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ABSTRACT

This dissertation concerns the post-selection bias issue in statistical inference on

treatment effects when a large number of covariates are present in a linear or par-

tially linear model. While the estimation bias in an under-fitted model is well un-

derstood, we address a lesser known bias that arises from an over-fitted model. We

show that the over-fitting bias can be reduced or eliminated through data splitting,

and more importantly, smoothing over random data splits or bootstrap-induced

splits can be pursued to mitigate the efficiency loss. We also discuss some of the

existing methods for debiased inference and provide insights into their intrinsic

bias-variance trade-off, which leads to an improvement in bias controls. Based on

these insights, we thoroughly study the connections between our current frame-

work and the estimates of the average treatment effects under the Neyman-Rubin

causal model. A careful analysis shows that the post-selection bias issue can ex-

ist in a wider range of treatment effect estimation procedures. Under appropri-

ate conditions we show that our proposed estimators for the treatment effects are

asymptotically normal and their variances can be well estimated. We discuss the

pros and cons of various methods both theoretically and empirically, and show

that the proposed methods are valuable options in post-selection inference.

viii



CHAPTER 1

Introduction

In the modern era, we are often challenged by high dimensional data with many different

characteristics per subject. For example, biomedical scientists may study the genomes of

patients to choose a precise treatment and to learn the underlying cause of a disease; social

scientists study individual behavior from multiple perspectives to decide the effectiveness

of a training program. Thus, there is a crucial need to sort through this mass of information

in high dimensional data, and provide valid statistical inference. In recent years, two lines

of research appear to dominate the literature for high dimensional data analysis.

The first line of research provides statistical inference frameworks for scientists who

start their research by running exploratory data analysis on high dimensional data, and

form their research questions after model/variable selection. For example, one may assume

that the observed data {Yi, Xi}ni=1 are i.i.d and follow a high dimensional linear regression

model

Yi = X ′iβ + εi, i = 1, · · · , n,

where Yi is the outcome variable, Xi is the high dimensional covariate, β is a high dimen-

sional sparse vector of coefficients, and ε is a noise variable. In this context, Lee et al.

(2016) and Taylor and Tibshirani (2015) proposed a framework, called “selective infer-

ence”, which constructs exact confidence intervals for the selected regression coefficients

conditional on the selected model. As long as the selective event can be rewritten as affine

constraints on the response vector Y = (Y1, · · · , Yn)′, selective inference forms valid con-
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fidence intervals for the selected coefficients. To be more specific, suppose that M is the

set of all variables and M̂ is the selected set of variables, for j ∈ M̂ , Lee et al. (2016) finds

the confidence interval CM
j for βMj with desired coverage probability 1− q that satisfies

P
(
βMj ∈ CM

j |M̂ = M
)

= 1− q.

Since the confidence interval is obtained after conditioning on the selection event, it fol-

lows that selective inference may produce a conservative inference procedure. Other than

selective inference, Berk et al. (2013) and Kuchibhotla et al. (2018) carry out valid post-

selection inference (PoSI) by considering all possible model selection procedures that could

have produced the selected model. As the authors point out, the inferences are also gener-

ally conservative but have the advantage that they require neither perfect model selection

nor affine constraint on the selection event.

The second line of research is developed for scientists who start with a pre-specified

question (e.g., what is the treatment effect of a medical intervention, what is the effect of

interest rates on housing price, etc.), and hope to construct confidence intervals to answer

that question. In the presence of high dimensional covariates, standard point estimates in

the classical theory of statistical inference are usually biased and methodological advances

are required. In this thesis, we thoroughly study the bias issue after model selection when

the parameter of interest is a fixed quantity, and our analysis is taken to be in the traditional

sense of statistical inference.

As there is a growing literature on program evaluations, where estimation of the treat-

ment effects is a valuable part of the statistical analysis in analyzing how treatments or

social policies affect the outcome distributions of interest, we focus on the problem of

statistical inference on treatment effects in the presence of high dimensional covariates.

Suppose that we have n independent and identically distributed observations from the units

indexed by i = 1, · · · , n. For each unit, let Yi be the outcome and Di be the treatment

2



variable. In addition, each unit has a vector of features, referred to as potential confounders

denoted by Wi. We consider the parameter of interest α is in a model of the form

Yi = αDi + g(Wi) + εi, E(εi|Di,Wi) = 0, i =, 1 · · · , n, (1.1)

where g(·) is an unknown real-valued function and the εi’s are independent random er-

rors. When the dimension of the potential confounders is small relative to n, model (1.1)

has been discussed in the literature of treatment effect estimation; see Robinson (1988),

Härdle et al. (2012) and, or more recently Cattaneo et al. (2016). In this thesis, we adopt a

framework similar to that of Belloni et al. (2014). Formally, we assume that g(Wi) can be

well approximated by a sparse linear combination of the vector Xi = P (Wi) ∈ Rp, where

P (Wi) is a known transformation of Wi, and then Model (1.1) can be written as

Yi = αDi +XT

i β +Rni + εi, E(εi|Di,Wi) = 0, i = 1, · · · , n, (1.2)

where the Rni’s are approximation errors, which will be assumed to be sufficiently small,

and Xi is referred to as the covariates in the subsequent analysis.

When the dimension p is greater than n, inference about α cannot be made without

regularization or model selection. A major assumption we make in this thesis is the sparsity

in β. Formally, we require M0 = supp(β) = {j ∈ {1, . . . , p} : βj 6= 0} has s0 �

n elements. Without loss of generality, we assume in the theoretical treatment that the

response variable and the covariates are all centered so that no intercept is included in the

model. In the high dimensional regime, when the approximation errors are small, inference

on the treatment effect α is frequently carried out in two ways. One is to perform inference

after a sufficiently small model (that includes D) is selected, and the other is to perform

debiased inference directly on a regularization method.

In the first chapter of this thesis, we focus on the method where inference is carried

out on a selected model. Any reasonable model selection method can be used, for exam-
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ple Lasso (Tibshirani, 1996), the smoothly clipped absolute deviation penalized maximum

likelihood (Fan and Li, 2001), the adaptive Lasso (Zou, 2006) and many others. When

perfect model selection is attained, the resulting estimate of the treatment effect achieves

the oracle property (Fan and Li, 2001), and post selection inference is asymptotically valid,

e.g. Minnier et al. (2011). However, perfect model selection often relies on some unrealis-

tically strong assumptions, and inference procedures based on the belief of having an oracle

estimator may result in substantial biases (Belloni et al., 2014), and see also Example 1 in

Chapter 2.

Based on a selected model M̂ , a common practice is to refit with the ordinary least

squares (OLS) estimator and then perform inference on α. Since the model M̂ is randomly

chosen, there are two possible sources of bias in the OLS estimator. The first is the under-

fitting bias when an active covariate is missing in the selected model. To a large extent, the

under-fitting bias can be reduced by choosing a larger model that has a high probability of

M0 ⊂ M̂ . However, even if the model selection procedure retains all relevant variables,

we demonstrate that the OLS estimator suffers from what we will call “over-fitting bias”

when irrelevant variables are selected due to spurious correlation. The over-fitting bias

is negligible in low dimensional problems, but becomes evident when p is large. This

issue is not as much discussed in the literature but is recognized in Hong et al. (2018) and

Chernozhukov et al. (2018) in a related context. An easy solution to avoid this over-fitting

bias is the old idea of data splitting.

A main contribution of this thesis is to introduce and examine the method of repeated

data splitting, which helps minimize the efficiency loss due to data splitting or cross-

estimation. The repeated data splitting approach, which adopts random data splitting or

bootstrap-induced data splitting, is similar in spirit to the bagging of Breiman (1996). For

each split, model selection and OLS estimation are performed on two independent parts of

the data, and the proposed estimator of α is the average of the estimates over many data

splits. Data splitting has been used by other researchers for debiased inference. Wager
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and Athey (2017) used data splitting on random forests-based inference on the treatment

effect and established the asymptotic normality for the estimator under the assumption that

the subsample size with each split does not grow linearly with n, which is different from

the splits that we consider for the regression approach. Additionally, Chernozhukov et al.

(2018), Robins et al. (2017) and Wager et al. (2016) adopted the approach of data split-

ting and aggregation to estimate the treatment effect. A key difference with our work is

that these methods use non-overlapping sub-samples for parameter estimation so that the

variance of the aggregated estimator is easier to handle, but the splitting-and-aggregation

strategy is not pursued to its full potential for variance reduction. We refer this procedure

as cross-estimation. As illustrated in our numerical studies, our proposed approach results

in better efficiency by allowing repeated data splitting with overlapping sub-samples for

estimation. We also note that under stronger parametric assumptions on the noise ε, one

may follow Fithian et al. (2014) to apply the Rao-Blackwell theorem on the data splitting

estimator to obtain an optimal estimator that utilizes the full data.

In the second chapter of this thesis, when the parameter of interest α is independent

of the selected model, we discuss another line of work for inference that relies on “de-

sparsifying” via a two-stage selection procedure, which has been studied in van de Geer

et al. (2014), and Zhang and Zhang (2014) for the high dimensional models. We show

that the de-sparsified Lasso and the post-double-selection method of Belloni et al. (2014)

are asymptotically similar, and they achieve bias reduction by essentially allowing all the

covariates, including the inactive ones in Model (1.2), to be used to adjust for the treatment

variable first; but these approaches can lead to substantially reduced variability in the post-

adjusted treatment variable. Consequentially, there can be significant efficiency loss in the

estimation of α as compared to a one-stage selection procedure without adjusting for the

treatment variables D. Our analysis confirms a delicate bias-variance trade-off in the cases

where the treatment variable is correlated with some of the covariates that are not active in

the model conditional on the treatment.
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While the post-double-selection estimator reduces the under-fitting bias, it does not

completely avoid the risk of over-fitting. Therefore, building upon the post-double-selection

estimator of Belloni et al. (2014), we discuss a projection-assisted approach to reduce the

risks of the under- and over-fitting biases simultaneously. As each method has its own

strength, we provide both theoretical and numerical comparisons for those debiased infer-

ence methods. When the bias issue is not a main concern, we show that the two-stage

selection procedure is not as efficient as the repeated data splitting approach in observa-

tional studies.

In the third chapter of this thesis, we consider a special case when D ∈ {0, 1} is a

binary random variable. Under the Neyman-Ruin causal model and the unconfoundedness

assumption, see Neyman (1923) for detailed discussion, we provide an extension of the re-

peated data splitting approach to incorporate propensity score as part of the model, where

larger approximation errors can be accommodated as long as the propensity score is well es-

timated. For the second part of Chapter 4, we provide a potentially interesting extension of

the repeated data splitting approach for estimating heterogeneous treatment effect (HTE).

This can be particularly useful to study in subgroup analysis, where the goal often includes

reporting treatment effects within subgroups of subjects defined by a variable of interest.

For instance, studies in biomedical science may evolve estimating treatment effects for a

group of patients at a certain age; studies in marketing often try to estimate the treatment

effect for the individuals for whom a job training program may be most beneficial.

The rest of this thesis is structured as follows. In Chapter 2, we use motivating examples

to illustrate the bias issue for inference on α by refitting the OLS to a selected model,

and we propose the repeated data splitting approach to eliminate the over-fitting bias. In

Chapter 3, we discuss the relationship between the de-sparsified Lasso and the post-double-

selection, and propose a new projection-assisted approach to further reduce the over-fitting

bias in the post-double-selection estimator. We also identify the conditions under which the

proposed estimators of the treatment effect are asymptotically normal. In the second part of
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Chapter 3, we give theoretical and numerical comparisons for several methods of debiased

inference. In the last part of Chapter 3, we illustrate how our proposed methods can be

applied to the NCHS Vital Statistics Natality Birth Data to assess the effect of smoking on

birth weight. In Chapter 4, we discuss an extension of our framework for estimating the

average treatment effect and the heterogeneous treatment effect. Finally, we conclude our

work in Chapter 5 with some future directions and discussions.
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CHAPTER 2

Bias after Model Selection and Repeated Data

Splitting

In this chapter, we first formalize the notations used in the thesis. Then we discuss the

bias issue of the OLS estimator in a selected model, followed by a repeated data splitting

approach to remove this bias.

2.1 Notations

For i = 1, · · · , n, define Zi = (Di, X
T
i )T ∈ Rp+1, Xi = (Yi, Di, Xi), and X = {Xi}ni=1.

Also let Z = (ZT
1 , · · · , ZT

n ), X = (XT
1 , · · · , XT

n ), D = (D1, · · · , Dn)T, and Rn =

(Rn1, · · · , Rnn)T. Suppose M is a subset of {1, · · · , p}, and for any p-dimensional vec-

tor a, define aM to be the sub-vector of a indexed by M , and a−M to be the sub-vector

of a indexed by M c = {1, · · · , p}\M . Let XM = {X·j, j ∈ M}, where X·j is the jth

column of X , for j = 1, · · · , n, and ZM = (D,XM). Let PM = XM(XT
MXM)−1XT

M ,

P ∗M = ZM(ZT
MZM)−1ZT

M be the projection matrices sending vectors in Rn onto the space

spanned by XM and ZM , respectively. Also let QM = I−PM , where I is a n-dimensional

identity matrix. Let the index matrix ĨM ∈ R(|M |+1)×(p+1) be such that ĨMZi = Zi,M . Let

e1 = (1, 0, · · · , 0)T, whose dimension is context-specific. Furthermore, let Σ̂ = ZTZ/n

be the sample covariance matrix, and Σ = E(ZT
i Zi) be the population covariance of the

covariates, and similarly let ΣX = E(XiX
T
i ), and ΣDX = E(DiXi). Define ΣM as the sub-
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matrix of the population covariance matrix indexed by set M , i.e. ΣM = E(Zi,MZ
T
i,M). We

use the notation x .P y to denote x = Op(y). We use  to denote the convergence in

distribution. By 1T we denote the indicator function of an event T .

2.2 Over-fitting and under-fitting bias

Based on a properly chosen data-dependent model M̂ , the OLS estimator is

(α̂OLS, β̂
T

OLS)T = arg min{ 1

n

∑n

i=1
(Yi−αDi−XT

i β)2 : α ∈ R, β ∈ Rp, βM̂c = 0}. (2.1)

The performance of α̂OLS is evaluated by Belloni et al. (2013), which showed that this

estimator has at least the same rate of convergence as Lasso, and has a smaller bias. To

heuristically illustrate the impact of the random model M̂ on the estimate of α, we decom-

pose α̂OLS as

√
n(α̂OLS − α) = eT1

(
1

n
ZT

M̂
ZM̂

)−1
1√
n
ZT

M̂
ε︸ ︷︷ ︸

:=bn1 (over-fitting)

+

(
1

n
DT(I − PM̂)D/n

)−1
1√
n
DT(I − PM̂)(Xβ +Rn)︸ ︷︷ ︸

:=bn2( under-fitting)

. (2.2)

The first term bn1 labeled “over-fitting” is really due to the correlation between ZM̂

and ε. When M̂ is not data-dependent, bn1 has mean zero. Otherwise, we have in general

E(ε|ZM̂) 6= 0. In this case the bias of α̂OLS as an estimator of α is in the same order of

1/
√
n, which would result in biased inference.

If the approximation error Rn is small, the contributor to the“under-fitting” bias, bn2,

vanishes to zero if M0 ⊆ M̂ . Wasserman and Roeder (2009), for example, provides suf-

ficient conditions under which P(M0 ⊆ M̂) → 1, as n → ∞, holds for Lasso. Those

conditions are much weaker than the conditions needed for the perfect model selection
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in the sense of P(M0 = M̂) → 1 . Therefore, when the estimation efficiency is not a

major concern, selecting a larger model seems to be a simple remedy to avoid the under-

fitting bias. Additional methods to reduce the under-fitting bias will be discussed in Section

4. Next, we illustrate the over- and under-fitting biases through two examples when β is

sparse.

Example 1 (A numerical study with the adaptive Lasso). We start with a simple simulation

study where the adaptive Lasso is used for variable selection. Implementation details are

provided in the Appendix. We refer to this estimator as Alasso+OLS estimator. The data

are generated from model (1.2) with Rn = 0, α = 3, β = (1, 1, 0.5, 0.5, 0 · · · , 0)T ∈ Rp×1,

and (n, p) = (100, 500). We first generate a random matrix Z̃ ∈ Rn×(p+1) where each

row is randomly drawn from N(0,Σ), with Σij = 0.9|i−j|, (1 ≤ i, j ≤ p + 1). Then let

Di = 1(Z̃i1 > 0) and Xi,j = Z̃i,j be the covariates, for i = 1, . . . , n, j = 2, . . . , p+ 1. If a

model selection procedure is the oracle, then

P(M̂ = M0)→ 1, σ−1
oracle

√
n(α̂OLS − α) N(0, 1),

where σ2
oracle = σ2

ε(Σ
−1
M0

)11, σ2
ε = Var(εi), and (Σ−1

M0
)11 denotes the first diagonal element

of Σ−1
M0

. As the tuning parameter λ decreases from exp(−3) to exp(−2), we keep track of

the selected model M̂ and report the standardized bias of α̂OLS from the selected model M̂ .

