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Abstract 

 

Material extrusion (MEX), also known as fused deposition modeling (FDM), is an additive 

manufacturing (AM) process that deposits a molten thermoplastic material layer-by-layer from a 

heated nozzle. This thesis investigates the use of MEX in the fabrication of a thin-walled structure 

(TWS), such as the ankle-foot orthosis (AFO). Three requirements for the AFO and other TWSs 

fabricated by MEX are that they are lightweight and durable and have tunable structural stiffness.  

To fabricate a lightweight TWS with a tunable structural stiffness, the layer-by-layer nature 

of the MEX process may be adapted to fabricate complex internal geometries within a part. The 

wave infill, which uses a sine wave pattern to fill the TWS, is one method for designing such an 

interior within a TWS. The key advantage of the wave infill is that its truss-like structure can 

minimize TWS mass and homogenize the TWS for characterization of its structural stiffness. The 

effect of the wave infill geometry on four metrics – stiffness, load capacity, fabrication time, and 

mass – was studied. Analytical models were developed that predicted these metrics to within 10% 

of experimental measurements. The analytical models were used to develop a composite 

simplification model (CSM) of the wave infill in TWSs with generalized geometries. In CSM, the 

wave infill and TWS faces are modelled as a homogenous stacked composite, which reduces 

computation and setup time. CSM for the wave infill was found to predict the stiffness of 

experimental measurements within 15%. An analysis performed on several geometries and loading 

conditions shows CSM to be a powerful finite element tool that can optimize the wave infill for 

TWSs.  
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To fabricate a durable TWS, interfacial weaknesses between layers due to voids from the 

MEX fabrication process must be inspected to allow for the improvement of MEX process 

parameters. Computed tomography (CT) is a non-destructive method for quantifying void density 

at MEX layer interfaces. An advanced segmentation technique called the Mixed Skew Gaussian 

Distribution (MSGD) method was developed to improve processing of CT AM part analysis. The 

MSGD method predicted the porosity of an AM specimen from the National Institute of Standards 

and Technology (NIST) to within 1% of its experimentally measured value. MSGD was applied 

to quantify the internal structure of a MEX filament and part. For the MEX part, average void area 

was found to be highest (>250 μm2) at the bottom of the layer and smallest (<100 μm2) at the top 

of the layer, which could be explained by a large temperature gradient between layers and 

contractile thermal stresses inside the layer that causes the thermoplastic to have increased 

shrinkage resulting in larger voids.  

Overall, this thesis shows: (1) the wave infill can be used to generate a lightweight TWS 

with tunable structural stiffness, (2) CSM is a powerful finite element technique that may be used 

to design MEX wave infill TWSs, (3) CT and MSGD may be used to quantify the internal structure 

of MEX filaments and parts, and (4) voids from the MEX process occur at interfaces between 

layers, possibly due to large thermal gradients and plastic shrinkage. This research will inform and 

improve the MEX fabrication process to fabricate TWSs with tunable structural stiffnesses that are 

lightweight and durable.  
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Chapter 1  
Introduction 

1.1  Material Extrusion: Fabricating a Durable, Lightweight Thin-Walled Structure with 

Tunable Structural Stiffness 

The ankle-foot orthosis (AFO) is a device that is used to support and correct the foot and 

leg orientation of patients with drop-foot syndrome and other pathologies during walking. The 

conventional fabrication process for the AFO is shown in Figure 1.1. The process for fabricating 

an AFO is to capture the shape of the patient’s limb using a plaster cast, fill the cast with plaster 

to generate a positive mold, vacuum form a thin thermoplastic sheet around the plaster mold, and 

cut the device trimline to create the final product. The trimline, material, and the thickness of the 

thermoplastic sheet determines the bending stiffness of the final AFO. Bending stiffness, the 

resistance to angular deformation of the AFO due to ankle joint bending moment 𝑀𝑋 (Figure 1.2), 

is a key metric for patient outcomes [1]. Limitations with this conventional fabrication process 

include that the process is time consuming, labor and material intensive and geometry and shape 

limited.  
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Figure 1.1. Conventional manufacturing practice for the AFO.  

 

Figure 1.2. Bending moment, 𝑀𝑋, about the ankle joint of the AFO 

 Material extrusion (MEX), also known as fused deposition modeling (FDM), is an additive 

manufacturing (AM) process that offers a potential solution to the fabrication of the AFO because 

it can quickly and cost-effectively manufacture complex parts. In MEX, a molten thermoplastic 

material  is deposited layer-by-layer from a heated nozzle [2]. A schematic of the MEX process is 

provided in Figure 1.3. MEX is increasingly being used in the fabrication of thin-walled structure 

(TWS) parts for high-performance, end-use applications in fields such as medicine and aerospace 
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[3–6]. An example application of a TWS fabricated by MEX is the AFO (Figure 1.5(a)). Three 

requirements for the AFO and other TWSs fabricated by MEX are that they are lightweight and 

durable and have a tunable structural stiffness. This thesis investigates the use of the layer-by-layer 

MEX process to fabricate TWSs with these requirements. Section 1.2 demonstrates the 

applicability of MEX to fabricate an AFO with similar stiffness and patient outcomes as the 

conventional manufacturing process.  

 

Figure 1.3. MEX process for depositing molten thermoplastic material layer-by-layer [2] 

To fabricate a lightweight TWS with a tunable structural stiffness, the layer-by-layer nature 

of the MEX process may be adapted to fabricate complex internal geometries within a part. For a 

TWS such as the AFO that is primarily subjected to bending deformations during use (Figure 

1.5(a)), internal geometries within the TWS allow for lightweighting and tuning of the structural 

stiffness of the part. During four IRB-approved subject trials performed at the University of 

Michigan Orthotics and Prosthetics Center, AFO weight was one of the main concerns provided 

by the users. Additionally, AFO stiffness has an impact on users’ gait [1].  The wave infill is one 

method for designing an interior that allows for lightweighting and structural stiffness tuning of a 
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TWS. The wave infill uses a sine wave pattern to fill the TWS between its two outer facings. The 

key advantage of the wave infill is that its truss-like structure can minimize TWS mass and 

homogenize the TWS for characterization of its structural stiffness. Chapters 2 and 3 of this thesis 

investigate the use, design, and modelling of the wave infill for a MEX TWS. Sec. 1.3 provides 

further detail on the background and review of the MEX wave infill. Specifically, the research aim 

of Chapter 2 will be to study the effect of the uniform wave infill geometry on the stiffness and 

mass of the TWS. Chapter 3 aims to model the stiffness of wave infill TWSs with generalized 

geometries and loading conditions.  

To fabricate a durable TWS, interfacial weaknesses between layers due to voids from the 

MEX fabrication process must be inspected to allow for the improvement of MEX process 

parameters. During the layer stacking process, molten thermoplastic material from the nozzle is 

deposited onto a previously cooled layer. During deposition and cooling of the molten material, 

voids form or are entrapped between layers. These voids contribute to the structural anisotropies 

that are inherent in MEX structures. To minimize the voids that contribute to these anisotropies, 

non-destructive inspection techniques may be used to visualize internal MEX structures, which 

can be used to improve MEX processes and mechanical strength. Chapter 4 and 5 of this thesis 

investigate the use of non-destructive computed tomography and a segmentation algorithm to 

visualize and quantify the internal structure of MEX materials. Sec. 1.4 provides further detail on 

the background and review of the inspection of voids using CT. Specifically, Chapter 4 aims to 

quantify CT data for physical insight into the internal structure of AM parts. Finally, Chapter 5 

aims to apply methods developed in Chapter 4 to investigate the internal structure of MEX 

filaments and parts.  
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1.2 Comparison of MEX and Conventional AFO 

To ensure that the MEX and conventional AFO were similar, two devices were tested and 

compared according to the following protocol. The right foot and leg of a healthy subject was 

scanned (Omega, WillowWood, OH), and the scan was modified (Standard Cyborg, CA) to create 

both the adjusted positive model and the 3D model of the AFO. From the adjusted positive model, 

a foam model was created using a CNC carver. A standard 4.75mm polypropylene sheet was 

thermoformed around this model, and trimlines were cut to create the conventional AFO device. 

From the 3D model, a MEX machine (Fortus, Stratasys, MN) was used to fabricate a 4mm thick, 

fully dense Nylon AFO. Both AFOs were subjected to a stiffness test (Figure 1.4(a)) using a 

custom mechanical testing device. This device measures angular deflection and torque about the 

AFO ankle axis. Average stiffness of the AFO is obtained by applying a linear fit to the torque-

deflection curve (Figure 1.4(b)). Under an IRB approved protocol, a healthy subject walked with 

regular shoes and with the two AFOs while gait parameters were recorded using inertial 

measurement units (IMUs) (Legsys, BioSensics, MA). A Fisher Pairwise Method for one-way 

ANOVA was used to determine statistical difference (P<0.05) between the three conditions. 

Average stiffness of both AFOs were similar – 3.8 N-m/deg – compared to cited stiffness ranges 

[7]. Gait analysis demonstrated that stride length, right-side knee angle at contact, and left and 

right-side knee flexion during swing were statistically similar between AFOs but different from 

the regular shoe condition. However, the AFOs performed statistically differently in step length 

and left and right-side stride duration. In a survey, the subject revealed the printed AFO better 

limited the foot’s motion during gait. MEX of AFO has been shown to produce statistically similar 

gait results in a healthy subject compared with traditionally manufactured AFO. 
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Figure 1.4. (a) AFO mechanical tester measuring stiffness of printed AFO, (b) resulting stiffness curves for both AFOs 

and average linear fit 

1.3 Material Infill for the Layer-by-Layer MEX TWS 

To fabricate a lightweight TWS with a tunable structural stiffness, the layer-by-layer MEX 

process is described. In MEX, a TWS is divided into layers.  These layers typically consist of a 

long, thin contour region.  An example of the contour region in an AFO is shown in Figure 1.5(b).  

To provide stiffness to the structure, this thin region needs to be filled using an infill strategy or 

toolpath, which may significantly influence the fabrication time, weight, structural stiffness, and 

strength of a TWS.  Three common MEX toolpaths for an AFO are illustrated in Figure 1.5(c)-(e).  

The most common infill toolpath is the direction-parallel infill (Figure 1.5(c)-(d)), which deposits 

line-segments, or rasters, parallel to a pre-defined vector [8].  The line width, known as beadwidth, 

𝑊, and the distance between line segments, 𝑃, are two important MEX process parameters in 

direction-parallel infill.  The direction-parallel infill can be used either for the dense infill (with 

𝑃 = 𝑊 in Figure 1.5(c)) or porous infill (with 𝑃 > 𝑊 in Figure 1.5(d)).  For the TWS, the 

direction-parallel infill requires lines that are short in nature, leading to many sharp corners. With 

the MEX machine’s heavy extruder head, which comprises the nozzle, heater, and drive motor, 

the acceleration of the extruder head is limited, and fabrication time for the TWS with many sharp 

corners is increased [8].  Another infill toolpath, as shown in Figure 1.5(e), is the contour infill, 



 7 

which is the successive offsetting of the boundary by the beadwidth towards the mid-plane [8].  

However, this toolpath is not suitable for creating a porous core optimized for TWS bending. 

The direction-parallel and contour infill toolpaths have been studied for MEX fabrication 

time, mass, and structural properties such as stiffness and strength in the areas of toolpath planning 

[9,10] and structural optimization [11–17].  In toolpath planning, Jin et al. [9] developed an 

algorithm to maximize the length of the direction-parallel line segments to reduce the number of 

sharp corners. By searching possible direction-parallel angles, the average extruder head speed 

could be increased.  Han et al. [10] identified grouping strategies for the direction-parallel infill to 

reduce fabrication time.  However, these studies did not discuss an efficient toolpath method for 

filling a TWS.   



 8 

 
Figure 1.5. The AFO (an example of a TWS) fabricated with MEX: (a) the AFO in the fabrication orientation during 

MEX with layers stacked in the Z-direction and a cross-section of the layer, (b) the long, thin contour region of the 

TWS, (c) dense direction-parallel infill, (d) porous direction-parallel infill, (e) contour infill, and (f) wave infill.  

Within structural optimization, Mohamed et al. [11] reviewed studies relating structural 

properties such as strength and stiffness of MEX parts to process parameters such as direction-

parallel angle, beadwidth, and porosity.  Ang et al. [12] developed an empirical relationship 

between the internal porosity of direction-parallel infill and compression stiffness and strength of 

a MEX part.  Additionally, topology optimization, a tool that identifies an optimized porous 

structure, has been used for structural optimization of MEX parts [13–17].  Smith et al. [13] 

investigated truss beams with minimum mass for large civil structures.  Wu et al. [14] optimized 

truss-like structures within a MEX part to mimic trabecular bone.  Wu et al. [15] developed self-

supporting rhombic infill structures for application-specific loading conditions.  Roger et al. [16] 

(a) 

(b) 

(c) (d) 

(e) (f) 
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quantified the infill porosity of a direction-parallel MEX part subjected to pre-specified loads.  

These studies, however, did not investigate a porous core optimized for the MEX of a TWS under 

bending.  

The wave infill is an ideal porous structure for the TWS under bending.  Topology 

optimization of a beam under bending generates an optimized truss structure that has a wavy 

(similar to Figure 1.5(f)) and not square-like core [17].  This finding inspired the sine wave infill 

as shown in Figure 1.5(f) to minimize weight and compliance of a TWS beam.  Additionally, the 

wave infill, which fills the interior of a layer with a sine wave, can reduce the MEX fabrication 

time of a TWS compared to the direction-parallel infill (to be presented later in Appendix E).  In 

the past, a wave core has been used in the MEX of concrete structures in civil engineering [18], in 

creating efficient support structures [19], in lightweight corrugated mediums for packaging 

[20,21], and in tuning the structural properties of parts [22].  Further, contour generation 

techniques for the MEX wave infill have been described [23].  However, the research on flexural 

stiffness and load capacity of wave infill for MEX of the TWS is still lacking. This thesis 

investigates the wave infill for a TWS fabricated by MEX. 

One of the key advantages of the MEX of the wave infill is that the thickness and frequency 

of wave infill shape may be continuously varied throughout the TWS depending on the loading, 

deflection, and geometry requirements. To properly design the wave infill core for generalized 

geometries and loadings, computational analyses should be investigated. This thesis studies the 

finite element composite simplification model (CSM) for TWSs with MEX wave infill and the 

application of CSM for design.  

Analytical methods have been developed to model the flexural stiffness and strength, 

manufacturing time, and mass of MEX wave infill TWS specimens [3]. Computational analyses 
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of wave infill-like corrugations within the TWS have been studied in the packaging industry. Paper 

corrugations are used for stiffening the TWS while maintaining a low weight. A high stiffness-to-

weight ratio is required to protect components within paper packaging while minimizing shipping 

costs. Previous computational analysis methods for corrugated paper board are in two categories 

[24]: (1) the full-scale finite element model (FEM) of the corrugated geometry including internal 

core geometry and (2) the homogenization of the wave geometry using CSM. The full-scale FEM 

of the corrugated geometry provides an accurate local analysis of the stresses within the entire 

TWS geometry and can predict the failure and buckling of the internal structure [25–27]. Along 

with increased accuracy, however, comes extensive model setup and computational time and cost. 

The CSM, in which the bulk properties of the corrugations and faces are modelled as a stacked 

composite, has a significantly lower computational and setup time compared to full-scale FEM 

[24]. Furthermore, the complex geometry of the corrugations does not need to be modelled, 

allowing for optimization without iterations of geometry remodeling and remeshing. CSM 

provides a generalized overview of the stresses and strains of the corrugated TWS under loading 

[28–30]. The improved computational time comes at the expense of the precise representation of 

the internal and localized corrugation of the TWS, which is acceptable for TWS studies that require 

infill design optimization for only the bulk deflection properties (as opposed to detailed failure 

mechanisms). It is the goal of this thesis to develop the CSM to characterize the bending of 

generalized MEX TWS with wave infill. 

The mass of the TWS is an important objective in design.  Minimizing the mass of the 

TWS, which is influenced by the geometry of the MEX wave infill, while achieving a desired 

structural stiffness is investigated in this study.  Optimization of AM structure sizing and topology 

has been studied in the past [15,16,31].  In sizing and topology optimization, the optimal thickness 
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and connectivity, respectively, of a structure is determined by a minimum mass or compliance 

optimization [17]. There is a lack of research on the non-uniform wave infill in the TWS to 

minimize its mass.  It is the goal of this thesis to apply the CSM to a TWS to demonstrate the 

design of a minimum mass structure with a non-uniform wave infill. Findings from this thesis can 

be applied to design and optimize the wave infill TWSs subjected to generalized loads.  

1.4 Inspection of Interfacial Voids using Computed Tomography for the Layer-to-Layer 

MEX Process 

To fabricate a durable TWS, inspection of voids that cause interfacial weaknesses between 

layers is discussed. Several studies have investigated voids during the MEX layer stacking process 

[32,33]. These voids are expected to contribute to the anisotropic material properties found in 

MEX thermoplastics. For example, for a nylon thermoplastic with embedded short carbon fibers, 

a commonly used high-performance MEX material, a high degree of anisotropy is demonstrated 

by the large differences between the in-plane (63.4 MPa) and layer-to-layer (28.9) strengths of the 

material [34]. In studies [32,33], only macroscopic structural voids, as shown in Figure 1.6, that 

occur in the gaps between MEX filaments were identified. In addition to these macroscopic 

structural voids, this thesis hypothesizes that smaller voids occur in the necking region between 

layers, which may contribute to weaknesses at the interfaces of MEX parts. 

 
Figure 1.6. Macroscopic structural voids that occur due to the layer-by-layer MEX stacking process [32] 
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Because of the voids that are expected to form during the layer-to-layer MEX process, 

inspection of MEX materials is important to improving MEX process parameters. Inspection 

techniques including destructive [11,35–38] and non-destructive testing (NDT) methods [39–43] 

have been utilized to inspect the structure of MEX parts. Destructive testing methods such as 

tensile, bending, compression, and impact tests provide macroscopic characterization of MEX 

parts and fabrication processes but provide little information about the internal structure. Scanning 

electron microscopy (SEM) creates high-resolution images of an external surface but can only 

examine external surfaces. Microtome cutting is used to expose the internal surfaces of a part for 

SEM (Demuth, Benjamin. Stratasys, Eden Prairie. (May 24, 2017). Personal Interview), but the 

process is complex and the slicing cut may melt and/or deform the plastic and cover the pore.  

NDT techniques, such as ultrasound and X-ray tomography, exist for measuring porosity 

and quantifying the internal structures of MEX parts. Ultrasound can identify internal voids [39], 

but voids less than 0.5 mm in size are difficult to identify due to limitations of sound penetration 

depth and resolution associated with the sound wavelengths [40]. With the use of X-rays and 

reconstruction techniques, computed tomography (CT) can visualize the internal structure of a 

specimen with sub-m scale resolution [44].  

In CT, X-rays are condensed onto a rotating specimen. Upon passing through the specimen, 

the concentrated X-ray is attenuated linearly according to the regional density at the exposed 

location. For example, a higher regional density corresponds to higher X-ray attenuation, and a 

lower regional density corresponds to lower X-ray attenuation. The attenuated X-ray is projected 

onto a 2D detector plate for each rotational angle, and the resulting X-ray intensity is recorded. A 

reconstruction procedure is then used to assign a grayscale value, which is linearly mapped from 

the measured X-ray intensity [44], to each incremental volume, or voxel, throughout the part [44]. 
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From the 3D volume, 2D image slices are generated. A schematic of the CT process is shown in 

Figure 1.7. 

  
Figure 1.7. Computed tomography schematic. X-rays are condensed onto a rotating specimen, and, after passing 

through the specimen, the resultant X-ray intensities are recorded on the detector plate and reconstructed into a 3D 

volume.  

CT provides visual data that may be utilized to identify boundaries between phases, or 

components, within the inspected part. To identify these phase boundaries, CT resolutions from 

0.87 µm to 12.6 µm have been applied for inspection [39,41,42,44–50]. Furthermore, techniques, 

such as Bernsen [51], Otsu [52], and Kittler [47] methods, have been developed to segment the CT 

data into the respective internal phases. Because of various randomly distributed artifacts such as 

noise, blurring, shadowing, edge effects, and imperfect material and beam size that occur during 

the CT process [46], the choice of the CT resolution and segmentation technique is a critical aspect 

of the post-processing and analysis of the CT images.  

The National Institute of Standards and Technology (NIST) in the United States is actively 

evaluating techniques and standards for measuring the porosity of materials fabricated by AM 

[39,42]. Experimental measurements of porosity such as with Archimedes method give a 

macroscopic measurement of part porosity. CT analyses provide local data of the entire part and, 

thus, require large amounts of data. To process this large data set, a thresholding algorithm that is 

easy-to-use and models the inherent randomness of CT data is required. This thesis advances a 
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class of statistical global image analysis techniques, called mixed Gaussian Distribution (MGD) 

clustering, to analyze data from CT inspections of AM parts. This method is able to determine 

phase volume percentages and provide insights into the internal structure and composition of the 

scanned parts. 

CT has been applied for inspecting the internal structure of AM parts. Van Bael et al. [48] 

used CT with a voxel size of 12.6 µm to study the porous structures of selective laser sintered Ti-

6Al-4V scaffolds.  Kerckhofs et al. [49] applied CT to measure the internal surface roughness of 

selective laser melted Ti-6Al-4V parts using a voxel size as small as 1.5 µm and found that CT 

could resolve high-roughness measurements, but not sub-μm roughness.  Slotwinski et al. [39] and 

Kim et al. [42] measured the porosity of CoCr laser powder bed fusion parts using CT with a 

minimum voxel size of 0.87 µm.  Bernsen’s segmentation method [50] was utilized to distinguish 

pores from the surrounding metal and determine the distribution of pores inside the part.  Chen et 

al. [41] analyzed the internal structure of a MEX acrylonitrile butadiene styrene (ABS) part using 

CT with 4 µm voxel size and demonstrated that internal porosity within MEX parts may occur at 

different size scales.  For example, porosity within a MEX part may be due to either porosity within 

the deposited filament (internal bubble) or the filament stacking process (necking bubble).  No 

study, however, has characterized the internal structures of MEX filaments and parts at the µm 

scale.  It is the goal of this thesis to use CT to quantify the pore size, distribution, and volume 

percentage of a MEX filament and part.  

1.5 Thesis Structure 

This thesis aims to investigate the layer-by-layer nature of the MEX process to improve 

the fabrication of the MEX TWS. Key gaps in the literature include:  
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Chapter 2: 

1. No previous study of lightweight MEX TWS with tunable stiffness 

2. No study of efficient toolpath method for filling TWS 

3. No research on the flexural stiffness and load capacity of the wave infill for MEX of the TWS 

Chapter 3:  

4. No efficient stiffness modeling of MEX wave infill TWSs with generalized geometries and 

loading conditions  

5. No method that can be subjected to optimization to generate an optimized MEX TWS toolpath 

toolpath with wave infill  

Chapter 4:  

6. No application of the mixture of skewed Gaussian distributions to quantify skewed CT data 

due to intra-component variations 

Chapter 5:  

7. No investigation of layer-to-layer voids that occur within MEX parts 

 

Chapters 2 and 3 of this thesis relate to the investigation of the MEX wave infill. Chapter 

2 describes an analytical and experimental approach to characterizing four metrics of flexural 

beams with uniform wave infill – stiffness, load capacity, fabrication time, and mass. Chapter 3 

describes the composite simplification model for finite element analysis of a generalized TWS 

with the MEX wave infill. Chapters 2 and 3 serve as the foundation for the optimization of the 

wave infill for a MEX TWS. Chapters 4 and 5 of this thesis relate to the investigation and 

quantification using CT of the internal structural of MEX parts. Chapter 4 describes the use of a 

probability-based segmentation algorithm for CT to quantify the internal structure of CT-analyzed 
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parts. Chapter 5 describes the application of this algorithm to a MEX filament and part. Chapter 6 

provides conclusions of the thesis and future work.
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Chapter 2  
Analytical Characterization and Experimental Validation of 

the Material Extrusion Wave Infill for Thin-Walled Structures 

2.1 Abstract 

The wave infill for material extrusion (MEX) of the thin-walled structure (TWS) is 

presented.  The wave infill, a lightweight truss-like porous core structure sandwiched between two 

outer walls, is an efficient toolpath pattern for the MEX of TWS.  Analytical models for predicting 

the stiffness, load capacity, fabrication time, and mass were established for two orthogonal in-

plane and layer-to-layer variations inherent in MEX wave infill parts.  Rectangular prism, four-

point flexural bending specimens representing the in-plane and layer-to-layer orientations with 

wave infill were fabricated by MEX of Polyamide-12 (Nylon-12) material.  From these specimens, 

fabrication time and mass were measured, and four-point flexural tests were conducted to measure 

the stiffness and load capacity of the beam.  Analytical models were compared with the 

experimental measurements to identify their predictive capabilities.  Stiffness for in-plane and 

layer-to-layer orientations was predicted well with the relative root-mean-square error (RRMSE) 

of 7% and 6%, respectively.  Load capacity in in-plane and layer-to-layer orientations had an 

RRMSE of 23% and 22%, respectively.  Fabrication time and mass were predicted well with a 

RRMSE of 7% and 6%, respectively.  The methods established in this study are the foundation for 

optimal design and MEX of wave infill TWSs with generalized loads.  

2.2 Introduction 

In MEX, a heated extruder nozzle deposits molten thermoplastic material to build a 

component layer-by-layer resulting in a three-dimensional part.  One of the applications for MEX 
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is the fabrication of the thin-walled structure (TWS), which is used extensively in medical 

orthotics, such as the ankle foot orthosis (AFO) illustrated in Figure 1.5(a).  The AFO is an assistive 

device commonly used to correct drop-foot syndrome in stroke patients to support their foot during 

walking. Customization, light-weighting, compliance, and durability are all important 

requirements for an ideal AFO.  Therefore, a porous TWS core using MEX to fabricate the AFO 

with lightweight while maintaining strength is ideal [53].  This study investigates the MEX wave 

infill for fabricating a truss-like TWS with a porous core.   

Successful fabrication and implementation of the wave infill TWS requires 

characterization of four metrics – stiffness, load capacity, fabrication time, and mass.  Because the 

TWS is dominated by bending deformation, analytical models for flexural stiffness and load 

capacity of MEX wave infill TWS will be established.  In addition, the fabrication time and mass, 

which relate specifically to the MEX machine’s capability on acceleration and velocity, are also 

evaluated for wave infill MEX structures.  For validation, the accuracy of four analytical models 

for stiffness, load capacity, fabrication time, and mass are compared with experimental 

measurements during fabrication and four-point bending tests of wave infill MEX beams.  

In this study, an analytical model of the flexural stiffness and load capacity of a wave infill 

MEX beam is introduced in Sec. 2.3.  The geometrical input parameters for the wave infill and 

directional flexural testing procedures are described in Sec. 2.4.  Analytical models to predict the 

four metrics – stiffness, load capacity, fabrication time, and mass – of the wave infill beam are 

presented in Sec. 2.5 and Appendices A-D. Experimental results, analytical model validation, and 

a discussion of model effectiveness are elaborated in Sec. 2.6. Finally, an analysis of the analytical 

model for the four wave infill metrics is discussed in Sec. 2.7.  
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2.3 Generalized 3D Wave Infill TWS and its Flexural Bending and Directional Properties 

A generalized 3D wave infill TWS and representative flexural beam are presented to 

describe the flexural stiffness and load capacity of a wave infill MEX part.     

2.3.1 Bending of a Generalized 3D Wave Infill TWS 

A MEX TWS with wave infill can be generalized as the structure shown in Figure 2.1(a).  

This TWS has outer contours and wave infill and is subjected to bending moments, 𝑀𝑋 and 𝑀𝑍, 

about its principle axes.  Practically, during use, a MEX TWS (such as the AFO in Figure 1.5) 

experiences two primary bending moments about the TWS’ principle axes, as shown in Figure 

1.5(a).  The flexural stiffness and load capacity of the 3D TWS with wave infill can be measured 

by applying moments, 𝑀𝑋 and 𝑀𝑍, about the principal axes of the TWS, as shown in Figure 2.1(b) 

and (c), while measuring the resulting deformation.  The flexural stiffness and load capacity of the 

TWS will vary in orthogonal X- and Z- bending modes because the area moments of inertia are 

different.  Two simplified sections, as shown in Figure 2.1(b) and (c), with area moments of inertia, 

𝐼𝑍 and 𝐼𝑋, respectively, are used to study these differences. 
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Figure 2.1. A generalized 3D MEX TWS exhibiting transversely orthotropic material properties with material 

symmetries within the layer (in-plane symmetry) and normal to the layers (layer-to-layer symmetry): (a) layers stacked 

along the Z-direction, a wave infill, and the outer contours, (b) an in-plane section of the TWS with applied moment, 

𝑀𝑍, about the Z-axis and beam properties of 𝐸𝑋, 𝑆𝑋, and 𝐼𝑍, and (c) a layer-to-layer section of the TWS with applied 

moment, 𝑀𝑋, about the X-axis and beam properties 𝐸𝑍, 𝑆𝑍, and 𝐼𝑋.  

2.3.2 Directional Properties of MEX Parts 

Whereas the flexural stiffness and load capacity will differ in the two primary bending 

modes due to the area moment of inertia differences, the layer-to-layer MEX process itself affects 

the directional material properties.  During MEX, the inter-layer temperature differences limit 

polymer cross-linking [54], reduce the layer-to-layer strength and stiffness, and yield transversely 

orthotropic parts [55–57].  Transverse orthotropy refers to the existence of equivalent mechanical 

properties within a plane of a part.   

As shown in Figure 2.1(a), the XY-plane is referred to as the in-plane material symmetry 

with flexural modulus, 𝐸𝑋, and strength, 𝑆𝑋.  Normal to this plane (Z-direction) is the layer-to-

(a) 

(b) 

(c) 
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layer material symmetry with modulus, 𝐸𝑍, and strength, 𝑆𝑍.  Analytical models to predict the 

stiffness and load capacity of the wave infill geometry in the layer-to-layer and in-plane symmetry 

directions will be derived.  Flexure specimens shown in Figure 2.1(b) and (c) will be fabricated by 

MEX to represent both symmetry directions.  Bending experiments will be performed to validate 

analytical models for stiffness, load capacity, fabrication time, and mass.   

2.4 MEX Fabrication, Experimental Procedure, and Design of Four-Point Bending Flexure 

Specimen with Wave Infill 

The MEX process for fabrication of flexure beam specimens, infill constraint, and 

measurement results for the load capacity and stiffness of flexural beams with the wave infill are 

presented in this section. 

2.4.1 MEX process for ASTM flexure specimen for four-point bending 

To represent the symmetry directions in MEX wave infill parts, two types of flexure 

specimens of rectangular cross-section (120 mm in length and 10 mm in height for the in-plane 

specimens and 40 mm in height for the layer-to-layer specimens) were designed according to 

ASTM Standard D790-10 for flexural experiments [58].  Specimens were manufactured using a 

MEX machine (Fortus 400mc by Stratasys, Eden Prairie, Minnesota).   Specimens were made by 

MEX from 1.75 mm diameter Nylon-12 filament, a 0.5 mm diameter nozzle, 0.33 mm layer height, 

295°C nozzle temperature, and 110°C oven temperature enclosing the whole part.  A 2 mm base 

of acrylic copolymer support material [59] was printed before the Nylon MEX.  To dissolve this 

support material, specimens were placed in a sodium hydroxide solution (24 g/L) ultrasonic bath 

at 60°C. 

