect (PI), where I=Pc-PI, for each model is 
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calculated as a function of the probability of the effects, therefore this operating characteristic 

becomes         (   )     (   )          .  Notice that no model is best across all 

possibilities of non-monotone patterns however hierarchical EMAX model works very well 

across a broad range.  
 

 

Some non-Bayesians may have more experience or comfort with traditional model 

averaging techniques
10

 than fitting Bayesian models.  The strategy in this paper essentially 

combines models in the modeling stage.  Model averaging combines models in the outcomes 

stage.  We prefer the modeling strategy described in this paper.  But for a trialist or statistician 

who may be more comfortable in the model averaging literature, one may follow the techniques 

described in the frequentist literature to combine independent doses model with EMAX to 

achieve a similar goal. 

The mention of model averaging motivates thoughts of possible future extensions to the 

Hierarchical EMAX model. For example, it might be a benefit to allow a correlation between 

consecutive doses „residuals‟, the     .  Further, seven doses are a lot, though more sponsors 
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may want to consider a broad dose range with many doses (for example in phase II oncology 

therapeutic trials and other cancer related studies, such as smoking cessation and/or weight loss 

studies), especially when using modeling rather than an independent doses model.  The questions 

then become: (1) Does this work as well with fewer doses?  At what point does the EMAX 

assumption come to dominate?  Or does added flexibility of the hierarchical component 

contribute differently with more vs. less doses? Tackling these issues are our next steps in this 

line of research. 

In conclusion, with the ability to have adequate power and other trial operating 

characteristics, the hierarchical EMAX model is an important alternative in the phase II dose-

response setting. Further, as a general pre-trial or trial start-up activity in the case of phase II 

dose selection trials, we have found that, often, insufficient attention is devoted to the potential 

vulnerabilities of the trial with respect to modeling choice. This article provides a general 

framework for how other studies may approach evaluating alternative modeling choices to 

further safeguard the trial without appreciable loss of power or significant modification of the 

underlying protocol.  
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6. Appendix: Dose calculations 

The oxygen toxicity exposure per dive is calculated as the number of minutes breathing 

100% oxygen. For each dive, subjects are compressed/decompressed at a rate of 2 feet per 

minute, where a 10 m dive reduces the atmospheres by approximately 1 unit. That is, the 

compression or decompression time for a 1.5 ATA dive is 8.25 minutes respectively, 16.5 

minutes for a 2.0 ATA dive, and 25 minutes for a 2.5 ATA dive. That is: 

                (1)  

           ,   -  .         /  
   

     
 
      

   
 
     

   
 

(2)  

 

To calculate the OTU for the decompression/compression: 

    

 
      

(    )

         
 [(

        

   
)

  
 

 (
        

   
)

  
 

] 

(3)  

Once compressed, subjects will be treated at the specified pressure for 60 minutes, with NBH 

treatment defined as 100% O2 for 3 hours following decompression. The NBH without HBO2 

treatment will be 100% O2 for 4.5 hours at 1.0 ATA. To calculate the OTU at constant depth: 
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        (    )   (
   

       
)

  
 

 

(4)  

Thus, the total OTU dose per dive is: 

Dose ATA 

Compress/ 

Decompress 

Time 

OTUs 

(x 2)† 

Constant 

Pressure 

Time 

OTUs

‡ 

NBH 

Time 

OTUs

‡ 

Total 

OTU per 

dive 

1.5 ATA 1.5 8.25 11.5 60 106.9 0 0 130.0 

2 ATA 2 16.5 29.2 60 149.9 0 0 208.3 

NBH (100% 

FiO2 at 1.0 

ATA) 

1 0 0.0 0 0.0 270 270 270.0 

2.5 ATA 2.5 25 53.2 60 190.5 0 0 296.8* 

1.5 

ATA+NBH 
1.5 8.25 11.5 60 106.9 180 180 310.0 

2 ATA+NBH 2 16.5 29.2 60 149.9 180 180 388.3* 

2.5 

ATA+NBH 
2.5 25 53.2 60 190.5 180 180 476.8* 

†Using the decompression/compression formula; ‡ Using the constant depth formula 

* Due to differences in rounding, the effective OTU dose for arms 2.5 ATA, 2 ATA+NBH and 2. 

ATA + NBH are calculated as 52, 776, and 952 (see Table 2).  
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