In this setting, α is often refereed to as the average treatment effect (ATE).

The numerical results presented in Figure 2.1 are evaluated though 1000 Monte Carlo

samples. From Figure 2.1(a), we see that when λ is greater than exp(1) and some active

covariates are often missed in the refitting step, leading to clear under-fitting bias. When the

tuning parameter decreases from exp(2) to exp(1), the under-fitting bias decreases quickly

as more covariates are used in the ordinary least squares estimates. However, as λ decreases

further to include more and more covariates in the selected model, the bias does not vanish

but begins to increase in the opposite direction. By the nature of model selection, the over-
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Figure 2.1: (a) The left panel shows standardized bias of Alasso+OLS estimator as the
tuning parameter λ varies from exp(2) to exp(−3). The horizontal axis is − log(λ) as a
measure of model size. (b) The right panel shows the probabilities of under-fitting M0 6⊂
M̂ , perfect selection M0 = M̂ , and no under-fitting M0 ⊂ M̂ in Example 1.

selected variables are most likely highly correlated with Y in each sample. Since they

account for the variability in Y in the data, the estimated coefficient on D is attenuated. In

this particular example, the over-fitting bias can be as significant as the under-fitting bias,

and will lead to invalid statistical inference.

From Figure 2.1(b), we observe clearly that perfect model selection cannot be achieved

with high probability, but as λ decreases towards exp(−3), the under-fitting probability

decreases rapidly toward 0; and in most of the Monte Carlo samples, the selected model

M̂ contains M0. If we use a small λ in the adaptive Lasso, the main issue to be concerned

with is indeed the over-fitting bias for the estimation of α.

Example 2 (A simple model without covariates). To understand the over-fitting bias, we

consider a simple model to illustrate the point, Y = αD + ε, where ε is the white noise.

For easy notation, suppose our covariates and the response are centered and thus the in-

tercept is not considered. The treatment effect is the coefficient of D. When D is a binary

random variable, in randomized experiments, this simple model suggests that the treatment

assignment is not influenced by any potential confounding factors, both observed and un-
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observed. Due to model selection, as we discussed before, we have E(ε|XM̂) 6= 0 if M̂

contains any covariates from X .

In this example, the estimated coefficients from the working model with any endoge-

nous variables is biased. To simplify the notation, consider the case where only one co-

variate (beyond the treatment variable) is included in the working model. In this case, the

over-fitting bias can be further simplified into

Eα̂OLS − α = E

{
ρ̂1,nρ̂2,n − ĉorrn(ε,D)‖D‖2

2/n

ρ̂2
2,n − 1

‖ε‖2

‖D‖2

}
,

where ρ̂1,n = ĉorrn(ε,XM̂) and ρ̂2,n = ĉorrn(D,XM̂) are the correlations between the

over-selected variable XM̂ and D and ε, respectively. These correlations are similar to

spurious correlations, and may increase in magnitude with p, even when both X and D

are generated completely independent of ε. Fan et al. (2018) addressed a related problem

and derived the distribution of the maximum spurious correlation for high dimensional

variables.

Next, we provide a simulation study to support the heuristic given above. Let n = 100,

p ∈ {100, 500, 1000, 1500, 2000}, α = 1, εi ∼ N(0, 1), and generate Z̃i ∼ N(0, Ip+1),

then letDi = 1(Zi1 > 0) andXij = Z̃ij be the covariates, for i = 1, · · · , n, j = 2, · · · , p+

1. We proceed the model selection step with marginal screening. As the upper bound of

over-fitting bias derived in (2.10) increases with
√

log p, we plot |ρ̂1,n| and |ρ̂2,n| against
√

log p. From the results shown in Figure 2.2, we observe that the sizes of ρ̂1,n, and to a

lesser extent ρ̂2,n, increase with the dimension of the covariates.

Remark 1 (Over-fitting bias for predicting Y ). The over-fitting bias issue we discussed in

this section also applies when the goal is to predict the response Y . Consider the refitted

OLS prediction Ŷ = α̂OLSD + Xβ̂OLS, then even if M0 ⊆ M̂ , we have

E(Ŷ − αD −Xβ) = E
(
ZM̂(Z ′

M̂
Z)−1Z ′

M̂
ε
)
6= 0,
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Figure 2.2: Based on 500 Monte Carlo samples. Panel (a)-(b) show the box-plots of |ρ̂1,n|
and |ρ̂2,n| for different dimensions. The data generating process is given in the example in
Chapter 2.2.

due to the correlation between ZM̂ and ε.

2.3 Repeated data splitting

Since the over-fitting bias is mainly caused by the spurious correlation between the over-

selected variables and the noise, it can be easily avoided by the idea of data splitting. Data

splitting divides a sample of size n into two parts: the model building part of size n1 and

the estimation part of size n2 = n − n1. The first part of the data is then used for model

selection and the remaining part is used for estimation based on the selected model. When β

is sparse and by selecting a larger model in the first part, we expect the OLS estimator from

the second part of the data to be free of significant bias. Rinaldo et al. (2016) considered

data splitting for debiased inference. However, it is also clear that data splitting enables

debiased inference after model selection at a cost. As only part of the sample can be

used in the estimation step, which means a loss of efficiency even if a perfect model has

been selected. We consider using repeated splits and then averaging the estimates of α over

those splits. This strategy, similar to bagging or bootstrap aggregating proposed in Breiman
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(1996), is a machine learning ensemble meta-algorithm and can help improve the stability

and accuracy over a single split or a small number of splits. Similar ideas based on bagging

are considered in Meinshausen and Bühlmann (2010) and Meinshausen et al. (2009) for

the recovery of sparse representations. We consider two data splitting schemes, repeated

random splitting (R-Split) and bootstrap-induced splitting (B-Split), in more detail.

2.3.1 R-Split

Based on repeated random data splitting, the estimation and inference procedure for the

treatment effect α can be described as follows (Algorithm 1). First, we set n2 as the upper

bound of the selected model size to ensure the existence of the OLS estimator in any given

subsample. Next, the choice of model size is subjective but needs to be large enough for

the under-fitting bias to be negligible. In our empirical work, we use Lasso for model

selection, and choose the model size from cross-validation with an upper bound n2 minus

a small number to determine the level of penalization; we note that this can be done in

standard softwares for regularized regression, such as glmnet.

Algorithm 1 R-Split
For b← 1 to B do

Step 1. Randomly split the data {(Yi, Di, Xi)}ni=1 into group T1 of size n1 and
group T2 of size n2 = n− n1, and let vbi = 1(i∈T2), for i = 1, · · · , n.

Step 2. Select a model M̂b to predict Y based on T1.
Step 3. Refit the model with the data in T2 to get

(α̂b, β̂
T
b ) = arg min

∑
j∈T2(Yj − αDj −XT

j,M̂b
β)2,

The final “smoothed” estimate is α̃ = 1
B

∑B
b=1 α̂b.

In Algorithm 1, any reasonable model selection procedures may be used in Step 2. Our

empirical studies suggest that the variance of the aggregated estimator is a non-increasing

function of B, and the decay slows down if B grows larger than 1,000. Therefore, we

recommend usingB = 1, 000 as a good balance between computational load and statistical

inference accuracy. In the theoretical investigations, we consider B to be infinitely large.
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Let Vn2 = {V = (V1, · · · , Vn) ∈ Rn : Vi ∈ {0, 1},
∑n

i=1Vi = n2} be the space of n-

tuples with the l1 norm equals n2. The data splitting weight vb = (vb1, · · · , vbn) given in

Step 1 takes value in Vn2 with equal probability P(V = vb) = 1/
(
n
n2

)
. For a single split,

the selected model can be viewed as a function of the data X = {Yi, Di, Xi}ni=1 and the

random weight V ∈ Vn2 , i.e. M̂ = M(X , V ). The proposed R-Split estimator can then be

defined as the expectation of α̂b given the data, that is, α̃ = E(α̂b|X ).

Following a strategy proposed in Efron (2014) and the bias corrected version of Wager

et al. (2014), we can estimate the variance of the smoothed estimator through the nonpara-

metric delta method. The estimated variance takes the following form with the derivation

provided in Appendix 2.5.6

σ̂2
n = n

∑n

j=1

(
n− 1

n− n2

Ŝj

)2

− n2n
2

B2(n− n2)

∑B

b=1
(α̂b − α̃)2, (2.3)

where Ŝj = 1
B

∑B
b=1(vbj − 1

B

∑B
k=1 vkj)α̂b. In Section 3.3, we prove under certain condi-

tions, the smoothed estimator α̃ converges to a normal distribution. We can then construct

an approximate (1− q) level confidence interval for α by α̃ ± Zq/2n−1/2σ̂n, where Zq/2 is

the 1− q/2 quantile of the standard normal distribution.

2.3.2 B-Split

In Efron (2014), the author discussed a bootstrap smoothing method to account for the

variability of model selection. In that setting, model selection and parameter estimation

are performed on the same bootstrap samples, so the over-fitting bias would remain in high

dimensional problems. We find that a simple modification to Efron’s approach addresses

the bias issue. The proposed method is to draw a bootstrap sample for model selection,

and then estimate the treatment effect α using the observations that do not show up in

the bootstrap sample. On average, a bootstrap sample takes 0.632n distinct observations

from the original sample, even though the bootstrap sample size remains at n. In other
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words, we now use the bootstrap-induced splitting, by using the bootstrap sample (of size

n) to perform model selection but choosing observations not used in the bootstrap sample,

roughly 36.8% of the original sample, for parameter estimation.

Algorithm 2 B-Split
For b← 1 to B do

Step 1 Draw a bootstrap sample X ∗b := (X ∗b1, · · · ,X ∗bn) from X . Let w∗bi be the number of
times the ith observation Di appears in the bootstrap sample, and let v∗bi = 1(w∗

bi=0).
Step 2. Select a model M̂∗

b to predict Y based on X ∗b .
Step 3. Refit the selected model M̂∗

b with the observations not in the bootstrap sample
to get (α̂∗b , β̂

T∗
b )T = arg min

∑n
i=1 v

∗
bi(Yi − αDi −XT

i,M̂∗
b

β)2.

The final smoothed estimate is α̃ = 1
B

∑B
b=1 α̂

∗
b .

We refer to this bootstrap-induced data splitting as B-Split. Clearly, there is similarity

between B-Split and data carving as used in Fithian et al. (2014). Similar to R-Split, we

can view the smoothed estimator obtained from Algorithm 2 as a conditional expectation,

α̃ = E(α̂∗b |X ). The weight V ∗ = (V ∗1 , · · · , V ∗n ) is from the set V∗ = {V ∗ ∈ Rn : V ∗i =

1(W ∗
i =0), i = 1, · · · , n, (W ∗

1 , · · · ,W ∗
n) ∼ Mult(n, 1/n)}, where Mult(n, 1/n) denotes the

multinomial distribution with n trails and each event has the success probability of 1/n.

Following Efron (2014) and Wager et al. (2014), we can construct a variance estimate for

B-Split estimator as

σ̂2
n = n

∑n

j=1
Ŝ∗2j −

n2

B2

∑B

b=1
(α̂∗b − α̃)2 , (2.4)

where Ŝ∗j = 1
B

∑B
b=1(w∗bi − 1

B

∑B
k=1w

∗
ki)(α̂

∗
b − α̃).

2.3.3 Theoretical investigation of R-Split

In this section, we study the theoretical properties of the smoothed estimators. Except for

the space of weights V and V ∗, B-Split and R-Split are intrinsically the same. To avoid

redundancy, we focus on R-Split.

16



For a fixed model M and a weight V ∈ Vn2 , define the covariance matrix in the given

subsample as Σ̂V,M = n−1
2

∑n
i=1ViZi,MZ

T
i,M , with the notations that Zi,M = (Di, X

T
i,M)T.

Let ZV = (DV ,XV ) be the design matrix with rows {Zi : Vi = 1, i = 1, · · · , n} and

gV (W ) = {g(Wi) : Vi = 1, i = 1, · · · , n}. Define the projection matrix in the given

subsample as PV,M = XV,M(XT
V,MXV,M)−1XT

V,M . Furthermore, let V̆ = (V̆1, · · · , V̆n) ∈

Vn2 be from another split independent of V = (V1, · · · , Vn). Suppose M̆ = M(X , V̆ ) is

the selected model from V̆ , and M̂ = M(X , V ) denotes the selected model from V , and

let

ĥi,n =

{
E
(
Vie

T

1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X)− E
(
Vie

T

1 Σ̂−1

V̆ ,M̆
ĨM̆

∣∣∣∣X)}Ziεi,
hi,n =

{
E
(
Vie

T

1 Σ−1

V,M̂
ĨM̂

∣∣∣∣X)− E
(
Vie

T

1 Σ−1

V̆ ,M̆
ĨM̆

∣∣∣∣X)}Ziεi,
where the expectations are taken with respect to V and V̆ conditional on the data. It is

helpful to explain the difference between the two expectations in the above definitions. For

instance, in ĥi,n, note that V̆ and V have the same distributions, and the first expectation

E
(
Vie

T

1 Σ̂−1

V,M̂
ĨM̂ |X

)
= E

(
eT1 Σ̂−1

V,M̂
ĨM̂ |X , Vi = 1

)
P(Vi = 1),

so the difference of the two expectations in the definition of ĥi,n is the difference in the

means due to leaving the i-th observation out for the model selection step in obtaining M̂

but not always so in obtaining M̆ . With a change of possibly one out of n observations,

the distributions of the quantities involved and their means typically change in the order of

1/n for most model selection methods. Assumption 3 below formalizes this for technical

convenience.

Assumption 1. Data generating process. (a). Suppose {(Yi, , Di, Xi)
T}ni=1 is a random

sample, and the covariates (Di, Xi) have zero mean and have bounded support with an

upper bound C, i.e. |Di| ≤ C, and |Xij| ≤ C, for i = 1, · · · , n, j = 1, · · · , p. (b). The
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error variable εi is sub-Gaussian with E(εi|Zi) = 0 and E(ε2
i |Zi) = σ2

ε , for i = 1, · · · , n.

Assumption 2. The split ratio rv = n2/n is a constant in (0, 1). The selected model sizes

in all split are bounded by s with s = o(n).

Assumption 3. The quantities ĥi,n’s satisfy
∑n

i=1 ĥi,n/
√
n = op(1).

Assumption 4. There exists a random vector ηn ∈ Rp+1 which is independent of ε, and

||ηn||∞ is bounded in probability, and satisfies

∣∣∣∣∣∣∣∣rvE(eT1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X)− ηn∣∣∣∣∣∣∣∣
1

= op

(
1/
√

log p
)

Assumption 5. There is negligible amount of under-fitting bias after averaging over all

splits in the sense that

E
(

(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)gV (W )/
√
n|X

)
= op(1).

Theorem 1 (Asymptotic normality of R-Split estimator). Under Assumptions 1-5, the

smoothed estimator from R-Split has the following representation

√
n(α̃− α) = ηT

n

1√
n

n∑
i=1

εiZi + op(1). (2.5)

Therefore, by letting σ̃n = σε

(
ηT
nΣ̂nηn

)1/2

, we have

σ̃−1
n

√
n(α̃− α) N(0, 1). (2.6)

Assumption 1 requires bounded covariates to simplify our theoretical proofs but it can

be relaxed to include sub-Gaussian covariates. Assumption 2 plays a limit on the sparsity

level of the model. This assumption for data splitting is weaker than the ultra-sparsity

assumption needed for the post-double-selection or the de-sparsified Lasso. Assumption 3
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has been discussed following the definitions of ĥi,n and hi,n. Assumption 4 says that the

conditional expectation of matrix Σ̂−1

M̂
for the randomly selected model M̂ is asymptotically

independent of the noise, regardless of which point in the sample space is conditioned on.

The error rate of 1/
√

log p is a weak requirement for the assumed data generating process.

Assumption 5 is to ensure that the under-fitting bias to be small. Since the selected model

size allowed in Assumption 2 can be relatively large, we can choose a larger model than

usual to control the under-fitting risk. The proof of the theorem is given in Appendix 2.5.2.

Since ηn plays a key role in the asymptotic expression of R-Split estimator, we consider

a special case that M̂ = M , where M is a fixed model. In this case, Assumption 3 is

immediately satisfied since ĥi,n = 0, for i = 1, · · · , n. Then, ηn reduces to eT1 Σ̂−1
M ĨM , and

thus the linear representation in (2.5) simplifies into

√
n(α̃− α) = eT1 Σ̂−1

M

1√
n

n∑
i=1

εiZi,M + op(1).

Therefore, the smoothed estimator α̃ shares the same asymptotic expression as the α esti-

mate obtained from refitting model M with the full sample.