As shown in Figure 2.2, four variables that define the toolpath centerline of the wave infill 

flexure specimen are:  
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• Beadwidth, 𝑊, is the width of the deposited thermoplastic bead and is controlled by the nozzle 

speed, filament extrusion rate, and nozzle diameter.  In this study, 𝑊 is constrained between 

0.45 to 0.95 mm.  

• Thickness, 𝑇, is the thickness of the rectangular specimen.  In this study, 𝑇 is held between 3.0 

to 15.0 mm.  

• Period, 𝑃, is the period of one wave of the wave infill pattern within the rectangular prism.  

The range of 𝑃 is from 1 to 10 mm.  

• Overlap, 𝑂, is the overlap of the wave infill peaks and the outer contour.  𝑂 is the minimum 

distance between centerlines of the outer layer and the extremes of the wave.  A lower value 

of 𝑂 reduces the distance between the wave and contour centerlines, corresponding to a greater 

overlap of the contour and wave.  The range of 𝑂 is from 0.05 to 0.4 mm.  Above 0.4 mm, the 

motion of the nozzle causes dislocation of the wave infill from the straight wall.  Below 0.05 

mm, the high overlap causes the material to pushout yielding dimensional errors.  

These input variables are defined as a vector, 𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑊, 𝑇, 𝑃, 𝑂].  The fifth 

constraint, presented in the next section, limits the amount of material deposited within the TWS.  

 
Figure 2.2. Top- or layer-schematic view of the wave infill specimen with the four input variables, 𝑊, 𝑇, 𝑃, and 𝑂 

that define the wave infill toolpath centerline for a TWS.  The toolpath centerline is the line followed by the center of 

the MEX toolhead nozzle when depositing material.  The area ABCD shows the contour-filled area, 𝐴𝐶, and total area, 

𝐴𝑇.    
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2.4.2 Infill Constraint 

The ratio of filled area over total area, defined as the infill ratio, 𝐹, is constrained.  𝐹 can 

be obtained from:  

𝐹 =
𝐴𝐹

𝐴𝑇
 (2.1) 

where 𝐴𝑇 is the total area and 𝐴𝐹 is the filled area of the specimen cross-section.  Within a period 

of the sine wave infill shown by the shaded dashed-box area in area ABCD of Figure 2.2, the total 

area, 𝐴𝑇, is:  

𝐴𝑇 = 𝑃 𝑇  (2.2) 

𝐴𝐹 in area ABCD of Figure 2.2 consists of the areas of outer contours, 𝐴𝐶 , and the wave, 

𝐴𝑊:  

𝐴𝐹 = 𝐴𝐶 + 𝐴𝑊  (2.3) 

The area of the outer contours, 𝐴𝐶 , shown in area ABCD of Figure 2.2, is:  

𝐴𝐶 = 2 𝑃 𝑊 (2.4) 

To find the area of the wave in area ABCD, the toolpath mid-line of the wave, as shown in 

Figure 2.2, is defined as a sine wave, 𝑦(𝑥):  

𝑦(𝑥) = 𝐻 sin (
2𝜋

𝑃
 𝑥) (2.5) 

where 𝑥 is the parameterized distance along the wave (Figure 2.2) and, the wave amplitude, 𝐻, is: 

𝐻 =
𝑇

2
− (

𝑊

2
+ 𝑂) (2.6) 

The area of the wave, 𝐴𝑊, is:  

𝐴𝑊 ≈ 𝐿𝑤𝑎𝑣𝑒𝑊 (2.7) 

where 𝐿𝑤𝑎𝑣𝑒  is the length of the wave within the area of interest calculated from the arc length 

[60]:  
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𝐿𝑤𝑎𝑣𝑒 = ∫ √1 + (
2𝜋

𝑃
 𝐻  𝑐𝑜𝑠 (

2𝜋

𝑃
 𝑥))

2

𝑑𝑥
𝑃

0

 (2.8) 

which can be approximated numerically.  In this analysis, the density and cross-sectional area of 

the deposited bead were assumed constant throughout the area of interest. 

The infill ratio, 𝐹, constraint limits the wave infill design from overfilling or under-filling 

the interior of the flexure specimen.  By observing the wave infill of specimens, the range of 

allowable 𝐹 was found to be between 50 to 90%.  For 𝐹 below 50% (under-filling), the outer 

contours were prone to buckling during testing.  For 𝐹 above 90% (overfilling), the part is a solid 

or is close to a solid, and its dimensional accuracy was affected. Figure 2.3(a) and (b) show a wave 

infill specimen with low infill ratio, 54%, and a high infill ratio, 88%, respectively.  

 
 (a) (b) 
Figure 2.3. Example wave infill specimens with (a) 54% and (b) 88% infill ratio. Note that the diagonal lines on the printed surface 

are from the imprint of an adjacent layer of support material. 

2.4.3 Measurements of Bending Stiffness and Load Capacity 

The ASTM Standard D790-10 four-point flexural tests [58], as shown in Figure 2.4, were 

performed.  Four-point tests, as opposed to three-point, are used to increase the length of the 

constant moment distribution through the mid-length, 𝑎, between the two top, inner loading pins 

on the porous flexural specimens with wave infill.  The length, 𝑙, of each specimen was 120 mm.  

Two types of specimens, one representing the in-plane symmetry direction (10 mm x 𝑇 x 120 mm 

in Figure 2.4(a)) and the other representing the layer-to-layer symmetry direction (40 mm x 𝑇 x 
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120 mm in Figure 2.4(b)) were subjected to bending moments 𝑀𝑍 and 𝑀𝑋, respectively, in four-

point bending tests.  The spacing between two outer (bottom) loading pins is 𝐿𝑆.  In this study, 𝐿𝑆 

= 80 mm and 𝑎 = 30 mm.  Bending tests were performed on a 10 kN material testing machine 

(MTS Insight 10 Mechanical Tester, MTS, Eden Prairie, MN).  

 
Figure 2.4. Four-point flexure test setup in (a) in-plane and (b) layer-to-layer specimen orientation.  

The load on the top two inner pins, 𝐹𝐵, vs. cross-head displacement, 𝛿, in the four-point 

bending tests were recorded.  A sample measurement is shown in Figure 2.5.  The stiffness 𝐾 is 

the slope, and the load capacity 𝐿 is the peak load of 𝐹𝐵 vs. 𝛿 curve.  A tangent line was fit to the 

user-defined linear region, using the MATLAB fit function, to find the slope and stiffness, 𝐾.  

(a) 

(b) 
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Figure 2.5. Four-point bending load vs. displacement curve for in-plane Experiment 1 (Table 2.1) with fitted tangent 

in linear region corresponding to the flexural stiffness, 𝐾, and horizontal dotted line corresponding to peak load, 𝐿, of 

the specimen.  

2.4.4 Outputs from Flexural Experiments and Comparison with Analytical Models 

The four-point bending experiments have four measurement outputs: 𝐾𝑋
𝐸 and 𝐾𝑍

𝐸 

(measured stiffness for in-plane and layer-to-layer specimens, respectively) and 𝐿𝑋
𝐸  and 𝐿𝑍

𝐸  

(measured load capacity for in-plane and layer-to-layer specimens, respectively).  

Analytical models, 𝐾𝑋
𝐴, 𝐾𝑍

𝐴, 𝐿𝑋
𝐴 , and 𝐿𝑍

𝐴, are derived to predict the 𝐾 and 𝐿 of the directional 

MEX wave infill specimens.  𝐾𝑋
𝐴 and 𝐾𝑍

𝐴 represent the analytically predicted stiffness for in-plane 

and layer-to-layer specimens, respectively.  𝐿𝑋
𝐴  and 𝐿𝑍

𝐴 represent the analytically predicted load 

capacity for in-plane and layer-to-layer specimens, respectively.  

Analytical models 𝐾𝑋
𝐴, 𝐾𝑍

𝐴, 𝐿𝑋
𝐴 , and 𝐿𝑍

𝐴 are validated by comparing with experimentally 

measured 𝐾𝑋
𝐸, 𝐾𝑍

𝐸, 𝐿𝑋
𝐸 , and 𝐿𝑍

𝐸  of four-point bending flexural specimens with wave infill.  To ensure 

analytical models for 𝐾 and 𝐿 are accurate across the whole space of four input variables 

[𝑊, 𝑇, 𝑃, 𝑂], a systematic experimental approach based on the Latin Hypercube Sampling (LHS) 
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[61] is applied.  Each of four inputs was divided into equidistant levels within their respective 

bounds.  For each equidistant level, combinations of each level from each input variable are 

sampled once, never repeating levels.  With these combinations, the LHS approach allows a 

uniform sampling of the entire design region.  Every set of inputs [𝑊, 𝑇, 𝑃, 𝑂] was also checked 

to ensure it was within the infill ratio of 50% < 𝐹 < 90%.  The Matlab function lhsdesign was used.  

• In-plane specimens:  The four inputs were segmented into 75 equidistant segments in LHS to 

create 75 combinations.  After checking the 𝐹 of this set of 75 LHS-sampled design variables, 

19 experiments, listed in Table 2.1, met the constraint (50% < 𝐹 < 90%).  From these 19 design 

variable sets, 19 in-plane MEX flexural specimens with wave infill were fabricated and 

experimentally tested by four-point bending to validate analytical models for X-direction 

stiffness and load capacity. 

• Layer-to-layer specimens: the set of 19 experimental variables were reduced to a set of 7 

variables (listed in Table 2.2) for four-point bending testing of layer-to-layer flexural 

specimens.  These 7 layer-to-layer MEX specimens were fabricated and experimentally tested 

to validate the analytical predictions for Z-direction stiffness and load capacity. 

Top-view microscope images of each of the fabricated specimens are shown in Figure 2.6. 

2.4.5 LHS Experimental Variable Distribution 

Using the LHS method, the design region was sampled uniformly for efficient experimental 

validation of the analytical models for wave infill.  Table 2.1 and Table 2.2 show each of the LHS 

generated experimental variables and the corresponding 𝐹 for in-plane and layer-to-layer 

specimens, respectively.  Table 2.1 shows the constrained design region, according to Secs. 2.4.1 

and 2.4.2, along with the maximum, minimum, and average in-plane and layer-to-layer variable 

distribution from LHS.  Table 2.3 shows that the center and boundaries of the design space were 
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sampled uniformly to test deviations of the model from experimental measurements throughout 

the design region.  Each variable, except for 𝑃, had an average sample near the center of the design 

region.  Because of the minimum restriction on infill ratio determined predominately by a 

specimen’s period, LHS specimens were biased toward a lower wave infill period.   

2.4.6 Fabrication Time and Mass Outputs 

During printing, the fabrication time, or cycle time per layer, 𝜏𝐸  of the 19 in-plane wave 

infill specimens were measured. Upon completion of the part and removal of the support material, 

the mass 𝑀𝐸  of each wave infill specimen was measured.  Analytical models to predict wave infill 

fabrication time 𝜏𝐴 and mass 𝑀𝐴 are presented in Sec. 2.5.3 and 2.5.4, respectively.  
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Table 2.1. Experimental variables, infill ratio, and experimental and analytical flexural stiffness, flexural load capacity, fabrication time, and mass of in-plane wave 

infill specimens. (for Nylon-12 𝐸𝑋   = 1276 MPa [62] to calculate stiffness 𝐾𝑋
𝐴 and 𝑆𝑋 = 67 MPa [62] to calculate load capacity 𝐿𝑋

𝐴 ) 

Experimental Variables 
(mm) 

Infill 
Ratio 

Stiffness, 𝐾 (N/mm) Load Capacity, 𝐿 (N) Fabrication Time, 
 𝜏 (s/layer) 

Mass, 𝑀 (g) 
  

No. 𝑊 𝑇 𝑃 𝑂 𝐹 
Experiment 

𝐾𝑋
𝐸  

Analytical  
𝐾𝑋

𝐴 
𝜖𝑅(%) 

Experiment 
𝐿𝑋
𝐸  

Analytical  
𝐿𝑋

𝐴  
𝜖𝑅(%) 

Experiment 
𝜏𝐸  

Analytical 
𝜏𝐴 

𝜖𝑅(%) 
Experiment 

𝑀𝐸  
Analytical 

𝑀𝐴 
𝜖𝑅(%) 

1 0.80 8.79 2.00 0.22 0.88 47.3 44.8 5.1 319.5 312.5 2.2 15.3 15.1 1.7 9.0 9.1 -1.0 

2 0.47 5.07 1.46 0.13 0.75 8.9 8.7 1.9 82.6 105.5 -27.7 13.9 15.5 -11.9 4.4 4.1 6.4 

3 0.53 10.39 1.34 0.18 0.84 48.9 45.1 7.8 297.1 266.1 10.5 23.0 24.0 -4.1 10.2 9.3 8.9 

4 0.81 7.84 2.66 0.10 0.75 37.9 35.2 7.1 256.7 274.9 -7.1 11.7 11.3 3.6 6.9 6.9 -0.5 

5 0.89 5.86 2.78 0.28 0.82 20.3 19.4 4.4 173.2 203.2 -17.4 9.0 9.1 -1.2 5.5 5.8 -6.4 

6 0.73 3.35 3.17 0.12 0.84 4.7 4.5 4.7 55.3 82.3 -48.8 6.7 6.5 3.2 3.2 3.3 -2.4 

7 0.87 5.30 10.00 0.32 0.54 15.3 15.1 1.1 132.0 174.9 -32.5 3.9 3.2 17.9 3.3 3.6 -9.1 

8 0.51 6.35 2.41 0.10 0.55 16.4 15.3 6.9 133.3 129.6 2.8 10.8 11.3 -5.0 4.1 3.8 8.0 

9 0.60 9.18 2.22 0.08 0.63 37.1 38.7 -4.2 185.7 227.5 -22.5 14.5 14.4 0.7 6.6 6.4 3.6 

10 0.52 3.49 2.26 0.11 0.71 4.3 4.1 6.7 50.6 62.7 -23.8 8.3 8.9 -6.2 2.8 2.7 4.2 

11 0.77 4.13 3.08 0.12 0.80 8.5 7.7 8.7 89.4 101.1 -13.0 7.0 7.3 -4.9 3.8 4.0 -3.1 

12 0.55 10.02 1.96 0.10 0.63 41.2 43.2 -4.8 232.7 232.6 0.0 17.9 16.8 6.2 6.3 6.9 -9.6 

13 0.54 4.08 2.81 0.10 0.61 5.4 6.0 -10.5 54.2 78.9 -45.5 8.0 8.1 -1.4 2.9 2.8 4.1 

14 0.64 12.14 1.89 0.22 0.72 66.2 74.1 -11.9 313.4 329.4 -5.1 19.8 18.8 5.1 10.2 9.7 4.3 

15 0.46 10.77 1.39 0.05 0.72 40.5 42.8 -5.6 187.5 214.4 -14.4 23.5 23.9 -1.9 7.3 8.0 -8.5 

16 0.48 14.34 2.08 0.09 0.51 88.9 80.7 9.2 467.3 303.6 35.0 20.7 19.0 8.4 7.2 7.6 -6.1 

17 0.48 9.79 2.16 0.10 0.51 33.9 36.4 -7.5 186.3 200.8 -7.8 16.1 15.3 5.0 5.8 5.3 8.4 

18 0.78 3.82 4.84 0.19 0.73 6.8 6.4 4.7 68.9 91.0 -32.2 5.3 5.1 3.7 3.2 3.2 -0.6 

19 0.92 5.23 4.10 0.10 0.76 16.1 15.2 5.8 154.5 156.6 -1.4 7.1 6.6 7.1 4.6 4.8 -3.8 

                  

       𝑅2 0.982  𝑅2 0.866  𝑅2 0.984  𝑅2 0.973  

       RRMSE 6.8%  RRMSE 23.6%  RRMSE 6.6%  RRMSE 6.0%  
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Table 2.2. Experimental variables, infill ratio, and experimental and analytical stiffness and load capacity for flexure 

of layer-to-layer wave infill specimens. (for Nylon-12 𝐸𝑍   = 1180 MPa [62] to calculate 𝐾𝑍
𝐴 and 𝑆𝑍 = 61 MPa [62] to 

calculate 𝐿𝑍
𝐴) 

Experimental Variables (mm) 
Infill 
Ratio 

Stiffness, 𝐾 (N/mm) Load Capacity, 𝐿 (N) 

  

No. W T P O F 
Experiment 

𝐾𝑍
𝐸  

Analytical  
𝐾𝑍

𝐴 
𝜖𝑅(%) 

Experiment 
𝐿𝑍
𝐸  

Analytical  
𝐿𝑍

𝐴  
𝜖𝑅(%) 

1 0.80 8.79 2.00 0.22 0.88 274.5 251.2 8.5 2383.0 1723.9 27.7 

2 0.47 5.07 1.46 0.13 0.75 50.4 51.5 -2.2 531.3 612.6 -15.3 

3 0.53 10.39 1.34 0.18 0.84 380.0 396.9 -4.5 2587.0 2303.7 11.0 

4 0.81 7.84 2.66 0.10 0.75 176.0 170.4 3.2 1654.0 1311.0 20.7 

5 0.89 5.86 2.78 0.28 0.82 82.3 84.6 -2.8 858.5 870.4 -1.4 

6 0.73 3.35 3.17 0.12 0.84 20.3 18.4 9.3 243.1 331.5 -36.4 

7 0.87 5.30 10.00 0.32 0.54 54.4 57.2 -5.2 525.0 650.9 -22.6 

            

       𝑅2 0.992  𝑅2 0.963 

       RRMSE 5.7%  RRMSE 22.0% 

Table 2.3. LHS uniform experimental distribution for in-plane and layer-to-layer specimens 

Experimental 
Variables 

𝑊 (mm) 𝑇 (mm) 𝑃 (mm) 𝑂 (mm) 𝐹 

Design Region (min, 
max) 

0.45 0.95 3.00 15.00 1.00 10.00 0.05 0.40 0.50 0.90 

In-plane LHS (min, 
max) 

0.46 0.92 3.35 14.34 1.34 10.00 0.05 0.32 0.51 0.88 

In-Plane LHS 
Average 

0.65 7.37 2.87 0.14 0.70 

Layer-to-Layer LHS 
(min, max) 

0.47 0.89 3.35 10.39 1.34 10.00 0.10 0.32 0.54 0.88 

Layer-to-Layer LHS 
Average 

0.73 6.66 3.34 0.19 0.77 
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Figure 2.6. Top-view microscope images of the 19 experiment samples of MEX wave infill for validation of in-plane analytical models of stiffness, load capacity, 

time, and mass. The first seven samples represent the top-view of layer-to-layer models, as well. Note that the diagonal lines on the printed surface are from the 

imprint of an adjacent layer of support material. All measurements in mm.  
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2.5 Analytical Modelling of Four Wave Infill Output Parameters 

Analytical models to predict the stiffness, load capacity, fabrication time, and mass of the 

directional wave infill flexural specimens are presented. 

2.5.1 Stiffness Model 

Appendix A presents details of the derivation of stiffness 𝐾●
𝐴 of the four-point flexural in-

plane and layer-to-layer bending specimens.    

𝐾●
𝐴(𝒙) =

48 𝐸● 𝐼●(𝒙)

𝐿𝑠
3 − 3 𝑎2 𝐿𝑠 +  2 𝑎3

 (2.9) 

where ● represents the X or Z directions; 𝐸● is either 𝐸𝑋 or 𝐸𝑍, the flexural modulus in X- 

or Z-direction, respectively; 𝐼●(𝒙) is either 𝐼𝑍(𝒙) or 𝐼𝑋(𝒙), the area moment of inertia of the in-

plane and layer-to-layer cross-sections, respectively; 𝐿𝑆 is the support span; and 𝑎 is the distance 

between two loading pins (Figure 2.4).  The mathematic formulas for 𝐼𝑍(𝒙) or 𝐼𝑋(𝒙) of the wave 

infill flexural specimens are derived in Appendices A.2 and A.3. 

2.5.2 Load Capacity Model 

Appendix B presents the derivation of load capacity 𝐿●
𝐴  of the four-point flexural in-plane 

and layer-to-layer bending specimens. 

𝐿●
𝐴 (𝒙) =

8 𝑆● 𝐼●(𝒙) 

𝑇 (𝐿𝑠 − a)
 (2.10) 

where ● represents the X or Z and 𝑆● is either 𝑆𝑋 or 𝑆𝑍, the flexural strength in the X- and Z-

directions, respectively.  

2.5.3 Fabrication Time Model 

The fabrication time per layer for flexural specimens with wave infill was estimated using 

the analytical model for fabrication time, 𝜏𝐴, which is derived in Appendix C. 
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2.5.4 Mass Model 

The mass of in-plane specimens was estimated using the analytical model for specimen 

mass, 𝑀𝐴, which is derived in Appendix D. 

2.6 Experimental Results, Validation of Models, and Discussions 

This section discusses the experimental results for each measured output for the wave infill 

experiments and compares the results with predicted analytical models. 

2.6.1 Stiffness 

The flexural stiffness 𝐾●
𝐸 of each specimen was measured according to Sec. 2.4.3 and 

reported in Table 2.1 and Table 2.2.  The model-estimated stiffness 𝐾●
𝐴 was calculated according 

to Sec. 2.5.1 using the flexural moduli of elasticity, 1276 and 1180 MPa for 𝐸𝑋 and 𝐸𝑍, 

respectively, reported by the material supplier (Stratasys, Eden Prairie, MN) [62] for the 

conditioned Nylon-12 MEX material used in this study. Using these reported flexural moduli of 

elasticity values, specimen stiffness 𝐾●
𝐴 was estimated.  The relative error 𝜖𝑅 between the 

experimental and model-based estimates of specimen stiffness: 

𝜖𝑅 =
𝐾●

𝐸 − 𝐾●
𝐴

𝐾●
𝐸  (2.11) 

was calculated for each experiment.  Additionally, the relative root-mean-square error (RRMSE) 

of the 𝑛 experiments is: 

𝑅𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝜖𝑅

2
𝑛

𝑖=1
 (2.12) 

where 𝜖𝑅 is the relative error between model-based estimates and experimental measurements.  

The 𝜖𝑅 was calculated for the in-plane and layer-to-layer stiffness.  
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As shown in Table 2.1 within the Stiffness column, experimental and analytical stiffness 

for in-plane specimens correlated well with an 𝑅2 value of 0.982.  Based on Eq. (2.12), the RRMSE 

was 6.8% indicating a well-fit model.  Experiment 16 had the highest positive relative error 

between the analytical model and experimental values.  In this case, the model under-predicted the 

average experimental stiffness by 9.2% or 8.2 N/mm.  As shown in Figure 2.6, the specimen in 

Experiment 16 was the thickest amongst each of the experiments and was the most sparsely filled 

(i.e. had the lowest infill ratio). The lowest negative relative error between the analytical model 

and experimental values occurred in Experiment 14.  The model over-predicted the stiffness by 

11.9% or 7.9 N/mm.  A top view of Experiment 14 in Figure 2.6 shows that it was the second 

thickest specimen of the specimen set, yet unlike Experiment 16, had a higher infill ratio. Both 

Experiments 14 and 16 also accounted for the largest magnitude absolute error between the model 

and experiment.  

No identifiable trends between beadwidth, period, overlap and relative error for these 

specimens were seen.  In general, as thickness increased, the model tended to over-predict the 

experimental stiffness.  The model performed with less than 6% relative error in 10 out of the 19 

cases.  Notably, the model performed well at the boundaries of the design region with relative 

errors below 6% except for the thickest specimen (Experiment 16) and the shortest period 

experiment (Experiment 3).  Finally, the model performed with a relative error of 6.7% or 0.3 

N/mm and 9.2% or 8.2 N/mm for the most compliant (Experiment 10) and stiffest (Experiment 

16) specimen, respectively.  

As shown in Table 2 within the Stiffness column, experimental and analytical stiffness for 

layer-to-layer specimens correlated well with an 𝑅2 value of 0.992. The RRMSE between the 

model and experiments was 5.7% indicating a well-fit model.  Despite having one of the lowest 
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magnitude of absolute errors of 1.9 N/mm, Experiment 6 had the largest positive relative error, 

9.3%, between the analytical model and experimental values.  Experiment 6, as shown in Figure 

2.6, is the thinnest specimen of the set with a low stiffness value.  The large relative error for this 

experiment can be attributed to its low thickness and stiffness value and high sensitivity to 

comparatively small magnitude absolute errors.  The lowest negative relative error occurred with 

Experiment 7, which, as shown in Figure 2.6, is also a sparse specimen with a comparatively low 

infill ratio (0.54).  More importantly, Experiments 1 and 3 had the highest absolute errors of the 

set at 23.3 N/mm and 16.9 N/mm.  As shown in Figure 2.6, these two experiments constituted the 

thickest specimens with the highest infill ratios, which may indicate a limitation or deviation of 

the model from the experimental data.  

No identifiable trends between beadwidth, thickness, period, overlap and relative error 

were seen.  However, as infill ratio increased, there was a general trend to under-predict the 

stiffness.  The model performed with less than 6% error in 5 out of the 7 cases. The model predicted 

experimental stiffness for all boundary variables except maximum thickness with an absolute error 

less than 5.6 N/mm.  Finally, the model performed with an error of 4.5% or 16.9 N/mm and 9.3% 

or 1.9 N/mm for the stiffest and most compliant specimens, respectively, in the set. 

2.6.2 Load Capacity 

The flexural load capacity 𝐿●
𝐸   of each specimen was measured according to Sec. 2.4.3 and 

reported in Table 2.1 and Table 2.2.  The model-estimated load capacity 𝐿●
𝐴  was calculated 

according to Sec. 2.5.2 using the flexural strength, 67 and 61 MPa, for 𝑆𝑋 and 𝑆𝑍, respectively, 

reported by the material supplier (Stratasys, Eden Prairie, MN) [62] for the conditioned Nylon-12 

MEX material used in this study.  Using these reported strength values, specimen load capacity 
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𝐿●
𝐴  was estimated.  The relative error 𝜖𝑅 between the experimental and model-based estimates of 

specimen load capacity: 

𝜖𝑅 =
𝐿●
𝐸 − 𝐿●

𝐴

𝐿●
𝐸  (2.13) 

was calculated for each experiment. Likewise, RRMSE was also calculated for this set.  

As seen in Table 2.1 and Table 2.2 within the Load Capacity column, prediction of 

specimen load capacity performed worse than the prediction of stiffness.  Prediction of load 

capacity and failure of a specimen is a difficult task, especially with the highly variable MEX 

process.  Various factors that affect the accurate prediction of load capacity include inconsistent 

bonding between the wave and outer contour, internal voids between layers [41], variations in print 

times, a “self-healing” phenomena of the wave infill (Figure 2.7), and high surface roughness due 

to temperature accumulations during the print (Figure 2.8).  

As shown in Table 2.1, the analytical model and experimental load capacity values for in-

plane specimens correlated with an 𝑅2 value of 0.866 and an RRMSE of 23.6%.  The load 

capacities of experiments 2, 6, 8, 13, and 18 were over-predicted with largest negative relative 

errors all greater than 25%.  However, these experiments were amongst the thinnest, as seen in 

Figure 2.6, and the weakest of the set.  Comparing these specimens with the entirety of the set, the 

absolute errors are within the same range as all other samples except for Experiment 16.  Because 

of the low load capacity values associated with these thin specimens, the relative error can be 

sensitive to comparatively small absolute errors.  

The largest positive error of 35.0% or 163.7 N was associated with the under-prediction of 

Experiment 16, which, as shown in Figure 2.6, is the thickest specimen, has the lowest infill ratio, 

and is the strongest of the set.  One possible cause of the large under-prediction of Experiment 16 

is that at yield stress the sharp troughs and peaks began to interact with each other increasing the 
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effective area moment of inertia of the bending region acting to regain its stiffness (or “self-heal” 

itself).  This phenomenon is evident in the load-displacement plot of Experiment 16 shown in 

Figure 2.7.  After the load reaches the specimen’s initial yield point, the structure regains stiffness.   

 
Figure 2.7.  Load-displacement plot of the three experiments corresponding to Experiment 16.  In two of the three 

experiments, the structure regains its stiffness to allow increased loading after initial yielding is reached.   

No identifiable trends between beadwidth, period, overlap and relative error were seen.  In 

general, as thickness increased, the model tended to under-predict the experimental load capacity.  

At the boundaries of the design region, the model predicted experimental load capacity with less 

than 45 N absolute error except for maximum thickness and minimum infill ratio, which both 

occurred in Experiment 16.  

As shown in Table 2.2, model and experimental stiffness for layer-to-layer specimens 

correlated with an 𝑅2 value of 0.963, and the RRMSE for the group of specimens was 22.0%. 

Experiment 6 was over-predicted with the largest negative relative error of 36.4%, yet it had one 

of the smallest magnitude absolute errors 88.4 N of the set.  Again, this difference can be attributed 

to the thin specimen, as can be seen in Figure 2.6, with comparatively low load capacity value and 
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high sensitivity to absolute errors.  The largest positive error of 27.7% or 659.1 N occurred in 

Experiment 1.  Comparing Experiments 1, 3, and 4 shows that the model under-predicted the 

thickest specimens with the highest infill ratios, which is a limitation of the model.  

Explanations for the unpredictability of the layer-to-layer load capacity may be the surface 

roughness that occurred during fabrication of the specimens.  Because the layer-to-layer specimens 

are tall and thin (in both width and thickness), heat builds up rapidly, and subsequent layers are 

printed before previous layers can cool to the glass transition temperature resulting in surface 

beading and pitting as shown in a side-view of the specimen in Figure 2.8.  Whereas these surface 

imperfections do not affect the stiffness of the parts, the load capacity prediction is significantly 

affected because the surface imperfections serve as stress concentrations.  Among three tested 

samples, there were large variations, with the standard deviation of the tested samples being up to 

13% of the mean value.   

 
Figure 2.8. Side-view of layer-to-layer specimen (Experiment 7) with surface beading and pitting imperfections due 

to temperature accumulation during print. These surface imperfections lead to stress concentrations that affect 

prediction of load capacity. Layers are stacked from right to left.  

2.6.3 Fabrication Time 

The cycle time for the MEX nozzle to complete one layer was recorded for the 19 in-plane 

specimens according to Sec. 2.4.5.  The model-estimated layer fabrication time 𝜏𝐴 for each 

specimen was estimated according to Sec. 2.5.3 and Appendix C using a maximum machine 



 39 

velocity and acceleration of 𝑣𝑚 = 150 (mm/s) and 𝑎𝑚 = 3000(mm/s2), respectively. The 

fabrication time measurements and estimate results are shown in Table 2.1 in the Fabrication Time 

column. The measured and estimated specimen layer fabrication times correlated well with an 𝑅2 

value of 0.984 and had a RRMSE of 6.6%.  As seen in Table 2.1, the largest positive relative error 

of 17.9% occurred with Experiment 7, which also was the specimen with the shortest fabrication 

time.  However, more importantly, as infill ratio increased, there was a shift from under-prediction 

to over-prediction, which can be seen by comparing Experiments 3 and 16.  Experiment 16, the 

specimen with the lowest infill ratio, had the largest positive magnitude absolute error of 1.7 s.  

Experiment 2 had one of the highest infill ratios and was over-predicted by 0.9 s.  These variations 

between experimentally measured and predicted fabrication times were, therefore, most likely due 

to variances in the expected machine dynamics that limit velocity and acceleration to ensure 

accurate toolpath deposition. 

2.6.4 Mass 

The mass of the 19 in-plane specimens was measured after fabrication according to Sec. 

2.4.5. The model-estimated mass 𝑀𝐴 for each specimen was estimated according to Sec. 2.5.4 and 

Appendix D using a material density for the Nylon-12 MEX material of 𝜌 = 1.01 g/cm2 [62]. The 

specimen mass measurements and model-based estimate results are shown in Table 2.1 in the Mass 

column.  The measured and estimated specimen mass correlated well with an 𝑅2 value of 0.973 

and had a RMSE of 6.0%.  The largest positive error of 8.9% or 0.9 g occurred with Experiment 

3, and the largest negative error of 9.6% or 0.6 g occurred with Experiment 12.  All mass 

measurements were predicted with less than 10% error or within 1 g of the experimentally 
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measured value.  These small variations in mass could be a result of the inconsistent nature of 

MEX parts or small voids that are inherent in the layer-by-layer extrusion process. 

2.7 Analysis of Analytical Models 

This section provides an analysis of trends observed based on stiffness, fabrication time, 

and mass analytical models described in Sec. 2.5 and Appendices A-D for the wave infill four-

point bending loading conditions and specimens described in Secs. 2.4.1-2.4.3.  The trends for 

load capacity were similar to stiffness and are not expressly presented. 

2.7.1 Stiffness 

Because of the assumptions for area moment of inertia for the in-plane wave infill 

specimens (Appendices A.1 and A.2), the in-plane stiffness, 𝐾𝑋
𝐴, (Eq. (2.9)) is affected only by 𝑇 

and 𝑊 in the area moment of inertia term, 𝐼𝑍(𝒙) (Eq. (A.6)).  Figure 2.9 demonstrates the effect 

of 𝑇 and 𝑊 (i.e. Eqs. (2.9) and (A.6)) on 𝐾𝑋
𝐴 of the in-plane beam for 3 < 𝑇 < 15 mm and 0.45 < 

𝑊 < 0.95 mm with 𝑤 = 10 mm, 𝐸𝑋 = 1276 MPa, 𝐿𝑆 = 80 mm, and 𝑎 = 30 mm.  Increasing 𝑇 and 

𝑊 both monotonically increase 𝐾𝑋
𝐴.  𝑊 contributes to 𝐾𝑋

𝐴 significantly at higher 𝑇 (𝑇 > 10 mm) 

and negligibly at lower 𝑇 values.  Therefore, when designing the beam for a desired 𝐾𝑋
𝐴, small 

stiffness magnitudes (𝐾𝑋
𝐴 < 50 N/mm) can only be achieved by adjusting 𝑇.  At higher stiffness 

magnitudes, both 𝑊 and 𝑇 can be altered to achieve the desired stiffness.  
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Figure 2.9. Plot of model-predicted 𝐾𝑋

𝐴 vs. 𝑇 and 𝑊 (for any 𝑃 or 𝑂) with variable ranges 3 < 𝑇 < 15 mm and of 0.45 

< 𝑊 < 0.95 mm and four-point beam parameters 𝑤 = 10 mm, 𝐸𝑋 = 1276 MPa, 𝐿𝑆 = 80 mm, and 𝑎 = 30 mm. 

For layer-to-layer specimens, an analysis of the analytical model (Eq. (2.9) and Appendices 

A.1 and A.3), suggests that 𝑇 and 𝑃 have the most significant effect on layer-to-layer stiffness, 

𝐾𝑍
𝐴.  Figure 2.10 shows the model-predicted 𝐾𝑍

𝐴 vs. 𝑇 and 𝑃 for 3 < 𝑇 < 15 mm and 1 < 𝑃 < 10 

mm, 𝑊 = 0.45 mm and 0.95 mm, 𝑂 = 0.15 mm, and 𝑤 = 40 mm, 𝐸𝑍 = 1180 MPa, 𝐿𝑆 = 80 mm, 

and 𝑎 = 30 mm.  Increasing 𝑇 and 𝑃 yields a monotonic increase and decrease, respectively, in 

𝐾𝑍
𝐴.  Furthermore, 𝑃 has a more pronounced effect on 𝐾𝑍

𝐴 at higher 𝑇 (𝑇 > 10 mm) and a negligible 

effect at lower 𝑇 (𝑇 < 5 mm).  

As shown by the two surfaces representing 𝐾𝑍
𝐴 curves with 𝑊 = 0.45 mm and 𝑊 = 0.95 

mm, 𝑊 affects 𝐾𝑍
𝐴.  𝑊 monotonically increases 𝐾𝑍

𝐴 but has negligible effect at low 𝑇 (𝑇 < 5 mm).  

𝑊 has a weak effect at low 𝑇 because of the short distance between the neutral axis and the printed 

material.  To take advantage of this phenomenon, 𝑊 should be variably assigned within the cross-

section of a TWS (i.e. increased from a minimum value at the center of the beam to a maximum 

value at the extremities of the beam), which will maintain 𝐾𝑍
𝐴 while minimizing mass.  
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Although 𝑂 is held constant in this analysis, it does contribute to 𝐾𝑍
𝐴.  Although 

insignificant, a smaller value of 𝑂 (i.e. higher interference between the wave peak and outer 

contour) increases 𝐾𝑍
𝐴 of the part.  𝐾𝑍

𝐴 increases due to a change in 𝑂 are negligible compared to 

𝑇, 𝑃, and 𝑊 and are not shown graphically.  

 
Figure 2.10. Plot of model-predicted 𝐾𝑍

𝐴 vs. 𝑇, 𝑃, and 𝑊 = 0.45 mm and 0.95 mm and a fixed overlap, 𝑂 = 0.15 mm 

with variable ranges of 3 < 𝑇 < 15 mm and 1 < 𝑃 < 10 mm and four-point beam parameters 𝑤 = 40 mm, 𝐸𝑍 = 1180 

MPa, 𝐿𝑆 = 80 mm, and 𝑎 = 30 mm. 

2.7.2 Fabrication Time 

An analysis of the fabrication time, 𝜏𝐴, analytical model (Appendix C) suggests that 

specimen 𝑇 and 𝑃 both significantly affect the fabrication time of the specimen.  Figure 2.11 shows 

the model-predicted 𝜏𝐴 vs. 𝑇 and 𝑃 for in-plane wave infill specimens described in Secs. 2.4.1-

2.4.3 with fixed 𝑂 = 0.15 mm. Increasing the 𝑇 and 𝑃 yields a monotonic increase and decrease, 

respectively, in 𝜏𝐴.  However, at high period values (𝑃 > 7 mm), the fabrication time remains 

unaffected by changes in thickness.  
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Because of the small changes in length of the wave infill due to varying 𝑂, the model 

suggests that a decrease in 𝑂 slightly increases 𝜏𝐴. Because the change in 𝜏𝐴 with varying overlap 

is negligible compared to those due to 𝑃 and 𝑇, these changes are not presented graphically in 

Figure 2.11.  Finally, 𝑊 has no effect on fabrication time because the amount of material delivered 

by the nozzle is assumed not to influence the machine dynamics.  

 
Figure 2.11. Plot of 𝜏𝐴 vs. 𝑇 and 𝑃 with 𝑂 = 0.15 mm with variable ranges of 3 < 𝑇 < 15 mm and 1 < 𝑃 < 10 mm for 

in-plane wave infill specimen fabricated with a maximum machine velocity and acceleration of 𝑣𝑚 = 150 mm/s and 

𝑎𝑚 = 3000 mm/s2. 

2.7.3 Mass 

An analysis of specimen mass, 𝑀𝐴, analytical model (Appendix D) suggests that 𝑇, 𝑃, and 

𝑊 contribute most significantly to 𝑀𝐴.  Figure 2.12 shows the model-predicted 𝑀𝐴 vs. specimen 

𝑇 and 𝑃 for 𝑊 = 0.45 mm and 𝑊 = 0.95 mm and 𝑂 = 0.15 mm for in-plane wave infill specimens 

described in Secs. 2.4.1-2.4.3.  As expected, increasing the 𝑇 and 𝑃 yields a monotonic increase 

and decrease, respectively, in 𝑀𝐴. Furthermore, 𝑇 has a more pronounced effect on 𝑀𝐴 at lower 

wave 𝑃 (𝑃 < 5 mm) and a negligible effect at higher 𝑃 (𝑃 > 5 mm).  
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As shown by the two surfaces representing specimen mass with 𝑊 = 0.45 mm and 0.95 

mm, 𝑊 affects 𝑀𝐴.  Because of the added material, a larger 𝑊 increases 𝑀𝐴 at all 𝑇 and 𝑃 values 

but has the largest affect at high 𝑇 (𝑇 > 10 mm) and low 𝑃 (𝑃 < 5 mm).  

Although wave 𝑂 is held constant in this analysis, a reduction in 𝑂 slightly increases 

specimen mass.  This increase is negligible compared with increase in 𝑀𝐴 due to 𝑇, 𝑃, and 𝑊 and, 

thus, is not shown graphically. 

 
Figure 2.12. Plot of model-predicted specimen 𝑀𝐴 vs. thickness, 𝑇, 𝑃, 𝑊 = 0.45 mm and 0.95 mm, and a fixed 𝑂 = 

0.15 mm with variable ranges of 3 < 𝑇 < 15 mm and 1 < 𝑃 < 10 mm for in-plane wave infill specimens using a material 

density for the Nylon-12 MEX material of 𝜌 = 1.01 g/cm2. 

2.7.4 Design Guidelines for the Uniform Wave Infill Ankle-Foot Orthosis 

The sensitivity analysis of Sec. 2.7 provides design guidelines for the design of uniform 

geometry AFOs. When designing an AFO with wave infill stacked along the height of the device, 

the thickness of the beam contributes the most to beam stiffness and strength. However, this 

increase in thickness yields an increase in fabrication time and mass. Therefore, the thickness of 

the wave infill beam is used to achieve the desired range of the stiffness or strength of the beam, 

and the wave infill period is used for fine tuning of that stiffness and strength. Additionally, 

because the beadwidth does not contribute to the fabrication time, it can be used to increase 
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stiffness and mass of the device without the added fabrication time cost. Limitations with this 

model is that it is limited to only considering uniform wave infill geometries. Chapter 3 will 

develop a technique for applying this sensitivity analysis to small elements that can be assembled 

to determine the structural properties of the AFO.  

2.8 Conclusions 

Four analytical models to predict the stiffness, load capacity, fabrication time, and mass of 

the wave infill four-point bending beam specimen with in-plane and layer-to-layer orientations in 

MEX were developed and validated with experimental measurements.  Stiffness analytical models 

showed high correlations, 𝑅2 > 98%, and high predictive capabilities, RRMSE < 7%, to estimate 

the experimental results.  Load capacity was more difficult to predict and demonstrates the 

inconsistency inherent in the layer-by-layer manufacturing processes such as MEX.  Load capacity 

analytical models demonstrated correlations of 𝑅2 > 86% and predictive capabilities of RRMSE < 

24% to estimate the experimental results.  The analytical model estimations for both fabrication 

time and mass showed high correlations, 𝑅2 > 97%, and high predictive capabilities, RRMSE < 

7%, to estimate the experimental results.  

Upon analysis of the analytical model trends, it is evident and expected that the thickness 

of the wave infill beam contributes most significantly to four metrics: stiffness, load capacity, 

fabrication time, and mass.  Period and beadwidth also contribute to the four metrics.  When 

fabricating MEX TWS, an optimization of the wave infill geometry may design the geometry to a 

minimum mass or fabrication time.   

The future work will focus on developing the optimization algorithms that will minimize 

the mass or the fabrication time of MEX TWSs subjected to generalized loads while maintaining 

a desired structural stiffness.  Two other areas of future research include improved accuracy of 
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prediction and understanding of the failure of the wave infilled TWS under bending loads and the 

wave infill TWS shear stiffness.
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Chapter 3  
Finite Element Composite Simplification Modeling and Design of the Material Extrusion 

Wave Infill for Thin-Walled Structure 

3.1 Abstract 

The finite element composite simplification model (CSM) for modelling the material 

extrusion (MEX) wave infill of a thin-walled structure (TWS) with generalized geometries and 

loading conditions is presented. The MEX wave infill is a sine wave infill pattern used to generate 

a lightweight thin-walled structure (TWS) with desired bending properties. In CSM, the wave infill 

and TWS faces are modelled as a homogenous stacked composite, which reduces computation and 

setup time. Analytical models are presented to determine the effective material properties of the 

homogeneous core of the CSM. Previously reported four-point flexural experiments were used to 

validate the CSM. CSM was shown to predict the measured experimental stiffness within 15%. 

Using CSM, fixed flat- and curved-plate cantilevers with uniform and varying wave infill were 

analyzed. These analyses show CSM to be a powerful finite element tool that can be used in the 

future to optimize the wave infill for TWSs.  

3.2 Introduction 

The wave infill for material extrusion (MEX), a layer-by-layer additive manufacturing 

(AM) process, is a sine wave infill pattern used to generate a lightweight thin-walled structure 

(TWS) with desired bending properties [3].  A TWS is composed of outer facings and a corrugated 

core filled by a wave infill.  Such TWS parts with wave infill have been widely utilized for 

lightweight structure [18,19,22,23]. This study investigates the composite simplification model 
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(CSM) for modelling the bulk material properties of the MEX wave infill in TWSs with 

generalized geometries and loading conditions.    

In this paper, the wave infill geometry, directional material properties, and composite CSM 

are described in Sec. 3.3. The CSM is validated in Sec. 3.4 by comparing four-point bending 

experiments to results from a representative finite element CSM. In Secs. 3.5 and 3.6, the process 

for modelling a fixed flat-cantilever and an AFO, respectively, with CSM for a MEX TWS is 

described. 

3.3 MEX Wave Infill and Composite Simplification Modeling 

The MEX wave infill and the CSM for the TWS is presented.  

3.3.1 Wave Infill Geometry and Directional Material Properties 

A MEX TWS with wave infill is shown in Figure 3.1. This TWS is fabricated using MEX 

by stacking layers of thermoplastic material in the Z-direction. Each layer is composed of outer 

facings, which define the outer boundary of the TWS, and the wave infill core. The MEX wave 

infill can be characterized by the geometry of the inner wave and the interference between the 

wave and the outer facing. For a straight bar specimen, as shown in Figure 3.2, four variables 

define the geometry of the wave infill along the toolpath centerline within the outer boundaries of 

the specimen [3]: 

• Beadwidth W:  The width of the deposited thermoplastic bead  

• Thickness T:  The localized thickness of the TWS measured normal to the TWS mid-plane 

• Period P:  The localized period of one wave of the wave infill pattern  

• Overlap, O:  The overlap of the wave infill peaks and the outer contour.   
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As shown in Figure 3.2, O is the minimum distance between centerlines of the outer layer 

and the extremes of the wave.  A lower value of O reduces the distance between the wave and 

contour centerlines, corresponding to a greater overlap of the contour and wave.  

The amplitude of the wave infill, 𝐻, as shown in Figure 3.2, is defined as:  

𝐻 =
𝑇

2
− (

𝑊

2
+ 𝑂) (3.1) 

The primary deformation mode of a TWS is bending. In bending, the flexural stiffness of 

the MEX wave infill TWS varies in the X- and Z- directions because of the wave geometry. The 

layer-to-layer MEX process itself also generates the transverse orthotropy in the part and affects 

the directional material properties. Transverse orthotropy refers to the in-plane and layer-to-layer 

material symmetry directions, as shown in Figure 3.1.  

 



 50 

 
Figure 3.1. MEX wave infill TWS defined along the TWS mid-plane and composed of stacked layers of facings and 

wave infill core. The part exhibits transverse orthotropy in the in-plane and layer-to-layer material symmetry directions 

due to the cross-sectional area moment of inertias and directional material properties from the MEX process.  

 
Figure 3.2. Top-view of the MEX wave infill for a straight beam TWS. The geometry of the MEX wave infill is defined 

along the TWS mid-plane and by the outer thickness of the TWS, the period of the wave, the beadwidth of the toolpath, 

and the overlap between the wave infill and the facings.  
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For the structural analysis of the MEX wave infill TWS, the material properties of the base 

MEX material are required. These material properties include: (1) the in-plane elastic modulus, 

𝐸𝑋, which is the slope of the linear portion of the tensile stress-strain curve of the material along 

the direction of the toolpath centerline, (2) the layer-to-layer elastic modulus, 𝐸𝑍, which is the 

slope of the linear portion of the tensile stress-strain curve of the material along the layer direction, 

and (3) the in-plane Poisson’s ratio, 𝜈𝑋𝑍. These three properties will be used in the CSM of the 

MEX wave infill. 

3.3.2 CSM of a MEX Wave Infill TWS 

The CSM is developed to calculate the deformation of a generalized MEX wave infill TWS 

under loading.  The wave infill TWS is modelled as a composite stack composed of homogeneous 

laminae with properties equivalent to the TWS in CSM.  The MEX wave infill TWS (Figure 3.3(a)) 

with outer thickness, 𝑇, wave infill period, 𝑃, beadwidth, 𝑊, core thickness, 𝑇𝐶 (𝑇𝐶 = 𝑇 − 2𝑊), 

and length, 𝑏, is modeled with the composite stack shown in Figure 3.3(b). As shown in the cross-

sectional view in Figure 3.3(c), the composite stack has inner and outer facing laminae, which 

represent the inner and outer facings of the MEX wave infill TWS, and a core lamina with 

properties equivalent to the wave infill of the TWS. 
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 (c) 
Figure 3.3. An example MEX wave infill TWS with (a) outer thickness, 𝑇, wave infill period, 𝑃, beadwidth, 𝑊, core 

thickness, 𝑇𝐶 , and length, 𝑏. This TWS can be modeled as (b) a composite stack with bending properties equivalent to 

the MEX wave infill TWS and with inner and outer facing laminae and the inner core lamina, which represents the 

wave infill. In (c), the lamina representing each structure of the MEX wave infill is shown.   

To equate the MEX wave infill TWS to the CSM, each lamina of the composite must be 

assigned the appropriate material properties. Assuming a transversely orthotropic lamina (with 

equivalent X- and Y-directional properties), the constitutive equation for a lamina with respect to 

the primary axes (i.e. 𝑋, 𝑌, 𝑍) is:  
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[𝜀𝑖] = [𝑆𝑖𝑗][𝜎𝑖] 

 

(3.3) 

where 𝜀𝑖 is the directional lamina strain, 𝜎𝑖 is the directional lamina stress, and 𝑆𝑖𝑗 is the 

compliance tensor of the material with 𝐸𝑖, the lamina’s 𝑖𝑡ℎ-direction modulus of elasticity, 𝜈𝑖𝑗, the 

𝑖𝑗𝑡ℎ-direction Poisson’s ratio, and 𝐺𝑖𝑗, the 𝑖𝑗𝑡ℎ-direction shear modulus. Because of the transverse 

isotropy (i.e. equivalent X- and Y- directional properties) and the symmetry of 𝑆𝑖𝑗 (e.g. 
𝜈𝑋𝑍

𝐸𝑋
=

𝜈𝑍𝑋

𝐸𝑍
), 

8 material properties are needed to fully characterize 𝑆𝑖𝑗: 𝐸𝑋 , 𝐸𝑍, 𝐺𝑌𝑋 , 𝐺𝑌𝑍, 𝐺𝑍𝑋 , 𝜈𝑋𝑌, 𝜈𝑌𝑍, 𝜈𝑋𝑍. 

However, because the primary deformation of a TWS is a bending mode, the TWS experiences 

negligible loading in the Y-direction and properties 𝜈𝑋𝑌 and 𝜈𝑌𝑍 are unimportant to TWS analyses. 

Therefore, only 6 material properties, 𝐸𝑋 , 𝐸𝑍, 𝐺𝑌𝑋 , 𝐺𝑌𝑍 , 𝐺𝑍𝑋 , and 𝜈𝑋𝑍, are required.  

For the CSM of the MEX wave infill TWS, each lamina has a unique material compliance 

tensor. For the CSM of the inner and outer MEX wave infill facings, the compliance tensor and its 

components are referred to with the superscript ‘𝑓’ (e.g. 𝑆𝑖𝑗
𝑓

 and 𝐸𝑋
𝑓
). The material properties of 

the core lamina in the CSM are referred to with the superscript ‘𝑐’ (e.g. 𝑆𝑖𝑗
𝑐  and 𝐸𝑋

𝑐). In this study, 

the inner and outer facings of the MEX wave infill TWS and the CSM are assumed to have 

properties equivalent to the base material. Analytical models are used to describe the effective core 

lamina properties for the CSM in terms of base material properties and the wave infill geometry. 

3.3.3 Analytical Models for the Effective Core Lamina Properties 

Analytical models for defining some of the effective core lamina properties (𝐸𝑋
𝑐 , 𝐺𝑌𝑋

𝑐 , and 

𝐺𝑌𝑍
𝑐 ) have been described for the study of paper corrugations [30,63]. These analytical models 

have been adapted and derived here to express equivalent lamina material properties of the MEX 

wave infill core. 
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3.3.4 Effective Core Elastic Moduli, 𝐄𝐙
𝐜  and 𝐄𝐗

𝐜  

Analytical expressions for the effective core elastic moduli, 𝐸𝑍
𝑐 and 𝐸𝑋

𝑐 , relate the elastic 

stresses and strains of the core. The effective core in-plane elastic modulus, 𝐸𝑋
𝑐  of the wave infill 

is determined by considering the YZ cross-section of the wave infill. Because the distance from 

the neutral axis to the wave infill varies in the TWS, the in-plane effective elastic modulus of the 

core lamina, 𝐸𝑋
𝑐 , is assumed to be negligible:  

 𝐸𝑋
𝑐 ≈ 0 (3.4) 

The effective core layer-to-layer effective elastic modulus, 𝐸𝑍
𝑐, is determined by 

considering the XY- cross-section of the wave infill. Other works [63] have defined 𝐸𝑍
𝑐 as a ratio 

between the area of the infill and the effective area of the core. However, because the primary 

deformation of the TWS is a bending mode, a more appropriate calculation of 𝐸𝑍
𝑐 is:  

𝐸𝑍
𝑐 = 𝛼

𝐼𝑋𝑋
𝑤

𝐼𝑋𝑋
𝑒𝑓𝑓

𝐸𝑍 (3.5) 

where 𝛼 is a correction factor, 𝐼𝑋𝑋
𝑤  is the area moment of inertia of the wave infill given in [3], and 

𝐼𝑋𝑋
𝑒𝑓𝑓

 is the effective area moment of inertia of the core (both regions shown in Figure 3.2) given 

by:  

𝐼𝑋𝑋
𝑒𝑓𝑓

=
1

12
𝑇𝐶

3 𝑃 

 

(3.6) 

The ratio of Eq. (3.5) considers the material distribution of the wave infill about the neutral 

axis of the TWS in the bending mode. However, as seen in Figure 3.2, the wave infill overlaps into 

the inner and outer facings (i.e. beyond the core thickness, 𝑇𝐶), which will provide an 

overprediction of 𝐸𝑍
𝑐. To account for this overprediction, a correction factor, 𝛼, is applied. In this 

study, a 20% correction factor of 𝛼 = 0.8 was used.  
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3.3.5 Effective Core Shear Moduli 𝐆𝐙𝐗
𝐂 , 𝐆𝐘𝐗

𝐂 , and 𝐆𝐘𝐙
𝐂  

The effective shear moduli of the core, 𝐺𝑍𝑋
𝐶 , 𝐺𝑌𝑋

𝐶 , and 𝐺𝑌𝑍
𝐶 , relate the shear deformation of 

the MEX wave infill TWS subjected to applied shear stresses 𝜏𝑍𝑋, 𝜏𝑌𝑋, and 𝜏𝑌𝑍, as shown in Figure 

3.3. Assuming the analyzed wave infill geometries are symmetrical and uniform throughout the 

TWS and the deformation is in pure bending (i.e. no twisting), the in-plane effective core shear 

modulus, 𝐺𝑍𝑋
𝐶 , can be assumed to be negligible [63]:  

𝐺𝑍𝑋
𝐶 ≈ 0 

 

(3.7) 

If these conditions are not true, such as when the wave infill is not symmetrical throughout the part 

or the loading conditions transmit a shear along the ZX-surface, this assumption needs to be 

revisited.  

Appendix A presents details of the derivation of the analytical model expression for 

calculating an effective core shear modulus, 𝐺𝑌𝑍
𝐶 :  

𝐺𝑌𝑍
𝐶 =

4 𝑇𝐶  𝑊

𝑃 𝐿𝑤
𝐺𝑋𝑍 (3.8) 

where 𝐺𝑋𝑍 is the base material in-plane shear modulus according to Eq. (F.5) and 𝐿𝑤 is the 

arclength of the sine wave from Eq. (F.3).  

Appendix B presents details of the derivation of the analytical model expression for 

calculating an effective core shear modulus, 𝐺𝑌𝑋
𝐶 :  

𝐺𝑋𝑌
𝐶 = 𝐸𝑋 𝐴𝑋 (

𝑇𝑐

𝑃
2  𝑏

)
det [

𝐶11 𝐶12

𝐶12 𝐶22
]

det [

𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

]

 
(3.9) 

where 𝐸𝑋 is the base material in-plane elastic modulus, 𝐴𝑋 ≈ 𝑏 𝑊, and 𝐶𝑖𝑗 are coefficient 

of the wave infill core compliance matrix given by Eqs. (B.20)-(B.25). 
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3.4 Validation of CSM for MEX Wave Infill with Four-Point Bending Experiments 

Discussion 

 In this section, a CSM is generated for MEX wave infill bending experiments previously 

reported in [3].  FEM is applied to simulate the bending experiments using the CSM to validate 

the technique. 

3.4.1 Bending Experiments of MEX Wave Infill Specimens [3] 

The ASTM Standard D790-10 four-point flexural bending tests were performed on both 

in-plane and layer-to-layer rectangular prism Nylon-12 MEX specimens with varying wave infills 

[3]. As shown in Figure 3.4, specimen length, 𝑙, was 120 mm and thickness, 𝑇, was variable. 

Width, 𝑏, of the in-plane and layer-to-layer specimens were 10 mm and 40 mm, respectively. 

Loading pins were spaced with a distance, 𝑎, of 30 mm, and support pins were spaced with a 

distance, 𝐿𝑠, of 80 mm. Each pin had a radius of 5 mm. During the four-point flexural tests, load, 

𝐹𝑏, on the pin and their displacement, 𝛿, were measured. The resulting in-plane stiffness, 𝐾𝑋
𝐸, and 

layer-to-layer stiffness, 𝐾𝑍
𝐸, specimens were determined using a linear fit of the 𝐹𝑏 vs 𝛿 data.  

Table 3.1 shows the experimental variables and the measured flexural stiffnesses, 𝐾𝑋
𝐸 and 

𝐾𝑍
𝐸, for both the in-plane and layer-to-layer geometries, respectively. Because specimens 

undergoing four-point flexure tests experience both shear and elastic deformation and stresses, 

these experiments will be used to validate the CSM for use in generalized structures. 
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Figure 3.4. Four-point bending test setup schematic for (a) in-plane and (b) layer-to-layer specimens. Reproduced with 

permission from [3].  
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Table 3.1. Wave infill geometry variables and experimental [3] and CSM flexural stiffness values for in-plane and 

layer-to-layer specimens.  

Experimental Variables (mm) Stiffness, 𝑲 (N/mm) 

No. 𝑊 𝑇 𝑃 𝑂 

In-Plane Layer-to-Layer 

Experiment 
𝐾𝑋

𝐸  
CSM 
𝐾𝑋

𝐶  
Error  
𝜖𝑅 

Experiment 
𝐾𝑍

𝐸  
CSM 
𝐾𝑍

𝐶  
Error 
𝜖𝑅 

1 0.80 8.79 2.00 0.22 47.3 45.3 4% 274.5 281.9 -3% 

2 0.47 5.07 1.46 0.13 8.9 9.7 -9% 50.4 55.0 -9% 

3 0.53 10.39 1.34 0.18 48.9 32.1 34% 380.0 420.7 -11% 

4 0.81 7.84 2.66 0.10 37.9 36.5 4% 176.0 193.9 -10% 

5 0.89 5.86 2.78 0.28 20.3 22.3 -10% 82.3 95.9 -17% 

6 0.73 3.35 3.17 0.12 4.7 5.2 -11% 20.3 22.1 -9% 

7 0.87 5.30 10.00 0.32 15.3 16.0 -4% 54.4 71.1 -31% 

3.4.2 CSM of Bending TWS 

To validate the CSM for wave infill geometries, a FEM of the four-point bending tests in 

Sec. 3.4.1 was performed. Both the in-plane (Figure 3.5) and layer-to-layer (Figure 3.6) four-point 

bending specimen geometries were modelled with quarter symmetry (symmetry in the YZ- and 

XY- planes) in FEM to match the dimensions of the experimental bending specimen in Figure 3.4. 

The quarter symmetry specimens were modelled as a 3-ply composite shell with ply orientations 

set according to the local coordinate system (1,2, n) shown in Figure 3.5 and Figure 3.6. The 

thickness of the plies was set (according to Figure 3.3) with an outer lamina thickness of 𝑊 and 

an inner lamina thickness of 𝑇𝐶. Loading and support pins with the same radius of 5 mm were 

modelled as rigid shells and were used for applying the four-point flexural load and support, as 

shown in Figure 3.5 and Figure 3.6. Material properties for the inner and outer lamina were the 

base material properties of the Nylon-12 thermoplastic. The effective core material properties were 

determined according to the analytical models of Sec. 3.3.  The mesh used in the FEM is shown in 

Figure 3.5 and Figure 3.6. The 3-ply composite shell were meshed using 4-node general-purpose 
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shell element (S4R in Abaqus) with a length of 1 mm. The support and loading pins were meshed 

into 4-node three-dimensional rigid elements (R3D4) with 30 swept elements along the outer 

diameter of the pins. 

Contact properties between the loading and support pins and the part were characterized 

by normal contact and a tangential-behavior interaction with a frictional coefficient, 𝜇, of 0.15. 

Boundary conditions applied to the center of the support and loading pins were encastre and a Y-

direction deformation of 𝑈𝑌 = −4 mm, respectively. Symmetry boundary conditions for the YZ- 

and XY- planes were 𝑈𝑋 = 𝑅𝑌 = 𝑅𝑍 = 0 and 𝑈𝑍 = 𝑅𝑋 = 𝑅𝑌 = 0, respectively, where 𝑈𝑋 and 𝑈𝑍 

are linear deformations in the X- and Z- directions, respectively, and 𝑅𝑋, 𝑅𝑌, and 𝑅𝑍 are rotational 

deformations about the X-, Y-, and Z-axes, respectively. Reaction forces and deformation were 

measured at the reference point on the loading pin. After simulation, stiffness, 𝐾, of the quarter-

symmetry specimen was quantified by determining the linear slope of deformation-force curve.  

 
Figure 3.5. In-plane quarter symmetry CSM for the four-point flexural loading of wave infill specimens 
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Figure 3.6. Layer-to-layer quarter symmetry CSM for the four-point flexural loading of wave infill specimens 

3.4.3 Comparison of FEM of CSM to MEX Wave Infill Bending Experiments 

The flexural stiffness determined by the CSM method, 𝐾𝑋
𝐶, for each flexural specimen in 

both the in-plane and layer-to-layer orientation was calculated according to Sec. 3.4.2 and reported 

in Table 3.1. The base and effective material properties for Nylon-12 as input into the CSM are 

shown in Table 3.2 [62,64] and Table 3.3, respectively. Because 𝐸𝑋
𝐶  and 𝐺𝑋𝑍

𝐶  are negligible 

according to Eqs. (4) and (7), very small values (𝐸𝑋
𝐶  = 20 MPa and 𝐺𝑋𝑍

𝐶  = 10 MPa) compared to 

the effective core properties of Table 3.3 were input into the CSM to allow the simulation to solve 

without errors.  