To consistently estimate the variance of the smoothed estimator, we adopt the nonpara-

metric delta method proposed in Efron (2014). A cleaner version of the linear representa-

tion can be provided to build the foundation of the nonparametric delta method, however,

stronger conditions are then required. We make the following assumptions.

Assumption 6. In addition to Assumption 2, we have s log p = o(n).

Assumption 7. The quantities hi,n satisfy
∑n

i=1 hi,n/
√
n = op(1).

Assumption 8. There exists a constant vector ξn ∈ Rp+1 that satisfies ||ξn||∞ ≤ C1 for a

constant C1 and

∣∣∣∣∣∣∣∣rvE(eT1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X)− ξn∣∣∣∣∣∣∣∣
1

= op

(
1/
√

log p
)
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Assumption 9. The minimum s-sparse eigenvalues of the population covariance matrix is

positive and bounded away from zero with λmin,s(Σ) ≥ κ0 > 0. There exists a positive

constant K <∞ such that, ∀V ∈ Vn2 , P
(

lim supn→∞ ||Σ̂−1

V,M̂
e1||2 ≤ K

)
= 1.

Assumption 9 requires that uniformly over all possible models, the l2-norm of the first

column of inverse of the sample covariance matrix in a subsample of size n2 is bounded

above from infinity. Under Assumption 1 and Assumptions 6-9, we have

α̃ = α +
1

n

n∑
i=1

U(Xi) + op(1/
√
n), (2.7)

where U(Xi) = εiξ
T
nZi. Since EU(Xi) = 0 and EU(Xi)2 < ∞, α̃ is asymptotically linear

with the influence function U(Xi). The proof is provided in Appendix 2.5.3. As n → ∞,

α̃ is asymptotically normally distributed,

σ−1
√
n (α̃− α) N(0, 1), (2.8)

where σ2 = EU(Xi)2, and σ2 can be consistently estimated by the nonparametric delta

method so that σ̂n − σ = op(1), where σ̂n is provided in (2.3) for R-Split. Similarly, we

have (2.8) holds for B-Split with σ̂n provided in (2.4).

Remark 2 (Relationship between the oracle and the smoothed estimators). In R-Split, if

perfect model selection is achieved in all splits, the influence functionU(Xi) and the asymp-

totic variance reduces to U(Xi) = εie
T
1 Σ−1

M0
Zi,M0 and σ2 = E{U(Xi)2} = σ2

ε(Σ
−1
M0

)11. In

this case σ2 equals the asymptotic variance of the oracle estimator, which implies that

under model selection consistency, the smoothed estimator α̃ achieves oracle efficiency.

However, if M̂b has a positive probability to be a larger model than M0, α̃ is not expected

to be oracle.

Remark 3 (Comparison between R-Split and cross-estimation). As we mentioned in Sec-

tion 1, cross-estimation can be used to removed the over-fitting bias. Take 2-fold cross-
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estimation for simplicity, suppose V ∈ Vn2 with n2 = n/2, then α can be estimated by

α̃cv =
1

2

{
eT1

(
1

n

n∑
i=1

ViZi,M̂1
Zi,M̂1

)−1
1

n

n∑
i=1

ViZi,M̂1
Yi

+ eT1

(
1

n

n∑
i=1

(1− Vi)Zi,M̂2
Zi,M̂2

)−1
1

n

n∑
i=1

(1− Vi)Zi,M̂2
Yi

}
,

where M̂1 is the selected model from the subsample indexed by {i : Vi = 0, i = 1, · · · , n},

and M̂2 is selected from subsample indexed by {i : Vi = 1, i = 1, · · · , n}. We show in

Appendix 2.5.4 that the variance of α̃cv satisfies

Var(
√
n(α̃cv − α)) = E

{
Var(
√
n(α̃cv − α)|X )

}
+ Var(

√
n(α̃− α)) ≥ Var(

√
n(α̃− α)).

(2.9)

Thus, R-Split is more efficient than cross-estimation.

2.4 Finite-sample comparison between R-Split and B-Split

We have the flexibility to choose rv = n2/n in R-Split, where n2 is the number of the

observations used in the estimation. Let ω be the variance of the estimated effect α̂b from

a single split, and ρ denotes the correlation between the estimates of two different random

splits. Then the variance of R-Split estimator is of the same order of ρω as B →∞,

Var(α̃) =
1

B2

∑B

b=1
Var(α̂b) +

1

B2

∑
b1 6=b2

Cov(α̂b1 , α̂b2),

=
1

B
Var(α̂1) + (1− 1

B
)Var(α̂1)corr(α̂1, α̂2),

→ Var(α̂1)ρ := ωρ, as B →∞.

From this point of view we see the choice of the ratio rv can play a role in Var(α̃): by

making rv smaller, we reduce the overlap between different subsamples for estimation,
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Figure 2.3: Summary for the equal correlation design with Σjk = 0.3 and |M̂ | = 10 as the
fraction of the data for model building 1− rv changes from 0.2 to 0.9. The horizontal lines
capture the performance of B-Split estimator, which do not change with rv. Panel (a) shows
the standardized bias of the smoothed estimator. Panel (b) shows the relative efficiency of
the smoothed estimators against the oracle estimator.

which leads to decreased correlation ρ. However, the smaller sample size reduces the

accuracy of estimation in each split, which results in larger ω. The optimal choice of rv

at a given sample size is difficult to pin down and it depends on the underlying model. To

illustrate this point, we choose B = 2000 in this subsection so that ωρ provides a more

accurate approximation of Var(α̃).

Consider the same data generating process in Example 1 except for we set Σjk =

0.31(j 6=k), (n, p) = (100, 2000) or (200, 2000), and β = (1, 1, 1, 1, 0, · · · , 0)T. We use

Lasso for model selection, is implemented with R package glmnet. Furthermore, in each

split, we select a model from the Lasso path whose model size is the closest to s = 10,

a model size that keeps the under-fitting risk at a negligible level with strong signals. We

report two quantities through simulation: (a) the ratio of the bias of R/B-Split estimator rel-

ative to the standard deviation of the oracle estimator, (b) the asymptotic relative efficiency

of R/B-Split estimator to the oracle estimator.

The results are shown in Figure 2.3 as rv varies from 0.1 to 0.8 for R-Split. We summa-
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rize the results in two points. From Figure 2.3(a), B-Split tends to have small bias and so

does R-Split with rv below 0.4. From Figure 2.3(b), the smoothed estimators from B-Split

and R-Split with rv ≈ 0.4 are nearly as efficient as the oracle at n = 200 but the relative

efficiency is never above 0.7 at n = 100. In this model, B-Split does well, and R-Split

with at least 60% of the data in the model selection stage does almost as well in terms of

both bias and variance. For smaller n (say n = 100), the under-fitting bias would be an

issue if n1, the subsample size for model selection is small. Then, R-Split benefits from

the flexibility of choosing rv to be small, that is, R-Split can outperform B-Split in such

cases. For larger n, B-split is usually a solid choice in this case and many other cases that

we have considered. The impact of the choice of rv in R-Split is expected to diminish as

n increases. Since R-Split and B-Split have similar performances whenever rv ∈ [0.6, 0.7],

in the following subsections, we focus on the performance of R-Split with rv = 0.7.

2.5 Proofs

2.5.1 Useful lemmas

In this section, we prove two useful lemmas that shall be used in the later proofs.

Lemma 1. Under Assumption 1, ‖ZT ε/
√
n‖∞ = Op(

√
log p).

Proof : Let δj = (
∑n

i=1 Z
2
ij)

1/2 and Uij = εiZij/δj . For K > 0, we have

P

(
max
j

∣∣∣ n∑
i=1

Zijεi/
√
n
∣∣∣ >√log pK

)

≤ E

{
P

(
max
j
δj ·max

j

∣∣∣ n∑
i=1

Uij/
√
n
∣∣∣ >√log pK

∣∣∣∣ Z
)}

≤ pE

{
P

(∣∣∣ n∑
i=1

Uij/
√
n
∣∣∣ >√log pK/max

j
δj

∣∣∣∣ Z
)}

≤ 2 exp

(
log p− log pK2

2σ2
εC

2

)
,
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and the right hand side converges to zero when K is sufficiently large.

As an application of this Lemma, we can provide an upper bound of the over-fitting

bias. Following the derivation of the bias decomposition in (2.2), and under the assumption

that there exists a positive constant λ0 such that

P
(

lim
n→∞

λ−1
s,min

( 1

n
ZTZ

)
≥ λ0

)
= 1,

we have

bn1 =eT1

(
1

n
ZT

M̂
ZM̂

)−1
1√
n
ZT

M̂
ε

≤‖e1‖2λ
−1
min

(
1

n
ZT

M̂
ZM̂

)
‖ 1√

n
ZT

M̂
ε‖2

≤λ−1
min

(
1

n
ZT

M̂
ZM̂

)
|M̂ |1/2 · ‖ZTε/

√
n‖∞

=Op

(
|M̂ |1/2

√
log p

)
. (2.10)

Lemma 2. Under Assumptions 1 and 13 , we have

max
|M |≤s

∣∣DT(I− PM)D/n− (Σ11 − ΣT

D,MΣ−1
M ΣD,M)

∣∣ = op(1),

where PM = XM(XT
MXM)−1XT

M .

Proof : Denote ‖A‖ = {tr(AAT)}1/2 for an arbitrary matrix A. To obtain the result, we

prove the following two uniform convergence results hold:

max
|M |≤s

‖n−1DTXM − ΣD,M‖ = op(1), (2.11)

max
|M |≤s

‖n−1XT

MXM − ΣM‖ = op(1). (2.12)
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In (2.11), let
∑n

i=1DiXij/n = σ̂D,j and ΣD,M = (σD,j, j ∈M) ∈ R|M |, we have

‖n−1DTXM − ΣD,M‖ =

{∑
j∈M

(σ̂D,j − σD,j)2

}1/2

≤ s1/2 max
j∈M
|σ̂D,j − σD,j|,

when |M | ≤ s. Therefore, ∀ε > 0 by adopting similar arguments used in Lemma 1

P
(

max
|M |≤s

‖n−1DTXM − ΣD,M‖ > ε

)
≤
∑
|M |≤s

∑
j∈M

P
(
|σ̂D,j − σD,j| > s−1/2ε

)
≤sps2 exp

(
− nε2

2C2s

)
= exp

(
s log p+ log s− nε2

2C2s

)
. (2.13)

By Assumption 13, the right hand of (2.13) converges toward 0 as n → ∞. Applying

similar techniques to those used in (2.11), we can also demonstrate (2.12). As a minor

generalization of this lemma, we have

P
(

max
j

max
|M |≤s

‖ZT

j ZM/n− Σj,M‖2 > ε

)
≤ exp

(
log p+ s log p+ log s− nε2

2C2s

)
= o(1).

Similarly, since the covariates are bounded by same constant C and n2/n = rv is bounded

away from 0 and 1, we have for a random subsample V ,

P
(

max
j

max
|M |≤s

‖ZT

j,VZV,M/n2 − Σj,M‖2 > ε

)
≤ E

{
P
(

max
j

max
|M |≤s

‖ZT

j,VZV,M/n2 − Σj,M‖2 > ε | V
)}

≤ exp

(
log p+ s log p+ log s− rvnε

2

2C2s

)
= o(1).

2.5.2 Proof of Theorem 1 in Section 2.3.3

In this part, we provide the proof of Theorem 1.

Proof :
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Step 1. The estimated treatment effect based on model M through ordinary least

squares by using full sample can be written as

α̂M = eT1 (ZT

MZM)−1ZT

MY

= α + eT1 (ZT

MZM)−1ZT

Mε+ eT1 (ZT

MZM)−1ZT

M(Xβ +Rn)

= α + eT1 (ZT

MZM)−1ĨMZTε+ (DT(I − PM)D)−1DT(I − PM)(Xβ +Rn),

(2.14)

where e1 = (1, 0, · · · , 0)T ∈ Rp+1, and PM = XM(XT
MXM)−1XT

M . Since the decompo-

sition given above is very important to understand the bias issue after model selection, we

provide a detailed derivation for the last equality. By block matrix inversion, the first row

of matrix (ZT
MZM)−1 equals

(
(DT(I − PM)D)−1,−(DT(I − PM)D)−1DTXM(XT

MXM)−1
)
,

and then multiply this quantity by ZT
M = (DT,XT

M), we get

eT1 (ZT

MZM)−1ZT

M =
(
(DT(I − PM)D)−1,−(DT(I − PM)D)−1DTXM(XT

MXM)−1
)

(DT,XT

M)

= (DT(I − PM)D)−1DT − (DT(I − PM)D)−1DTXM(XT

MXM)−1XT

M

= (DT(I − PM)D)−1DT − (DT(I − PM)D)−1DTPM

= (DT(I − PM)D)−1DT(I − PM). (2.15)

Therefore, we obtain

eT1 (ZT

MZM)−1ZT

M(Xβ +Rn) = (DT(I − PM)D)−1DT(I − PM)(Xβ +Rn).

For a random model M̂ , we may replace M with M̂ and get the decomposition provided in
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(2.2) in Section 2.2:

√
n(α̂OLS − α) = eT1

(
1

n
ZT

M̂
ZM̂

)−1
1√
n
ZT

M̂
ε

+

(
1

n
DT(I − PM)D

)−1
1√
n
DT(I − PM̂)(Xβ +Rn).

Step 2. Now suppose we take a subsample of size n2 indexed by weight V = (V1, · · · , Vn),

let ZV = (DV , XV ) be the design matrix with rows {Zi : Vi = 1, i = 1, · · · , n} and

gV (W) = {g(Wi) : Vi = 1, i = 1, · · · , n}. Denote the covariance matrix and the projec-

tion matrix in this subsample as Σ̂V,M = ZT
V,MZV,M/n, and PV,M = XV,M(XT

V,MXV,M)−1XT
V,M

respectively. Let X = {(Yi, Zi)}ni=1. Consider the smoothed estimator α̃:

√
n(α̃− α) =E

(√
n(α̂M̂ − α0)|X

)
=

1√
n

n∑
i=1

E
(
eT1 Σ̂−1

V,M̂
ĨM̂Vi

∣∣∣∣X)Ziεi
+ E

(√
n(DT

V (I − PV,M̂)DV )−1DT

V (I − PV,M̂)gV (W)|X
)

=
1√
n

n∑
i=1

ηT

nZiεi + rn1 + rn2,

where

rn1 =
1√
n

n∑
i=1

{
E
(
eT1 Σ̂−1

V,M̂
ĨM̂Vi

∣∣∣∣X)− ηn}Ziεi,
rn2 = E

(√
n(DT

V (I − PV,M̂)DV )−1DT

V (I − PV,M̂)XV β|X
)
.

We next show that rn1 = op(1) and rn2 = op(1) in Steps 3 and 4 respectively.
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Step 3. (Behavior of rn1.) In rn1, by conditioning on Vi = 1

E
(
eT1 Σ̂−1

V,M̂
ĨM̂Vi

∣∣∣∣X) = E
(
eT1 Σ̂−1

V,M̂
ĨM̂Vi

∣∣∣∣X , Vi = 1

)
P(Vi = 1|X )

= rvE
(
eT1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X , Vi = 1

)
.

The term E
(
eT1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X , Vi = 1

)
is the average of eT1 Σ̂−1

V,M̂
ĨM̂ over all possible models

but excluding the ith point. Let Ṽ = (Ṽ1, · · · , Ṽn) be another set of splitting weight that

is independent with V , and denote M̃ as the selected model indexed by Ṽ . Following the

definition in Assumption 3, the remainder term rn1 can be decomposed into two parts

rn1 =

{
rvE

(
eT1 Σ̂−1

Ṽ ,M̃
ĨM̃

∣∣∣∣X)− ηn}T
1√
n

n∑
i=1

Ziεi︸ ︷︷ ︸
ran1

+
1√
n

n∑
i=1

{
E
(
eT1 Σ̂−1

V,M̂
ĨM̂Vi

∣∣∣∣X)− E
(
eT1 Σ̂−1

M̃,Ṽ
ĨM̃Vi

∣∣∣∣X)}T

Ziεi︸ ︷︷ ︸
rbn1

.

By Assumption 3, rbn1 =
∑n

i=1 hi,n/
√
n = op(1). Next, by Hölder’s inequality, Assumption

4 and Lemma 1, we have

ran1 ≤
∥∥rvE(eT1 Σ̂−1

Ṽ ,M̃
ĨM̃
∣∣X )− ηn∥∥1

· ‖ZTε/
√
n‖∞ = op(1).

Therefore, rn1 = op(1).

Step 4. (Behavior of rn2.) rn2 captures the under-fitting bias, and is small by Assump-

tion 5:

rn2 = E
(

(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)gV (W )/
√
n|X

)
= op(1).
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Finally, the results in Steps 3 and 4 imply

√
n(α̃− α) = ηT

n

1√
n

n∑
i=1

εiZi + op(1).