As shown in Table 3.1, the in-plane and layer-to-layer numerical results matched well.  

Among 7 in-plane specimens, all errors are below 11% except Experiment 3, which had the worst 

numerical performance with an underestimation error 𝜖𝑅 = 34%. Experiment 3 has the highest 

thickness of the group and a low period wave infill. The higher experimental stiffness is due to the 
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low period wave infill. Through the center of this specimen, the material bridges between 

successive waves, which contributes to the experimental stiffness, but is not accounted for in the 

CSM effective in-plane core modulus 𝐸𝑋
𝐶 . Additionally, because of the high thickness of the part, 

this bridging occurs far from the neutral axis increasing the estimation error. The average error for 

the in-plane specimens is 10%.  

For the layer-to-layer specimens, as shown in Table 3.1, all errors were below 10% except 

Experiments 5 and 7. Experiment 5 had an overestimation error of 𝜖𝑅 = 17%. Experiment 7 had 

the worst numerical performance with an overestimation error 𝜖𝑅 = 31%. Experiment 5 and 7 both 

have large overlap, which likely leads to an underprediction of the area moment of inertia ratio of 

Eq. (3.5). Experiment 7 has the highest period of each of the experiments. The high period likely 

causes overestimation errors in the analytical estimation of 𝐺𝑌𝑍
𝐶  and 𝐸𝑍

𝐶 . The average error for the 

layer-to-layer specimens was 12%.  

A sensitivity analysis was performed to determine the effect of each property on the overall 

material stiffness. Each core property was varied for both the in-plane and layer-to-layer directions 

to determine the corresponding change in stiffnesses of the experiments. For the in-plane 

specimens, 𝐸𝑋
𝐶  and 𝐺𝑌𝑋

𝐶  contributed most significantly to the stiffness and 𝐺𝑌𝑍
𝐶  and 𝐸𝑍

𝐶  had no effect 

because the in-plane bending loads only generate normal and shear deformations along the X-

direction. For the layer-to-layer specimens, 𝐸𝑍
𝐶  and 𝐺𝑌𝑍

𝐶  contributed most significantly to the 

stiffness and 𝐺𝑌𝑋
𝐶  and 𝐸𝑋

𝐶  had no effect because the layer-to-layer bending loads only generate 

normal and shear deformations along the Z-direction. 𝜈𝑋𝑍 and 𝜈𝑍𝑋 had little effect because of the 

relatively small deformations and high Poisson ratio of the material. Mesh size also was found to 

have little effect on the stiffness.  
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Table 3.2. Base material properties of Nylon-12 material   

𝐸𝑋 (MPa) 𝐸𝑍 (MPa) 𝐺𝑍𝑋 (MPa) 𝜈𝑍𝑋 

1276 1138 800 0.3 

Table 3.3. Effective material properties of the wave infill core for wave infill bending experiments reported in [3]. 

No. 

Core Properties 

𝐸𝑍
𝐶  (MPa) 𝐺𝑌𝑋

𝐶  (MPa) 𝐺𝑌𝑍
𝐶  (MPa) 

1 970.8 29.9 600.2 

2 788.1 28.7 478.8 

3 921.2 7.8 618.4 

4 784.2 33.2 430.6 

5 842.8 108.9 442.9 

6 820.9 178.0 235.2 

7 359.5 29.6 76.7 

3.5 Finite Element CSM for a Lightweight Cantilevered TWS with MEX Wave Infill  

The CSM is applied to a lightweight cantilevered TWS with uniform and non-uniform 

wave infill to demonstrate the design of the TWS with MEX wave infill. 

3.5.1 Finite Element CSM Setup for a Lightweight Cantilevered TWS with Wave Infill 

In this analysis, a fixed cantilever TWS (Figure 3.7) with wave infill and a distributed 

transverse edge load is analyzed using the finite element CSM. The TWS has a width 𝑤𝑐 and a 

height ℎ𝑐. Three cases of the wave infill are analyzed: (1) uniform wave infill, (2) non-uniform 

wave infill varied in the Z-direction, and (3) outer contour and wave beadwidth variation with 

uniform wave infill. For all cases, the cantilevered beam was modeled as a 3-ply composite shell 

with ply orientations set according to the local coordinate system (1,2, n) shown in Figure 3.7. For 

Cases (1) and (2), the composite had an outer lamina thickness 𝑊 and inner lamina thickness 𝑇𝐶 

as shown in the top view of Figure 3.7. For Case (3), the modeled structure had an outer facing 

and wave infill beadwidth, 𝑊𝑓, and 𝑊𝑐, respectively, as shown in Figure 3.7(c). A 3-ply composite 

shell was meshed using 4-node general-purpose shell element (S4R in Abaqus) and dimensions of 

20 mm x 4 mm. 
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For Case 1 with the uniform wave infill (Figure 3.7(a)), a composite shell structure with 

uniform properties throughout the part was generated. Structures with uniform values of period 𝑃 

were analyzed according to Table 3.4. The effective material properties for the core lamina 

structure for each period is shown in Table 3.4. Infill densities above 95% and below 45% lead to 

overfilling and underfilling, respectively, of the specimen. Therefore, as shown in Figure 3.8, the 

allowable design range for this beam setup was with a period between 1.125 and 3 mm.  Material 

properties for the outer lamina are shown in Table 3.2. For Case 2 with the non-uniform wave infill 

(Figure 3.7(b)), a composite shell structure was used but was discretized into sections along the Z-

direction. Sections had a height of 𝑑𝑧 (𝑑𝑧 = 20 mm with 5 layers of elements) and the width of the 

beam 𝑤. For each of the sections, the wave infill effective core material properties according to 

Sec. 3.3.3 were applied to each Z-direction section of the TWS (Table 3.6). For Case (3), a 

composite shell structure with uniform properties throughout the part was generated. Structures 

with uniform values of period 𝑃 were analyzed according to Table 3.5. The effective material 

properties for the core lamina structure for each period is shown in Table 3.5. For Cases (1) and 

(2), each cantilever had a beadwidth, 𝑊, thickness, 𝑇, and overlap, 𝑂 of 0.5, 7.0, and 0.1 mm, 

respectively. For Case (3), the cantilever had an outer facing beadwidth, 𝑊𝑓, and inner core 

beadwidth, 𝑊𝑐, thickness, 𝑇, and overlap, 𝑂, of 1.0, 0.5, 7.0, and 0.1 mm, respectively. An 

isometric view of the cantilever beam with wave infill is shown in Figure 3.7(d).  

The cantilever TWSs of each case was loaded with a distributed edge load of magnitude 𝜓 

per unit length. The load was applied about the TWS X-axis such that the MEX layers were subject 

to the bending load. Encastre boundary conditions at the base edge of the cantilever were applied.  

The beam stiffness, 𝐾 was determined by:  
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𝐾 =
𝜓

𝛿
 (3.10) 

where 𝛿 is the maximum deflection at the top of the cantilever. The mass of the beam and density 

of the infill was calculated using analytical models developed in [3]. 

 
(a)  (b) (c) (d) 

Figure 3.7. Fixed cantilever TWS for finite element CSM of (a) uniform wave infill, (b) non-uniform wave infill varied 

in Z-direction, and (c) uniform wave infill with differing beadwidths for the core, 𝑊𝑐, and facing 𝑊𝑓. Yellow lines 

represent sections across which the wave infill in varied. (d) Isometric view of an example cantilever beam with 

uniform wave infill.   

Table 3.4. Cantilever MEX TWSs with uniform wave infill period were analyzed. Effective core properties, 𝐸𝑍
𝑐, 𝐺𝑌𝑋

𝑐 , 

and 𝐺𝑌𝑍
𝑐  were found for periods between 1.125 and 3.000 mm and varying core thickness, 𝑇𝑐. Stiffness, 𝐾, mass, 𝑀, 

and infill density were calculated for each analyzed cantilever. Beadwidth, 𝑊, and overlap, 𝑂 were 0.5, 7.0, and 0.1 

mm, respectively. Example effective core properties for the flat plate cantilever with 𝑇𝑐 of 7 mm are shown here.  

𝑃 (mm) 𝐸𝑍
𝑐 (MPa) 𝐺𝑌𝑋

𝑐  (MPa) 𝐺𝑌𝑍
𝑐  (MPa) 𝐾 (N/mm) 𝑀 (grams) Infill Density (%) 

1.125 706.1 16.6 505.5 0.566 494.4 94.9 

1.25 590.6 16.0 454.3 0.370 452.7 87.0 

1.5 433.6 15.0 377.2 0.244 390.2 75.1 

1.75 332.9 14.1 322.1 0.198 345.7 66.6 

2 263.9 13.1 280.6 0.174 312.6 60.2 

3 128.3 10.0 183.1 0.138 235.7 45.6 
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Table 3.5. Cantilever MEX TWSs with uniform wave infill period were analyzed. Effective core properties, 𝐸𝑍
𝑐, 𝐺𝑌𝑋

𝑐 , 

and 𝐺𝑌𝑍
𝑐  were found for periods between 1.05 and 2.6 mm. Stiffness, 𝐾, mass, 𝑀, and infill density were calculated 

for each cantilever. For each beam, thickness, 𝑇 and overlap, 𝑂, were 7.0, and 0.1 mm, respectively. For constant 

beadwidth beams, beadwidth 𝑊 was 0.5 mm. For differing beadwidth beams, facing beadwidth, 𝑊𝑓, and core 

beadwidth, 𝑊𝑐, were 1.0, 0.5, mm, respectively. 

 𝑃 (mm) 𝐸𝑍
𝑐 (MPa) 𝐺𝑌𝑋

𝑐  (MPa) 𝐺𝑌𝑍
𝑐  (MPa) 𝐾 (N/mm) 𝑀 (grams) 

C
o

n
st

an
t 

B
ea

d
w

id
th

, 𝑊
 

1.05 794.5 16.98 542.1 0.47 524.2 

1.25 590.6 16.02 454.3 0.19 452.7 

1.45 459.3 15.21 390.5 0.13 401.0 

1.65 368.4 14.44 342.1 0.11 362.1 

1.75 332.9 14.09 322.1 0.10 345.8 

2.25 214.5 12.31 248.2 0.08 286.7 

2.6 165.8 11.20 213.2 0.08 259.0 

𝑊
𝑐
 a

n
d

 𝑊
𝑓

 

B
ea

d
w

id
th

 

1.05 794.5 16.98 451.8 0.4 503.2 

1.25 590.6 16.02 378.6 0.2 448.4 

1.45 459.3 15.21 325.4 0.1 408.8 

1.65 368.4 14.44 285.1 0.1 378.9 

1.75 332.9 14.09 268.4 0.1 366.4 

2.25 214.5 12.31 206.8 0.1 321.1 

2.6 165.8 11.20 177.7 0.1 299.9 

Table 3.6. Cantilever MEX TWSs with linearly varying wave infill period through the Z-direction were analyzed. 

Effective core properties, 𝐸𝑍
𝑐, 𝐺𝑌𝑋

𝑐 , and 𝐺𝑌𝑍
𝑐  were found for periods between 1.125- and 3.000-mm. Stiffness, 𝐾, mass, 

𝑀, and infill density were calculated for each analyzed cantilever. Beadwidth, 𝑊, thickness, 𝑇, and overlap, 𝑂 were 

0.5, 7, and 0.1 mm, respectively. 

Section 𝑃 (mm) 𝐸𝑍
𝑐 (MPa) 𝐺𝑌𝑋

𝑐  (MPa) 𝐺𝑌𝑍
𝑐  (MPa) 

1 1.125 706.1 16.6 505.5 

2 1.224 612.2 16.1 464.2 

3 1.322 536.9 15.8 429.0 

4 1.421 475.3 15.3 398.6 

5 1.520 424.1 14.9 372.2 

6 1.618 380.9 14.5 349.0 

7 1.717 344.0 14.2 328.4 

8 1.816 312.3 13.8 310.0 

9 1.914 284.9 13.4 293.6 

10 2.013 260.9 13.1 278.7 

11 2.112 239.9 12.7 265.2 

12 2.211 221.3 12.4 252.8 

13 2.309 204.8 12.1 241.6 

14 2.408 190.1 11.8 231.2 

15 2.507 177.0 11.5 221.6 

16 2.605 165.2 11.2 212.8 

17 2.704 154.5 10.9 204.6 

18 2.803 144.9 10.6 196.9 

19 2.901 136.2 10.3 189.8 

20 3.000 128.3 10.0 183.1 
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3.5.2 Results from Finite Element CSM of a Cantilevered TWS with Wave Infill 

With the finite element CSM described in Sec. 3.5.1, cantilever beams with the period and 

effective core material properties shown in Table 3.4 were analyzed. The stiffness, mass, and infill 

density for each cantilever was calculated for each beam and shown in Table 3.4. Within this 

design range, a plot of the stiffness-to-mass ratio (i.e. stiffness, 𝐾 and mass, 𝑀) of the cantilever 

beam versus period is shown in Figure 3.9. For both mass and stiffness, the trend is a rapid decline 

between P of 1 and 3 mm. Increasing the core thickness offsets each curve to a higher stiffness-

to-mass ratio. Increasing the period reduces the stiffness-to-mass ratio of the beam. A minimum 

in the stiffness-to-mass ratio for core thickness can be seen at 𝑃 ≈ 2.0 mm.  

 
Figure 3.8. Infill density versus period for cantilever beam with thickness of 7.0 mm.  
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Figure 3.9. Stiffness-to-mass ratio of uniform wave infill cantilever TWS beams with varying core thickness, 𝑇𝑐, and 

varying period.   

With the finite element CSM described in Sec. 3.5.1, cantilever beams with the period and 

effective core material properties shown in Table 3.5 were analyzed. The stiffness and mass for 

each cantilever was calculated for each beam and shown in Table 3.5. Within this design range, a 

plot of the stiffness-to-mass ratio (i.e. stiffness, 𝐾 and mass, 𝑀) of the cantilever beam versus 

period is shown in Figure 3.10. At high periods, cantilever beams with differing beadwidths are 

shown to have higher stiffness-to-mass ratios. This result indicates that the core geometry 

contributes negligibly to the cantilever stiffness. Therefore, its thickness can be reduced to improve 

the stiffness-to-mass ratio of wave infill beams.  
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Figure 3.10.Comparison of stiffness-to-mass ratio versus period, 𝑃, for fixed flat plate cantilevers with constant 

beadwidth 𝑊 and differing core, 𝑊𝑐, and facing, 𝑊𝑓, beadwidths.  

With the finite element CSM described in Sec. 3.5.1, a cantilever beam with a linearly 

varying period and effective core material properties shown in Table 3.6 were analyzed. The 

stiffness and mass of the cantilever beam were calculated to be 0.25 N/mm and 325.7 g, 

respectively. 

3.6 Finite Element CSM for a MEX Wave Infill AFO  

The CSM is applied to a TWS AFO with uniform wave infill to demonstrate the application 

potential of CSM.  

3.6.1 Finite Element CSM Setup for an AFO TWS with Wave Infill 

In this analysis, the bending stiffness of a TWS AFO (Figure 3.11) with wave infill was 

determined. The AFO bending stiffness is determined in the literature [1] using:  
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𝑆 =
𝐹 ℎ𝐹

𝜃
 (3.11) 

where 𝐹 is the load applied at the vertical height ℎ𝐹, which is the region that supports the leg during 

AFO use, and 𝜃, which is the deformation angle about the ankle axis that occurs during loading. 𝜃   

is: 

𝜃 = atan (
𝛿

ℎ
) (3.12) 

AFO bending stiffnesses range between 1-8 N-m/°. A solid-filled MEX AFO with the same 

geometry and material as the one analyzed in this study was found to have a stiffness of 3.8 N-m/° 

(Sec. 1.2). Using the same loading conditions, CSM was applied to the AFO to determine its 

stiffness. The AFO was fixed at its base and was subjected to a transverse bending load. The 

deflection under loading was determined using finite element. The loading height, ℎ𝐹, in which 

force 𝐹 was applied was 250 mm and distance from maximum deflection to the ankle axis was 

350 mm. Two wave infill periods were tested while keeping other variables constant. A period, 𝑃 

= 1.15 mm, which yields an infill density of 98%, was used to simulate a solid-filled MEX AFO, 

like the one experimentally tested in Sec. 1.2. 𝑃 = 3 mm was used as another example to estimate 

the stiffness of a low-density wave infill AFO.   

All elements above the ankle axis were modeled as a 3-ply composite shell with ply 

orientations set according to the local coordinate system shown in Figure 3.11. The composite had 

an outer lamina thickness 𝑊 and inner lamina thickness 𝑇𝐶. The 3-ply composite shell was meshed 

with the original STL file mesh, which are 3-node general-purpose shell element (S4R in Abaqus).  

The AFO had wave infill properties above the ankle axis. Below the ankle axis, the material 

was modeled with solid material with isotropic material properties because this region was 

expected to contribute negligibly to ankle stiffness. Structures with two uniform values of period 



 70 

𝑃 were analyzed according to Table 3.7. The effective material properties for the core lamina 

structure for each period is shown in Table 3.7. Material properties for the outer lamina are shown 

in Table 3.2. The AFO had a beadwidth, 𝑊, thickness, 𝑇, and overlap, 𝑂 of 0.5, 4.0, and 0.1 mm, 

respectively.  

The AFO TWS was loaded on its rear surface at height ℎ𝐹with a concentrated load of 1N 

in the X-direction. The load was applied about the TWS X-axis such that the MEX layers were 

subject to the bending load. Encastre boundary condition at the base of the foot that modeled 

loading conditions during gait were applied.   

 
 (a) (b) (c) 
Figure 3.11. (a) Side-view of fixed AFO TWS for finite element CSM of a uniform wave infill. (b) Isometric view of 

AFO. (c) AFO showing mesh and deflection, 𝛿, of the AFO subjected to force 𝐹.  

Table 3.7. Cantilever MEX TWSs with uniform wave infill period were analyzed. Effective core properties, 𝐸𝑍
𝑐, 𝐺𝑌𝑋

𝑐 , 

and 𝐺𝑌𝑍
𝑐  were found for periods 1.5 and 3.0 mm. Stiffness, 𝐾, mass, 𝑀, and infill density were calculated for each 

analyzed cantilever. Beadwidth, 𝑊, thickness, 𝑇, and overlap, 𝑂 were 0.5, 4.0, and 0.1 mm, respectively.  

𝑃 (mm) 𝐸𝑍
𝑐 (MPa) 𝐺𝑌𝑋

𝑐  (MPa) 𝐺𝑌𝑍
𝑐  (MPa) 𝐾 (N-m/°) Infill Density (%) 

1.15 571.6 57.7 350.7 23.3 98.5 

3 177.1 35.2 161.4 3.8 56.1 
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3.6.2 Results from Finite Element CSM of an AFO TWS with Wave Infill 

With the finite element CSM described in Sec. 3.6, the AFO with the period and effective 

core material properties shown in Table 3.7 were analyzed. The stiffness of the AFO with 𝑃 = 1.15 

mm and 𝑃 = 3 mm was measured to be 4.2 N-m/° and 2.3 N-m/°, respectively. The CSM-estimated 

stiffness of the solid-filled AFO with 𝑃 = 1.15 mm matches the stiffness of the experimentally 

measured stiffness of 3.8 N-m/° in Sec. 1.2 experiments. This finding indicates that the CSM 

technique can be applied to predict the stiffness of the AFO.  For the 𝑃 = 3 mm AFO, the stiffness 

is reduced by half of stiffness of the solid AFO. This finding indicates that the stiffness of the AFO 

can be tuned by altering the period within the part. Also, these applications demonstrate the 

effectiveness of CSM in predicting the stiffness of TWSs with generalized geometries and loading 

conditions.  

3.7 Conclusions 

This study presented the finite element CSM for the modelling of the MEX wave infill of 

TWSs with generalized geometries and loadings. In CSM, the wave infill and TWS faces are 

modelled as a homogenous stacked composite, which reduces computation and setup time. 

Analytical models were presented to determine the effective material properties of the 

homogeneous core of the CSM. Using the effective material properties from these analytical 

models, the CSM was validated using previously reported stiffness values from four-point flexural 

experiments. The CSM of this four-point flexural setup predicted stiffness of the specimens within 

15% of experimental measurements. Using CSM, a fixed flat-plate cantilever and AFO with 

uniform and varying wave infill were analyzed. These analyses show CSM to be a powerful finite 

element tool that can be used in the future to optimize the wave infill for TWSs.
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Chapter 4  
Thresholding Method for the Computed Tomography Inspection of the 

Internal Composition of Parts Fabricated using Additive Manufacturing 

4.1 Abstract 

This study presents a thresholding method for analyzing and quantifying the internal 

composition of additive manufacturing (AM) parts using computed tomography (CT) data. A 

Mixed Skew Gaussian Distribution (MSGD) algorithm, derived from a statistical image analysis 

technique called Mixed Gaussian Distribution (MGD) clustering, integrates a mixture of skewed 

Gaussian distributions to model the internal phases from CT data. The parameters of the MSGD 

algorithm (i.e. probability, mean, standard deviation, and skew) are inferred from the measured 

grayscale histogram using the least-squares fitting and assigned to phases present in the CT data. 

Upon fitting, the MSGD technique guides the thresholding of phases in CT data. From the MSGD 

fitted and thresholded CT data, phase volume percentages and spatial variations of density of the 

phases are quantified.  The MSGD algorithm was validated using previously reported CT analysis 

and experimental porosity measurements of a Cobalt Chrome (CoCr) specimen fabricated by 

powder bed fusion (PBF). Compared with the 13.5% porosity measured by the Archimedes 

method, the MSGD method predicted 14.5% +/- 1.9% porosity, a measured increase of 1.0%. This 

difference may due to surface pores, which were neglected in the density measurement using the 

Archimedes method. 

4.2 Introduction   

Additive manufacturing (AM) is a layer-by-layer material deposition process that is 

increasingly being applied to create customized, high-performance end-use parts. Parts fabricated 
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with AM commonly exhibit intentional or unintentional porosity. Unintentional porosity typically 

occurs between adjacent layers as well as within the deposited material and may yield poor part 

performance by adversely affecting part mechanical properties. Intentional uses of porosity within 

AM parts include stiffness and damping tuning, complex cooling channels, slots for embedded 

electronics, or scaffolding for biologic in-growth. For both intentional and unintentional porosity, 

AM parts require methods of quantitative inspection for quality control of these internal features.   

Quantitative inspection techniques for quality control of AM parts can be grouped into 

destructive and non-destructive testing methods. Destructive testing methods provide a 

macroscopic characterization of the structure but typically do not provide localized information of 

the porous internal structure of the part. Non-destructive testing methods, such as computed 

tomography (CT), can provide detailed internal views of the inspected part without damaging the 

specimen. CT uses X-rays and reconstruction techniques to visualize the internal structure of a 

specimen with sub-m scale resolution. This study discusses the use of CT and the advancement 

of a segmentation algorithm that processes CT data to quantify the internal structure of AM parts 

and that provides physical insights into part density.  

In Sec. 4.3, prior experimental work on the porosity quantification of powder bed fusion 

(PBF) Cobalt-Chrome (CoCr) AM parts by Slotwinski et al. [39] and Kim et al. [42] at NIST is 

presented and their CT inspection process for these parts is discussed. In Sec. 4.4, CT image 

processing techniques, specifically a mixed skew Gaussian distribution method (MSGD) and a 

thresholding and small feature filtering algorithm, for analyzing the internal structure of the CT-

scanned filament and part are presented. In Sec. 4.5, the algorithm is validated based on CT data 

from Slotwinski et al. [39]. For validation, the porosity of NIST CoCr part CT data is analyzed 

and compared to the measurements [42]. Conclusions and discussions are presented in Sec. 4.6. 
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4.3 Experimental Setup 

In this section, experimental porosity measurements from Slotwinski et al. [39] of a Cobalt 

Chrome (CoCr) powder bed fusion (PBF) part are described. Experimental measurements [39] are 

used as the standard for validation of CT data analysis algorithms. 

4.3.1 Archimedes Method Measurement of Porosity of CoCr Parts [39] 

The Archimedes method was utilized to experimentally measure the porosity of AM parts 

at NIST [39].  Based on the mass of the PBF CoCr cored cylinder measured in both water and air, 

the density of water, and the density of CoCr, the porosity of the CoCr AM part could be measured.  

In this study, “Sample 5” with 13.5% porosity [39] was selected as the “gold standard” to validate 

subsequent CT analyses. 

4.3.2 CT Setup and Measurement of Porosity of CoCr Parts [39,42] 

In [39] and [42], the porosity of the PBF CoCr cored cylinder was estimated using the data 

acquired in an industrial CT, with a rotating specimen and fixed X-ray source. Upon passing 

through the specimen, the concentrated X-ray is attenuated linearly according to the regional 

density at the exposed location.  For example, a higher regional density corresponds to higher X-

ray attenuation, and a lower regional density corresponds to lower X-ray attenuation. The 

attenuated X-ray is projected onto a 2D detector plate for each rotational angle, and the resulting 

X-ray intensity is recorded. A reconstruction procedure is then used to assign a grayscale value, 

which is linearly mapped from the measured X-ray intensity [44], to each incremental volume, or 

voxel, throughout the part [44]. From the 3D volume, 2D image slices are generated, as shown in 

Figure 4.1(a), which are composed of voxels with grayscale intensity values, 𝐼, at a position (𝑥, 𝑦) 

within the image. As shown in Figure 4.2(a), the intensity values, 𝐼(𝑥, 𝑦), can then be mapped to 
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a measured histogram, ℎ𝑚(𝐼), of intensity values and their frequencies of occurrence in the CT 

image.  

For the CoCr PBF cylinder in [39], a CT scan was taken at a 3D voxel resolution of 2.52 

μm3. Each voxel had a corresponding intensity represented by a 16-bit grayscale intensity value 

between 0 to 65535. The cored cylinder was reconstructed into 758 image slices (2.48 mm x 2.55 

mm x 2.52 mm). A cross-sectional CT image of the PBF CoCr, as shown in Figure 4.1(a), was 

used to identify and segment two internal phases: pore and CoCr (Figure 4.1(b)). Analyses [39] 

and [42] of the CT data of the PBF cored cylinder (“Sample 5” in [39]) estimated a porosity of 

12.0% and 10.9%, respectively.  

 
 (a) (b) 
Figure 4.1. (a) CT image of the PBF CoCr part, which is composed of (b) pore and CoCr phases with grayscale values 

proportional to the measured X-ray intensity.  

4.4 CT Image Processing and Segmentation Algorithm 

Image processing and segmentation algorithms are presented for quantifying the internal 

structure of CT image slices.  
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4.4.1 CT Image Slicing and Histogram 

From each CT image, a normalized histogram of voxel intensity frequency in grayscale 

was generated by normalizing the frequency of voxels at a grayscale level to the total number of 

voxels. An example of a measured histogram, denoted as ℎ𝑚(𝐼), for the CoCr PBF specimen 

(Figure 4.1(a)) showing the voxel intensities, 𝐼, in grayscale vs. the normalized voxel frequency is 

shown in Figure 4.2(a).  Because the CT process contains noise, edge effects, and imperfect 

material and beam size [46], the measured histogram of a homogeneous material will be distributed 

about a mean intensity value (in grayscale) proportional to the density of the scanned material. For 

a heterogenous material comprised of 𝑛 phases with varying volume ratios, the histogram will be 

composed of 𝑛 distinct individual modes, 𝜓𝑖 (𝑖 = 1, … , 𝑛), each centered about a mean attenuation 

corresponding to the relative density of each phase. When the relative density (and attenuation) of 

the phases are similar and the contrast between the phases are poor, the modes are mixed into a 

single, superposed unimodal histogram of normalized voxel frequency vs. intensity.  

For example, the measured histogram, ℎ𝑚(𝐼), of the CoCr PBF specimen in Figure 4.2(a) 

can be decomposed into 𝑛 = 2 modes, 𝜓1 = 𝜓𝑃 and 𝜓2 = 𝜓𝐶, where 𝑛 = 1 is the pore (𝑃) phase 

and 𝑛 = 2 is the PBF CoCr (C) phase, respectively, as shown in Figure 4.2(b).  These two phases 

sum to an estimated histogram, ℎ𝑒(𝐼), which is fit to ℎ𝑚(𝐼). Several segmentation techniques have 

been developed to distinguish between the two phases within the CT scanned specimen. 

4.4.2 Review of Segmentation Techniques 

Segmentation techniques have been developed for unimodal and multimodal segmentation 

of CT data.  These techniques can be grouped into histogram shape-based, clustering-based, 

entropy-based, object attribute-based, spatial-based, and local-based methods [65].  For 

segmentation and analysis of NDT images such as those from CT, mixed Gaussian distribution 
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(MGD) clustering [66,67] is recognized as one of the best-performing segmentation algorithms 

[65] to distinguish between the internal phases of a scanned specimen because it models the 

inherent randomness of the CT measurement process. In MGD clustering, the imaged internal 

phases are modeled as a mixture of Gaussian distributions. Parameters of the Gaussian 

distributions (i.e. probability, mean, and standard deviation) are inferred from the measured 

grayscale histogram using least-squares fitting. By fitting with the MGD technique, the 

randomness of the CT process is modeled and used to guide the thresholding of the CT data. For 

example, as shown in Figure 4.2(b) of the CoCr PBF specimen, each phase of the CT data can be 

modeled as a Gaussian distribution with a mean and standard deviation value of pore and PBF 

CoCr grayscale values. These two modeled phases are combined to fit the measured histogram of 

the CT data.  
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 (b) 
Figure 4.2. From the CoCr PBF cylindrical specimen CT slice image shown in Figure 4.1(a): (a) the measured 

normalized histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale with the estimated histogram, ℎ𝑒(𝐼), and (b) the 

CoCr PBF cylindrical specimen composed of two phases – CoCr and pore – with two distinct modes. The two phase 

modes sum to the estimated histogram, ℎ𝑒(𝐼), which is fit to ℎ𝑚(𝐼). 

4.4.3 MGD of CT Images 

In the generalized case where the CT data has 𝑛 distinct phases, the MGD technique 

generates 𝑛 Gaussian distributions, 𝜓𝑖 (𝑖 = 1,… , 𝑛), about a mean intensity value. The estimated 

histogram ℎ𝑒(𝐼) is then the superposition of the Gaussian phase modes 𝜓𝑖: 

(a) 
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ℎ𝑒(𝐼| 𝜇𝑖, 𝜎𝑖, 𝑃𝑖) = ∑𝜓𝑖

𝑛

𝑖=1

(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝑃𝑖) (4.1) 

where 𝐼 is the voxel intensity, 𝜇𝑖 is the mean of the 𝑖𝑡ℎ phase, 𝜎𝑖 is the standard deviation of the 

𝑖𝑡ℎ phase, and 𝑃𝑖 is the probability of the 𝑖𝑡ℎ phase. Phase parameters 𝜇𝑖, 𝜎𝑖, and 𝑃𝑖 are inferred by 

fitting ℎ𝑒(𝐼| 𝜇𝑖, 𝜎𝑖, 𝑃𝑖) to the measured histogram, ℎ𝑚(𝐼), of the CT data. The probability density 

function (PDF) of the 𝑖𝑡ℎ Gaussian phase mode 𝜓𝑖 is: 

𝜓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝑃𝑖) = 𝑃𝑖 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖) = 𝑃𝑖

(

 
1

√2𝜋𝜎𝑖
2

𝑒
−(𝐼−𝜇𝑖)

2

2𝜎𝑖
2

)

  (4.2) 

∫ 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖)
∞

−∞

 𝑑𝐼 = 1 (4.3) 

∑𝑃𝑖

𝑛

𝑖=1

= 1 (4.4) 

where 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖) is the standard form of the Gaussian distribution. The phase modes, 𝜓𝑖, are 

ordered according to the magnitude of their mean value, i.e., 𝜇1 < ⋯ < 𝜇𝑖 < ⋯ < 𝜇𝑛. Physically, 

𝜇𝑖 and 𝜎𝑖 represent the average density (or X-ray attenuation) and density variation of the 𝑖𝑡ℎ phase, 

respectively, and 𝑃𝑖 represents the phase volume percentage in the CT data.  

For the CT data measured in this study, it was observed that the Gaussian distributions 

were skewed about a mean value. To account for these skewed distributions, this study uses a 

mixed skew Gaussian distribution (MSGD) method, which is discussed in the next section, to fit 

the measured histogram of the CT data. 
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4.4.4 MSGD of CT Images 

Similar to MGD, the MSGD method generates 𝑛 Gaussian distributions, 𝜓𝑖 (𝑖 = 1, … , 𝑛), 

that sum to ℎ𝑒(𝐼) and whose parameters (i.e. mean, standard deviation, and probability) are 

inferred from ℎ𝑚(𝐼) of the CT data. In CT data utilized in this study, however, the phase 

distributions were skewed about a mean value because of edge effects and the (lack of) contrast 

between components. To account for skewness in the normally distributed mode, the PDF of the 

𝑖𝑡ℎ Gaussian phase mode 𝜓𝑖  is: 

𝜓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖, 𝑃𝑖) = 𝑃𝑖  𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖) = 𝑃𝑖

(

 
2

√2𝜋𝜎𝑖
2

𝑒
−(𝐼−𝜇𝑖)

2

2𝜎𝑖
2

∫
1

√2𝜋
𝑒−

𝑡2

2 𝑑𝑡
𝛼𝑖(

𝐼−𝜇𝑖
𝜎𝑖

)

−∞

)

  (4.5) 

∫ 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖)
∞

−∞

 𝑑𝐼 = 1 (4.6) 

∑𝑃𝑖

𝑛

𝑖=1

= 1 (4.7) 

where 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖) is the standard form of a skewed Gaussian distribution [68], 𝜇𝑖 is the mean 

of the 𝑖𝑡ℎ component, 𝜎𝑖 is the standard deviation of the 𝑖𝑡ℎ component, 𝛼𝑖 is the skewness 

parameter of the 𝑖𝑡ℎ component, and 𝑃𝑖 is the probability of the 𝑖𝑡ℎ phase. The phase modes, 𝜓𝑖, 

are ordered according to the magnitude of their mean value, i.e., 𝜇1 < ⋯ < 𝜇𝑖 < ⋯ < 𝜇𝑛. 

Physically, 𝜇𝑖 and 𝜎𝑖 represent the average density (or X-ray attenuation) and density variation of 

the 𝑖𝑡ℎ phase, respectively, 𝑃𝑖 represents the phase volume percentage in the CT data, and 𝛼𝑖 

represents the magnitude and direction of the skew from the mean density of the material. 

Examples of the skew parameter of the Gaussian distribution are shown in Figure 4.3. A positive 

𝛼 skews the distribution to the right of the mean, and a negative 𝛼 skews the distribution to the left 

of the mean. Increasing the magnitude of 𝛼 shifts measurements to the left or right of the mean. 
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Figure 4.3. Representation of each parameter used in the MSGD fitting of the CT data histogram.  Skew parameters  
(𝛼1 = |𝛼3|) < (𝛼2 = |𝛼4|). 

With a vector parameter, 𝝎𝒊, defined to represent [𝜇𝑖 , 𝜎𝑖, 𝛼𝑖, 𝑃𝑖]
𝑇, the estimated histogram 

ℎ𝑒(𝐼|𝝎) is then the superposition of the Gaussian phase modes, 𝜓𝑖(𝐼 |𝝎𝒊): 

ℎ𝑒(𝐼|𝝎) = ∑𝜓𝑖

𝑛

𝑖=1

(𝐼 |𝝎𝒊) (4.8) 

The least-squares fitting error, 𝜖(𝐼|𝝎), between the measured ℎ𝑚(𝐼) and estimated ℎ𝑒(𝐼|𝝎) is:  

𝜖(𝐼|𝝎) = |ℎ𝑚(𝐼) − ℎ𝑒(𝐼|𝝎)| (4.9) 

where |⦁| is the Euclidean norm (i.e. √𝜖1
2 + ⋯+ 𝜖𝑝

2). The vector parameters, 𝝎̂, that minimize the 

least-squares fitting error, 𝜖(𝐼|𝝎), (i.e. the argmin function) are:  

𝝎̂ = argmin
𝛚

(𝜖(𝐼|𝝎)) (4.10) 

which is subject to the constraints:  

  𝜂𝑖  : 𝐶𝑖
𝑙 ≤ 𝜇𝑖 ≤ 𝐶𝑖

𝑢 (4.11) 
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   𝛾𝑖: ∑𝑃𝑖

𝑛

𝑖=1

= 1 (4.12) 

where 𝜂𝑖 is the lower and upper bound constraint on the mean value, 𝜇𝑖; 𝐶𝑖
𝑙, and 𝐶𝑖

𝑢 are the lower 

and upper bound grayscale values, respectively, that encompass the 𝑖𝑡ℎ phase peak intensity value 

on the histogram; 𝛾𝑖 is the equality constraint on the sum of the 𝑛 phase probabilities, 𝑃.  To guide 

the optimization of Eq. (4.10), the lower and upper intensity bounds (𝐶𝑖
𝑙 and 𝐶𝑖

𝑢) indicate a region 

of intensity values that the phase mean, 𝜇𝑖, is expected to be located. These bounds are provided 

based on examination of the 𝑖𝑡ℎ phase intensity values 𝐼(𝑥, 𝑦) from the CT data.  

A numerical gradient-based optimization, fmincon in Matlab, was used to find 𝝎̂ with Eq. 

(4.10) subject to the constraints in Eqs. (4.11) and (4.12). To initialize the least-squares 

optimization, constraints 𝐶𝑖
𝑙 and 𝐶𝑖

𝑢 and initial conditions for 𝝎𝒊 are provided, as will be discussed 

in Sec. 4.5.1. From the optimization, parameters 𝝎̂𝒊 are defined for each phase 𝜓𝑖 (𝑖 = 1, … , 𝑛). 

From 𝜓𝑖(𝐼 |𝝎̂𝒊), regions of intensity values on the CT histogram are assigned to a phase, a process 

known as thresholding, for visualization of the separate phases in the CT data. Because of the 

Gaussian modes, thresholding regions are determined using a Bayesian decision rule (BDR), 

which is described in Sec. 4.4.5. 

4.4.5 Thresholding of CT Images using BDR 

For analysis and visualization of the CT image, the CT data is thresholded, which is the 

process of determining the intensity regions on the measured histogram that are associated with a 

phase [69]. The CT data, with grayscale intensity values 𝐼(𝑥, 𝑦), is simplified to a thresholded 

image, 𝑇(𝑥, 𝑦), with 𝑛 unique intensity values corresponding to each phase. For the 𝑛 phases, 

𝜓𝑖  (𝑖 = 1,… , 𝑛), modeled as Gaussian distributions with mean values (𝜇1 < ⋯ < 𝜇𝑖−1 < 𝜇𝑖 <
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⋯ < 𝜇𝑛), BDR is used to generate 𝑛 − 1 threshold limits, 𝐿𝑖 (𝑖 = 1,… , 𝑛 − 1) between adjacent 

phase distributions, 𝜓𝑖−1 and 𝜓𝑖. The grayscale intensity region, ℜ𝑖, for 𝜓𝑖, is:  

ℜ𝑖 ∈ (𝐿𝑖−1, 𝐿𝑖 ] (4.13) 

where 𝐿𝑖−1 and 𝐿𝑖 are intensity limits between phase distributions 𝜓𝑖−1 and 𝜓𝑖 and 𝜓𝑖 and 𝜓𝑖+1, 

respectively. For the special cases of 𝜓1 and 𝜓𝑛, the regions ℜ1 and ℜ𝑛 are:  

ℜ1 ∈ [min(𝐼) , 𝐿1] (4.14) 

ℜ𝑛 ∈ (𝐿𝑛−1, max(𝐼)] (4.15) 

where 𝐿1 and 𝐿𝑛−1  are intensity limits between phase distributions 𝜓1 and 𝜓2 and 𝜓𝑛−1 and 𝜓𝑛, 

respectively, and min(𝐼) and max(𝐼) are the minimum and maximum intensities of the CT data. 

The thresholded image, 𝑇(𝑥, 𝑦) is therefore:  

𝑇(𝑥, 𝑦) = 𝐵𝑖 ∀ 𝐼(𝑥, 𝑦) ∈  ℜ𝑖 (4.16) 

where the intensities 𝐼(𝑥, 𝑦) in ℜ𝑖 are mapped to a unique value, 𝐵𝑖 for 𝑖 = 1, … , 𝑛. The 

generalized form of BDR for determining the threshold limit 𝐿𝑖 is [66]:  

𝐿𝑖 =
𝜇𝑖−1 𝜎𝑖

2 − 𝜇𝑖  𝜎𝑖−1
2

𝜎𝑖
2 − 𝜎𝑖−1

2

+
𝜎𝑖−1 𝜎𝑖

𝜎𝑖
2 − 𝜎𝑖−1

2 ((𝜎𝑖
2 − 𝜎𝑖−1

2 ) log (
𝜎𝑖

2

𝜎𝑖−1
2 ) + 2(𝜎𝑖−1

2 − 𝜎𝑖
2) log (

𝑃𝑖

𝑃𝑖−1
)

+ (𝜇𝑖−1 − 𝜇𝑖)
2)

1
2

 

 (4.17) 
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For example, within a CT data histogram (Figure 4.4(a)) corresponding to the CoCr PBF 

part CT image (Figure 4.4(b)), BDR yields two regions, ℜ1 = ℜ𝑃 and  ℜ2 = ℜ𝐶, for the pore and 

PBF CoCr phases, respectively: 

ℜ𝑃 ∈ [min(𝐼) , 𝐿𝑃] (4.18) 

ℜ𝐶 ∈ (𝐿𝑃,max(𝐼)] (4.19) 

where 𝐿𝑃 is the intensity limit between 𝜓𝑃 and 𝜓𝐶 . The thresholded image, 𝑇(𝑥, 𝑦), is then:  

𝑇(𝑥, 𝑦) = {
𝐵𝑃 ∀ 𝐼(𝑥, 𝑦) ∈ ℜ𝑃

𝐵𝐶  ∀ 𝐼(𝑥, 𝑦) ∈ ℜ𝐶
 (4.20) 

where 𝐵𝑃 and 𝐵𝐶 are unique intensity values prescribed to the pore and PBF CoCr phase 

regions, respectively, as shown in Figure 4.4(c). The CoCr PBF is analyzed and the resulting 

thresholded image, 𝑇(𝑥, 𝑦), is shown in Figure 4.4(d). 
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 (c) (d) 
Figure 4.4. (a) The MSGD algorithm fits an estimated histogram ℎ𝑒(𝐼) with two Gaussian distributions (𝜓𝑃 , and 𝜓𝐶), 

representing the pore and PBF CoCr, respectively, to the measured CT data.  BDR is used to generate regions ℜ𝑃 

and ℜ𝐶 corresponding to the intensity values associated with the pore and CoCr phases, respectively. (b) With this 

process, the data in the intensity regions ℜ𝑃 and ℜ𝐶  of the CT image are (c) assigned unique intensity values, 𝐵𝑃  and 

𝐵𝐶 , respectively, and are converted into the (d) thresholded image 𝑇(𝑥, 𝑦). 

4.4.6 Small Feature Filtering 

Because of the overlapping distributions, the thresholded image 𝑇(𝑥, 𝑦) (Figure 4.5(a)) 

yields small connected features that are smaller than the resolving power of the CT machine, as 

marked in Figure 4.5(b). These small features do not have physical meaning and, therefore, are 

filtered and blended into the surrounding image features.  

(a) 
(b) 
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Filtering small features requires identifying connected phases in the thresholded CT image 

𝑇(𝑥, 𝑦) that have a volume smaller than a minimum volume, 𝑉𝑚𝑖𝑛.  𝑉𝑚𝑖𝑛 is based on the resolving 

capability of the CT machine, which is a multiple, 𝑚, times the voxel volume. Therefore, 𝑉𝑚𝑖𝑛 is 

defined as:   

𝑉𝑚𝑖𝑛 ≔ 𝑉𝑐𝑜𝑛𝑛 ≤ 𝑚 𝑉𝑉 (4.21) 

where 𝑉𝑉 is the voxel volume of the scan and 𝑉𝑐𝑜𝑛𝑛 is the volume of the connected features. 

Connected features are voxel sets of a single phase that are connected through a common edge or 

corner. To find all the connected features in 𝑇(𝑥, 𝑦), bwconncomps, a Matlab function, was used. 

After identifying 𝑉𝑚𝑖𝑛, the intensity values of each small feature in the CT data 𝐼(𝑥, 𝑦) are adjusted 

to the mean value, 𝜇𝑖, of the phase surrounding the small feature. MSGD and BDR were performed 

on the adjusted image. This procedure is repeated until the number of small features stabilizes after 

several iterations or reaches zero. As opposed to simply removing small features in the thresholded 

image, the small feature intensity values are replaced with the optimized mean value of the region 

surrounding the small feature in the original CT image and the MSGD algorithm is repeated.  

Figure 4.5 shows an example of small feature filtering for the CoCr part. In the CoCr PBF 

part CT scan, the voxel volume, 𝑉𝑉 was 2.52 μm3 and 𝑚 was 3 [46]. Therefore, the CT scanner’s 

capability for resolving a minimum feature size, 𝑉𝑚𝑖𝑛 = 7.5 μm3 (Figure 4.5(b)). After four 

iterations of the procedure outlined above, the number of small components reached zero or 

stabilized from the previous iteration. The region of Figure 4.5(b) after small feature removal is 

shown in Figure 4.5(c). 
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 (a)  (b) (c) 
Figure 4.5. (a) Representative thresholded CT slice of CoCr PBF specimen with two components: pore (black) and 

CoCr PBF (white). (b) Small features below the resolution power of the CT scanner are identified and circled. The 

original image 𝐼(𝑥, 𝑦) is replaced with the phase mean value surrounding the small feature, and MSGD and BDR are 

performed again. (c) This process is iterated until small components are removed.     

4.4.7 CT Image Analysis Algorithm: MSGD Algorithm 

To process the CT image slices, the algorithm used for CT image processing (i.e. the 

MSGD algorithm) in this study is shown in Figure 4.6. The steps of the algorithm and the sections 

in which each step is discussed are: 1) CT image slicing and histogram generation (Sec. 4.4.1), 2) 

MSGD fitting of the CT histogram (Sec. 4.4.4), 3) image thresholding using BDR (Sec. 4.4.5), and 

4) small feature filtering (Sec. 4.4.6). 
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Figure 4.6. Algorithm for processing the CT data to identify phases.  

4.5 Results from the MSGD Segmentation of the PBF CoCr Cored Cylinder 

In this section, the MSGD algorithm of Sec. 4.4 (Figure 4.6) will be validated using 

experimental porosity measurements from Slotwinski et al. [39] of a CoCr PBF part. Sec. 4.5.1 

describes the CT histogram, MSGD fitting initialization, thresholding, and small feature filtering 

results. Sec. 4.5.2 presents the porosity results of the PBF CoCr cylinder from the MSGD 
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algorithm.  Sec. 4.5.3 compares the porosity estimates for the CoCr part using the MSGD algorithm 

and the experimental Archimedes method. 

4.5.1 Optimization Setup of MSGD Algorithm for PBF CoCr Cored Cylinder 

The algorithm was applied to analyze the PBF CoCr cored cylinder CT data of Figure 

4.1(a), provided by the author of [42].  The experimental measured histogram ℎ𝑚(𝐼) is shown in 

Figure 4.7(a). The Pore (𝑃) Gaussian mode 𝜓𝑃(𝐼|𝝎𝑷) and CoCr (𝐶) Gaussian mode 𝜓𝐶(𝐼|𝝎𝑪) 

were the two phases (i.e. 𝑛 = 2) presented. To fit ℎ𝑚(𝐼), an estimated histogram, ℎ𝑒(𝐼|𝝎̂) was fit 

according to Eq. (4.10) where 𝝎̂ = [𝝎̂𝑷, 𝝎̂𝑪] were the optimized vector parameters for the pore 

and CoCr phases. To guide the optimization of Eq. (4.10), 𝐶𝑃
𝑙  and 𝐶𝑃

𝑢 were the region of intensity 

values that the pore phase mean, 𝜇𝑃, was expected to be located. Similarly, 𝐶𝐶
𝑙 , and 𝐶𝐶

𝑢 were the 

region of intensity values that the CoCr phase mean, 𝜇𝐶, was expected to be located. These bounds 

were determined based on examination of the phase intensity values 𝐼(𝑥, 𝑦) from the CT image in 

Figure 4.1(b) and ℎ𝑚(𝐼) in Figure 4.7(a). Figure 4.7(a) shows the upper and lower bound intensity 

regions, 𝐶𝑃
𝑙 , 𝐶𝑃

𝑢, 𝐶𝐶
𝑙 , and 𝐶𝐶

𝑢, that were provided for the constraints of Eq. (4.11).  Table 4.1 shows 

the initial conditions for all 𝝎 parameters.  

The estimated histogram, ℎ𝑒(𝐼|𝝎̂), and two Gaussian modes 𝜓𝑃(𝐼|𝝎𝑷) and 𝜓𝐶(𝐼|𝝎𝑪) are 

shown in Figure 4.7(b). BDR was performed on two Gaussian modes to generate two intensity 

regions, ℜ𝑃 and ℜ𝐶, for the pore and CoCr phases, respectively, to generate thresholded image 

𝑇(𝑥, 𝑦) shown in Figure 4.8(a). Comparing a region of the thresholded image in Figure 4.8(b) to 

the same region in the original CT image (Figure 4.8(c)), boundaries between the pore and the 

CoCr are clearly delineated and are appropriately identified.   
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 (b) 
Figure 4.7. From the CoCr PBF cored cylinder CT slice image shown in Figure 4.1, (a) the measured normalized 

histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale and estimated histogram, ℎ𝑒(𝐼|𝝎̂), are generated. (b) The 

CoCr PBF cored cylinder is composed of two phases – pore and CoCr– with two Gaussian modes, 𝜓𝑃 and 𝜓𝐶 . The 

Gaussian modes sum to the estimated histogram, ℎ𝑒(𝐼|𝝎̂). Using BDR, ℎ𝑒(𝐼|𝝎̂) is thresholded into two intensity 

regions, ℜ𝑃 and ℜ𝐶 , for pore and CoCr phases, respectively. 

  

(a) 
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Table 4.1. MSGD algorithm initial conditions and optimized parameters for the PBF CoCr CT image slice shown in 

Figure 4.1(a). The fitted parameters, 𝝎̂, generate the estimated histogram, ℎ𝑒(𝐼) of Figure 4.7(b). 

 
Phase 

𝜇𝑖(𝐼), Phase 

mean 

𝜎𝑖(𝐼), Phase Standard 

Deviation 

𝑃𝑖, Phase Volume 

Percentage (%) 

𝛼𝑖, Phase 

Skew 

In
it

ia
l 

C
o
n
d
it

io
n
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎) 27000 700 30.0 0.0 

CoCr  55000 700 70.0 0.0 

O
p
ti

m
iz

ed
 

P
ar

am
et

er
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎̂) 20700 16936 16.0 4.9 

CoCr, 𝜓𝐶(𝐼|𝝎̂) 53020 4502 84.0 -3.0 

  

 
 (a)  (b) (c) 
Figure 4.8. (a) Thresholded image, 𝑇(𝑥, 𝑦), corresponding to the CoCr PBF cored cylinder CT slice image shown in 

Figure 4.1 and the phase threshold regions, ℜ𝑃 and ℜ𝐶 , for pore and CoCr phases, respectively, shown in Figure 

4.7(b). In the thresholded images, the black color corresponds to pore, and the white color corresponds to CoCr. 

Comparing the thresholded region of (b) to the original CT image (c), the pore and CoCr regions are clearly delineated 

and are appropriately identified.   

4.5.2 Results from MSGD Algorithm for PBF CoCr Cored Cylinder 

Table 4.1 shows results from the optimization of the single CT slice image shown in Figure 

4.1(a). The mean grayscale intensity values of the pore, 𝜇𝑃, and CoCr, 𝜇𝐶, were 20702 and 53021, 

respectively, which matches the intensity values shown in Figure 4.1(b) for both phases. The 

standard deviations for the pore, 𝜎𝑃, and CoCr, 𝜎𝐶, were 16936 and 4502, respectively, indicating 

that the pore intensity values were more widely spread about their mean intensity value than were 



 92 

the CoCr phase values. However, the skew parameters for the pore, 𝛼𝑃, and CoCr, 𝛼𝐶, demonstrate 

the CoCr values were skewed negatively from their mean value. Physically, the skew of the CoCr 

may provide an indication of the amount of loose, un-sintered or poorly sintered powder in the 

metal matrix. Finally, the volume percentage of pore, 𝑃𝑃, and CoCr, 𝑃𝐶, are 16.0% and 84.0%, 

respectively. 𝑃𝑃 is the porosity of the cored cylinder.  

Based on MSGD algorithm of Sec. 4.4, all 758 CT image slices of the CoCr PBF specimen 

were analyzed. Figure 4.9 shows the localized pore and CoCr volume percentage, 𝑃𝑃 and 𝑃𝐶, for 

each CT slice along the length of the CoCr cylinder. From Figure 4.9, the maximum and minimum 

porosity measured through the axial length of the CoCr cored cylinder was 22.1% and 10.6%, 

respectively. The average porosity across the axial length of the CT scanned cored cylinder was 

measured to be 14.5% with a standard deviation of 1.9%.   

 
Figure 4.9. Volume percentage of pore and CoCr metal across the length of the PBF CoCr cored cylinder.  
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4.5.3 Comparison of CoCr Part Porosity using Archimedes Method and MSGD Algorithm 

As summarized in Table 4.2, the MSGD algorithm estimated a porosity of 14.5% +/- 1.9% 

for the CoCr PBF part. This estimate matches closely with a porosity of 13.5% experimentally 

measured using Archimedes method in [39]. Differences in the estimates may be due to several 

reasons. One difference is that Archimedes method assumes that the part being measured has no 

surface pores that allow for water infiltration during measurement. However, as shown on the 

edges of the PBF CoCr cylinder in Figure 4.1,  pores exist on the surface of the cylinder. These 

surface pores will not be accounted for when using Archimedes method, which will result in a 

lower experimental porosity measurement. Porosity measurements using CT do not suffer from 

this drawback, and thus, CT is expected to predict a higher average porosity, which is true for the 

porosity measured by the MSGD algorithm. Another potential reason is that only a fraction of the 

entire CoCr cored cylinder was scanned (2.5 mm scan length vs. 10 mm height of cored cylinder), 

whereas Archimedes method is a measurement of the total porosity of the part. The other difference 

may be the contrast between phases due to the lack of resolution or other artifacts present in CT 

image.   

Table 4.2. Comparison of porosity measurements for validation of the MSGD method 

 

Experimental CT Analyses 

Archimedes Method 
Porosity [39] 

CT Analysis 
[39] 

CT Analysis 
[42] 

MSGD Average 
Porosity 

MSGD Standard 
Deviation of Porosity 

Sample 5 
(PBF CoCr) 

13.5% 12.0% 10.9% 14.5% 1.9% 

4.5.4 Comparison of MSGD with MGD 

MSGD and MGD method results were compared to determine the effect of skew, 𝛼, in 

fitting Gaussian distributions to the CT data. Figure 4.10 shows the measured histogram, ℎ𝑚(𝐼), 

of Figure 4.1(a) fitted with an MGD estimated histogram, ℎ𝑒(𝐼|𝝎̂). The estimated histogram was 
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fitted using the same initial conditions of Table 4.1 but without a skew term, 𝛼. Figure 4.10 shows 

an average MGD method least-squares error between ℎ𝑚(𝐼) and ℎ𝑒(𝐼|𝝎̂) of 0.164. Error was 

determined as the average of the Euclidean norm of Eq. (9). Compared with the MSGD method 

average least-squares error of 0.027, the MGD error is 500% higher.  

Table 4.3 shows the optimized parameters, 𝝎̂, of the MGD method across the length of the 

CoCr cylinder. The MGD method predicts a porosity of the cylinder of 17.2%, an overprediction 

of the experimental Archimedes Method Porosity by 4%. The comparison of MSGD and MGD 

method underscore the importance of the skew term in fitting the estimated and measured CT data 

histograms.  

Table 4.3. MGD optimized parameters of pore and CoCr across the length of cylinder.  

 
Phase 

𝜇(𝐼), Phase 

mean 

𝜎(𝐼), Phase Standard 

Deviation 

𝑃, Phase Volume 

Percentage (%) 

O
p
ti

m
iz

ed
 

P
ar

am
et

er
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎̂) 30000 10550 17.2 

CoCr, 𝜓𝐶(𝐼|𝝎̂) 50300 2700 82.8 
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Figure 4.10. From the CoCr PBF cored cylinder CT slice image shown in Figure 4.1, (a) the measured normalized 

histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale and estimated histogram, ℎ𝑒(𝐼|𝝎̂), are generated using MGD. 

(b) The CoCr PBF cored cylinder is composed of two phases – pore and CoCr– with two Gaussian modes, 𝜓𝑃 and 

𝜓𝐶 . These Gaussian modes sum to the estimated histogram, ℎ𝑒(𝐼|𝝎̂). 

4.6 Conclusions 

This study presented a mixed skew Gaussian Distribution (MSGD) clustering method for 

analyzing and thresholding computed tomography images of AM parts. The MSGD algorithm was 

derived from Mixed Gaussian Distribution (MGD) clustering, in which the imaged internal phases 

were modeled as a mixture of Gaussian distributions. In MSGD, the parameters of a skewed 
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Gaussian distributions (i.e. probability, mean, standard deviation, and skew) were inferred from 

the measured grayscale histogram using the least-squares fitting. By fitting with the MSGD 

technique, the randomness of the CT process was modeled and used to guide the thresholding of 

the CT data. Furthermore, phase volume percentages and potential variations in the density of the 

phases were modeled and quantified.  

The goal of the MGD and MSGD algorithm is to minimize the number of representative 

components that are used to fit the data to obtain the most physical meaning of the CT data. In 

theory, the CT data can be fit with an infinite set of delta functions at each intensity value. 

However, this infinite set will not provide meaningful information about the global distribution of 

component intensities throughout the part. Similar to data curve fitting, overfitting limits the 

effectiveness of the fitting process and reduces the physical meaning of the fitted curve.  

The MSGD algorithm was validated using previously reported CT and experimental 

porosity measurements of an AM CoCr PBF part. Compared with the experimental Archimedes 

method results of the CoCr part, the MSGD method predicted a 1% higher porosity. The difference 

in porosity prediction may be accounted for by the limitations in the Archimedes method for 

surface pores, such as the CoCr part analyzed in [4].  

Additionally, because of the global nature of the MSGD fitting process, various attributes 

of the CT data may be quantified. Firstly, the MSGD algorithm aims to model the random 

distribution of the voxel intensities with a skewed Gaussian distribution using the measured CT 

data. Therefore, the randomness of data may be used to estimate the phase percentages, mean 

density, and density distribution. Secondly, within the phase itself, the phase density may be 

skewed indicating a variation in the particle density of that phase. With respect to the CoCr PBF 
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specimen, this technique may provide a method for understanding the sintering quality and for 

determining the degree of un-sintered particles.  

Limitations of the MSGD method (and CT analysis in general) lies in the difficulty of 

analyzing CT data with a unimodal histogram of grayscale intensities. The CT data with a 

unimodal histogram indicates that the phase densities have little grayscale contrast to the point that 

the phase distributions completely overlap. When this occurs, the process of analyzing and 

segmenting these data sets becomes difficult and leads to multiple solutions of the least-squares 

fitting problem. To improve the quality of these analyses, future work in software (i.e. improved 

algorithms for phase separation) and hardware (i.e. improved methodologies to increase the 

contrast between similar density phases) is required.
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Chapter 5  
Computed Tomography Evaluation of the Porosity and Fiber Orientation in 

a Short Carbon Fiber Material Extrusion Filament and Part 

 

5.1 Abstract 

The computed tomography (CT) evaluation of the material extrusion (MEX) of a short 

carbon fiber (SCF) Nylon-12 filament and part is presented. CT, a non-destructive testing method, 

was used to quantify the internal structure of specimens into three phases: pore, Nylon, and SCF. 

The intensity histograms from the CT data were fit using a mixed skew Gaussian distribution 

(MSGD) algorithm to segment the CT image into phases. Thresholded images were used to isolate 

pores in the CT image to determine pore volume and distribution within both the MEX SCF 

filament and part. The phase volume percentages of the MEX SCF filament were found to be 1.6% 

pore, 62.2% Nylon, and 36.2% SCF. The volume of most pores within the filament were found to 

be under 100 μm3. The highest frequency of pores was located near the outside of the filament, but 

the large pores were located near the center of the filament. This result indicates that the 

thermoplastic filament extrusion process likely entraps large bubbles in the center of filament 

while bubbles at the periphery of the filament can escape during post-extrusion cooling. MSGD 

analysis of sections of the MEX SCF part estimated phase volume percentages to be 9.8% pore, 

59.6% Nylon, and 30.9% SCF. This analysis showed a more than 8% increase in porosity from the 

MEX SCF filament to the part. For the MEX SCF part, the average pore area was found to be 

highest (>250 μm2) at the bottom of the layer and smallest (<100 μm2) at the top of the layer, which 

could be explained by a large temperature gradient between and contractile thermal stresses inside 

the layer that cause the thermoplastic to shrink into a smaller volume allowing the voids to grow. 
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5.2 Introduction 

Material extrusion (MEX) is an additive manufacturing (AM) process in which a 

thermoplastic filament is extruded through a heated nozzle, which deposits material to build a part 

layer-by-layer [70]. Increasingly, MEX is being used to manufacture high-performance 

components for aerospace, biomedical, and other applications [3–6]. For these high-performance 

parts, short carbon fibers (SCF) are introduced as an additive in the MEX filament to increase the 

part strength and stiffness [38,71,72].  The quality of SCF MEX filaments, including the porosity 

and SCF distribution and spatial density, used to generate SCF MEX parts is critically important 

to their quality.  

Composite MEX parts with SCF comprise a distribution of short fibers and surrounding 

thermoplastic matrix. SCFs are used to increase the strength and stiffness of MEX materials [73], 

but a high volume percentage of SCF may adversely increase the internal porosity [38]. Ning et 

al. [38] analyzed the tensile and flexural properties of SCF specimens fabricated by MEX and 

found that specimen strength and stiffness increased with SCF weight percentage until it decreased 

significantly after 15 wt% of SCF due to the significantly increased and uncontrolled porosity. To 

maximize SCF MEX part strength and stiffness, a balance exists between SCF density and 

porosity. Quantifying this balance requires inspection techniques that can visualize and quantify 

the internal structures. In this study, computed tomography (CT) is utilized for the inspection of 

the internal structure of a MEX SCF filament and part.  