2.5.3 Derivation of (2.7) in Section 2.3.3

In this part, we provide the derivation of expression that includes the influence functions

in (2.7) is provided in 2.5.3. Following similar idea to the proof of Theorem 1, by direct

calculation

√
n(α̃− α) =E

(√
n(α̂M̂ − α0)|X

)
=

1√
n
ξT

n

n∑
i=1

Ziεi + tn1 + tn2 + rn2,

where

tn1 =
1√
n

{
E
(
eT1 Σ−1

M̂
ĨM̂Vi

∣∣∣∣X)− ξn}T n∑
i=1

Ziεi,

tn2 =
1√
n

n∑
i=1

E
{(

eT1 Σ̂−1

V,M̂
ĨM̂ − e

T

1 Σ−1

M̂
ĨM̂

)T

ViZiεi

∣∣∣∣X} .
In this expression, tn1 can be bounded following similar steps in Section B.1 under As-

sumptions 7 and 8. In tn2, let B =

 n

n2


−1

and we have

tn2 =
B∑
b=1

P(V = vb)
(
eT1 Σ̂−1

vb,M̂b
− eT1 Σ−1

M̂b

)T 1

n

n∑
i=1

vibεiZi,M̂b

=
1

B

B∑
b=1

(
eT1 Σ̂−1

vb,M̂b
− eT1 Σ−1

M̂b

)T 1

n

n∑
i=1

vibεiZi,M̂b
=:

1

B

B∑
b=1

tn,vb .

Denote by T1,b the subsample for model building, and T2,b the subsample for parameter

estimation. Define µi,b = eT1 (Σ̂−1

vb,M̂b
−Σ−1

M̂b
)Zi,M̂b

which is independent with {εi, i ∈ T2,b},
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then tn,vb satisfies

tn,vb =
(
eT1 Σ̂−1

vb,M̂b
− eT1 Σ−1

M̂b

)T 1√
n

n∑
i=1

vibεiZi,M̂b

=

√
n

n2

∑
i∈T2,b

εiµi,b :=
√
nubσε

1

n2

(∑
i∈T2,b

µ2
i,b

)1/2

,

where

ub =
(∑

i∈T2,b
µ2
i,b

)−1/2 ∑
i∈T2,b

εiµi,b.

We note that {u1, · · · , uB} are dependent but identically distributed random variables. The

variance of tn,vb then equals

Var(tn,vb) = E (Var(tn,vb)|µi,b) + Var (E(tn,vb)|µi,b) =
nσ2

ε

n2

E
( 1

n2

∑
i∈T2,b

µ2
i,b

)
.

Next, we provide an upper bound for
∑

i∈T2,b µ
2
i,b/n2. Note that

1

n2

∑
i∈T2,b

µ2
i,b = eT1

(
Σ̂−1

vb,M̂b
− Σ−1

M̂b

) 1

n2

∑
i∈T2,b

Zi,M̂b
ZT

i,M̂b

(
Σ̂−1

vb,M̂b
− Σ−1

M̂b

)
e1

= eT1 Σ̂−1

vb,M̂b

(
Σ̂vb,M̂b

− ΣM̂b

)
Σ−1

M̂b

(
Σ̂vb,M̂b

− ΣM̂b

)
Σ̂−1

vb,M̂b
e1

≤ λmax

(
Σ−1

M̂b

)∥∥∥eT1 Σ̂−1

vb,M̂b

(
Σ̂vb,M̂b

− ΣM̂b

)∥∥∥2

2

≤ λ−1
min

(
ΣM̂b

)∥∥∥eT1 Σ̂−1

vb,M̂b

∥∥∥2

2
λ2

max

(
Σ̂vb,M̂b

− ΣM̂b

)
≤ K2/κ0λ

2
max

(
Σ̂vb,M̂b

− ΣM̂b

)
,

where the last step is obtained by Assumption 9. Since the covariates are bounded by

C, by applying Corollary 5.50 in Vershynin (2016), we obtain that under Assumption 6

and the fact that M̂b is selected independent with Σ̂vb , P{λmax(Σ̂vb,M̂b
− ΣMb

) ≥ ε} ≤
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2 exp(−nε2/C). Therefore for all possible models,

P
[
λmax

(
Σ̂vb,M̂b

− ΣM̂b

)
≥ ε for any M̂b

]
≤ 2 exp

(
s log p− nε2

C

)
, (2.16)

by Assumption 6, and the above upper bound converges to 0 as n → ∞. Therefore with

probability tending to 1, for all ε > 0 and for all vb ∈ Vn2 , n−1
2

∑
i∈T2,b µ

2
i,b is bounded by ε.

By letting Hε
n = {for all vb ∈ Vn2 , n

−1
2

∑
i∈T2,b µ

2
i,b ≤ ε}, we have P(Hε

n)→ 1 as n→∞.

For any ε0 > 0,

P(tn2 > ε0)

= P
{ 1

B

∑B

b=1
ubσεn

−1
2

(∑
i∈T2,b

µ2
i,b

)1/2

> n−1/2ε0

}
≤ P

{
σε

( 1

B

∑B

b=1
u2
b

)1/2( 1

B

∑B

b=1

1

n2

∑
i∈T2,b

µ2
i,b

)1/2

> n−1/2n
1/2
2 ε0

}
≤ P

{
σε

( 1

B

∑B

b=1
u2
b

)1/2( 1

B

∑B

b=1

1

n2

∑
i∈T2,b

µ2
i,b

)1/2

> n−1/2n
1/2
2 ε0

∣∣∣ Hε
n

}
P(Hε

n) + P(Hε,c
n )

≤ P
{
σεε
( 1

B

∑B

b=1
u2
b

)1/2

> n−1/2n
1/2
2 ε0

}
P(Hε

n) + P(Hε,c
n )

≤
ε2σ2

εvar
{(

1
B

∑B
b=1 u

2
b

)1/2 }
n−1n2ε20

P(Hε
n) + P(Hε,c

n )

= O(ε2ε−2
0 )P(Hε

n) + P(Hε,c
n ).

Therefore, by letting ε go to zero, we have tn2 = op(1). This completes the proof.

2.5.4 Derivation of (2.9) in Section 2.3.3

In this subsection, we provide the derivation of the comparison between cross-estimation

and R-Split is provided in 2.5.4. Since V and V c = {1 − V1, · · · , 1 − Vn} are identically

distributed random vectors, then

E(
√
n(α̃cv − α)|X ) =

√
nE

eT1
(

1

n

n∑
i=1

ViZi,M̂1
Zi,M̂1

)−1
1

n

n∑
i=1

ViZi,M̂1
εi

∣∣∣∣X
 =

√
n(α̃− α).
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Thus Var {E(
√
n(α̃cv − α)|X )} = Var(

√
n(α̃− α)), and

Var(
√
n(α̃cv − α)) = E

{
Var(
√
n(α̃cv − α)|X )

}
+ Var

{
E(
√
n(α̃cv − α)|X )

}
= E

{
Var(
√
n(α̃cv − α)|X )

}
+ Var(

√
n(α̃− α))+ ≥ Var(

√
n(α̃− α)).

2.5.5 Derivation of (3.12) in Section 3.2

In this part, we provide the proof of the alternative expression for the variance of R-Split

that has been shown in Section 2.5.5. Recall the additional assumptions we made in Section

5.

Assumption 10. On average, the maximum “correlation” between D and X after con-

trolling for the effects in XM̂ is bounded above by
√

log p in probability, or more formally,

∣∣∣∣∣
∣∣∣∣∣E
{
DT
V (I − PM̂,V )XV /n

DT
V (I − PM̂,V )DV /n

∣∣∣∣X
}∣∣∣∣∣
∣∣∣∣∣
∞

= Op(
√

log p). (2.17)

Assumption 11. The maximal s−sparse eigenvalue satisfies P(lim supn→∞ λmax,s(X
TX/n) ≤

K0) = 1. The maximum eigenvalue of Σ̂ is bounded by log p in probability.

We start with generalizing the result stated in (2.16). For all possible models,

P
{
λmax

(
Σ̂V,M̂V

− Σ̂n,M̂V

)
≥ ε
}

(2.18)

≤P
{
λmax

(
Σ̂V,M̂V

− ΣM̂V

)
≥ ε/2

}
+ P

{
λmax

(
Σ̂n,M̂V

− ΣM̂V

)
≥ ε/2

}
≤E P

{
λmax

(
Σ̂V,M̂V

− ΣM̂V

)
≥ ε/2 | V

}
+ E P

{
λmax

(
Σ̂n,M̂V

− ΣM̂V

)
≥ ε/2 | V

}
≤4 exp

(
s log p− n2ε

2

C

)
= 4 exp

(
s log p− rvnε

2

C

)
= o(1).

Let η̂n = rvE
(
eT1 Σ̂−1

V,M̂
IM̂ |X

)T

, by Assumption 4, we have ||ηn − η̂n||1 = op(1/
√

log p).
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We next prove the followings

ηT

nΣ̂nηn = η̂T

nΣ̂nη̂n + op(1), (2.19)

η̂T

nΣ̂nη̂n ≤ r2
vE
(
eT1 Σ̂−1

V,M̂
Σ̂M̂ Σ̂−1

V,M̂
e1|X

)
= E

(
rve

T

1 Σ̂−1

V,M̂
e1|X

)
+ op(1). (2.20)

With (2.19) and (2.20), if we further assume the selected model size satisfies ultra-sparsity

in the sense that |M̂ | log p/
√
n = o(1), we obtain

E
(
rve

T

1 Σ̂−1

V,M̂
e1|X

)
= E

{
(Σ−1

M̂
)11

∣∣∣∣X}+ op(1)

by Lemma 2 under Assumptions 1, 4 and 13. Therefore, we have σ̃2
n ≤ σ2

εE
{

(Σ−1

M̂
)11

∣∣∣∣X}+

op(1). We next prove (2.19) in step 1 and prove (2.20) in step 2.

Step 1. In (2.19), by Assumptions 11 and 4,

ηT

nΣ̂nηn − η̂T

nΣ̂nη̂n = (ηn − η̂n)TΣ̂n(ηn − η̂n) + 2(ηn − η̂n)TΣ̂nη̂n

≤ λmax(Σ̂n)||ηn − η̂n||21 + ||ηn − η̂n||1||Σ̂nη̂n||∞

= op(1) + ||ηn − η̂n||1||Σ̂nη̂n||∞,

In the second part,

Σ̂nη̂n =rvE
(

Σ̂nI
T

M̂
Σ̂−1

V,M̂
e1|X

)
=E


(

1

n

n∑
i=1

ZiZ
T

i,M̂
− 1

n2

n∑
i=1

ViZiZ
T

i,M̂

)(
1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)−1

e1

∣∣∣∣X


+ E


(

1

n2

n∑
i=1

ViZiZ
T

i,M̂

)(
1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)−1 ∣∣∣∣X


:=qan1 + qbn1,
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where qbn1 can be further simplified

qbn1 = E

{
DT
V (I − PM̂,V )XV

DT
V (I − PM̂,V )DV

∣∣∣∣X
}
,

and satisfies
∣∣∣∣qbn1

∣∣∣∣
∞ = Op(

√
log p) by Assumption 3.11. In qan1,

||qan1||∞ = E


(

1

n

n∑
i=1

ZiZ
T

i,M̂
− 1

n2

n∑
i=1

ViZiZ
T

i,M̂

)(
1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)−1

e1

∣∣∣∣X


≤ rvE
{
||Σ̂−1

V,M̂
e1||2 max

j
||ZT

j ZM̂/n− Σj,M̂ ||2
∣∣∣∣X}

+ rvE
{
||Σ̂−1

V,M̂
e1||2 max

j
||ZT

j,VZV,M̂/n2 − Σj,M̂ ||2
∣∣∣∣X}

.P rvK ·max
j

max
|M |≤s

||ZT

j ZM/n− Σj,M ||2

+ rvKE
{

max
j

max
|M |≤s

||ZT

j,VZV,M/n2 − Σj,M ||2
∣∣∣∣X}

.P op(1) + rvKE
{

max
j

max
|M |≤s

||ZT

j,VZV,M/n2 − Σj,M ||2
∣∣∣∣X} ,

where the last inequality is obtained by Lemma 2. Define an event

E
{

max
j

max
|M |≤s

||ZT

j,VZV,M/n2 − Σj,M ||2
}

=E
{

max
j

max
|M |≤s

||ZT

j,VZV,M/n2 − Σj,M ||2
∣∣∣∣ Lεn}P(Lεn)

+ E
{

max
j

max
|M |≤s

||ZT

j,VZV,M/n2 − Σj,M ||2
∣∣∣∣ Lε,cn }P(Lε,cn )

≤s1/2(C + ||Σ||∞) exp

(
log p+ s log p+ log s− rvnε

2

2C2s

)
+ ε = o(1);

by letting ε go to zero, then we get ||qan1||∞ = op(1). This completes the proof of

(2.19).
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Step 2. For the first part of (2.20), we have

η̂T

nΣ̂nη̂n =r2
vE
(
eT1 Σ̂−1

V,M̂
ĨM̂ |X

) 1

n
ZTZE

(
ĨT

M̂
Σ̂−1

V,M̂
e1|X

)
=r2

vE
(
eT1 Σ̂−1

V,M̂
ZT

M̂
/
√
n|X

)
E
(
ZM̂ Σ̂−1

V,M̂
e1/
√
n|X

)
≤r2

vE
(
eT1 Σ̂−1

V,M̂
Σ̂M̂ Σ̂−1

V,M̂
e1|X

)
.

Next we prove the difference between r2
vE
(
eT1 Σ̂−1

V,M̂
Σ̂−1

M̂
Σ̂−1

V,M̂
e1|X

)
and E

(
rve

T
1 Σ̂−1

V,M̂
e1|X

)
is negligible. Consider

r2
vE
(
eT1 Σ̂−1

V,M̂
Σ̂M̂ Σ̂−1

V,M̂
e1|X

)
− E

(
rve

T

1 Σ̂−1

V,M̂
e1|X

)
=r2

vE
(
eT1 Σ̂−1

V,M̂
Σ̂M̂ Σ̂−1

V,M̂
e1|X

)
− E

(
rve

T

1 Σ̂−1

V,M̂
Σ̂V,M̂ Σ̂−1

V,M̂
e1|X

)
=r2

vE
{
eT1 Σ̂−1

V,M̂

(
Σ̂M̂ −

1

rv
Σ̂V,M̂

)
Σ̂−1

V,M̂
e1|X

}
=r2

vE

{
eT1 Σ̂−1

V,M̂

(
1

n

n∑
i=1

Zi,M̂Z
T

i,M̂
− 1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)
Σ̂−1

V,M̂
e1|X

}

≤r2
vE

{
λmax

(
1

n

n∑
i=1

Zi,M̂Z
T

i,M̂
− 1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)
||Σ̂−1

V,M̂
e1||22|X

}

≤r2
vE

{
λmax

(
1

n

n∑
i=1

Zi,M̂Z
T

i,M̂
− 1

n2

n∑
i=1

ViZi,M̂Z
T

i,M̂

)
K2|X

}

By letting Gε
n =

{
λmax

(
1
n

∑n
i=1 Zi,M̂V

ZT

i,M̂V
− 1

n2

∑n
i=1 ViZi,M̂V

ZT

i,M̂V

)
K2 ≤ ε

}
,

by (2.18), we have P(Gε
n)→ 1 as n→∞. Therefore, since the maximum eigenval-

ues are bounded above, we obtain r2
vE
(
eT1 Σ̂−1

V,M̂
Σ̂M̂ Σ̂−1

V,M̂
e1|X

)
−E

(
rve

T
1 Σ̂−1

V,M̂
e1|X

)
=

op(1), which is (2.20).
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2.5.6 Derivation of variance estimation in R-Split via the non-parametric

delta method in Section 2.3.1

Recall vb = (vb1, · · · , vbn) is the data splitting weights in the bth split: if vbi = 1, data point

Xi is used in the refitting step. vb takes value from sample space Vn2 , where n2 =
∑n

i=1 vbi

denotes the total number of samples used for refitting, and

Vn2 =
{
V = (V1, · · · , Vn) ∈ Rn : Vi ∈ {0, 1},

∑n

i=1
Vi = n2

}
.

Let B =
(
n
n2

)
and there are B components in Vn2 . Since all the weights are independently

generated, we have pr(V = vb) = 1/B, for b = 1, . . . , B. Following the definition in Efron

(2014), the ideal smoothed estimation is α̃ =
∑B

b=1 P(V = vb)α̂b, and it can be viewed as

a functional of the empirical distribution F̂n, denotes as T (F̂n). When adding a point mass

δXj at direction j, j ∈ {1, . . . , n}, the empirical distribution F̂n changes to (1−ε)F̂n+εδXj ,

and the influence function can be written as

U(Xj, F̂n) = lim
ε→0

T ((1− ε)F̂n + εδXj)− T (F̂n)

ε
. (2.21)

Data splitting takes n2 subsamples without replacement and without regard to the order.

The subsamples can be viewed as taken all at once from the entire population of n objects,

while each sample shares the same probability being chosen. Thus, the average number of

a given sample Xj in the subsample E (#of Xj in the subsamples of size n2) = n2/n.

If a point mass εδXj is added in F̂n, this means the probability of Xj increases from 1/n

to (1− ε)/n+ ε, and the probability of the other objects decreases from 1/n to (1− ε)/n.

We denote the perturbed empirical distribution function as F̂ j
n. After the perturbation,

E (#of Xj in the subsamples of size n2) (2.22)

=n2

(
1− ε
n

+ ε

)
= P

(
Xj being selected in the subsamples of size n2 under F̂ j

n

)
.
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Define a subset Bj = {vb : vb ∈ Vn2and vbj = 1} ⊂ Vn2 , which indexes the entire

possible combinations that include Xj . The cardinality of the subset Bj equals to

(
n− 1

n2 − 1

)
=
Bn2

n
. (2.23)

After the perturbation on the jth direction, in Vn2 , only the elements with Vj = 1 share

the same probability of being chosen. This gives P(V = vb1 ,Xj being chosen under F̂ j
n) =

P(V = vb2 ,Xj being chosen under F̂ j
n), for all b1, b2 ∈ Bj, and

∑
b∈Bj

P(V = vb,Xj being chosen under F̂ j
n) = P(Xj being chosen under F̂ j

n). (2.24)

From (2.22)–(2.24), we have

P(V = vb,Xj being chosen under F̂ j
n) = n2 {(1− ε)/n+ ε} /{Bn2/n},

and similarly P(V = vb,Xj not being chosen under F̂ j
n) = {1−n2 {(1− ε)/n+ ε}}/{B−

Bn2/n}. Hence, after adding a small perturbation on jth direction,

P(V = vb under F̂ j
n) =vbjP(V = vb,Xj being chosen under F̂ j

n)

+ (1− vbj)P(V = vb,Xj not being chosen under F̂ j
n)

=vbj
n2

(
1−ε
n

+ ε
)

Bn2/n
+ (1− vbj)

1− n2

(
1−ε
n

+ ε
)

B −Bn2/n

=B−1

{
1 + ε

n(n− 1)

n− n2

(vbj −
n2

n
)

}
.
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Using (2.21),

U(Xj, F̂n) = lim
ε→0

ε−1{T ((1− ε)F̂n + εδXj)− T (F̂n)}

= lim
ε→0

ε−1
∑B

b=1

{
P(V = vb under F̂ j

n)− P(V = vb under F̂n)
}
α̂b

=
n(n− 1)

n− n2

1

B

B∑
b=1

(
vbj −

n2

n

)
α̂b

=
n(n− 1)

n− n2

cov(α̂, Vj).

The nonparametric delta method suggests the standard deviation of the smoothed estimator

to be estimated by

n−1
∑n

j=1
U2(Xj, F̂n) = n

∑n

j=1

{ n− 1

n− n2

Ŝj(V,X )
}2

(2.25)

where the covariance can be estimated by the data splitting samples

Ŝj(V,X ) = B−1
∑B

b=1
(vbj −B−1

∑B

k=1
vkj)α̂b. (2.26)

In practice, the smoothed estimator are computed using a finite number B of the data split-

ting, and working with a large B can be computationally expensive. Without sufficient

number of splitting, the formula in (2.26) is biased upward argued in Wager et al. (2014).

Following similar method as in Wager et al. (2014), the Monte Carlo bias in M-Split can

be corrected and the variance can be estimated through equation (2.3).
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CHAPTER 3

Debiased Inference

In this chapter, we revisit the debiased inference procedure and discuss the connection

between some popular methods in the literature. Then we propose a projection assisted

double-selection (PODS) approach to have a strong control over the over-fitting bias, fol-

lowed by a comparison between PODS and R-Split.

3.1 A revisit to debiased inference

In this section, we start with a review of two existing methods in the high dimensional

debiased inference literature. The first is the post-double-selection estimator of Belloni

et al. (2014), which aims to reduce the under-fitting bias by a two-stage selection. The

second is the de-sparsified Lasso of van de Geer et al. (2014) and Zhang and Zhang (2014),

which removes the penalization bias of Lasso estimate by using an estimate of the inverse

population covariance matrix. In the first subsection, we highlight the connection between

these two methods, and provide a comparison between their asymptotic variances. In the

second subsection, we propose an improvement to the post-double-selection method by

removing moderating covariates first through a linear projection to further reduce the over-

fitting bias.
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3.1.1 Connection between the post-double-selection and the de-sparsified

Lasso

To estimate α without bias one must suppress the effects of extraneous variables that influ-

ence both D and Y . When p < n, we can do so by projecting Y and D on the the space

spanned by X:

(I − P )Y = α(I − P )D + (I − P )ε,

where P = X(XTX)−1X . Then the estimate of α is the marginal regression coefficient

by regressing (I − P )Y on (I − P )D:

α̂full = (D̂TD)−1D̂T(Y −Xβ̂full), (3.1)

where D̂ = (I −P )D, and β̂full = (XTX)−1XTY . For the cases with p� n, the sample

covariance matrix is singular, and the de-sparsified Lasso and the post-double-selection

offer two possible strategies to remove the confounding effects from X .

The post-double-selection estimator of Belloni et al. (2014) goes as follows. First, a set

of control variables, indexed by M̂D, that are useful for predicting D is selected. Second,

the variables indexed by M̂Y are selected to predict Y . Then, α is estimated by refitting the

model M̂ = M̂D ∪ M̂Y with the OLS. The post-double-selection can be written as

α̂double = (D̂T

M̂
D)−1D̂T

M̂
(Y −Xβ̂M̂), (3.2)

where D̂M̂ = D −X γ̂ = (I − PM̂)D is the residual of D after controlling for the effect

in XM̂ , and γ̂ ∈ Rp is a sparse vector with γ̂M̂ = (XT

M̂
XM̂)−1XM̂D and γ̂−M̂ = 0.
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Furthermore, α̂double satisfies

σ̆−1
n

√
n(α̂double − α) N(0, 1), σ̆2

n = σ2
ε

1

||D −X γ̂||22/n
+ op(1). (3.3)

The de-sparsified Lasso estimator of α removes the penalization bias by finding an

estimate Θ̂ of the inverse of the population covariance matrix. If we focus only on the

estimation of α, we simply need eT1Θ̂. One way to get there is to let

D̂lasso = D −X γ̂lasso, where γ̂lasso = arg min
1

n

∑n

i=1
(Di −XT

i γ)2 + λd||γ||1

for some tuning constant λd. Then we have eT1Θ̂ = ν̂−2(1,−γ̂T
lasso), where ν̂2 = D̂T

lassoD/n,

and the de-sparsified Lasso estimator for α can be written as

α̂desparse = α̂lasso + eT1Θ̂(D,X)T(D,X)(Y − α̂lassoD −Xβ̂lasso)/n

= (D̂T

lassoD)−1D̂T

lasso(Y −Xβ̂lasso). (3.4)

Under certain regularity conditions, as in Remark 2.1 of van de Geer et al. (2014), we have

σ̈−1
n

√
n(α̂desparse − α) N(0, 1), σ̈2

n = σ2
ε

||D −X γ̂lasso||22/n
(||D −X γ̂lasso||22/n+ λd||γ̂lasso||1)2

. (3.5)

With a suitable choice λd in the order of
√

log p/n, and with ultra-sparsity of s0 = o(
√
n/ log p),

we have λd||γ̂lasso||1 = o(1). Then, the variance σ̈2
n can be compared with that of the post-

double-selection estimator in (3.3).

It follows from (3.2) and (3.4) that the post-double-selection estimator and the de-

sparsified Lasso estimator are similar, except that the residuals of D (after adjusting for

X) are obtained differently. Following Belloni et al. (2014), we find it helpful to view γ as
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a regression coefficient of the following model

D = Xγ + ν, E(ν|X) = 0, Cov(ν) = σ2
νI, (3.6)

for some constant σ2
ν . A good estimation of γ helps reduce the under-fitting term bn2 in

(2.2). Moreover, in a special case that p < n, λd = 0 and M̂ = {1, · · · , p}, the de-sparsified

Lasso and the post-double-selection are equivalently to (3.1), which is the full model OLS

estimator. Without loss of generality, we refer to the method that selects the variables to

predict D as a two-stage selection estimator. Usually, the two-stage selection estimator

requires ultra-sparsity to achieve asymptotic normality of the estimator; see Jankova and

van de Geer (2017) for more discussion.

Though a good estimate of γ helps reduce the bias after model selection, it may increase

the variability, and vice versa. To see this, we note that if λd||γ̂lasso||1 in (3.5) is of o(1)

and the γ̂lasso ≈ γ̂ under the ultra-sparsity, the de-sparsified Lasso estimator of α is first-

order equivalent to the post-double-selection. However, if we use a larger penalty term so

that λd||γ̂lasso||1 is no longer negligible, the de-sparsified Lasso estimator of α will have a

smaller variance. On the other hand, if D̂lasso does not remove the part of X that correlates

with D, the de-sparsified Lasso will then have a bias. This bias-vaiance trade-off plays

an important role in assessing the quality of inference from the the two-stage selection

estimators.

To further address the bias issue in the two-stage selection method, we propose to

add a projection assisted double-selection (PODS) as an enhancement of the post-double-

selection of Belloni et al. (2014).

3.1.2 Projection onto double-selection (PODS)

In the post-double-selection method, the selected set of covariates M̂ aims to include those

variables that are correlated with either Y or D to reduce the under-fitting bias, but it
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potentially increases the risk of over-fitting. As we observe from the simulation study in

Section 2, the over-fitting bias tends to be an increasing function of the selected model

size. We find that a simple remedy based on linear projections can help, with which the

covariates with spurious correlation with D are less likely to enter M̂ and the risk of over-

fiting is reduced.

3.1.2.1 Proposed Method

In the post-double-selection, suppose for the moment that M̂D ∩ M̂Y = ∅ and M0 = ∅,

then the over-fitting term bn2 can be decomposed

bn2 =
1

kn1

1√
n
DT(I − PM̂D

)ε︸ ︷︷ ︸
(I)

+
1

kn1

1

n
DT(I − PM̂D

)XM̂Y︸ ︷︷ ︸
(II)

·(XT

M̂Y
XM̂Y

/n)−1 · 1√
n
XM̂Y

(I − PM̂D
)ε︸ ︷︷ ︸

(III)

, (3.7)

where kn1 = DT(I − PM̂)D/n is a scaler. In (3.7), (I) is a random variable of zero mean

since M̂D is selected independent of ε; the product of (II) and (III) captures the main

effect of the over-fitting bias and is generally not centered around 0. A careful examination

of the bias decomposition suggests that, if D is uncorrelated with the selected variables in

M̂Y , the over-fitting bias can be reduced to a smaller scale. This motivates our proposed

method of projection assisted double-selection (PODS).

A formal algorithm of PODS is given in Algorithm 3, where we do not specify the

model selection procedure, which is similar to the post-double-selection. In our empirical

studies, we use marginal screening, Lasso, or iterated Lasso, which is a tuning free method

discussed in Belloni et al. (2014). In Step 1, we select a set of variables M̂D which are

associated with D. In Step 2, to remove the components associated with D, we project

(Y,X) onto a space which is orthogonal to the space spanned by D and XM̂D
. By doing

this, the additional variables selected in Step 3 is expected to have low correlation with D,
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and then the over-fitting bias can be controlled. Recall for a fixed model M , we define

P ∗M = ZM(ZT
MZM)−1ZT

M .

Algorithm 3 PODS

Step 1. Select a set of variables M̂D for the regressing D on X .
Step 2. Construct the post-projection variables:

Y ∗ = (I − P ∗
M̂D

)Y, X∗ = (I − P ∗
M̂D

)X−M̂D
.

Step 3. Select a model M̂∗
Y for regressing Y ∗ on X∗.

Step 4. Regress Y on D and XM̂∗ to get α̂, which is the estimated coefficient of D.

The asymptotic variance of α̂ from PODS can be estimated by

σ̃2
n =

σ̂2
ε

||D −X γ̂∗||22/n
,

where σ̂2
ε = Y T(I − P ∗

M̂∗)Y · n/(n − |M̂∗| − 1), and γ̂∗ ∈ Rp is a sparse vector with

γ̂∗
M̂∗ = (XT

M̂∗XM̂∗)−1XM̂∗D and γ̂∗
−M̂∗ = 0. To better understand the difference between

PODS and the post-double-selection, we shall take a look at the difference between the

distributions of M̂∗
Y and M̂Y .

Example 3 (Difference between M̂Y and M̂∗
Y ). Consider the following model

Yi = αDi + εi, (3.8)

Di = γ1Xi1 + νi,

where (εi, νi) ∼ N(0, I2), for i = 1, · · · , n, where I2 is the 2 by 2 identity matrix,

and Xi1 is just the first component of Xi. Suppose that we perform model selection

in Step 1 by marginal screening. Let r̂D,j = |ĉorrn(D,X·j)|, for j = 1, · · · , p, and

r̂D = (r̂D,1, · · · , r̂D,p). Now consider selecting two covariates, and

M̂D = {1 ≤ j ≤ p : r̂D,j is among the two largest elements of r̂D}.
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Then, the post-projection variables are X∗ and Y ∗ through X∗ = (I − P ∗
M̂D

)X , Y ∗ =

(I −P ∗
M̂D

)Y . In the second step of model selection, for simplicity, we select one covariate

from X∗ in addition to D,that is,

M̂∗
Y = {arg max1≤j≤p|ĉorrn(Y ∗, X∗j )|}.

As for the post-double-selection, we have

M̂Y = {arg max1≤j≤p|ĉorrn(Y,Xj)|},

From (3.7) we note that (II), which is the partial sample covariance between D and the

selected variable in the second stage, plays a key role in reducing the over-fitting bias.

Therefore, for PODS and the post-double-selection, we need to compare ρ̂pods = 1
n
DT(I −

PM̂D
)XM̂∗

Y
and ρ̂double = 1

n
DT(I − PM̂D

)XM̂Y
.

(1). Simple heuristics. From a theoretical point of view, since the post-double-selection

picks the variable that maximizes the absolute correlation with Y , and thus the selected

variable in M̂Y is correlated with both D and the noise ε. In contrast, PODS selects the

model

M̂∗
Y =

{
arg max1≤j≤p

∣∣∣∣ 1

nc∗nj
XT

j (I − P ∗
M̂D

)Y

∣∣∣∣} ,
where c∗nj is the product of the variances of (I−P ∗

M̂D
)Xj and (I−P ∗

M̂D
)Y . The projection

matrix P ∗
M̂D

can be decomposed into

P ∗
M̂D

= −PM̂D
+

1

nkn2

(D − PM̂D
D)(D − PM̂D

D)T,
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where kn2 = DT(I − PM̂D
)D/n. That is, PODS selects

M̂∗
Y =

arg max1≤j≤p

∣∣∣∣∣ 1

nc∗nj
XT

j (I − PM̂D
)ε− 1

nc∗nj
XT

j (I − PM̂D
)D · 1

kn2

1

n
DT(I − PM̂D

)ε︸ ︷︷ ︸
Op(1/

√
n)

∣∣∣∣∣
 .

(3.9)

Since the second term in the above expression is of smaller order than the first term (see the

arguments in Appendix 3.5.3), it means that the selected variable from the second stage is

mostly determined by XT
j (I −PM̂D

)ε, which is little correlated with D. Therefore, PODS

reduces the over-fitting bias.

(2). Numerical evidence. Next, we provide a simulation study to support the heuristics

given above. In model (3.8), let (n, p) = (100, 1000), α = 1, γ1 = 1 and (Di, Xi) ∼

N(0, Ip+1) independent of (εi, νi), for i = 1, · · · , n. A numerical comparison between

ρ̂double and ρ̂pods based on 1000 Monte Carlo samples is presented in Figure 3.1.

Figure 3.1: Based on 1000 Monte Carlo samples, the area of shading lines is the histogram
of ρ̂double, and the area with solid blue filling is the histogram of ρ̂pods. The data generating
process is given in Example 3.

The result in Figure 3.1 says that the distribution of ρ̂pods is centered around 0, while

the distribution of ρ̂double clearly has two modes, neither of which centers around 0. This

suggests that, the variable selected by PODS in the second stage tends to have a smaller
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correlation with D than the variable selected by the post-double-selection in general.

It is worth noting that the linear projection approach is also adopted in the correlated

projection screening method (CPS) proposed by Lan et al. (2016). But CPS does not select

the controls for predicting Y , and α is estimated via refitting the model M̂D. Without

including control variables in M̂∗
Y , the estimator of α can be less efficient than PODS.