CT has been utilized increasingly to visualize fiber-filled molded polymer composites 

[39,41–46,74,75]. Kastner [45] applied CT to visualize the porosity in carbon fiber reinforced 

polymers.  The CT data was analyzed using Otsu’s thresholding method [52] to quantify the 

volume percentage and distribution of pores in the part.  Garcea et al. reviewed the CT inspection 
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of polymer composites and the ability of CT to visualize the internal structure of both SCF and 

pore distribution, orientation, and morphology [44]. Nikishkov et al. [75] studied the visualization 

and segmentation of manufacturing defects based on CT data and proposed a new method for 

quantifying the porosity and void dimensions. For visualization of m-scale features, Maire et al. 

[46] suggested a resolution-to-voxel ratio of 2 to 3 for CT data analysis. Therefore, to resolve the 

8 m diameter SCF, a voxel size below 2.5 m is required. Due to the limited detector size in 

industrial CT and the short focus distance required to achieve a voxel size of 2.5 m, small sample 

sizes must be used to visualize SCFs [44].  

In Sec. 5.3, the MEX SCF filaments and specimens analyzed using CT are described, and 

the CT setup, process, and thresholding techniques are discussed.  In Secs. 5.4 and 5.5, the 

composition of the MEX SCF filament and part are analyzed, respectively.  Conclusions and 

discussions are presented in Sec. 5.6.    

5.3 Experimental Setup 

The MEX SCF filament and specimen, the CT study, and the CT image processing 

techniques are described in this section. 

5.3.1 MEX Filament and Specimen 

A SCF-embedded polyamide 10/12 (Nylon) filament sample, as shown in Figure 5.1(a), 

was taken from a larger filament roll and analyzed. The filament (provided by Stratasys, Eden 

Prairie, MN) had a nominal diameter of 1.75 mm, length of 3 mm, and approximately 35 wt% of 

SCF. The embedded SCFs had an average diameter of 8 μm and length of 100 μm. The fabrication 

method for the filament was the conventional melt-compounding extrusion.  SEM micrograph of 

the end surface of the filament with Nylon and extruding SCF is shown in Figure 5.1(b).  Using 
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CT analysis, the volume percentage and distribution of pore, Nylon, and SCF within this filament 

will be quantified. 

 
 (c)  
Figure 5.1. (a) A MEX Nylon SCF filament specimen that was examined with CT. (b) The end of the filament specimen 

was examined with SEM to visualize the protruding SCFs. (c) Perspective, top, and side views of MEX Nylon SCF 

specimen that was examined with CT. (d) The surface of the printed part was examined with SEM to visualize the 

embedded SCFs.  

A MEX wave infill part, as shown in Figure 5.1(c), was fabricated on a MEX machine 

(Model 400mc by Stratasys) with the Nylon SCF filament.  The MEX process parameters were: 

0.5 mm layer height, 0.5 mm diameter nozzle orifice diameter, 295°C nozzle temperature, and 

110°C oven temperature enclosing the whole part.  A cube specimen with 3 mm edge length was 

(a) 

(b) 

(d) 
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excised from the part for CT scanning.  As shown in the SEM micrograph of the specimen surface 

in Figure 5.1(d), the part is composed of a Nylon-12 matrix with an irregular porous surface and 

with SCFs embedded inside the specimen. Using CT analysis, the volume percentage and 

distribution of pore, Nylon, and SCF within the MEX SCF part will be quantified. 

5.3.2 CT Setup 

In CT, an X-ray source focuses an X-ray beam within a rotating specimen. By measuring 

the X-ray attenuation with a detector plate while rotating the specimen, the regional density at 

unique three-dimensional locations, or voxels, of the part can be reconstructed. Each of the voxels, 

or 3D pixels, is assigned a grayscale unit, which represents the relative density of the voxel [44]. 

From the CT reconstruction, a 3D volume is generated [12], which can be used to create sets of 

2D orthogonal images, e.g., Figure 5.2(a) and Figure 5.3. Each CT image is composed of voxels 

with grayscale intensity values, 𝐼, at a position (𝑥, 𝑦) within the image, which are used for phase 

segmentation. As shown in Figure 5.4(a), the intensity 𝐼(𝑥, 𝑦) can be mapped to a measured 

histogram, ℎ𝑚(𝐼), of the CT data.  

A CT machine (Model Phoenix Nanotom® S by GE Measurement and Control, Billerica, 

MA) [13], was used in this study. Each specimen was scanned with a 70 kV tube voltage at 400 

μA, and a 1000 ms exposure time. To achieve such high resolution, the rotating stage and specimen 

were positioned 5 mm from the X-ray tube. Three measurements were recorded and averaged for 

each position in the volume. The volume generated after CT was then converted to individual slice 

files. 

5.3.3 CT Image Slicing and Histogram 

The CT scan of the MEX SCF filament and part were taken at a 3D voxel resolution of 1.1 

μm and 1.5 μm, respectively. Each voxel had a corresponding intensity represented by a 16-bit 
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grayscale intensity value between 0 to 65535. The filament specimen was reconstructed into 493 

image slices (length of 0.54 mm and diameter of 1.78 mm), corresponding to a file size of 2.82 

GB. As shown in Figure 5.2(a), the filament images were cropped to a diameter of 1.78 mm.  The 

cropped image, as shown in Figure 5.2(b), was used for image analysis to identify and segment 

three phases: pore, Nylon, and SCF (Figure 5.2(c)).   

 
 (a)  (b)  (c) 
Figure 5.2. (a) CT image slices of the MEX SCF filament were circle cropped to remove the rough filament edges and 

non-filament volume. Analyses were performed on the (b) cropped image, which contains (c) three phases: pore, 

Nylon, and SCF. 

The MEX SCF specimen was reconstructed into three orthogonal views (shown in Figure 

5.3) – XY (top), XZ (front), and ZY (side) – with 1900 slices (2.8 x 2.8 x 4.5 mm), corresponding 

to a file size of 120 GB. Because of various artifacts in the CT data, the entire MEX SCF part was 

not analyzed. Six regions of interest (ROI), marked as A, B, and C in XY view, D in XZ view, and 

E and F in ZY view in Figure 5.3, were analyzed to identify and segment the pore, Nylon, and SCF 

phases.  
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Figure 5.3. Top, front, and side cross-sectional views and isometric view of CT of MEX SCF part. Blue, orange, and 

green dotted lines and colors represent cross-sectional views of MEX layers and straight and curved sections. Red 

dotted boxes are ROIs that will be analyzed using MSGD. The XY view shows the intersection of a straight and curved 

raster with three ROIs: A – the straight raster, B – the curved raster, and C – the intersection zone. The XZ view shows 

the MEX layer stacking and the porosity distribution across the layer interface using ROI D with the porosity 

distribution determined in 𝑤 x Δ𝑧 areas along the Z-direction. The ZY view shows the side cross-section of the straight 

(ROI E) and curved (ROI F) regions.  
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 (b) 
Figure 5.4. From the CT slice image of the MEX SCF part shown in Figure 5.3 (ROI A): (a) the measured normalized 

histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale with the estimated histogram, ℎ𝑒(𝐼), and (b) the MEX SCF 

part composed of three phases – pore, Nylon, and SCF –  with three distinct modes. The three phase modes sum to the 

estimated histogram, ℎ𝑒(𝐼). 

From each CT image slice, a normalized histogram of voxel intensity frequencies in 

grayscale was generated by normalizing the frequency of voxel intensities to the total number of 

voxels. An example of the ROI A in the XY view of the MEX SCF specimen is illustrated in 

Figure 5.4, which shows the measured histogram ℎ𝑚(𝐼) of the normalized voxel frequency vs. 

(a) 
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voxel intensities 𝐼 in grayscale in Figure 5.4(a) and three distinct modes of pore, Nylon, and SCF 

phases and their sum to the estimated histogram ℎ𝑒(𝐼) in Figure 5.4(b).   

5.3.4 MSGD Algorithm for Image Processing and Segmentation 

Using the mixed skew Gaussian Distribution (MSGD) algorithm presented in [76], the 

measured histogram, ℎ𝑚(𝐼), (Figure 5.4(a)) of the MEX SCF specimen can be decomposed into 

𝑛 = 3 modes: 𝜓1 = 𝜓𝑃 , 𝜓2 = 𝜓𝑁 , and 𝜓3 = 𝜓𝐹 , where 𝑛 = 1 is the pore (𝑃) phase, 𝑛 = 2 is the 

Nylon (𝑁) phase, and 𝑛 = 3 is the SCF (𝐹) phase, respectively (Figure 5.4(b)).  These three phases 

sum to an estimated histogram, ℎ𝑒(𝐼), which is fit to ℎ𝑚(𝐼).  

In the MSGD method [76], 𝑛 skewed Gaussian distributions, 𝜓𝑖 (𝑖 = 1,… , 𝑛), are 

generated, that sum to ℎ𝑒(𝐼) and with parameters (mean, standard deviation, and probability) 

inferred from ℎ𝑚(𝐼) of the CT data. The PDF of the 𝑖𝑡ℎ skewed Gaussian phase mode 𝜓𝑖 is: 

𝜓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖, 𝑃𝑖) = 𝑃𝑖  𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖) = 𝑃𝑖

(

 
2

√2𝜋𝜎𝑖
2

𝑒
−(𝐼−𝜇𝑖)

2

2𝜎𝑖
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∫
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√2𝜋
𝑒−
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2 𝑑𝑡
𝛼𝑖(
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𝜎𝑖

)

−∞

)

  (5.1) 

∫ 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖)
∞

−∞

 𝑑𝐼 = 1 (5.2) 

∑𝑃𝑖

𝑛

𝑖=1

= 1 (5.3) 

where 𝑓𝑖(𝐼 | 𝜇𝑖, 𝜎𝑖, 𝛼𝑖) is the standard form of a skewed Gaussian distribution, 𝜇𝑖 is the mean of the 

𝑖𝑡ℎ phase, 𝜎𝑖 is the standard deviation of the 𝑖𝑡ℎ phase, 𝛼𝑖 is the skewness parameter of the 𝑖𝑡ℎ 

phase, and 𝑃𝑖 is the probability of the 𝑖𝑡ℎ phase.  The phase modes, 𝜓𝑖, are arranged according to 

the magnitude of their mean value, i.e., 𝜇1 < ⋯ < 𝜇𝑖 < ⋯ < 𝜇𝑛. With a vector parameter, 𝝎𝒊 =

[𝜇𝑖, 𝜎𝑖, 𝛼𝑖, 𝑃𝑖]
𝑇, least-squared fitting is performed to minimize the error between ℎ𝑚(𝐼) and 

ℎ𝑒(𝐼|𝝎):  
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𝜖(𝐼|𝝎) = |ℎ𝑚(𝐼) − ℎ𝑒(𝐼|𝝎)| (5.4) 

where |⦁| is the Euclidean norm (i.e. √𝜖1
2 + ⋯+ 𝜖𝑝

2). The vector parameters, 𝝎̂, that minimize the 

least-squares fitting error, 𝜖(𝐼|𝝎), (i.e. the argmin function) are:  

𝝎̂ = argmin
𝛚

(𝜖(𝐼|𝝎)) (5.5) 

which is subject to the constraints:  

  𝜂𝑖  : 𝐶𝑖
𝑙 ≤ 𝜇𝑖 ≤ 𝐶𝑖

𝑢 (5.6) 

   𝛾𝑖: ∑𝑃𝑖

𝑛

𝑖=1

= 1 (5.7) 

where 𝜂𝑖 is the lower and upper bound constraint on the mean 𝜇𝑖; 𝐶𝑖
𝑙 and 𝐶𝑖

𝑢 are the lower and 

upper bound, respectively, that encompass the 𝑖𝑡ℎ phase peak intensity value on the histogram; 𝛾𝑖 

is the equality constraint on the sum of the phase probabilities, 𝑃𝑖.  To guide the optimization of 

Eq. (5.5), the lower and upper intensity bounds (𝐶𝑖
𝑙 and 𝐶𝑖

𝑢) indicate a region of intensity values 

where the phase mean 𝜇𝑖 is expected to be located. These bounds are provided based on 

examination of the 𝑖𝑡ℎ phase intensity values 𝐼(𝑥, 𝑦) from the CT data.  

For analysis and visualization of the CT image, the CT data is thresholded, which is the 

process of determining the intensity regions on the measured histogram that are associated with a 

phase [69]. The CT data with grayscale intensity values 𝐼(𝑥, 𝑦) is simplified to a thresholded 

image, 𝑇(𝑥, 𝑦):  

𝑇(𝑥, 𝑦) = 𝐵𝑖 ∀ 𝐼(𝑥, 𝑦) ∈  ℜ𝑖 (5.8) 

where ℜ𝑖, is the grayscale intensity region for 𝜓𝑖:  

ℜ𝑖 ∈ (𝐿𝑖−1, 𝐿𝑖  ] (5.9) 
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and 𝐿𝑖 is the threshold limit found using a Bayesian Decision Rule (BDR):  

𝐿𝑖 =
𝜇𝑖−1 𝜎𝑖

2 − 𝜇𝑖  𝜎𝑖−1
2

𝜎𝑖
2 − 𝜎𝑖−1

2

+
𝜎𝑖−1 𝜎𝑖

𝜎𝑖
2 − 𝜎𝑖−1

2 ((𝜎𝑖
2 − 𝜎𝑖−1

2 ) log (
𝜎𝑖

2

𝜎𝑖−1
2 ) + 2(𝜎𝑖−1

2 − 𝜎𝑖
2) log (

𝑃𝑖

𝑃𝑖−1
)

+ (𝜇𝑖−1 − 𝜇𝑖)
2)

1
2

 

 (5.10) 

For example, within a CT data histogram (Figure 4.4(a)) corresponding to the MEX SCF part 

(Figure 4.4(b)), BDR yields three regions, ℜ1 = ℜ𝑃, ℜ2 = ℜ𝑁, and  ℜ3 = ℜ𝐹, for the pore, 

Nylon, and SCF phases, respectively: 

ℜ𝑃 ∈ [min(𝐼) , 𝐿𝑃] (5.11) 

ℜ𝑁 ∈ (𝐿𝑃, 𝐿𝑁] (5.12) 

ℜ𝐹 ∈ (𝐿𝑁 ,max(𝐼)] (5.13) 

where 𝐿𝑃 is the intensity limit between 𝜓𝑃 and 𝜓𝑁 and 𝐿𝑁 is the intensity limit between 𝜓𝑁 and 

𝜓𝐹. The thresholded image, 𝑇(𝑥, 𝑦), is then:  

𝑇(𝑥, 𝑦) = {

     𝐵𝑃 ∀ 𝐼(𝑥, 𝑦) ∈ ℜ𝑃     

        𝐵𝑁 ∀ 𝐼(𝑥, 𝑦) ∈ ℜ𝑁       

𝐵𝐹 ∀ 𝐼(𝑥, 𝑦) ∈ ℜ𝐹

 (5.14) 

where 𝐵𝑃, 𝐵𝑁, and 𝐵𝐹 are unique intensity values assigned to the pore, Nylon, and SCF 

phase regions, respectively, as shown in Figure 4.4(c). The resulting thresholded image, 𝑇(𝑥, 𝑦), 

is shown in Figure 4.4(d). 



 109 

5.3.5 Pore Volume, Distribution, and Spatial Density in the MEX SCF Filament 

The volume, distribution, and spatial density of pores within MEX SCF filaments and parts 

is important to the strength and durability of MEX parts. By quantifying the porosity within these 

specimens, process parameters for fabrication of filaments and MEX of parts may be optimized to 

reduce porosity. 

 
 (c) (d) 
Figure 5.5. (a) The MSGD algorithm fits an estimated histogram ℎ𝑒(𝐼) with three Gaussian distributions (𝜓𝑃 , 𝜓𝑁, and 

𝜓𝐹) representing the pore, Nylon, and SCF, respectively, to the (b) measured CT data.  BDR is used to generate regions 

ℜ𝑃, ℜ𝑁, and ℜ𝐹  corresponding to the intensity values associated with the pore, Nylon, and SCF phases, respectively. 

(c) Unique intensity values, 𝐵𝑃 , 𝐵𝑁, and 𝐵𝐹 , are assigned to the intensity regions ℜ𝑃, ℜ𝑁, and ℜ𝐹 , respectively. With 

this process, the CT data with intensities 𝐼(𝑥, 𝑦) is converted into the (d) thresholded image 𝑇(𝑥, 𝑦). 

To quantify the distribution, spatial density, and size of pores, 3D connected pores 𝑃𝐶(𝑥, 𝑦) 

at position (𝑥, 𝑦) in the CT image are identified from the thresholded and filtered CT data 𝑇(𝑥, 𝑦). 

From the full set of thresholded MEX SCF filament CT images, connected 3D pores, 𝑃𝐶(𝑥, 𝑦), 

(a) (b) 
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with a common edge or corner were defined as connected pores. To find these connected pores, 

Matlab equation bwconncomps was used. The volume, 𝑉𝑃, of these connected pores is:  

𝑉𝑃 = 𝑉𝑉 𝑁𝑃   (5.15) 

where 𝑁𝑃 is the total number of voxels per pore and 𝑉𝑉 is the voxel resolution. 

During filament fabrication, extrusion of the plastic causes the outside of the filament to 

cool before the inside inducing voids radially through the filament. To quantify this effect, the 

radial distribution of the connected pores, 𝑃𝐶(𝑥, 𝑦), within the MEX SCF filament was analyzed. 

The total number and average volume of connected pores within a differential radial ring, with 

length 𝐿, width Δ𝑟, and radius 𝑟 (as shown in Figure 5.6) of the cylindrical filament were summed 

and normalized by the total volume 2𝜋𝑟Δr𝐿 of the specimen.  In this study, Δ𝑟 = 0.05 mm and 𝐿 

= 0.5 mm.  

 
Figure 5.6. Pores (white) shown within the thresholded image for porosity distribution analysis.  Pore volume and 

density were analyzed along differential rings with radius 𝑟, width Δ𝑟, and filament length 𝐿. 
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5.3.6 Pore Volume, Distribution, and Spatial Density in the MEX SCF Specimen 

An isometric view of the reconstructed CT of the MEX SCF part along with three 

orthogonal views (XY top, XZ front, and ZY side) are shown in Figure 5.3. In the top XY cross-

sectional view, a curved and straight segment of the MEX extrudate are shown intersecting. The 

front (XZ) and side (ZY) cross-sectional views show the layer stacking in the MEX process, as 

indicated by the radii at the edges of the part.  

Figure 5.3 shows each of the ROIs chosen for analysis and thresholding. The XY (top view) 

plane in Figure 5.3 has three ROIs identified with the direction of the toolhead travel indicated by 

an arrow: A – the straight raster, B – the curved raster, and C – the intersection zone. ROI C is the 

intersection of these straight and curved MEX rasters. In the front XZ view, ROI D is the cross-

section of the curved MEX extrudate, as can be seen from the top XY view. The toolhead travel 

direction for this cross-section is normal to the image. Finally, the side ZY view shows the cross-

section of the intersection of the straight, ROI E, and curved, ROI F, MEX extrudate. In ROI E, 

toolhead travel is normal to the image, and in ROI F, toolhead travel is transverse to the image.  

The porosity distribution was analyzed in and at the intersection between MEX layers.  

Because only single CT slices were analyzed for the MEX SCF part, only two-dimensional area 

analyses were performed. Based on the single thresholded CT data, Matlab equation bwconncomps 

was used to find the connected pores and to calculate their area.  The pore frequency and area were 

measured for each ROI. Within the ROI D, the porosity was measured within a differential area of 

width 𝑤 and thickness Δ𝑧 along the z-direction.  In this study, 𝑤 = 0.6 mm and Δ𝑧 = 38 μm.  The 

MEX layer thickness (distance between two adjacent yellow lines) was 0.46 mm. 
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5.4 Results of MSGD Segmentation of the MEX SCF Filament CT Data 

In this section, results of the MSGD algorithm [76] and porosity analysis of the CT of the 

MEX SCF filament are presented. 

5.4.1 Optimization Setup of MSGD Algorithm for the MEX SCF Filament 

A CT image with intensities, 𝐼(𝑥, 𝑦), of the MEX SCF filament with pore, Nylon, and SCF 

phases is shown in Figure 5.7(a). The associated measured histogram, ℎ𝑚(𝐼), is shown in Figure 

5.8(a). Pore (𝑃) with Gaussian mode 𝜓𝑃(𝐼|𝝎𝑷), Nylon (𝑁) with Gaussian mode 𝜓𝑁(𝐼|𝝎𝑵), and 

SCF (𝐹) with Gaussian mode 𝜓𝐹(𝐼|𝝎𝑭) were the three phases (i.e. 𝑛 = 3) present in the MEX 

SCF filament. To fit ℎ𝑚(𝐼), an estimated histogram, ℎ𝑒(𝐼|𝝎̂) was fit according to Eq. (5.5) where 

𝝎̂ = [𝝎̂𝑷, 𝝎̂𝑵, 𝝎̂𝑭] were the optimized vector parameters for the pore, Nylon, and SCF phases. To 

guide the optimization of Eq. (5.5), three intensity regions, 𝐶𝑃
𝑙  and 𝐶𝑃

𝑢 for the pore phase mean 𝜇𝑃, 

𝐶𝑁
𝑙  and 𝐶𝑁

𝑢 for the Nylon phase mean 𝜇𝑁 , and, 𝐶𝐹
𝑙  and 𝐶𝐹

𝑢 for the SCF phase mean 𝜇𝐹, were defined 

based on the examination of the phase intensity values 𝐼(𝑥, 𝑦) from Figure 5.7(b) and ℎ𝑚(𝐼) in 

Figure 5.8(a).  Figure 5.8(a) shows upper and lower bound intensity regions, 𝐶𝑃
𝑙 , 𝐶𝑃

𝑢, 𝐶𝑁
𝑙 , 𝐶𝑁

𝑢, 𝐶𝐹
𝑙  

and 𝐶𝐹
𝑢, that were provided for Eq. (5.6) constraints. Table 5.1 shows the initial conditions for all 

𝝎 parameters.  

The estimated histogram, ℎ𝑒(𝐼|𝝎̂), and the Gaussian modes 𝜓𝑃(𝐼|𝝎𝑷), 𝜓𝑁(𝐼|𝝎𝑵), and 

𝜓𝐹(𝐼|𝝎𝑭) for the pore, Nylon, and SCF phases, respectively, are shown in Figure 5.8(b) 

corresponding to the CT data of Figure 5.7(a). BDR was performed on the Gaussian modes to 

define three intensity regions, ℜ𝑃, ℜ𝑁, and ℜ𝐹, for the pore, Nylon, and SCF phases, respectively. 

From these phase regions, the thresholded image, 𝑇(𝑥, 𝑦), shown in Figure 5.9(a), was generated. 

Comparing a region of the thresholded image in Figure 5.9(b) to the same region in the original 

CT data (Figure 5.9(c)), boundaries between the pore, Nylon, and SCF can be distinguished. 



 113 

Because the SCF were oriented axially along the filament length, the SCF are white circles with 

approximately 8 μm diameter. From the resolving power of the CT machine, the minimum 

allowable feature size was 3.3 μm3. Because of the low resolution compared with the small 

features, the circles representing the SCF are often jagged and not perfectly rounded, as seen in 

Figure 5.9(b). 

 
 (a)   (b)  
Figure 5.7. (a) A CT image of the MEX SCF filament, which is composed of (b) pore, Nylon, and SCF phases.   
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 (b) 
Figure 5.8. (a) The measured normalized histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale and estimated 

histogram, ℎ𝑒(𝐼|𝝎̂), of the MEX SCF filament CT image shown in Figure 5.7 and (b) three phases – pore, Nylon, and 

SCF – with three Gaussian modes, 𝜓𝑃, 𝜓𝑁, and 𝜓𝐹 . The Gaussian modes sum to the estimated histogram, ℎ𝑒(𝐼|𝝎̂). 

Using BDR, ℎ𝑒(𝐼|𝝎̂) is thresholded into three intensity regions, ℜ𝑃, ℜ𝑁, and ℜ𝐹, for pore, Nylon, and SCF phases, 

respectively. 

  

(a) 
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Table 5.1. MSGD algorithm initial conditions and optimized parameters for the MEX SCF filament CT image slice 

shown in Figure 5.7(a). The fitted parameters, 𝝎̂, generate the estimated histogram, ℎ𝑒(𝐼) of Figure 5.8(b). 

 
Phase 

𝜇𝑖(𝐼), Phase 

Mean 

𝜎𝑖(𝐼), Phase 

Standard Deviation 

𝑃𝑖, Phase Volume 

Percentage (%) 

𝛼𝑖, Phase 

Skew 

In
it

ia
l 

C
o
n
d
it

io
n
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎𝑷) 12000 700 5.0 0.0 

Nylon, 𝜓𝑁(𝐼|𝝎𝑁) 16000 700 60.0 0.0 

SCF, 𝜓𝐹(𝐼|𝝎𝑭) 19000 700 35.0 0.0 

O
p
ti

m
iz

ed
 

P
ar

am
et

er
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎̂𝑷) 12730 1551.5 0.79 1.2 

Nylon, 𝜓𝑁(𝐼|𝝎̂𝑵) 15990 730.9 59.2 0.8 

SCF, 𝜓𝐹(𝐼|𝝎̂𝑭) 18390 1452.3 40.0 -1.7 

5.4.2 Results from MSGD Algorithm for the MEX SCF Filament 

Using the MSGD algorithm of Sec. 5.3.4, all 493 MEX SCF filament CT images were 

analyzed. For the individual CT image of Figure 5.7, the optimized parameters, 𝝎̂, for estimated 

histogram ℎ𝑒(𝐼) of the CT data of Figure 5.8(a) are shown in Table 5.1. Table 5.2 shows the 

average of each optimized parameter over the length of the filament. From Table 5.2, the mean 

grayscale intensity values of the pore 𝜇𝑃, Nylon 𝜇𝑁, and SCF 𝜇𝐹, were 13320, 16240, and 18330, 

respectively. These mean grayscale intensity values are within the range of intensity values seen 

in Figure 5.7(b) for each of the phases. The standard deviations for the pore 𝜎𝑃, Nylon 𝜎𝑁, and 

SCF 𝜎𝐹, were 2385, 667, and 1247, respectively.  As shown in Figure 5.8(b), the standard deviation 

of the Nylon was small compared to the standard deviation of the SCF and pore phases. The 

standard deviations of the pore and SCF phases were broader indicating a wider range of grayscale 

values associated with the phase and less certainty of the measurement. The skew parameters for 

the pore 𝛼𝑃, Nylon 𝛼𝑁, and SCF 𝛼𝐹, were 0.9, 0.1, and –1.3, respectively. Because the magnitude 

of skew parameters is small, it is expected that most intensity values for each phase fall close to 

their respective mean value. Finally, the volume percentage of the pore 𝑃𝑃, Nylon 𝑃𝑁, and SCF 
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𝑃𝐹, phases were 1.6%, 62.2%, and 36.2%, respectively. Using a density of Nylon and SCF of 1.15 

g/cm3 and 1.55 g/cm3, respectively, the estimated SCF weight percentage was estimated to be 47%, 

which is within 10% of the 35 wt% of SCF provided by the manufacturer.  

  
 (a) (b)  (c) 
Figure 5.9. (a) Thresholded image, 𝑇(𝑥, 𝑦), corresponding to the MEX SCF filament CT image slice shown in Figure 

5.7(a) and the phase threshold regions, ℜ𝑃, ℜ𝑁, and ℜ𝐹, shown in Figure 5.8(b). Black, gray, and white correspond to 

pore, Nylon and SCF, respectively. Comparing the thresholded region of (b) to the original CT image (c), the pore, 

Nylon, and SCF phase are appropriately identified. Note that SCFs appear circular in shape because their axes are 

perpendicular to the CT image plane. 

Figure 5.10 shows the volume percentages of the pore, Nylon, and SCF phases across the 

0.5 mm segment length (𝐿) of the MEX SCF filament. Small variations (i.e. +/- 10% for each 

phase) in each of the phase volume percentages were measured. These small variations were due 

to multiple local minima (no unique solution) present in the MSGD fitting of ℎ𝑒(𝐼) to ℎ𝑚(𝐼). 

These local minima occur because there are small differences in density of the internal phases that 

result in a lack of contrast between phase histograms. To identify these minima, several initial 

conditions, as listed in Table 5.3, were tested. Across the various initial conditions, solutions for 

volume percentages of pore, Nylon, and SCF from each tested initial condition were found to be 

within a standard deviation range of 0.11%, 0.26%, and 0.36%, respectively. Although these 

volume percentage estimates are similar, such variations indicate the possibility of multiple 

solutions. Furthermore, the number of solutions depends on the range of intensity regions, 𝐶𝑃, 𝐶𝑁, 
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and 𝐶𝐹. Increasing these ranges will increase the solution space or provide no solution, ultimately 

reducing the reliability of the algorithm. 

 
Figure 5.10. Volume percentage of pore, Nylon, and SCF across the length of the filament.  

Table 5.2. Average of optimized parameters across the length of the filament.  

Pore Nylon SCF 

𝜇𝑃(𝐼) 𝜎𝑃(𝐼) 𝑃𝑃(%) 𝛼𝑃 𝜇𝑁(𝐼) 𝜎𝑁(𝐼) 𝑃𝑁(%) 𝛼𝑁 𝜇𝐹(𝐼) 𝜎𝐹(𝐼) 𝑃𝐹(%) 𝛼𝐹  

13320 2384.7 1.6 0.9 16240 667.4 62.2 0.1 18330 1247.0 36.2 -1.3 

Table 5.3. Initial conditions tested to identify local minimum solutions.  

Initial Conditions, 𝝎𝒊 = [𝜇𝑖(𝐼), 𝜎𝑖(𝐼), 𝑃𝑖(%), 𝛼𝑖] Optimized 𝑃𝑖, 𝝎̂𝒊, (%) 

Pore, 𝑖 = 𝑃 Nylon, 𝑖 = 𝑁 SCF, 𝑖 = 𝐹 𝑃𝑃 𝑃𝑁 𝑃𝐹 

12000 700 0.2 0.0 16000 700 0.3 0.0 19000 700 0.5 0.0 2.2 65.7 32.2 

14000 700 0.2 0.0 17000 700 0.4 0.0 20000 700 0.4 0.0 1.9 65.3 32.7 

12000 500 0.2 0.0 16000 1000 0.4 0.0 19000 500 0.4 0.0 2.1 66.0 31.7 

12000 700 0.2 0.0 16000 700 0.3 0.0 19000 700 0.5 0.0 2.1 65.8 32.1 

12000 700 0.2 3.0 16000 700 0.4 3.0 19000 700 0.4 3.0 2.0 65.6 32.3 
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5.4.3 Results from Porosity Analysis of MEX SCF Filament 

Using Eq. (5.15), the volume of pores in the MEX SCF filament were calculated. Figure 

5.11 shows the frequency of pores versus pore volume, 𝑉𝑃. From Figure 5.11(a), the mean pore 

volume was 50 μm3 with 92% of pores having a volume less than 100 μm3. Higher volume pores, 

which occurred less frequently throughout the part, are shown in the exploded view of the number 

of pores versus pore volume of Figure 5.11(b). The largest pore volume in the filament was 400 

μm3.  

The radial distribution of the pores in the filament were measured according to the method 

in Sec. 5.3.5. Results of pore density and percentage of pore per unit volume vs. 𝑟/𝑎, where 𝑎 is 

the radius of the filament, are shown in Figure 5.12 and Figure 5.13, respectively. The number of 

pores within radial rings along the radius of the filament were counted and divided by the volume 

of the radial ring with Δ𝑟 = 0.05 mm (20 rings in total) and 𝐿 = 0.5 mm. The highest density of 

pores was located near the outside (𝑟/𝑎 = 1) of the filament, as shown in Figure 5.12.  

Results of the percentage of pore per unit volume within radial rings (with Δ𝑟 = 0.05 mm) 

along the radius are shown in Figure 5.13.  The large size pores near the center of the filament 

(𝑟/𝑎 = 0) dominate the pore volume ratio. One explanation for this finding is that the filament 

extrusion process may cause large bubbles to be trapped in the center of filament and small bubbles 

to form during the post-extrusion cooling of thermoplastic material around the periphery of the 

filament. Another explanation could be due to uneven thermal shrinkage during the cooling 

process. Because the exterior of the filament cools before the interior, the filament periphery 

contracts causing internal thermal stresses to be generated that may cause expansion of the voids 

at the center of the filament. 
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 (b) 
Figure 5.11. (a) Number of pores versus pore volume with most pores smaller than 100 μm3 and (b) the number of 

pores versus pore volume for pores larger than 150 μm3.   

(a) 
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Figure 5.12. Pore density along the radius of the filament. A higher number of pores was found at larger radii (𝑟/𝑎 >
0.9).   

 

Figure 5.13. Pore percentage per unit volume along the radius of the filament. Larger volume pores occur closer to the 

center (𝑟 𝑎⁄ = 0) of the filament.  

5.5 MEX SCF Part CT Analysis Results 

In this section, results of the segmentation algorithm and analysis of the CT scanned MEX 

SCF part are presented. 
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5.5.1 Optimization Setup of MSGD Algorithm for the MEX SCF Part 

Each MEX SCF part ROI indicated in Figure 5.3 was analyzed individually as an image 

with intensities, 𝐼(𝑥, 𝑦), according to Secs. 5.3.2-5.3.4. For each of these ROIs, the measured 

histogram of intensity values, ℎ𝑚(𝐼), did not change significantly. Therefore, only one of the 

processed histograms – the ROI A in Figure 5.3 – is shown in Figure 5.14(a). The pore (𝑃) with 

Gaussian mode 𝜓𝑃(𝐼|𝝎𝑷), Nylon (𝑁) with Gaussian mode 𝜓𝑁(𝐼|𝝎𝑵), and SCF (𝐹) with Gaussian 

mode 𝜓𝐹(𝐼|𝝎𝑭) were three phases (i.e. 𝑛 = 3) present in the MEX SCF part. To fit ℎ𝑚(𝐼), an 

estimated histogram, ℎ𝑒(𝐼|𝝎̂) was fit according to Eq. (5.5) where 𝝎̂ = [𝝎̂𝑷, 𝝎̂𝑵, 𝝎̂𝑭] were the 

optimized vector parameters for the pore, Nylon, and SCF phases, respectively. To guide the 

optimization of Eq. (5.5), three intensity regions, 𝐶𝑃
𝑙  and 𝐶𝑃

𝑢 for the pore phase mean 𝜇𝑃, 𝐶𝑁
𝑙  and 

𝐶𝑁
𝑢 for the Nylon phase mean 𝜇𝑁 , and 𝐶𝐹

𝑙  and 𝐶𝐹
𝑢 for the SCF phase mean 𝜇𝐹, were defined based 

on the examination of the phase intensity values 𝐼(𝑥, 𝑦) from each ROI and ℎ𝑚(𝐼) in Figure 

5.14(a). Figure 5.14(a) shows upper and lower bound intensity regions, 𝐶𝑃
𝑙 , 𝐶𝑃

𝑢, 𝐶𝑁
𝑙 , 𝐶𝑁

𝑢, 𝐶𝐹
𝑙  and 

𝐶𝐹
𝑢, that were provided for Eq. (5.6) constraints. Table 5.4  shows the initial conditions for three 

𝝎 parameters. 

Table 5.4. MSGD algorithm initial conditions and optimized parameters for the MEX SCF part ROI A.  

 

Phase 
𝜇𝑖(𝐼), 

Phase Mean 

𝜎𝑖(𝐼), Phase 

Standard 

Deviation 

𝑃𝑖, Phase 

Volume 

Percentage (%) 

𝛼𝑖, Phase 

Skew 

In
it

ia
l 

C
o
n
d
it

io
n
s,

 𝝎
 

Pore, 𝜓𝑃(𝐼|𝝎𝑷) 6000 500 20 0.0 

Nylon, 𝜓𝑁(𝐼|𝝎𝑵) 8000 500 50 0.0 

SCF, 𝜓𝐹(𝐼|𝝎𝑭) 9500 500 30 0.0 
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 (b) 
Figure 5.14. (a) The measured normalized histogram, ℎ𝑚(𝐼), of voxel intensity values in grayscale and estimated 

histogram, ℎ𝑒(𝐼|𝝎̂), of ROI A and (b) three phases – pore, Nylon, and SCF – with three Gaussian modes, 𝜓𝑃, 𝜓𝑁, and 

𝜓𝐹 . The Gaussian modes sum to the estimated histogram, ℎ𝑒(𝐼|𝝎̂). Using BDR, ℎ𝑒(𝐼|𝝎̂) is thresholded into three 

intensity regions, ℜ𝑃, ℜ𝑁, and ℜ𝐹, for pore, Nylon, and SCF phases, respectively. 

The estimated histogram, ℎ𝑒(𝐼|𝝎̂), and the Gaussian modes 𝜓𝑃(𝐼|𝝎𝑷), 𝜓𝑁(𝐼|𝝎𝑵), and 

𝜓𝐹(𝐼|𝝎𝑭) for the pore, Nylon, and SCF phases, respectively, are shown in Figure 5.14(b) 

corresponding to the ROI A indicated in Figure 5.3. BDR was performed on the Gaussian modes 

(a) 



 123 

to define three intensity regions, ℜ𝑃, ℜ𝑁, and ℜ𝐹, for the pore, Nylon, and SCF phases, 

respectively. From the resolving power of the CT machine and the 1.5 μm3 resolution of the scan, 

the minimum allowable feature size was 4.5 μm3. The MSGD algorithm was applied to segment 

each ROI into pore, Nylon, and SCF phases. The resultant thresholded images are shown in Figure 

5.15.  

 
Figure 5.15. Thresholded ROIs of Figure 5.3. Toolhead travel directions indicated by red arrows (raster direction 

transverse to image) or red dot (raster direction normal to image). 
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5.5.2 Results from MSGD Algorithm for the MEX SCF Part 

Using the MSGD algorithm of Sec. 5.3.4, each of the ROIs of Figure 5.3 were analyzed. 

Optimized phase parameters for each ROI are shown in Table 5.5. The average grayscale intensity 

values of the pore 𝜇𝑃, Nylon 𝜇𝑁, and SCF 𝜇𝐹, were 6778, 7969, and 9027, respectively. The 

average standard deviations for the pore 𝜎𝑃, Nylon 𝜎𝑁, and SCF 𝜎𝐹, were 795, 427, and 713, 

respectively. The standard deviations indicate, similar to the MEX SCF filament, that the intensity 

values of the pore and SCF phases were broader with a wider range of grayscale values and less 

certainty in the measurement compared with Nylon. The skew parameters for the pore 𝛼𝑃, Nylon 

𝛼𝑁, and SCF 𝛼𝐹, were 1.7, 0.7, and -1.3, respectively. Similar to the MEX SCF filament, these 

skew parameters have a small magnitude indicating that most intensity values for each phase 

occurred symmetrically about their mean value. A higher contrast between phase distributions 

would be required to determine if the skew in the measurement suggests a physical phenomenon.  

Finally, the volume percentage of the pore 𝑃𝑃, Nylon 𝑃𝑁, and SCF 𝑃𝐹, phases were 9.8%, 59.6%, 

and 30.9%, respectively. The 9.8% porosity volume percentage indicates that the porosity in the 

part increased by more than 8% from the MEX SCF filament. 

5.5.3 MEX SCF Part: Area and Distribution of Porosity 

ROIs A to F were thresholded according to Secs. 5.3.4 and 5.5.1 and are shown in Figure 

5.15. ROIs A and B show thresholded top views of a straight and curved MEX raster, respectively. 

ROI C shows the intersection between these rasters. From ROIs A and B, the SCFs can be seen 

mostly oriented in the direction of the toolhead travel, which indicates that the SCFs maintain their 

orientation from the MEX SCF filament. At the intersection zone (ROI C), the SCFs of the curved 

and straight raster can be seen following their respective toolpath directions at the top and bottom 

of the image. However, across the middle of ROI C, the SCFs appear to become reoriented to an 
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orientation normal to the image (round circles indicate SCFs normal to the image). This finding 

indicates a shearing effect that occurs at the intersection and causes the SCFs to rotate 90° into the 

XZ plane. From Sec. 5.3.6, the porosity distribution was quantified for ROIs A, B, and C. 

Table 5.5. Optimized phase parameters for ROIs of each cross-sectional view.   

ROI 
Pore Nylon SCF 

𝜇𝑃(𝐼) 𝜎𝑃(𝐼) 𝑃𝑃(%) 𝛼𝑃 𝜇𝑁(𝐼) 𝜎𝑁(𝐼) 𝑃𝑁(%) 𝛼𝑁 𝜇𝐹(𝐼) 𝜎𝐹(𝐼) 𝑃𝐹(%) 𝛼𝐹  

A 6682 712.8 7.4 1.6 7901 461.2 55.8 0.9 9173 987.3 36.8 -2.2 

B 6652 1074.8 11.2 3.4 7930 455.5 59.8 1.0 9198 914.0 29.0 -2.5 

C 7000 469.2 8.1 0.2 8206 372.8 61.1 -0.4 8654 472.8 30.8 0.2 

D 6771 1065.2 14.1 2.3 7945 409.7 58.6 0.8 9006 565.0 27.3 -1.0 

E 6770 844.6 8.9 1.8 7938 409.4 65.6 0.7 9109 624.3 26.5 -1.2 

F 6794 604.4 8.8 1.1 7898 454.7 56.5 0.9 9024 712.5 34.7 -1.3 

Ave 6778 795.2 9.8 1.7 7969 427.2 59.6 0.7 9027 712.7 30.9 -1.3 

StDev 122.4 246.2 2.5 1.1 117 35.5 3.6 0.5 198 201.5 4.1 1.0 

Figure 5.16 shows the number of pores per ROI area (0.75 mm × 0.75 mm) and the average 

area of pores for each ROI of the XY cross-section. The intersection zone (ROI C) was found to 

have the highest number of pores per ROI area but not the largest average area of pores. One 

possible explanation is the shearing that reorients the SCFs acts to compress the voids in this 

intersection zone. 
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Figure 5.16. Pore density per ROI area and average area of pores per ROI area for ROI A (straight raster), B (curved 

raster), and C (intersection zone).   

The porosity distribution and average pore area of ROI D, which is a view of the MEX 

layers, is shown in Figure 5.17 (dotted yellow lines represent layer interfaces corresponding to 

Figure 5.3). Throughout the layers of the part, the average pore area changed significantly across 

the ROI. At the interface between the two layers, the region below the interface (top of the layer 

during deposition) has nearly non-existent porosity with average pore area < 100 μm2.  The region 

above the interface has high average porosity (average pore area > 250 μm2). This phenomenon is 

indicative of the MEX process in which molten thermoplastic is being extruded from a heated 

nozzle and deposited onto a colder layer below. The air may become entrapped at the bottom of 

the newly deposited layer whereas the air bubble may escape from the molten upper layer. Another 

potential explanation could be due to a large thermal stress and shrinkage of the Nylon at the 

bottom of a deposited layer compared to the top.  A larger temperature gradient and contractile 

thermal stresses above the interface would shrink the thermoplastic into a smaller volume allowing 

the voids to grow. These voids contribute to the transverse isotropy in MEX parts. 
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Figure 5.17. Average pore area along Z-direction in layer-to-layer XZ cross-sectional view (ROI D). The average pore 

area was found for pores within differential elements, 𝑑𝑧 =38 μm, along the z-direction. The largest area pores occur 

immediately above the layers, shown by the dotted line.   

In Figure 5.15, the ROIs E and F show a cross-section of the straight and curved rasters, 

respectively. SCFs in ROI E are shown as circles indicating that their orientation is normal to the 

image and along the toolpath direction. The SCFs in ROI F are elongated but not the full expected 

length of the SCFs, indicating that the toolpath direction has a component normal and transverse 

to the image. 

5.6 Conclusions 

This paper presented the CT evaluations of a SCF Nylon filament and a part with a wave 

infill. Using the MSGD algorithm [76], the internal structure was segmented into three phases: 

pore, Nylon, and SCF. From this segmentation, the phase volume percentages of the MEX SCF 

filament were found to be 1.6% pore, 62.2% Nylon, and 36.2% SCF. MSGD analysis of sections 

of the MEX SCF part estimated phase volume percentages to be 9.8% pore, 59.6% Nylon, and 

30.9% SCF. The measured volume percentage of SCF in both the MEX SCF filament and part 
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match closely with the 35 wt% of SCF provided by the manufacturer. Furthermore, from this 

analysis the porosity of the filament to the part during the MEX process increases more than 8%. 

This increase in porosity is expected to lead to a lower strength in the MEX SCF parts.  

CT analysis found most pores within the filament to have a volume under 100 μm3. The 

largest pores were shown to be at the center of the filaments, suggesting that large pores became 

trapped or were generated during the cooling process. Higher pore density was found at outside 

the filament.  

For the MEX SCF part, several ROIs were defined across multiple image views to evaluate 

the SCF orientation and to quantify the porosity density and distribution. SCFs were found to be 

oriented along the direction of toolpath travel. In the region of intersection between two rasters on 

a single layer, the SCFs appear to become reoriented normal to the toolpath direction, potentially 

because of a shearing effect between the two rasters. Within this intersection zone, pores occurred 

more frequently but with smaller average area compared to that measured in the intersecting 

rasters.   

For the MEX SCF part, the average pore area and porosity distribution were measured at 

the interface between MEX layers. The top of the layer had nearly non-existent porosity (average 

pore area < 100 μm2). The bottom of the layer had high average porosity (average pore area > 250 

μm2), which is expected to contribute to the transverse isotropy in MEX parts.  

These findings indicate that layer-to-layer porosity within MEX parts is significant. During 

experimentation with the AFO, the AFO consistently failed within one month of use. Fractures 

initiated at surface structural voids and propagated through the entire layer. Because TWSs such 

as the AFO have small thicknesses with few beads, there is a small safety factor of material to 

resist loading once cracks initiate.  
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Future work includes minimizing the porosity by adjusting process parameters and relating 

the MEX SCF parts’ mechanical properties to the internal porosity and the SCF orientation. This 

data would allow optimization of the MEX process to reduce problematic porosity between layers. 

CT data can also be used to ensure that the orientation of SCFs is appropriate to the expected 

loading conditions on a part.
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Chapter 6  
Conclusions and Future Work  

6.1 Conclusions 

This thesis investigated the use of MEX in the fabrication of a TWS, such as the AFO. 

Three requirements for the AFO and other TWSs fabricated by MEX are that they are lightweight 

and durable and have tunable structural stiffness. 

To fabricate a lightweight TWS with tunable structural stiffness, the MEX wave infill, a 

method of filling the interior of the TWS with a truss-like porous core, was studied in Chapters 2 

and 3 of this thesis.  The key advantage of the wave infill is that its truss-like structure minimizes 

TWS mass and homogenizes the TWS for characterization of its structural stiffness.  Four metrics 

affected by the wave infill geometry – stiffness, load capacity, fabrication time, and mass – were 

studied. Analytical models for these metrics were developed that showed correlations above 85% 

to experimental measurements. The predictive capabilities of stiffness, mass, and fabrication time 

analytical models were found to show errors less than 10% compared to experimental 

measurements. However, prediction of the load capacity of the MEX parts using the analytical 

model was less accurate. Load capacity was predicted within 25% of experimental values. Possible 

explanations of the modelling difficulties for load capacity include layer-to-layer weaknesses 

present in MEX parts or overlap bonding between the wave infill and the outer facings of the TWS. 

The high strength- and stiffness-to-mass ratios of the wave infill has been demonstrated in the 

literature for applications such as corrugated paperboard.  This study employs mechanical 

principles from the study of corrugated cardboard and has been developed specifically for MEX 

wave infill. The models developed in Chapter 2 enable the design of MEX TWSs with uniform 
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wave infill geometries. Using the sensitivity of MEX TWSs to each of the wave infill geometrical 

parameters, the stiffness, load capacity, mass, and fabrication time can be used as design tools for 

simple TWSs in bending. Limitations of this study, however, are that the analytical tools developed 

in Chapter 2 are limited to simple geometries and loading conditions.  

Using these analytical models, a composite simplification model (CSM) of the wave infill 

in TWSs with generalized geometries was developed. In CSM, the wave infill and TWS faces are 

modelled as a homogenous stacked composite, which reduces computation and setup time. CSM 

for the wave infill was found to predict the stiffness of experimental measurements within 15%. 

The combination of the sensitivity analysis in Chapters 2 and CSM for analyzing generalized 

TWSs in Chapter 3 serves as an important addition to the MEX community that currently has few 

options for designing and analyzing MEX structures.  An analysis performed on a fixed flat- and 

AFO-geometry shows CSM to be a powerful finite element and design tool that can optimize the 

wave infill for TWSs. The CSM tool was developed specifically to interface with structural 

optimization techniques. From the four input parameters that define a wave infill element, CSM is 

used to determine the element stiffness. These elements can then be used as building blocks for 

analyzing the stresses and strains in complex TWSs with wave infill. Elements can have varying 

wave infills to achieve desired properties such as minimizing mass and achieving a structural 

stiffness. Future work in this area includes identifying methods to ensure proper fabrication of 

varying wave infill segments during the MEX process. Other areas of research include validating 

assumptions that were used to simplify the CSM for wave infill that varies throughout a structure.  

To improve the fabrication of durable TWSs, CT was used to inspect the internal structure 

of MEX parts. To improve quantification of MEX parts analyzed by CT, the MSGD method, an 

advanced segmentation technique, was developed in Chapter 4. In MSGD, the parameters of 
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skewed Gaussian distributions were inferred from the measured grayscale histogram from the CT 

analysis. Using the randomness inherent in the CT data, important physical information such as 

phase percentages, mean density, and phase distribution can be inferred. The skewness of the 

MSGD method may provide physical information regarding intra-phase density variations. The 

MSGD method predicted the porosity of an AM specimen from NIST to within 1% of its 

experimentally measured value. MSGD provides a method for repeatably fitting skew Gaussian 

distributions such as those that may occur during CT of AM parts.  

In Chapter 5, MSGD was applied to quantify the internal structure of a MEX SCF filament 

and part. From this analysis, the phase percentages of the MEX SCF filament were found to be 

1.6% pore, 62.2% Nylon, and 36.2% SCF. MSGD analysis of sections of the MEX SCF part 

estimated phase volume percentages to be 9.8% pore, 59.6% Nylon, and 30.9% SCF.  From this 

analysis the porosity of the filament to the part during the MEX process increases more than 8% 

indicating that porosity likely increases during the MEX layer stacking process. This increase in 

porosity is expected to lead to a lower strength in the MEX SCF parts. For the MEX part, average 

void area was found to be highest (>250 μm2) at the bottom of the layer and smallest (<100 μm2) 

at the top of the layer, which could be explained by a large temperature gradient between layers 

and contractile thermal stresses inside the layer that causes the thermoplastic to have increased 

shrinkage resulting in larger voids. Heated ovens in high-end printers were introduced to improve 

the temperature gradients that occur during the layer stacking process. This heating gradient may 

be an important process parameter that needs to be studied in relation to porosity formation. 

Porosity distributions that were found in this paper may also be used in thermal analyses to study 

the curing residual stresses that occur in MEX parts. Models may be developed that simulate 

important MEX process parameters and their contribution to the porosity within MEX parts. 
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Inspection techniques reported in this thesis may be used to quickly and repeatably evaluate images 

for rapid analysis of MEX parts.  

During testing of several MEX AFOs that had varying shapes, thicknesses, build 

orientations and material, each AFO fractured along layer lines within a month of use. This thesis 

showed that, in addition to structural voids in MEX parts, layer-to-layer porosity occurs, as well. 

Within MEX TWSs such as the AFO, these layer-to-layer voids likely the increase the likelihood 

of fatigue fractures that occur during use. Small fractures may initiate at structural voids and 

propagate into the part easily passing through the high porosity layer-to-layer voids that occur. To 

ensure that MEX AFOs remain durable, process parameters that induce structural and layer-to-

layer voids must be improved.  

Overall, this thesis shows: (1) the wave infill can be used to generate a lightweight TWS 

with tunable structural stiffness, (2) CSM is a powerful finite element technique that may be used 

to design MEX wave infill TWSs, (3) CT and MSGD may be used to quantify the internal structure 

of MEX filaments and parts, and (4) voids from the MEX process occur at interfaces between 

layers, possibly due to large thermal gradients and plastic shrinkage. This research will inform and 

improve the MEX fabrication process to fabricate TWSs with tunable structural stiffnesses and are 

lightweight and durable.   

6.2 Future Work 

Future work in this area will be through industry collaboration. The MEX wave infill for 

structural property mapping is currently a licensed technology to Stratasys. The research work 

presented here establishes a foundation for sizing and topology optimization of the wave infill. 

Using CSM, the wave infill period and TWS thickness can be adjusted depending on the stress 

field generated from the loading conditions. From this research, the stiffness and mass of the wave 
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infill TWS can be adjusted to generate tunable stiffness structures that have minimized mass. To 

implement the non-uniform wave infill, software to generate appropriate machine paths that 

appropriately deposit the material are required. Once fabrication methods for the wave infill are 

established, the ability of the CSM to model non-uniform and non-symmetric wave infills should 

be tested experimentally.  

For MEX material inspection, additional work to characterize and quantify the distribution 

and orientation of SCF is required. In addition to voids between layers, the reason for the 

anisotropic nature of MEX SCF materials is that the SCFs do not pass between layers. Therefore, 

the effects of SCF are only seen within a layer. During investigation of the CT data set presented 

in Chapter 5 of this thesis, shearing effects in the intersection zone reoriented the fibers out of the 

plane of the layer. This phenomenon is being explored in more with the CT data to determine if a 

shearing method could be used to improve inter-layer strengths of MEX SCF parts. 
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Appendix A  

Stiffness Analytical Model of MEX Wave Infill Flexural Specimen 

 

The flexural stiffness analytical model 𝐾𝐴 for four-point bending and directional area 

moment of inertia terms, 𝐼𝑍 and 𝐼𝑋, are derived. 

A.1 Stiffness Derivation 

The stiffness of a beam in flexural loading 𝐾𝐴 for the four-point bending flexural is the 

slope of the load versus deflection curve:  

𝐾𝐴 =
𝐹𝐵

𝛿(𝑥)|𝑥=𝑏
 (A.1) 

where 𝐹𝐵 is the load applied to the beam, 𝛿(𝑥) is the deflection of the beam along its length, 𝑥 is 

the distance along the beam, and 𝑏 is the distance between the support and loading pins.  In four-

point flexure, the loading pins are offset from each other and from the supports by a distance 𝑎 

and 𝑏, respectively, as shown in Figure A.1.  

 
Figure A.1. Beam in four-point flexure with reaction and loading pin forces 𝐹𝐵/2, support span Ls, loading distance 

a, and deflection of 𝛿(𝑥) at distance 𝑥 along the beam. 

Using the deflection of a beam under a single point load at a distance 𝑏 from the support 

[77]:  
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𝛿(𝑥)|𝑥=𝑏 = 
𝐹𝐵 𝑏 (𝑎 − 𝐿𝑠)

96 𝐸 𝐼 𝐿𝑠 
(𝑎2 + 4 𝑏2 − 2 𝑎 𝐿𝑠 − 3 𝐿𝑠

2) (A.2) 

where 𝐸 is the flexural modulus, 𝐼 is the area moment of inertia, and 𝐿𝑆 is the supported length. 

Based on the principle of superposition, the loading pin deflection 𝛿(𝑥) in four-point loading is:  

𝛿(𝑥) =  
𝐹𝐵 𝑥

48 𝐸 𝐼 
(3 𝑎2 + 4 𝑥2 − 3 𝐿𝑠

2)  (A.3) 

Based on Eq. (A.3), the deflection at 𝑥 = 𝑏 is:  

𝛿(𝑥)|𝑥=𝑏 = 
𝐹𝐵

48 𝐸 𝐼 
(2 𝑎3 − 3 𝑎2 𝐿𝑠 + 𝐿𝑠

3)  (A.4) 

Combining Eqs. (A.1) and (A.4), the analytical flexural stiffness 𝐾𝐴 of a beam under four-

point loading is:  

𝐾𝐴 =
48 𝐸 𝐼

(𝐿𝑠
3 − 3 𝑎2 𝐿𝑠 +  2 𝑎3)

  (A.5) 

A.2 In-Plane Area Moment of Inertia, 𝑰𝒁 

The in-plane area moment of inertia 𝐼𝑍 is required to estimate the analytical stiffness and 

load capacity of the MEX wave infill flexural beams.  As shown in Figure A.2, the cross-section 

A-A of the of the in-plane MEX wave infill flexural beam is composed of two outer contours and 

the wave infill.  Because the distance from the neutral axis to the midline of the wave infill varies 

along the length of the beam, the contribution of the wave infill to the in-plane 𝐼𝑍 is neglected [21].  

Using the area moment of inertia of a rectangle and the principle of superposition, the 𝐼𝑍 is 𝐼𝑍
𝑜𝑢𝑡𝑒𝑟 −

𝐼𝑍
𝑖𝑛𝑛𝑒𝑟 as shown in Figure A.2:  

𝐼𝑍 = 𝐼𝑍
𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 𝐼𝑍

𝑜𝑢𝑡𝑒𝑟 − 𝐼𝑍
𝑖𝑛𝑛𝑒𝑟 = 

1

12
𝑤 (𝑇3 − (𝑇 − 2𝑊)3) (A.6) 

where 𝑤 is width of the section and 𝐼𝑍
𝑜𝑢𝑡𝑒𝑟 = 

1

12
𝑤𝑇3 and 𝐼𝑍

𝑖𝑛𝑛𝑒𝑟 = 
1

12
𝑤 (𝑇 − 2𝑊)3.  
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Figure A.2. Section A-A of the bending portion of the in-plane flexural beam with thickness, 𝑇, beadwidth, 𝑊, width, 

𝑤, and neutral axis, Z.  The regions of area moment of inertia terms 𝐼𝑍
𝑐𝑜𝑛𝑡𝑜𝑢𝑟 , 𝐼𝑍

𝑜𝑢𝑡𝑒𝑟  and 𝐼𝑍
𝑖𝑛𝑛𝑒𝑟  are shown. 

A.3 Layer-to-Layer Area Moment of Inertia, 𝑰𝑿 

The layer-to-layer area moment of inertia 𝐼𝑋 is required to estimate the analytical stiffness 

and load capacity of the MEX wave infill flexural beams.  Expressions for 𝐼𝑋 are adapted from 

Luo et al. [21] to match the geometry and constraints for the MEX wave infill described in Sec. 

2.4.1.  As shown in Figure A.3, the cross-section of the bending portion of the layer-to-layer 

flexural beam is composed of two outer contours and the wave infill. 𝐼𝑋 is, therefore, the 

contribution of the 𝐼𝑋 of the outer contours and the wave infill:  

𝐼𝑋 = 𝐼𝑋
𝑐𝑜𝑛𝑡𝑜𝑢𝑟 + 𝐼𝑋

𝑤𝑎𝑣𝑒 (A.7) 

where 𝐼𝑋
𝑐𝑜𝑛𝑡𝑜𝑢𝑟 is the same form as given in Eq. (A.6) and 𝐼𝑋

𝑤𝑎𝑣𝑒 is obtained by the principle of 

superposition of the area moment of inertia terms, 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

 and 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟:  

𝐼𝑋
𝑤𝑎𝑣𝑒 = 𝐼𝑋

𝑢𝑝𝑝𝑒𝑟 − 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 (A.8) 

where 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

 and 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 are found by integrating differential elements 𝑑𝐼𝑋

𝑢𝑝𝑝𝑒𝑟
and 𝑑𝐼𝑋

𝑙𝑜𝑤𝑒𝑟, 

respectively, as shown in Figure A.4(a). 
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Figure A.3. Cross-section of the bending portion of the layer-to-layer flexural beam with thickness, 𝑇, width, 𝑤, and 

neutral axis, X.  

 
 (a) (b) 
Figure A.4. Half period of the wave infill indicating (a) toolpath centerline, upper and lower toolpath boundaries, and 

upper and lower regions of area moment of inertia terms and (b) parameterized toolpath centerline, 𝒓(𝑡), and tangential 

and normal unit vectors.   

To calculate 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

 and 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟, a half-period of the toolpath centerline, 𝑦(𝑥) (Eq. (2.5) is 

parameterized as 𝒓(𝑡) (Figure A.4(b)): 

𝒓(𝑡) = 𝑡 𝒊̂ + 𝐻 sin (
2𝜋

𝑃
 𝑡) 𝒋̂ (A.9) 

where 𝑡 ∈  [0, 𝑃/2], 𝐻 is the amplitude of the wave, 𝑃 is the period of the wave, and 𝒊̂ and 𝒋̂ are 

the X- and Y-direction unit vectors, respectively.  From 𝒓(𝑡), the upper and lower boundaries of 

the wave infill are defined by the vector functions, 𝒇𝒖𝒑𝒑𝒆𝒓(𝑡) and 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡), respectively. These 

vector functions are obtained by offsetting 𝒓(𝑡) along its pointwise normal unit vector 𝒆𝒏:  

𝒇𝒍𝒐𝒘𝒆𝒓(𝑡) = 𝒓(𝑡) +
𝑊

2
 𝒆𝒏  (A.10) 

𝒇𝒖𝒑𝒑𝒆𝒓(𝑡) = 𝒓(𝑡) −
𝑊

2
 𝒆𝒏 (A.11) 
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where 𝑊 is the beadwidth.  Normal and tangential unit vectors, 𝒆𝒏 and 𝒆𝒕, respectively, can be 

defined along the toolpath centerline as shown in Figure A.4(b). The tangential unit vector, 𝒆𝒕, is:  

𝒆𝒕 = 
𝒅𝒓

𝒅𝒔
=  

𝒅𝒓

𝒅𝒕
 
𝑑𝑡

𝑑𝑠
 (A.12) 

where 𝑑𝑠 is the differential arc length.  Based on Eq. (2.8),  

𝑑𝑠 =  √1 + (
2𝜋

𝑃
 𝐻  𝑐𝑜𝑠 (

2𝜋

𝑃
 𝑥))

2

𝑑𝑡 (A.13) 

and 
𝒅𝒓

𝒅𝒕
 is:  

𝒅𝒓

𝒅𝒕
= 1  𝒊̂ +

2 𝐻 𝜋

𝑃
cos (

2𝜋

𝑃
 𝑡) 𝒋̂ (A.14) 

Combining Eqs. (A.12), (A.13), and (A.14), the tangential unit vector is:  

𝒆𝒕 = (𝑃  𝒊̂ + 2𝜋 𝐻 cos (
2𝜋

𝑃
 𝑡) 𝒋̂)

1

√𝑃2 + 4 𝐻2𝜋2cos2 (
2𝜋
𝑃  𝑡)

 
(A.15) 

Because 𝒆𝒏 and 𝒆𝒕 are orthogonal, their inner product is equal to zero. Therefore, the 

normal unit vector can be solved for its component directions to find:   

𝒆𝒏 = (2𝜋 𝐻 cos (
2𝜋

𝑃
 𝑡) 𝒊̂ − 𝑃 𝒋̂)

1

√𝑃2 + 4𝐻2𝜋2 𝑐os2 (
2𝜋
𝑃  𝑡)

  
(A.16) 

As can be seen from Figure 2.6, the thickness of the peaks and troughs of some of the wave 

infill experiment samples overlaps between successive periods.  This overlapping effect can be 

explained by the high radius of curvature at the peaks and troughs of the wave toolpath centerline.  