3.1.2.2 Theoretical investigation of PODS

We first introduce some additional notations for convenience. For a model M , define the

sample partial covariance

ρ̂D,j(M) = ρ̂D,j − Σ̂D,M Σ̂−1
M Σ̂M,j,

between D and Xj with j /∈ M , where ρ̂D,j = DTXj/n, Σ̂D,M = DTXM/n, Σ̂M =

XT
MXM/n, and Σ̂M,j = XT

MXj/n. If the covariates have zero mean, ρ̂D,j(M) is the sam-

ple covariance betweenD andXj conditional onXM . Additionally, let M̃D = M̂D∪(M0∩

M̂∗
Y ), let g(W ) = (g(W1), · · · , g(Wn))T be the vector of the nonparametric functions g for

n individuals, and let the minimal s−sparse eigenvalue of a semi-positive definite matrix

A as

λmin,s(A) = min
1≤||ν||0≤s

νTAν

νTν
.

We make the following assumptions to study the theoretical property of PODS.

Assumption 12. The selected model from PODS satisfies

max
j∈M̂∗

Y \M0

|ρ̂D,j(M̃D)| = Op(
√

log p/n).

Assumption 13. The cardinality of M̂∗
Y is of the same order as s0, which satisfies s0 log p =

o(
√
n).
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Assumption 14. There exists a positive constant κ2 such that limn→ P(λmin,sd+s0(X
TX/n) ≥

κ2) = 1, where sd is the cardinality of M̂D.

Assumption 15. The under-fitting bias is small in the sense: DT(I − PM̂∗)g(W) =

op(
√
n).

Assumption 12 requires that the maximum sample partial covariance betweenD and the

over-selected variables be of the order
√

log p/n after controlling for the effect in M̂D∪M0.

This condition is rather mild since M̂∗
Y is selected after removing the effect ofD and XM̂D

.

Assumption 13 restricts the sparsity level of β and the selected model size. Although in

this assumption we require β to be ultra-sparse, if the maximum correction between D

and the over-selected variable in Assumption 12 is of order Op(1/
√
n), the ultra-sparsity

condition can be relaxed to s0

√
log p = o(

√
n). Assumption 14 is quite plausible for

many designs of interest. For example as shown in Rudelson and Zhou (2012), when the

Xi’s are i.i.d. bounded centered random vectors, then the sample covariance has minimal

s log n−sparse eigenvalues that are bounded above by a positive constant with probability

goes to 1. This Assumptions says that, unlike the treatment in Belloni et al. (2014), PODS

no longer requires (3.6) to be true or γ to be ultra-sparse. Assumption 15 assumes a negli-

gible under-fitting bias. In a boarder context, Chernozhukov et al. (2018) assumed a similar

condition. Sufficient conditions for Assumption 15 are provided in Belloni et al. (2014).

Theorem 2 (Asymptotic normality of PODS). Under Assumption 1 and Assumption 12-15,

we have

√
n(α̂− α) =

(
1

n
DT(I − PM̃D

)D

)−1
1√
n
DT(I − PM̃D

)ε+ op(1).

and

σ̆−1
n

√
n(α̂− α) N(0, 1),
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where σ̆2
n = σ2

ε/(D
T(I − PM̃D

)D/n).

Remark 4 (Variance estimation). Under additional assumptions that ||n−1/4(I−PM̂∗)g(W )||2 =

op(1) and ( 1
n

∑n
i=1 R

2
ni)

1/2 = O(
√
s0/n) and the cardinality of M̂∗ is of the same or-

der as s0, we have σ̆2
n = σ2

ε
1

||D−Xγ̂∗||22/n
+ op(1), and it can be consistently estimated by

σ̂2
ε/(||D −X γ̂∗||2/n) where σ̂2

ε = Y T(I − P ∗
M̂∗)Y · n/(n− |M̂∗| − 1).

Note that PODS is an enhancement of the post-double-selection to further reduce the

over-fitting bias by modifying the distribution of M̂∗. As a result, the asymptotic expres-

sion in Theorem 2 and the variance estimation in Remark 3 also apply to the post-double-

selection estimator.

3.1.3 Data splitting in removing the over-fitting bias of the de-sparsified

Lasso

In this subsection, we discuss the bias issue of the de-sparsified Lasso estimator of van de

Geer et al. (2014). To simplify the discussion, we may work under the additionally model

(3.6). The de-sparsified Lasso estimator can be decomposed

√
n(α̂desparse − α) =ν̂−2 1√

n
νTε+ ν̂−2 1√

n
νT(Xβ −Xβ̂Lasso)︸ ︷︷ ︸

:=cn1

+ ν̂−2
√
n(γ̂ − γ)TXTX/n(β̂Lasso − β)︸ ︷︷ ︸

:=cn2

. (3.10)

The first term is centered since ν̂ is obtained independent of ε. The term cn2 is similar to the

under-fitting bias bn2, and is small as long as either γ or β is well estimated. The term cn1

measures the correlation between ν and β̂Lasso and is generally not centered. Since β̂Lasso is

obtained via using the information in D, and thereby is correlated with ξ. We note that cn1

can be reduced via data splitting.

Suppose that we split the data into two halves T1 and T2, and estimate γ and β on T1,
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later the residuals of D and Y are obtained on T2. Note that ∀i ∈ T2, νi is independent with

β̂b, thereby cn1 is controlled. To mitigate the efficiency loss induced by data splitting, simi-

lar procedure as R-Split might be adopted. The confidence interval of the resulting estimate

can be constructed by the non-parametric delta method via the normal approximation. To

reduce cn1, we may use data splitting in the de-sparsified Lasso estimator. We summarize

the idea with repeated data splitting in Algorithm 4.

Algorithm 4 R-Split with the de-sparsified Lasso
For b← 1 to B do

Step 1. Randomly split the data {(Yi, Di, Xi)}ni=1 into group T1 of size n1

and group T2 of size n2 = n− n1. Let vbi = 1(i∈T2), for i = 1, · · · , n.
Step 2. Obtain γ̂b and β̂b on T1.
Step 3. “Predict” on T2, for i ∈ T2: D̂i = Di −XT

i γ̂b, Ŷi = Yi − Y T
i β̂b

Step 4. Estimate α through: α̂b = (
∑

i∈T2 D̂iDi)
−1(
∑

i∈T2 D̂iŶi).
The final “smoothed” estimate is α̃ = 1

B

∑B
b=1 α̂b.

We note that the repeated data splitting is not the only strategy to reduce the term cn1.

When p = o(
√
n), the similar over-fitting bias problem in the context of the two-step

estimator has also been identified in Cattaneo et al. (2017). It has been show in Cattaneo

et al. (2017) that the jackknife can be used to removes the over-fitting bias and then delivers

consistent point estimates. Except for jackknife, one may also adopt the cross-estimation

to remove the over-fitting bias. In the high dimensional regime, unlike refitting on the

random model, it remains unclear which is the most efficient strategy to combine data

splitting with the de-sparsified Lasso. Therefore, we leave the theoretical and the numerical

investigations of the de-sparsified Lasso with data splitting to future work.
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3.2 Comparison between the one-stage and the two-stage

selection methods

In this thesis, we have considered two classes of methods for debiased inference. The first

is based on one-stage selection, which includes R-Split. The second is built upon two-stage

selection procedures, e.g. the de-sparsified Lasso, the post-double-selection, and PODS.

Since the various two-stage selection methods have similar asymptotic representations, we

use PODS as a representative in this section. The purpose of this section is to compare the

statistical efficiencies between one- and two-stage selection methods for making inference

on α.

To compare the asymptotic behavior of R-Split with PODS more explicitly, we provide

alternative asymptotic variances expressions of R-Split and PODS estimators under addi-

tional assumptions. The proofs of the alternative expressions are provided in Appendix

2.5.5 and 3.5.4. We make two additional assumptions to simplify the asymptotic variance

expression of R-Split. First, we assume that on average, the maximum “correlation” be-

tween D and X after controlling for the effects in XM̂ is bounded above by
√

log p in

probability, or more formally,

∣∣∣∣∣
∣∣∣∣∣E
{
DT
V (I − PM̂,V )XV /n

DT
V (I − PM̂,V )DV /n

∣∣∣∣X
}∣∣∣∣∣
∣∣∣∣∣
∞

= Op(
√

log p). (3.11)

Second, let the maximal s−sparse eigenvalue of a semi-positive definite matrix A as

λmax,s(A) = max
1≤||ν||0≤s

νTAν

νTν
,

and we assume that there exists constantK0 > 0 such that P(lim supn→∞ λmax,sd+s(X
TX/n) ≤

K0) = 1, λmax,sd+s(Σ) ≤ K0, and the maximum eigenvalue of Σ̂ is bounded by log p in

probability. Under Assumptions 1, 4, and 13, and the two additional assumptions stated
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above, we show in the Appendix that the asymptotic variance of R-Split estimator satisfies

σ̃2
n ≤ σ2

εE
{

(Σ−1

M̂
)11

∣∣∣∣X}+ op(1), (3.12)

where (Σ−1

M̂
)11 is the first component on the diagonal of Σ−1

M̂
.

As for PODS, under Model (3.6), with the assumption that γ is ultra-sparse and that

the selected model M̂∗ satisfies ||n1/4(I − PM̂∗)D||2 = op(1), the asymptotic variance of

PODS estimator equals

σ̆2
n = σ2

ε(Σ
−1)11 + op(1) = σ2

ε/σ
2
ν + op(1). (3.13)

Together with the theoretical results in Theorem 2.3 of van de Geer et al. (2014) and Theo-

rem 2 of Belloni et al. (2014), PODS, the-desparisified Lasso and the post-double-selection

estimators reach the semi-parametric efficiency bound for estimating α under homoscedas-

ticity (see Robinson (1988)). However, when σν is small, (3.13) indicates that the two-stage

selection method is not very efficient. From the comparison between (3.12) and (3.13), we

find that unless E{||ΣD,M̂c − ΣD,M̂Σ−1

M̂
ΣM̂,M̂c||22|X} ≈ 0, the R-Split estimator has the

smaller asymptotic variance than the two-stage selection estimators, which is not surpris-

ing since R-Split aims to work with a sparse model while the two-stage selection estimators

are about bias-correction based on all the covariates.

To provide some numerical evidence for the comparison between one- and two-stage

selection estimators, it is convenient to use the same data generating process adopted in

Example 3, except that we set σ2
ν = Var(ν) as an increasing sequence from 0 to 1. The

implementation details of various methods under comparison are provided in Section 6.2.

For n = 100 and n = 400, we report
√
n times bias and n times variance evaluated from

Monte Carlo samples, and the results are provided in Figure 3.2. The variance of the oracle

estimator is provided as a benchmark.

The results in Figure 3.2 indicate that R-Split is not as efficient as the oracle estimator,
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Figure 3.2: Finite sample comparison between R-Split and the two-stage selection methods
based on Model (3.8). The data generating process is the same as Example 3, except
for σ2

ν is a sequence from 0 to 1, and Σjk = 0.9|j−k| is the (j, k)-th element of Σ, for
j, k = 1, · · · , p + 1. Panels (a) and (c) show the

√
n times the bias of the α estimates.

Panels (b) and (d) show n times the variance of the α estimates.

but has smaller variance than PODS and the de-sparsified Lasso. While the performance

of R-Split is not sensitive to the change in σ2
ν , the variances of PODS and the de-sparsified

Lasso increase rapidly as σ2
ν becomes smaller. Furthermore, in the de-sparsified Lasso, we

observe that although the penalization helps reduce the estimation variability, it increases

the bias. The numerical results are in-line with our investigation about the bias-variance

trade-off in Section 4.1.

Although R-Split tends to have better estimation efficiency, the fact that only a fraction
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of the sample is used for model selection increases the risk of under-fitting. While the

concern of the under-fitting bias can be lessened via the use of the two-stage selection, the

combination of R-Split and PODS or the post-double-selection may be used as an alter-

native approach. We summarize the combined approach by using R-Split in Algorithm 4.

Algorithm 5 R-Split with PODS (or the post-double-selection)
For b← 1 to B do

Step 1. Randomly split the data {(Yi, Di, Xi)}ni=1 into group T1 of size n1

and group T2 of size n2 = n− n1. Let vbi = 1(i∈T2), for i = 1, · · · , n.
Step 2. Select a model M̂b by using PODS (or the post-double-selection) based on T1.
Step 3. Refit the model with the data in T2 to get

(α̂b, β̂
T
b ) = arg min

∑
i∈T2(Yi − αDi −XT

i,M̂b
β)2,

The final “smoothed” estimate is α̃ = 1
B

∑B
b=1 α̂b.

The estimator derived in Algorithm 4 eliminates the over-fitting bias by data splitting

in Step 1, while in each split, the risk of under-fitting is mitigated by PODS (or the post-

double-selection). The estimator of the combined approach converges to a normal distri-

bution under the same assumptions for Theorem 1. With the assistance of the two-stage

selection in Step 2, Assumption 5 tends to hold more easily. The technical treatment for

R-Split and PODS combination is similar to that of Theorem 1 and is omitted in the present

thesis. However, the combined approach inherits the inflated variance problem from the

two-stage selection when D is highly correlated with some of the covariates. A similar

idea of combining data splitting with the two-stage selection method has been studied in

Chernozhukov et al. (2018), but their proposal uses non-overlapping subsamples for pa-

rameter estimation so that the variance of the aggregated estimator can be easily estimated.

Consequently, the combination of R-Split and two-stage selection can have smaller vari-

ance than cross-estimation. In Section 6, we further illustrate this point in a simulation

study.
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3.3 Simulation study

This section reports finite sample performances of the proposed methods in comparison

with several others through Monte Carlo simulations.

3.3.1 Simulation designs

We compare the performances of the proposed methods with several others in two different

simulation settings where β0 is one of the following vectors,

sparse: (1, 1, 1, 1, 0, · · · , 0), dense: (1, 1/
√

2, · · · , 1/√p),

moderately sparse: (5, · · · , 5︸ ︷︷ ︸
10

, 1, · · · , 1︸ ︷︷ ︸
10

, 0, · · · , 0),

and γ0 is either (0, 0, 0, 0, 1, 1, 1, 1, 0, · · · , 0) or dense as specified later.

Stetting 1. Similar to the classical model used in van de Geer et al. (2014), we have Yi =

a + αDi + XT
i β + εi for i = 1, · · · , n, where (Di, X

T
i )T ∈ Rp+1 ∼ N(0,Σ),

εi ∼ N(0, 1) are white noise, a = 1 is the intercept, α = 1.5, β = cyβ0 ∈ Rp with

the constant cy ∈ R chosen to achieve R2 = 0.8, and Σ has one of the following

forms:

Independent: Σ = Ip, Toeplitz: Σjk = 0.9|j−k|,

Equal correlation: Σjk = 0.91(j 6=k) or 0.31(j 6=k),

where Σjk is the (j, k)-th element of the matrix Σ for j = 1, · · · , p + 1 and k =

1, · · · , p+ 1.

Setting 2. Consider the two-stage model used in Belloni et al. (2014), with Yi = ay +

αDi + XT
i β + εi, and Di = ad + XT

i γ + νi, for i = 1, · · · , n, where (νi, εi) ∼

N(0, I2) are 2-dimensional white noise, ay = 1 and ad = 0.5 are the intercepts,
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(Di, X
T
i )T ∈ Rp+1 ∼ N(0,Σ) with Σjk = 0.9|i−j|, α = 1.5, β = cyβ0 ∈ Rp and

γ = cdγ0 ∈ Rp, with the constants cy and cd chosen for designed signal-to-noise

ratios of both components in the model as detailed in Table 3.2.

We include the following methods in the comparisons.

• “Oracle” refers to the oracle estimator based on the true model, and is used when β

is sufficiently sparse.

• “Double” represents the post-double-selection of Belloni et al. (2014) and is imple-

mented using the R packages hdm.

• “Double-2CV” represents the double-machine with two fold cross-estimation of Cher-

nozhukov et al. (2018): for each fold, we select the model using the package hdm,

and estimate the treatment effect and its variance from the remaining data.

• “PODS” refers to the proposed method PODS with the model selected from the func-

tion rlasso in the R package hdm, which is the same function for model selection

used by the post-double-selection in hdm.

• “R-Split” refers to the proposed smoothed estimators from R-Split with B = 1, 000.

We select the model by the adaptive Lasso via package glmnet. The tuning pa-

rameter λ is selected by cross-validation with the lamdba.min option, while the

maximum model size (dfmax in glmnet) is at most n2 − 6. Since R-Split requires

a large model to avoid the under-fitting, we also specify a minimum model size ŝmin

given in Table 3.1-3.2. The implementation details of the adaptive Lasso is provided

in Section 3.6 of the Supplementary Materials.