For specimens with high radius of curvature (e.g. Experiment 3), offsetting the toolpath centerline 

to obtain the lower boundary curve, 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡), as shown in Figure A.5(a), leads to an undefined 

function.  To ensure the function remains defined regardless of radius of curvature, the 𝒊̂-

component of 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡) is set equal to 𝑃/4 and solved for 𝑡.  This 𝑡, 𝑡𝑓
𝑙𝑜𝑤𝑒𝑟, defines the upper limit 
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of the domain of 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡).  Several periods of the corrected infill and the corresponding 

microscope image are shown in Figure A.5(b)-(c), respectively.      

 
 (a) (b) (c) 
Figure A.5. (a) Overlapping effect due to the high radius of curvature at peak of toolpath centerline, (b) corrected 

boundary curves, and (c) microscope image of Experiment 3 of the wave infill specimen set.   

The general form of the area moment of inertia 𝐼𝑋 can be calculated with respect to the X-

axis using: 

𝐼𝑋 = ∫𝒇(𝑡)2 𝑑𝐴 (A.17) 

which can be written using Green’s function as [78]:  

𝐼𝑋 = 
1

3
∫ 𝑓𝒋̂(𝑡)

3 𝑓𝒊̂
′(𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

 (A.18) 

where 𝑡0 and 𝑡𝑓 are the limits of integration, 𝑓𝒋̂(𝑡) is the 𝒋̂-component of the boundary function, 

𝒇(𝑡), and 𝑓𝒊̂
′(𝑡) is the derivative of the 𝒊̂-component of the boundary function, 𝒇(𝑡). Because of 

the symmetry of the wave, the limit of integration, 𝑡𝑓, is simply a quarter-period of the wave, 𝑃/4. 

Rewriting Eq. (A.18), the upper area moment of inertia 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

 is:  

𝐼𝑋
𝑢𝑝𝑝𝑒𝑟 = 

1

3
∫ (𝑓𝒋̂

𝑢𝑝𝑝𝑒𝑟(𝑡))3  𝑓𝒊̂
𝑢𝑝𝑝𝑒𝑟′

(𝑡) 𝑑𝑡
𝑡𝑓

𝑡0
𝑢𝑝𝑝𝑒𝑟

 (A.19) 
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The limit of integration, 𝑡0
𝑢𝑝𝑝𝑒𝑟

, representing the intersection between the boundary curve, 

𝒇𝒖𝒑𝒑𝒆𝒓(𝑡), and the X-axis.  𝑡0
𝑢𝑝𝑝𝑒𝑟

 is found by setting the 𝒋̂-components of 𝒇𝒖𝒑𝒑𝒆𝒓(𝑡) (Eq. (A.11)) 

equals to zero and substituting trigonometric identities:  

𝑡0
𝑢𝑝𝑝𝑒𝑟 =

−𝑃

2𝜋
 cos −1

(

 
−𝐻2 𝑃2 + √𝐻4(𝑃4 + 16 𝐻4𝜋4 + 4 𝑃2 𝜋2 (2𝐻2 − 𝑊2))

4 𝐻4 𝜋2

)

  (A.20) 

The derivative, 𝑓𝒊̂
𝑢𝑝𝑝𝑒𝑟′

(𝑡), of the 𝒊̂-component of 𝒇𝒖𝒑𝒑𝒆𝒓(𝑡) is: 

𝑓𝒊̂
𝑢𝑝𝑝𝑒𝑟′

(𝑡) = 1 +
2 𝐻 𝑃 𝜋2 𝑊 sin (

2𝜋
𝑃  𝑡)

(𝑃2 + 2 𝐻2 𝜋2 + 2 𝐻2 𝜋2 cos (
4𝜋
𝑃  𝑡))

3/2
 

(A.21) 

Combining Eqs. (A.9), (A.11), (A.16), (A.19), (A.20), and (A.21) and recalling the quarter 

symmetry conditions, 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

 is: 

𝐼𝑋
𝑢𝑝𝑝𝑒𝑟 = 

4

3
∫

(

 𝐻 sin (
2𝜋

𝑃
 𝑡) − 

𝑃 𝑊

2√𝑃2 + 4𝐻2𝜋2 𝑐os2 (
2𝜋
𝑃  𝑡))

 

3

 

(

 
 

1
𝑃/4

𝑡0
𝑢𝑝𝑝𝑒𝑟

+
2 𝐻 𝑃 𝜋2 𝑊 sin (

2𝜋
𝑃  𝑡)

(𝑃2 + 2 𝐻2 𝜋2 + 2 𝐻2 𝜋2 cos (
4𝜋
𝑃  𝑡))

3/2

)

 
 

 𝑑𝑡  

(A.22) 

which can be numerically integrated to find 𝐼𝑋
𝑢𝑝𝑝𝑒𝑟

.  

Similarly, Eq. (A.18) is rewritten for the lower area moment of inertia 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 using 

boundary function 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡) (Eq. (A.10)): 

𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 = 

1

3
∫ (𝑓𝒋̂

𝑙𝑜𝑤𝑒𝑟(𝑡))3  𝑓𝒊̂
𝑙𝑜𝑤𝑒𝑟′

(𝑡) 𝑑𝑡
𝑡𝑓

𝑡0
𝑙𝑜𝑤𝑒𝑟

  (A.23) 

The limit of integration 𝑡0
𝑙𝑜𝑤𝑒𝑟 is:  
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𝑡0
𝑙𝑜𝑤𝑒𝑟 =

𝑃

2𝜋
 cos −1

(

 
−𝐻2 𝑃2 + √𝐻4(𝑃4 + 16 𝐻4𝜋4 + 4 𝑃2 𝜋2 (2𝐻2 − 𝑊2))

4 𝐻4 𝜋2

)

   (A.24) 

The derivative, 𝑓𝒊̂
𝑙𝑜𝑤𝑒𝑟′

(𝑡), of the 𝒊̂-component of the upper boundary function, 𝒇𝒍𝒐𝒘𝒆𝒓(𝑡), 

is: 

𝑓𝒊̂
𝑙𝑜𝑤𝑒𝑟′

(𝑡) = 1 −
2 𝐻 𝑃 𝜋2 𝑊 sin (

2𝜋
𝑃  𝑡)

(𝑃2 + 2 𝐻2 𝜋2 + 2 𝐻2 𝜋2 cos (
4𝜋
𝑃  𝑡))

3/2
  

(A.25) 

Combining Eqs. (A.9), (A.10), (A.16), (A.23), (A.24), and (A.25), 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 is:  

𝐼𝑋
𝑙𝑜𝑤𝑒𝑟 = 

4

3
∫

(

 𝐻 sin (
2𝜋

𝑃
 𝑡) +

𝑃 𝑊

2√𝑃2 + 4𝐻2𝜋2 𝑐os2 (
2𝜋
𝑃  𝑡))

 

3

 

(

 
 

1
𝑡𝑓
𝑙𝑜𝑤𝑒𝑟

𝑡0
𝑙𝑜𝑤𝑒𝑟

−
2 𝐻 𝑃 𝜋2 𝑊 sin (

2𝜋
𝑃

 𝑡)

(𝑃2 + 2 𝐻2 𝜋2 + 2 𝐻2 𝜋2 cos (
4𝜋
𝑃  𝑡))

3/2

)

 
 

𝑑𝑡  

(A.26) 

which, likewise, must be numerically integrated to find 𝐼𝑋
𝑙𝑜𝑤𝑒𝑟.
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Appendix B  

Load Capacity Analytical Model of MEX Wave Infill Flexural Specimen 

 

The load capacity 𝐿𝐴 of a beam in flexure is the peak load 𝐹𝐵 that the beam can withstand. 

To calculate the load capacity, the strength, 𝑆, of a beam under flexural loading is given by [77]:  

𝑆 =
𝑀𝑚𝑎𝑥𝑇

2 𝐼
  (B.1) 

where 𝑀𝑚𝑎𝑥 is the maximum bending moment in the beam, 𝑇 is the thickness of the beam (Sec. 

2.4.1), and 𝐼 is the beam area moment of inertia (Appendices A.2 and A.3).  𝑀𝑚𝑎𝑥  occurs between 

two inner loading pins in four-point bending, as shown in Figure B.1: 

𝑀𝑚𝑎𝑥 =
𝐹𝐵𝑏

2
  (B.2) 

 
Figure B.1. Free-body diagram four-point bending flexure with reaction and loading pin forces 𝐹𝐵/2, the distance 

between adjacent loading and support noses, 𝑏, and the maximum moment, 𝑀𝑚𝑎𝑥  in the beam.  

Solving Eqs. (B.1) and (B.2) for 𝐹𝐵 and with 𝑏 = (𝐿𝑠 − 𝑎)/2 as shown in Figure B.1, the 

load capacity, 𝐿𝐴, of a beam in four-point flexural loading is:  

𝐿𝐴 =
8 𝑆 𝐼

𝑇 (𝐿𝑠 − 𝑎) 
  (B.3) 
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Appendix C  

Fabrication Time of MEX Wave Infill Flexural Specimen 

 

The analytical model for fabrication time of the wave infill specimen is derived.  The wave 

infill with period 𝑃 and amplitude 𝐻 is shown in Figure C.1(a). The MEX machines operate as 

Cartesian gantries that use two independent linear stages to generate orthogonal movement of the 

extruder head assembly.  The linear stage can be modeled as providing a constant acceleration or 

deceleration, 𝑎𝑚, until a target, or maximum speed, 𝑣𝑚, is achieved [79].  

 
Figure C.1. (a) The wave infill specimen with amplitude, 𝐻, period, 𝑃, and length, 𝐿 and (b) velocity profile with a 

constant x-velocity component and an oscillating y-velocity component between 𝑣𝑚 and −𝑣𝑚.    

(a) 

(b) 
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With these assumptions and considering the toolpath centerline given by Eq. (2.5), the 

toolhead motion through the toolpath centerline can be parameterized as:  

𝑥(𝑡) = 𝑣𝑥  𝑡  (C.1) 

𝑦(𝑡) = 𝐻 sin (
2𝜋

𝑃
 𝑣𝑥𝑡) (C.2) 

where 𝑣𝑥 is the linear velocity of the toolhead in the X-direction and 𝑡 is the time.  The first and 

second derivatives of the parameterized paths are:  

𝑥̇(𝑡) = 𝑣𝑥 (C.3) 

𝑥̈(𝑡) = 0 (C.4) 

𝑦̇(𝑡) =
2𝜋 

𝑃
𝐻  𝑣𝑥  cos (

2𝜋

𝑃
 𝑣𝑥𝑡) (C.5) 

𝑦̈(𝑡) = −𝐻 (
2𝜋

𝑃
  𝑣𝑥)

2

sin (
2𝜋

𝑃
 𝑣𝑥𝑡) (C.6) 

The maximum velocity, 
2𝜋 

𝑃
𝐻  𝑣𝑥, and acceleration, −𝐻 (

2𝜋

𝑃
  𝑣𝑥)

2

, in Eqs. (C.5) and (C.6), 

respectively, are upper-bounded by the machine’s maximum velocity and acceleration. If the 

maximum velocity in Eq. (C.5) is greater than the maximum velocity of the machine’s linear stage 

(i.e. 
2𝜋 

𝑃
𝐻  𝑣𝑥  >  𝑣𝑚), the linear velocity due to the velocity limitation, 𝑣𝑥𝑣, is bounded by:  

𝑣𝑥𝑣 =
𝑃

2𝜋
 
𝑣𝑇

𝐻
  (C.7) 

If the maximum acceleration in Eq. (C.6) is greater than the maximum acceleration of the 

motor (i.e. 𝐻 (
2𝜋

𝑃
 𝑣𝑥)

2 > 𝑎𝑚), then the linear velocity due to the velocity limitation, 𝑣𝑥𝑎, is upper-

bounded by:  
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𝑣𝑥𝑎 = 
√

𝑎𝑚

𝐻 (
2𝜋
𝑃 )

2 
(C.8) 

The linear velocity, 𝑣𝑥, is then the minimum of the upper-bounds in Eqs. (C.7) and (C.8): 

  𝑣𝑥 = 𝑚𝑖𝑛(𝑣𝑥𝑣, 𝑣𝑥𝑎) (C.9) 

The velocity profile for the sine wave path is shown in Figure C.1 (b).  The time per period, 

𝜏𝑃, for the sine wave infill is therefore:  

  𝜏𝑃 = 
𝑃

𝑣𝑥
 (C.10) 

where 𝑣𝑥 is the linear velocity found in Eq. (C.9).  

From Eq. (C.10), the time per period, 𝜏𝑃, is multiplied by the number of periods, 𝑃, per 

specimen length, 𝐿, to find the total time to print the wave infill.  The time to print the straight, 

outer contour segments, 𝜏𝑆, was determined using Eqs. (E.1)-(E.5), which are derived in Appendix 

E.  The total predicted time, 𝜏𝐴(𝒙), for the toolhead to traverse the wave infill is therefore: 

  𝜏𝐴(𝒙) =  𝜏𝑃 (
𝐿

𝑃
) + 𝜏𝑆 (C.11) 
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Appendix D 

Mass of MEX Wave Infill Flexural Specimen 

 

The mass of specimen 𝑀𝐴 is estimated from the wave path length, 𝐿𝑤𝑎𝑣𝑒, cross-sectional 

area, 𝐴𝐵, and density, 𝜌, of the deposited bead:  

𝑀𝐴 = 𝐿𝑤𝑎𝑣𝑒  𝐴𝐵 𝜌 (D.1) 

The path length, 𝐿𝑤𝑎𝑣𝑒, of the wave infill was determined using Eq. 2.8. The cross-sectional 

area of a deposited MEX bead, shown in Figure D.1, is assumed to have a slot-like shape with 

area, 𝐴𝐵  [80]:     

𝐴𝐵 = 
𝜋𝑙

2

4
+ 𝑙 (𝑊 − 𝑙) (D.2) 

where 𝑙 is the layer height and 𝑊 is the beadwidth in the MEX process.  

  
Figure D.1. Cross-sectional area of a deposited MEX beads is assumed to have a slot-like shape with the width of the 

deposited bead, 𝑊, and the layer height, 𝑙. 
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Appendix E 

Comparison of Fabrication Time of Wave and Direction-Parallel Infill 

 

A comparison of the time to print equivalent specimens with direction-parallel and wave 

infill using analytical models and experimental results is presented in this section. 

E.1 Fabrication Time for Direction-Parallel Infill 

Calculating the fabrication time for the direction-parallel infill requires the toolhead motion 

assumptions stated in Appendix C.1 (i.e. the toolhead is assumed to have constant acceleration or 

deceleration, 𝑎𝑚, and a maximum speed, 𝑣𝑚).  With a constant acceleration through a linear path, 

a minimum ramping distance, 𝑑𝑚 is required to achieve the maximum speed, 𝑣𝑚:  

𝑑𝑚 =  
𝑣𝑚

2

2 𝑎𝑚
 (E.1) 

The direction-parallel infill, shown in Figure E.1(a), has a period, 𝑃, and amplitude, 𝐻.  

The change in direction at each corner requires the overall toolhead speed to decelerate to zero.  

Depending on the length of the linear segment, 𝑑, three velocity profiles, 𝑑 < 𝑑𝑚, 𝑑 = 𝑑𝑚, and 

𝑑 > 𝑑𝑚,  can be achieved, as shown in Figure E.1(b).  The total time for the toolhead to traverse 

a segment, 𝜏𝑆, depends on segment length, 𝑑.  If 𝑑 ≤ 2 𝑑𝑚,  

𝜏𝑆 = 2 √
𝑑

𝑎𝑚
 (E.2) 

and if 𝑑 > 2 𝑑𝑚,  
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𝜏𝑅 = 2 √
2𝑑

𝑎𝑚
 (E.3) 

𝜏𝐶 =
𝑑 − 2 𝑑𝑚

𝑣𝑚
 (E.4) 

𝜏𝑆 = 𝜏𝑅 + 𝜏𝐶  (E.5) 

where 𝜏𝑅 is the ramp time and 𝜏𝐶 is the time at constant velocity.  For the direction-parallel infill, 

the segment length, 𝑑 = 2 𝐻 for amplitude segments and 𝑑 = 𝑃/2 for period segments.  

 
Figure E.1. (a) The direction-parallel infill specimen with amplitude, 𝐻, period, 𝑃, and length, 𝐿 and (b) three velocity 

profiles depending on the length of the linear segment, 𝑑, compared with the minimum length required to accelerate 

to maximum velocity, 𝑣𝑚.   

E.2 Efficiency Comparison 

The time to print equivalent specimens was compared using the dynamic models with the 

maximum speed of the linear stage approximated as 𝑣𝑚 = 150 (mm/s) and the maximum 

(b) 

(a) 



 150 

acceleration approximated as 𝑎𝑚 = 3000 (mm/s2).  Layer time estimates for both direction-

parallel (Figure E.1(a)) and wave infill (Figure 2.2) specimens with equal amplitude and period 

were calculated for varying thickness, as shown in Figure E.2. For thin-walled parts (i.e. specimens 

with thickness less than 20 mm) with equivalent infill, the wave infill is up to 10% more efficient.  

With typical TWS parts having more than one-thousand layers, the added efficiency of using the 

wave infill can save more than an hour per part.  

 
Figure E.2. Analytical time per layer comparison between the wave and direction-parallel infill with varying specimen 

thickness (and amplitude) and a fixed period, 𝑃 = 2.0 mm, overlap, 𝑂 = 0.15 mm, and length, 𝐿 = 100 mm.
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Appendix F 

Derivation of the Analytical Expression of the Effective Shear Modulus, 𝑮𝒀𝒁
𝑪  

 

A model for calculating the effective shear modulus, 𝐺𝑌𝑍
𝐶 , is shown in Figure F.1. When a 

shear stress 𝜏𝑌𝑍 is applied to one of the facings over a half period of the structure (Figure F.1(a)), 

the stress is transmitted to core, which deforms by 𝛿𝑌𝑍 (Figure F.1(b)). The shear stress generates 

a shear force, 𝑇𝑌𝑍:  

𝑇𝑌𝑍 = 𝜏𝑌𝑍  (𝑏
𝑃

2
)   (F.1) 

Because 𝛿𝑌𝑍 of the wave due to the shear force 𝑇𝑌𝑍 is difficult to estimate, the deformation of the 

core can be modeled as the deformation of a flat plate (as shown in Figure F.1(c)) subject to the 

same 𝑇𝑌𝑍. Using the equation for shear modulus,  

𝐺 =
𝐹 𝐴⁄

𝛿 𝑙⁄
 (F.2) 

the deformation of the flat plate is:   

𝛿𝑍𝑌 =
𝑇𝑌𝑍  𝐿𝑤𝑎𝑣𝑒 2⁄

𝑊 𝑏 𝐺𝑋𝑍
 (F.3) 

where 𝐺𝑋𝑍 is the shear modulus of the base material and  𝐴 = 𝑏 𝑊 and 𝑙 = 𝐿𝑤𝑎𝑣𝑒 is the length of 

the wave infill of Eq. (F.2) with period of 𝑃: 

𝐿𝑤𝑎𝑣𝑒 = ∫ √1 + (
2𝜋

𝑃
 𝐻 cos (

2𝜋

𝑃
𝑥))

2𝑃

0

𝑑𝑥 (F.4) 

where 𝐻 is defined in Eq. (3.1) and shown in Figure 3.2. Using Eqs. (F.2) and (F.3) and the shear 

modulus equation for Figure F.1(b), the effective shear modulus, 𝐺𝑌𝑍
𝐶 , of the core lamina is:  
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𝐺𝑌𝑍
𝐶 =

4 𝑇𝐶  𝑊

𝑃 𝐿𝑤𝑎𝑣𝑒
𝐺𝑋𝑍 (F.5) 

where 𝐴 = 𝑏
𝑃

2
  and 𝑙 = 𝑇𝐶 of Eq. (F.2) and 𝐺𝑋𝑍 for a transversely orthotropic material is:  

𝐺𝑋𝑍 =
√𝐸𝑋𝐸𝑍

2(1 + (𝜈𝑋𝑍𝜈𝑍𝑋)1/2)
 

 

(F.6) 

 
 (a) (b) (c) 
Figure F.1. (a) Model of MEX wave infill subject to shear stress, 𝜏𝑌𝑍, (b) deformation, 𝛿𝑌𝑍, of MEX wave infill core 

subject to shear force, 𝑇𝑌𝑍, and (c) plate model of the wave infill core for calculating the deformation, 𝛿𝑌𝑍, due to the 

shear force, 𝑇𝑌𝑍. 
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Appendix G 

Derivation of the Analytical Expression of the Effective Shear Modulus, 𝑮𝒀𝑿
𝑪  

 

A model for calculating the effective shear modulus, 𝐺𝑌𝑋
𝐶 , is shown in Figure G.1. The 

effective shear modulus, 𝐺𝑌𝑋
𝐶 , requires a stress analysis of the wave infill geometry subject to the 

shear stress, 𝜏𝑌𝑋, on the facing, as shown in Figure G.1(a). With this shear stress, the core structure 

deforms as shown in Figure G.1(b). To quantify 𝐺𝑌𝑋
𝐶 , of the wave infill core, the deformation and 

a generalized loading must be related. For this analysis, the wave infill core subjected to the 

generalized loading will be defined along the axes 𝜉-𝜁. The toolpath of the wave infill core is 

represented by the function:  

𝜁 = 𝐻 sin (
2𝜋

𝑃
 𝜉) (G.1) 

The slope at a position on the wave infill is:  

𝜙 =
𝑑𝜁

𝑑𝜉
 (G.2) 

An element CD of the wave infill is shown in Figure G.1(c). The shear loading of the face generates 

longitudinal and shear forces 𝑉𝐷 and 𝐻𝐷 and moment 𝑀𝐷 on the peak of the wave infill element. 

From applied forces 𝑉𝐷 and 𝐻𝐷 and moment 𝑀𝐷, equilibrium equations define the forces, 𝑁and 𝑇, 

and moment 𝑀, internal to the core:  

𝑁 = 𝑉𝐷 sin𝜙 + 𝐻𝐷 cos𝜙 (G.3) 

𝑇 = −𝐻𝐷 sin𝜙 + 𝑉𝐷 cos 𝜙 (G.4) 

𝑀 =  𝐻𝐷 (
𝑇𝐶

2
− 𝜁) − 𝑉𝐷 (

𝑃

2
− 𝜉) + 𝑀𝐷 (G.5) 
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 (a)  (b) (c) 
Figure G.1. (a) Model of MEX wave infill facing subject to shear stress, 𝜏𝑌𝑋. (b) From shear stress, 𝜏𝑌𝑋, the wave 

infill segment AD deforms to segment AD’. (c) Vertical and horizontal forces, 𝑉𝐷 and 𝐻𝐷, respectively, and moment, 

𝑀𝐷, from the shear stress, 𝜏𝑌𝑋 , are transmitted through the wave infill core element C’D’ to generate normal and 

tangential forces, 𝑁 and 𝑇, respectively, and moment, 𝑀. These internal forces and moment are used to calculate 

stresses in the core.  

Compared with normal and bending stresses, shear stresses within wave infill segments are 

assumed to be negligible in this analysis. The total stress in the wave infill is then:  

𝜎 = 𝜎𝑠 + 𝜎𝑏 (G.6) 

where 𝜎𝑠 and 𝜎𝑏 are normal and bending stresses, respectively, given by:  

𝜎𝑠 =
𝑁

𝐴𝑋
 (G.7) 

𝜎𝑏 = −
𝑀

𝐴𝑋𝑟𝑜
 (G.8) 

where 𝐴𝑋 ≈ 𝑏 𝑊 and 𝑟𝑜 is the radius of curvature of the toolpath centerline:  

𝑟𝑜 = |
(1 + (𝜁′)2)

3
2

𝜁′′
| (G.9) 

The normal, 𝜖𝑆, and angular strain, 
𝑑𝜙

𝑑𝑠
, in the wave infill element are:  

𝜖𝑆 =
𝜎

𝐸𝑋
 (G.10) 

𝑑𝜙

𝑑𝑠
= −

𝑀

𝐸𝑋 𝐽
+

𝜖𝑆

𝑟𝑜
 (G.11) 
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where 𝐸𝑋 is the X-direction elastic modulus of the base material and 𝐽 is the second moment of 

area of the cross-section (𝐼 =
1

12
𝑏 𝑊3) times a correction factor (𝜅 ≈ 1 +

3

20
(

𝑡𝑐

𝑟𝑜
)
2

+
3

112
(

𝑡𝑐

𝑟𝑜
)
4

).  

 Assuming small displacements in the core, the rotation 𝑑𝜙 and elongation 𝜖𝑆 produce 

differential axial and vertical displacements, 𝑑𝑢 and 𝑑𝜔, respectively, and rotation, 𝑑𝜃:  

𝑑𝑢 = ((−
𝑑𝜙

𝑑𝑠
) (

𝑇𝐶

2
− 𝜁) + 𝜖𝑆 cos 𝜙)𝑑𝑠 (G.12) 

𝑑𝜔 = ((
𝑑𝜙

𝑑𝑠
) (

𝑃

2
− 𝜉) + 𝜖𝑆 sin 𝜙)𝑑𝑠 (G.13) 

𝑑𝜃 = −
𝑑𝜙

𝑑𝑠
𝑑𝑠 (G.14) 

To obtain the total displacements of the wave infill element, Eqs. G.12-G.14 are integrated over 

an arc length, 𝑆, of the wave:  

𝑢 = ∫𝑑𝑢
 

𝑆

 𝑑𝑠 (G.15) 

𝜔 = ∫𝑑𝜔
 

𝑆

 𝑑𝑠 (G.16) 

𝜃 = ∫𝑑𝜃
 

𝑆

 𝑑𝑠 (G.17) 

where 𝑑𝑠 is a differential element of the desired arc length, 𝑆. To integrate Eqs. G.15-G.17, a 

change-of-variables from 𝑆 to 𝜉 must be performed such that the integration can occur over the 

half period, 
𝑃

2
, of the wave infill core. The change-of-variables requires that:  

𝑑𝑠

𝑑𝜉
= √1 + (

𝑑𝜁

𝑑𝜉
)
2

 (G.18) 

With these relationships, the applied loads to the core at point D (i.e. global forces) can be related 

to the total system displacements (i.e. global displacements) by the relationship:  
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[
𝑢
𝜔
𝜃
] =

1

𝐸𝑋 𝐴𝑋
[

𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

] [
𝐻𝐷

𝑉𝐷

𝑀𝐷

] (G.19) 

where 𝐶𝑖𝑗 are the coefficients of the wave infill core compliance matrix given by:  

𝐶11 = ∫ ((
12

𝜅 𝑊2
+

1

𝑟𝑜2
) (

𝑇𝑐

2
− 𝜁)

2

− 2(
cos𝜙

𝑟𝑜
) (

𝑇𝑐

2
− 𝜁) + cos2 𝜙)

 

𝑆

 𝑑𝑠 (G.20) 

𝐶12 = ∫ ((
−12

𝜅 𝑊2
+

1

𝑟𝑜2
) (

𝑃

2
− 𝜉) (

𝑇𝑐

2
− 𝜁) − (

cos𝜙

𝑟𝑜
) (

𝑃

2
− 𝜉)

 

𝑆

− (
sin𝜙

𝑟𝑜
) (

𝑇𝑐

2
− 𝜁) + cos𝜙 sin 𝜙)  𝑑𝑠 

(G.21) 

𝐶13 = ∫ ((
12

𝜅 𝑊2
+

1

𝑟𝑜2
) (

𝑇𝑐

2
− 𝜁) − (

cos𝜙

𝑟𝑜
))

 

𝑆

 𝑑𝑠 (G.22) 

𝐶22 = ∫ ((
12

𝜅 𝑊2
+

1

𝑟𝑜2
) (

𝑃

2
− 𝜉)

2

+ 2(
sin𝜙

𝑟𝑜
) (

𝑃

2
− 𝜉) + sin2 𝜙)

 

𝑆

 𝑑𝑠 (G.23) 

𝐶23 = ∫ ((
−12

𝜅 𝑊2
+

1

𝑟𝑜2
) (

𝑃

2
− 𝜉) − (

sin𝜙

𝑟𝑜
))

 

𝑆

 𝑑𝑠 (G.24) 

𝐶33 = ∫ (
12

𝜅 𝑊2
+

1

𝑟𝑜2
)

 

𝑆

 𝑑𝑠 (G.25) 

During the deformation of the MEX wave infill TWS, the calculation of 𝐺𝑌𝑍
𝑐  depends on 

whether the facings remain rigid during deformation of the core. From experiments, the MEX 

facings can be assumed to be rigid during shear deformation of the core.  With rigid facings, 

deformations of the wave infill core are subject to two constraints: (1) no rotation of the wave infill 

segment (i.e. 𝜃 = 0) and (2) no change in core thickness, 𝑇𝐶 (i.e. 𝜔 = 0). Applying these 

conditions to Eq. G.19 produces:  
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[
𝑢
0
0
] =

1

𝐸𝑋 𝐴𝑋
[

𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

] [
𝐻𝐷

𝑉𝐷

𝑀𝐷

] (G.26) 

𝐺𝑌𝑋
𝐶  is defined as:  

𝐺𝑌𝑋
𝐶 =

𝜏𝑌𝑋

𝛾𝑌𝑋
 (G.27) 

where shear stress, 𝜏𝑌𝑋, and shear deformation, 𝛾𝑌𝑋, for small displacements are:  

𝜏𝑌𝑋 =
𝐻𝐷

𝑃
2  𝑏

 (G.28) 

𝛾𝑌𝑋 =
𝑢

𝑇𝑐
+

𝜔

𝑃
2

 
(G.29) 

Because thickness is assumed not to change (i.e. 𝜔 = 0), 𝐺𝑌𝑋
𝐶  is:  

𝐺𝑌𝑋
𝐶 =

𝐻𝐷

𝑢
(

𝑇𝑐

𝑃
2  𝑏

) (G.30) 

𝐻𝐷 𝑢⁄  relates the horizontal force applied to the wave infill core and its resultant displacement and, 

with Eq. G.30, can be written in terms of the geometry of the wave infill. To solve for 𝐻𝐷 𝑢⁄  using 

Eq. G.26, 𝑉𝐷 and 𝑀𝐷 are eliminated from the top row to find:  

𝑢 =
𝐻𝐷

𝐸𝑋𝐴𝑋

(−𝐶33𝐶12
2 + 2 𝐶12𝐶13𝐶23 − 𝐶22𝐶13

2 − 𝐶11𝐶23
2 + 𝐶11𝐶22𝐶33)

−𝐶23
2 + 𝐶22𝐶33

 (G.31) 

which can be rewritten in terms of 
𝐻𝐷

𝑢
 and simplified:  

𝐻𝐷

𝑢
= 𝐸𝑋 𝐴𝑋

det [
𝐶22 𝐶23

𝐶23 𝐶33
]

det [

𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

]

 
(G.32) 

where det[ ] is the determinant. Substituting Eq. G.33 into Eq. G.30, 𝐺𝑋𝑌
𝐶  can be expressed in terms 

of the base material properties and the wave infill geometry:  
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𝐺𝑋𝑌
𝐶 = 𝐸𝑋 𝐴𝑋 (

𝑇𝑐

𝑃
2  𝑏

)
det [

𝐶11 𝐶12

𝐶12 𝐶22
]

det [

𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

]

 
(G.33) 
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