• “PODS-Split” is the combined approach we discussed at the end of Section 3.2. Its

implementation is similar to R-Split, except that the minimum and maximum model

sizes equal ŝmin/2 and n2/2− 3 in each stage of model selection.
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• “De-sparsified” represents the de-sparsified Lasso of van de Geer et al. (2014) and

Zhang and Zhang (2014), and is implemented using the R package hdi.

• “Alasso+OLS” refers to the method of ordinary least squares applied to a model se-

lected by Adaptive Lasso. The confidence intervals are constructed based on normal

approximations.

The performance measures used in this section include
√
n times bias, n times mean

squared error, coverage probability and average length of the confidence intervals of the

treatment effect α. The details about the dimension and the covariance structure of the

covariates are provided in the captions of the accompanying tables.

3.3.2 Results

In this subsection, we provide the finite sample comparisons in our simulation studies

through Tables 3.1 and 3.2, one for each setting.

Table 3.1 for Setting 1 shows that R-Split is an overall leader for sparse models in terms

of bias, efficiency, and validity of inference, but provably due to under-fitting bias, the esti-

mator can underperform for dense or sometimes moderately sparse models. In those cases,

PODS-Split does well by reducing the bias and delivering confidence intervals with the

desired coverage. PODS helps reduce the bias of post-double-selection estimators. The

refitted estimator from Alasso+OLS is centered away from α, and the asymptotic approx-

imation provides a very poor guide to the finite-sample distribution of this estimator. The

post-double-selection with 2-fold cross estimation avoids the over-fitting bias, but is not

as efficient as R-Split or PODS-Split. The de-sparsified Lasso estimator often has smaller

variance than others, but it is not as satisfactory in terms of the coverage of the resulting

interval estimates, mainly due to bias, which is in line with our analysis in Section 3.1.1.

From the results in Table 3.2 for Setting 2, we see the same message that R-Split does

well for sparse models, and equally noteworthy is that R-Split has substantially smaller
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variances than the two-stage selection methods whenever R2
d is high, that is, when the

treatment Di is well correlated with some of the covariates. On the other hand, when both

γ and β dense, all the methods perform poorly in the coverage of the interval estimates.

Overall, the relative performance of each method depends on the sparsity of the underlying

model, but repeated data splitting and PODS are two promising additions to the toolkit of

debiased inference on the treatment effect in a high dimensional setting. estimator.

Table 3.1: Performance summaries for various methods under Setting 1 with (n, p) =
(100, 500).

Oracle Double Double-2CV PODS R-Split PODS-Split De-sparsified Alasso+OLS
β is sparse, independent predictors, ŝmin = 6√

nBias 0.05(0.05) −0.17(0.05) 0.03(0.09) 0.04(0.05) 0.03(0.05) 0.03(0.05) −0.28(0.06) −0.37(0.05)
nMSE 1.07(0.07) 1.17(0.08) 4.16(1.66) 1.14(0.08) 1.20(0.08) 1.23(0.08) 1.72(0.12) 1.57(0.10)
Cover 0.95(0.01) 0.92(0.01) 0.91(0.01) 0.93(0.01) 0.96(0.01) 0.96(0.01) 0.93(0.01) 0.84(0.02)
Length 0.20(0.00) 0.20(0.00) 0.25(0.00) 0.20(0.00) 0.22(0.00) 0.22(0.00) 0.24(0.00) 0.17(0.00)

β is sparse, Σij = 0.31(i 6=j), ŝmin = 6.√
nBias 0.02(0.05) −0.62(0.08) 0.43(0.09) 0.03(0.09) 0.12(0.06) 0.19(0.07) −0.15(0.07) −2.72(0.07)
nMSE 1.36(0.09) 3.59(0.25) 3.87(0.25) 3.83(0.29) 2.12(0.14) 2.19(0.14) 2.40(0.16) 9.66(0.56)
Cover 0.93(0.01) 0.90(0.01) 0.91(0.01) 0.91(0.01) 0.93(0.01) 0.94(0.01) 0.90(0.01) 0.28(0.02)
Length 0.22(0.00) 0.32(0.00) 0.33(0.00) 0.32(0.00) 0.27(0.00) 0.28(0.00) 0.27(0.00) 0.20(0.00)

β is sparse, Σij = 0.91(i 6=j), ŝmin = 10.√
nBias 0.04(0.14) 3.80(0.18) 0.42(0.20) −0.06(0.20) 0.39(0.15) 0.50(0.15) −0.75(0.15) −3.62(0.16)
nMSE 9.14(0.57) 30.04(2.05) 19.74(1.27) 20.76(1.46) 11.69(0.76) 11.90(0.75) 11.87(0.74) 26.11(1.62)
Cover 0.94(0.01) 0.83(0.02) 0.93(0.01) 0.90(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.56(0.02)
Length 0.57(0.00) 0.77(0.01) 0.81(0.01) 0.78(0.01) 0.66(0.01) 0.68(0.00) 0.61(0.00) 0.44(0.00)

β is sparse, Σij = 0.9|i−j|, ŝmin = 6.√
nBias 0.03(0.11) −0.25(0.11) −0.04(0.12) −0.04(0.11) 0.42(0.10) −0.02(0.11) 0.45(0.10) −0.98(0.12)
nMSE 5.95(0.37) 6.09(0.40) 6.63(0.42) 6.07(0.41) 5.58(0.33) 6.35(0.44) 5.55(0.34) 7.60(0.54)
Cover 0.93(0.01) 0.92(0.01) 0.94(0.01) 0.93(0.01) 0.90(0.02) 0.95(0.01) 0.88(0.01) 0.78(0.02)
Length 0.46(0.00) 0.45(0.00) 0.46(0.00) 0.45(0.00) 0.35(0.00) 0.49(0.00) 0.37(0.00) 0.33(0.00)

β is moderately sparse, Independent predictors, ŝmin = 10.√
nBias 0.05(0.05) −0.62(0.08) 0.02(0.12) 0.14(0.08) 0.19(0.07) 0.17(0.08) −0.78(0.07) −0.64(0.06)
nMSE 1.18(0.08) 3.71(0.24) 7.10(0.88) 2.98(0.19) 2.71(0.17) 3.48(0.23) 3.37(0.21) 2.24(0.16)
Cover 0.96(0.01) 0.89(0.01) 0.92(0.01) 0.87(0.02) 0.95(0.01) 0.95(0.01) 0.88(0.01) 0.82(0.02)
Length 0.22(0.00) 0.33(0.00) 0.45(0.00) 0.28(0.00) 0.33(0.00) 0.38(0.00) 0.29(0.00) 0.20(0.00)

β is moderately sparse, Σij = 0.91(i 6=j), ŝmin = 10.√
nBias −0.14(0.12) −0.28(0.11) −0.11(0.12) −0.20(0.11) 1.10(0.10) −0.00(0.11) 0.17(0.10) 0.13(0.10)
nMSE 6.99(0.45) 5.87(0.37) 6.76(0.41) 5.99(0.38) 6.20(0.38) 6.12(0.42) 5.06(0.29) 5.33(0.31)
Cover 0.94(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.80(0.02) 0.95(0.01) 0.90(0.01) 0.80(0.02)
Length 0.50(0.00) 0.45(0.00) 0.49(0.00) 0.45(0.00) 0.35(0.00) 0.51(0.00) 0.37(0.00) 0.30(0.00)

β is moderately sparse, Σij = 0.9|i−j|, ŝmin = 10.√
nBias 0.09(0.12) −0.12(0.11) 0.04(0.12) 0.01(0.11) 1.11(0.10) 0.02(0.12) 0.32(0.10) 0.20(0.10)
nMSE 7.23(0.46) 6.02(0.38) 7.12(0.44) 6.44(0.41) 6.43(0.39) 6.44(0.42) 5.46(0.32) 5.39(0.33)
Cover 0.94(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.80(0.02) 0.95(0.01) 0.89(0.01) 0.79(0.02)
Length 0.51(0.00) 0.45(0.00) 0.50(0.00) 0.45(0.00) 0.35(0.00) 0.51(0.00) 0.37(0.00) 0.29(0.00)

β is dense, Σij = 0.9|i−j|, ŝmin = 10.√
nBias - −1.32(0.14) −0.13(0.21) −0.16(0.18) 1.95(0.13) −0.14(0.17) −0.63(0.12) 0.37(0.12)
nMSE - 12.24(0.88) 22.89(1.50) 13.12(1.05) 14.43(0.80) 11.95(0.91) 7.30(0.39) 6.89(0.49)
Cover - 0.89(0.01) 0.93(0.01) 0.84(0.02) 0.74(0.02) 0.94(0.01) 0.77(0.02) 0.73(0.02)
Length - 0.58(0.00) 0.85(0.01) 0.54(0.00) 0.43(0.00) 0.71(0.00) 0.35(0.00) 0.30(0.00)

When β is not sparse, we omit the results for “Oracle”. ŝmin is the minimum model size
used in R-Split. The numbers in the parenthesis are the standard errors of the estimated
values. The nominal coverage probability is 0.95.
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Table 3.2: Notations are the same as in Table 3.1. The results are based on Setting 2 with
(n, p) = (100, 500).

Oracle Double Double-2CV PODS R-Split PODS-Split De-sparsified Alasso+OLS
β and γ are sparse, R2

y = 0.8, R2
d = 0.5, ŝmin = 6√

nBias 0.05(0.03) −0.02(0.05) 0.23(0.05) −0.04(0.05) 0.14(0.05) 0.06(0.05) 0.38(0.05) −0.94(0.06)
nMSE 0.46(0.03) 1.15(0.08) 1.49(0.10) 1.16(0.08) 1.13(0.08) 1.21(0.08) 1.27(0.09) 2.79(0.37)
Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.70(0.02)
Length 0.14(0.00) 0.21(0.00) 0.22(0.00) 0.22(0.00) 0.22(0.00) 0.23(0.00) 0.22(0.00) 0.17(0.00)

β and γ are sparse, R2
y = 0.8, R2

d = 0.9, ŝmin = 6√
nBias 0.03(0.01) −0.03(0.05) 0.02(0.05) −0.01(0.05) 0.09(0.03) 0.02(0.05) 0.18(0.03) −1.00(0.05)
nMSE 0.10(0.01) 1.04(0.07) 1.25(0.08) 1.03(0.07) 0.34(0.03) 1.12(0.07) 0.41(0.03) 2.18(0.14)
Cover 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01) 0.96(0.01) 0.94(0.01) 0.58(0.02)
Length 0.06(0.00) 0.20(0.00) 0.21(0.00) 0.20(0.00) 0.14(0.00) 0.23(0.00) 0.12(0.00) 0.13(0.00)

β is moderately sparse and γ is dense, R2
y = 0.8, R2

d = 0.3, ŝmin = 10√
nBias 0.02(0.03) −0.27(0.05) 0.60(0.04) 0.08(0.04) 0.36(0.04) 0.23(0.04) 0.34(0.04) −0.77(0.05)
nMSE 0.48(0.03) 1.19(0.09) 1.25(0.09) 0.92(0.07) 0.94(0.07) 0.91(0.06) 0.96(0.07) 2.03(0.13)
Cover 0.94(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01) 0.90(0.01) 0.93(0.01) 0.93(0.01) 0.67(0.02)
Length 0.14(0.00) 0.19(0.00) 0.17(0.00) 0.18(0.00) 0.17(0.00) 0.19(0.00) 0.19(0.00) 0.15(0.00)

β is moderately sparse and γ is dense, R2
y = 0.8, R2

d = 0.8, ŝmin = 10√
nBias 0.03(0.02) −0.43(0.05) 0.26(0.04) −0.03(0.05) 0.24(0.03) 0.10(0.03) 0.33(0.03) −0.56(0.05)
nMSE 0.22(0.01) 1.55(0.10) 1.00(0.10) 1.02(0.07) 0.43(0.03) 0.59(0.03) 0.58(0.04) 1.33(0.10)
Cover 0.94(0.01) 0.90(0.01) 0.85(0.02) 0.95(0.01) 0.90(0.01) 0.94(0.01) 0.92(0.01) 0.68(0.02)
Length 0.09(0.00) 0.20(0.00) 0.14(0.00) 0.19(0.00) 0.11(0.00) 0.14(0.00) 0.13(0.00) 0.11(0.00)

β is dense and γ is dense, R2
y = 0.8, R2

d = 0.8 ŝmin = 15√
nBias − 2.01(0.07) 4.28(0.06) 1.95(0.14) 4.06(0.04) 3.47(0.04) 4.01(0.04) 2.28(0.07)
nMSE - 6.20(0.38) 20.04(1.01) 6.13(0.38) 17.18(0.83) 12.89(0.65) 16.91(0.82) 7.35(0.51)
Cover - 0.51(0.02) 0.03(0.01) 0.39(0.02) 0.00(0.00) 0.16(0.02) 0.00(0.00) 0.20(0.02)
Length - 0.21(0.00) 0.18(0.00) 0.16(0.00) 0.13(0.00) 0.20(0.00) 0.14(0.00) 0.11(0.00)

When β is not sparse, we omit the results for “Oracle”. The reduced forms of R2 are
defined by R2

y = 1 − E(εi+ανi)
2

Var(Yi)
= 1 − σ2

ε+α2σ2
ν

Var(Yi)
, and R2

d = 1 − σ2
ν

Var(Di)
. The numbers in

the parenthesis are the standard errors of the estimated values. The nominal coverage
probability is 0.95.

3.4 Real data analysis

In this section we illustrate the use of the proposed methods by examining the effect of

mother’s smoking on infant birth weight. Lumley et al. (2000) confirmed the existence

of a causal relationship between smoking cessation during pregnancy and birth weight in

randomized trails. However, randomized studies are not always feasible due to ethical and

practical limitations, and most of the empirical evidence regarding the effect of smoking

on birth weight is based on observational studies. A method often used is the regression

analysis to adjust for the potential confounders, as done in Nijiati et al. (2008) and Zheng

et al. (2016).

To study the effect of smoking on infant birth weight, we use the 2015-2016 Natality

data from the National Vital Statistics System of Centers for Disease Control and Preven-
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tion. To illustrate the utility of the proposed methods, we consider only live, singleton

births to Asian mothers that are not older than 45 or younger than 18, with less than 2 years

of college education in the United State. This results in a data set of 59,250 births in 2015,

and 58,785 births in 2016 with fully observed variables in this study, and each data set con-

tains 217 main variables. To avoid handpicking important interaction terms to be included

in the model, we introduce all possible 12,543 interaction terms and then screen out the

unimportant ones by model selection. The screening procedure is carried out on the 2015

data so that the selected set of variables are independent of the 2016 data. As an implemen-

tation detail, we replace several continuous variables (mother’s age, height, weight gain

during pregnancy, and pre-pregnancy weight) with their spline basis functions. After Lasso

screening (with the tuning parameter chosen by cross validation with the lamdba.min

option of package glmnet), we control for the father’s age and race, infant’s sex, plural-

ity, infant’s birth defects, infant’s Apgar score, the obstetric estimate of gestation, induction

of labor, admission to NICU, mother’s pre-pregnancy weight, mother’s weight gain during

pregnancy, mother’s height, and a few mother’s complications during pregnancy, and some

interaction terms between these selected features. In total we keep p = 630 variables.

With the year 2016 data, since the sample size 58, 785 is much larger than p, we use the

OLS estimate of the treatment effect from this full sample as a benchmark in the investiga-

tion. From fitting the full sample with a linear regression model, 47.56% of the variance

of the infant birth weight can be explained by the selected 630 variables. The results re-

garding the infant birth weight by using the full sample show evidence that, on average,

women who were self-reported smokers delivered infants weighting 80.33g less than the

others on average. Our goal is to compare the performances of the existing methods for

estimating the treatment effect based on randomly drawn subsamples of size nsub from the

2016 data. Since only 2.06% of mothers were reported to have smoked during pregnancy,

to have a more balanced group, we first draw nsub/2 observations from the mothers who

smoke during pregnancy, and draw another nsub/2 observations from the remaining sample.
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Since the performances of the de-sparsified Lasso, the post-double-selection and the

approximate residual balancing are similar to PODS in this particular study, we include the

results only for PODS, R-Split, PODS-Split and Alsso+OLS in Figure 3.3. We observe

that R-Split and PODS with R-Split have relatively small mean squared errors, and the

confidence intervals obtained via the non-parametric delta method achieve near nominal

coverage probabilities. PODS gets reasonable coverage and improves with the sample

size. The “Alasso+OLS” estimator has low coverage due to bias after model selection, and

the asymptotic approximation provides a very poor guide to the finite-sample distribution.

Overall, the use of R-Split, whether used alone or together with PODS, would help the

inference in this study at sample sizes below 300.

Figure 3.3: Finite sample performance for estimating effect of smoking on infants birth
weights, aggregated over 1,000 replications.

In this specific dataset, to show that our comparison in this section is robust to different

transformations of the covariates, we provide another set of comparison based on polyno-

mial basis function expansion. Instead of replacing several continuous variables with their

spline basis functions, we replace them with their orthogonal polynomial basis functions

(up to 5th order). As an implementation detail, the orthogonal polynomial basis functions

are generated via R function poly and the spline basis functions are generated via R func-
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tion ns.

After Lasso screening, we control for father’s age and race, infant’s sex, plurality, infant

delivery month, infant’s Apgar score, the obstetric estimate of gestation, induction of la-

bor, admission to NICU, anesthesia usage during delivery, mother’s pre-pregnancy weight,

mother’s weight gain during pregnancy, mother’s height, mother’s status of gestational di-

abetes and a few mother’s complications during pregnancy, and some interaction terms

between these selected features. In total, we keep p = 747 variables. Based on the selected

variables, we apply OLS on the year 2016 data. We conclude that the mothers who were the

self-reported smokers delivered instant weighting 81.56g less than the other, and 48.25%

of the variance of infant birth weight can be explained by the selected 747 variables.This

is similar to the conclusion reached via spline basis function expansion. The results of

PODS, R-Split, PODS-Split and Alsso+OLS are provided in Figure 3.4. We observe that

similar conclusions can be reached compared to the results based on splines basis function

expansion.

Figure 3.4: Finite sample performance for estimating effect of smoking on infants birth
weights, aggregated over 1,000 replications. The continuous variables are replaced by their
orthogonal polynomial expansions.
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3.5 Proofs

3.5.1 Proof of Theorem 2

We prove Theorem 2 in Section 3.1.2 for PODS. Define M̃D = M̂D ∪ (M0 ∩ M̂∗
Y ), and

M̃Y = M̂∗
Y \M0, therefore M̂∗ = M̃D ∪ M̃Y and M̃D ∩ M̃Y = ∅. The estimated α from

PODS satisfies

√
n(α̂− α)

=

{
1

n
DT

P (I − P̃M̃Y
)DP

}−1

·
{

1√
n
DT

P (I − P̃M̃Y
)(I − PM̃D

)g(W ).+
1√
n
DT

P (I − P̃M̃Y
)εP

}
=

(
1

n
DT

PDP −
1

n
DT

P P̃M̃Y
DP

)−1

·
(

1√
n
DT

P εP −
1√
n
DT

P P̃M̃Y
εP +

1√
n
DT

P (I − P̃M̃Y
)(I − PM̃D

)g(W )

)
=

(
1

n
DT

PDP − qn1

)−1(
1√
n
DT

P εP − qn2 + qn3

)
,

where DP = (I − PM̃D
)D, εP = (I − PM̃D

)ε, PM̃D
= XM̃D

(
XT

M̃D
XM̃D

)
XT

M̃D
, and

P̃M̃Y
= (I − PM̃D

)XM̃Y

(
XT

M̃Y
(I − PM̃D

)XM̃Y

)−1

XT

M̃Y
(I − PM̃D

),

which is a projection matrix that projects vectors onto space spanned by (I − PM̃D
)XM̃Y

,

and we define

qn1 =
1

n
DT

P P̃M̃Y
DP ,

qn2 =
1√
n
DT

P P̃M̃Y
εP ,

qn3 =
1√
n
DT

P (I − P̃M̃Y
)(I − PM̃D

)g(W ).
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Our goal is to prove qni = op(1), for i = 1, 2, 3, so that

√
n(α̂− α) = (DT(I − PM̃D

)D/n)−1(DT(I − PM̃D
)ε/
√
n) + op(1).

Since ε is uncorrelated with XM̃D
and D, therefore given Z

σ̃2
n = Var(

√
n(α̂− α)|Z) = σ2

εD
T(I − PM̃D

)D/n+ op(1).

The formal proofs of these remainder terms are given in Steps 1-4.

Step 1. In this step, we prove

λ−1
min(XT

M̃Y
(I − PM̃D

)XM̃Y
/n) ≤ λ−1

min(XT

M̂∗XM̂∗/n). (3.14)

With (3.14), by Assumption 14, the right hand side is bounded above by 1/κ with

probability going to 1. Therefore, the minimum eigenvalue of matrix XT

M̃Y
(I −

PM̃D
)XM̃Y

/n is bounded in probability.

To prove (3.14), consider any U ∈ Rn×s, and A = UTU be a symmetric ma-

trix with minimum eigenvalue λmin, we have λmin(A) = minνTν=1 ν
TAν. Let

δ = (δ1, · · · , δm) be a set of indices of the columns of U we are interested in. There-

fore we observe UT
δUδ be a sub-matrix of UTU, and there exists an index matrix

Iδ ∈ Rp×m such that UIδ = Uδ. By the definition of minimum eigenvalue, we have

λmin(UT

δUδ) = min
y∈Rm|yTy=1

yTUT

δUδy = min = min
y∈Rm|yTy=1

yTIT

δ UTUIδy ≥ min
νTν

νTUTUν = λmin(UTU).

Similarly we can prove λmax(UT
γUγ) ≤ λmax(UTU). Therefore (3.14) holds, since

matrix (XT

M̃Y
(I − PM̃D

)XM̃Y
/n)−1 is a sub-matrix of (XT

M̂∗XM̂∗/n)−1.
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Step 2. Consider qn1. By Assumption 14 and the result in Step 1, we have

qn1 ≤
∣∣∣∣ 1nDT(I − PM̃D

)P̃M̃Y
(I − PM̃D

)D

∣∣∣∣
=

∣∣∣∣∣ 1nDT(I − PM̃D
)XM̃Y

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

)−1
1

n
XT

M̃Y
(I − PM̃D

)D

∣∣∣∣∣
≤ λ−1

min

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

) ∣∣∣∣∣∣∣∣ 1nDT(I − PM̃D
)XM̃Y

∣∣∣∣∣∣∣∣2
2

.P s0log p/n = op(1),

where the last equality follows from Assumption 12.

Step 3. Consider qn2. Again by Assumptions 12, 14 and the result in Step 1, we have

qn2 =
1

n
DT(I − PM̃D

)XM̃Y

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

)−1
1√
n
XT

M̃Y
(I − PM̃D

)ε

≤

∣∣∣∣∣
∣∣∣∣∣ 1nDT(I − PM̃D

)XM̃Y

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

)−1
∣∣∣∣∣
∣∣∣∣∣
1

·
∣∣∣∣∣∣∣∣ 1√

n
XT

M̃Y
(I − PM̃D

)ε

∣∣∣∣∣∣∣∣
∞

.P
√
s0

∣∣∣∣∣
∣∣∣∣∣ 1nDT(I − PM̃D

)XM̃Y

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

)−1
∣∣∣∣∣
∣∣∣∣∣
2

·
√

log p

.P
√
s0 log p · λ−1

min

(
1

n
XT

M̃Y
(I − PM̃D

)XM̃Y

) ∣∣∣∣∣∣∣∣ 1nDT(I − PM̃D
)XM̃Y

∣∣∣∣∣∣∣∣
2

.P s0

√
log p ·

∣∣∣∣∣∣∣∣ 1nDT(I − PM̃D
)XM̃Y

∣∣∣∣∣∣∣∣
∞

= op(1).

Step 4. Consider qn3. By the property of the projection matrix, we have PM̂∗ = PM̃D
+

P̃M̃Y
, and then I −PM̂∗ = (I −PM̃D

)(I − P̃M̃Y
)(I −PM̃D

), since M̂ = M̃D ∪ M̃Y

and M̃D ∩ M̃Y = ∅. Under Assumption 15, qn3 = 1√
n
DT(I − PM̂∗)g(W) = op(1).

3.5.2 Proof of Remark 3 in Section 3.1.2

In this subsection, we provide the proof of Remark 3 in Section 3.1.2 that the variance

σ̃2
n can be consistently estimated by σ̆2

n = σ̂2
ε/(D

T(I − PM̂∗)D/n), where σ̂2
ε = Y T(I −
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PM̂∗)Y · n/(n − |M̂∗| − 1). We start with proving three ancillary bounds. Let βM̂∗ =

ĨT

M̂∗XM̂∗(XT

M̂∗XM̂∗)−1XT

M̂∗g(W ) ∈ Rp×1.

• The first bound. Under Assumptions 13, 14 and 15,

||β − βM̂∗||1 .P
√
s0||β − βM̂∗ ||2

.P
√
s0λmin,s(X

TX/n)||β − βM̂∗||2

≤
√
s0||(XM0βM0 −XβM̂∗)/

√
n||2

≤
√
s0(||R/

√
n||2 + ||(I − PM̂∗)g(W )/

√
n||2)

= o(
√
s2

0/n) + op(s
1/2
0 n−1/4).

• The second bound. Followed by the first bound above and Lemma 1,

εT(I − PM̂∗)g(W )/n = εTX(β − βM̂∗)/n+ εTR/n

.P ||εTX/n||∞||β − βM̂∗||1 +
√
s0/n = op(1).

• The third bound. Under Assumptions 13 and 14,

εTPM̂∗ε/n = εTZM̂∗/n(ZT

M̂∗ZM̂∗/n)−1ZT

M̂∗ε/n ≤
1

κ2

||ZT

M̂∗ε/n||22 =
1

κ2

s0 log p/n = op(1).

(3.15)

As shown in Step 1, DT(I−PM̂∗)D/n = DT(I−PM̃D
)D/n+ op(1). Since s = o(n),

it suffices to prove Y T(I − P ∗
M̂∗)Y/n = σ2

ε + op(1). Assisted by these three auxiliary

bounded, recall for a model M , P ∗M = ZM(ZT
MZM)−1ZT

M is a projection matrix that
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includes D, we have

Y T(I − P ∗
M̂∗)Y/n = (g(W ) + ε)T(I − P ∗

M̂∗)(g(W ) + ε)/n

=
∣∣∣∣(I − PM̂∗)g(W )/

√
n
∣∣∣∣

2
+ 2εT(I − PM̂∗)g(W )/n+ εT(I − PM̂∗)ε/n

= op(n
−1/4) + 2εT(I − PM̂∗)g(W )/n+ σ2

ε + op(1) + εTPM̂∗ε/n

= σ2
ε + op(1).

As a minor generalization of this results, as shown in Step 1 DT(I − PM̂∗)D/n =

DT(I − PM̃D
)D/n + op(1), then we have σ̆2

n = σ2
ε

1
||D−Xγ̂∗||22/n

+ op(1), which echoes the

result in (3.3).

3.5.3 Illustration of (3.9) in Section 3.1.2

In this part, we provide the arguments used in Example 3 in Section 3.1.2. Under the model

3.8, given {1} ∈ M̂D, (I−PM̂D
)D = (I−PM̂D

)(X1γ1+ν) = (I−PM̂D
)ν by the property

of the projection matrix, and kn2 = νT(I −PM̂D
)ν/n = σ2

ν + op(1) if sd log p = o(n) (the

proof is similar to (3.15)). Therefore M̂∗
Y is selected via

M̂∗
Y =

{
arg max1≤j≤p

∣∣∣∣∣ 1

c∗nj

(
1

n
XT

j (I − PM̂D
)ε− 1

n
XT

j (I − PM̂D
)ν · 1

kn2

1

n
νT(I − PM̂D

)ε

) ∣∣∣∣∣
}
,

Since 1
n
XT
j (I − PM̂D

)ε = Op(1/
√
n) and 1

n
XT
j (I − PM̂D

)ν = Op(
√

log p/n), kn2 is

lowered bounded by a constant, and 1
n
νT(I − PM̂D

)ε = Op(1/
√
n), therefore the second

term is a smaller order term as long as log p = o(n).

3.5.4 Derivation of (3.13) in Section 3.2

In this part, we provide the alternative variance expression of PODS used in Section 3.2.

Given the two-stage model D = Xγ + ν which satisfies E(ν|X) = 0, we then have

67



γ = ΣDXΣ−1
X , and

σ2
ν = Var(νi) = E {Var(Di|Xi)}

= E
{
E(Di − E(Di|Xi))

2|Xi)
}

= E
{
E(D2

i − 2DiX
T

i γ + γTXiX
T

i γ|Xi)
}

= E(D2
i )− γTΣγ = Σ11 − γTΣγ = Σ11 − ΣDXΣ−1

X ΣXD = (Σ−1)11.

Therefore to prove

σ̆2
n = σ2

ε(Σ
−1)11 + op(1) = σ2

ε/σ
2
ν + op(1),

it remains to show that ||D −X γ̂∗||22/n = σ2
ν + op(1). Except for the approximate error

equals zero, the proof is the same as C.2 and thus is omitted.

3.5.5 Sufficient conditions to control the under-fitting bias

In this section, we discuss sufficient conditions to ensure the validity of Assumptions 5 and

15. Since the magnitude of under-fitting bias depends on the approximation errors Rn, the

conditions discussed here require the approximation errors to be small.

3.5.5.1 Sufficient conditions for Assumption 5

Under Condition 1-3 below, the under-fitting bias of R-Split vanishes with a large n and

Assumption 5 holds. We follow the notations used in Section 2.5.2, and work under As-

sumptions 1-4.

Condition 1. The selected models satisfy

E
(
(DT

V (I − PV,M̂)XV β/
√
n)2|X

)
= op(1). (3.16)
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Condition 2. The approximation errors satisfy E
(
‖ZT

V,M̂
Rn,V /

√
n‖2|X

)
= op(1).

Condition 3. E
(
eT1 Σ̂−2

V.M̂
e1|X

)
≤ K1, where K1 is a positive constant.

The expectations here are taken with respect to the distribution of V given the sam-

ple. These condition indicates that the under-fitting bias needs to be small on average, but

it allows some M̂ to miss active variables in M0. Condition 2 here contains an explicit

requirement on the approximation errors.

We apply the transformation provided in (2.15) and then the under-fitting bias reduces

to

E
(

(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)gV (W )/
√
n|X

)
=E

(
(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)XV β/
√
n|X

)
+ E

(
eT1 (ZT

V,M̂
ZV,M̂/n)−1ZT

V,M̂
Rn,V /

√
n|X

)
≤
(
E
(
(DT

V (I − PV,M̂)DV /n)−2|X
)1/2

·
(
E
(
(DT

V (I − PV,M̂)XV β/
√
n)2|X

)))1/2

+ E
((
eT1 (ZT

V,M̂
ZV,M̂/n)−1ZT

V,M̂
Rn,V /

√
n|X

)
,

=K1

(
E
(
(DT

V (I − PV,M̂)XV β/
√
n)2|X

))1/2

+ E
(
eT1 (ZT

V,M̂
ZV,M̂/n)−1ZT

V,M̂
Rn,V /

√
n|X

)
,

=E
(
eT1 (ZT

V,M̂
ZV,M̂/n)−1ZT

V,M̂
Rn,V /

√
n|X

)
+ op(1),

where the last step is obtained via (3.16). The quantity inside the conditional expectation

of the above line is upper bounded by

eT1 (ZT

V,M̂
ZV,M̂/n)−1ZT

V,M̂
Rn,V /

√
n ≤‖Σ̂−1

V,M̂
e1‖2 · ‖ZT

V,M̂
Rn,V /

√
n‖2. (3.17)

Thus under Assumption 9, the under-fitting bias of R-Split is bounded by

E
(

(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)gV (W )/
√
n|X

)
≤ E

(
‖Σ̂−1

V,M̂
e1‖2 · ‖ZT

V,M̂
Rn,V /

√
n‖2|X

)
≤ K E

(
‖ZT

V,M̂
Rn,V /

√
n‖2|X

)
= op(1).
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3.5.5.2 Sufficient conditions for Assumption 15

Sufficient conditions for controlling the under-fitting bias without smoothing can be devel-

oped similarly. Note that we follow the notations used in Section 3.5.1, and we work under

Assumption 1 and Assumptions 12-14.

Condition 4. Suppose that the sure screening property holds for M̂∗, i.e. M0 ⊆ M̂∗, and

we assume that DT(I − PM̂∗)Rn = op(1/
√
n).

Given that M0 ⊆ M̂∗ and qn1 = op(1), the bias term in Assumption 15 satisfies

DT(I − PM̂∗)g(W)/
√
n = DT(I − PM̂∗)Xβ/

√
n+DT(I − PM̂∗)Rn/

√
n

= DT(I − PM̂∗)Rn/
√
n = op(1).

Condition 5. We assume that the selected model M̂∗ satisfies minβ:βj=0,j /∈M̂∗ ‖g(W ) −

Xβ‖2 = op(n
1/4).

Notice that under the given condition we have ‖n−1/4(I − PM̂∗)g(W )‖2 = op(1).

Following the proof in Section 3.5.1, under Assumption 12 and 14 , we have

1√
n
DT(I − PM̂∗)g(W ) =

1√
n
DT(I − PM̃D

)2(I − P̃M̃Y
)(I − PM̃D

)g(W )

=
1√
n
DT(I − PM̃D

)(I − PM̂∗)g(W )

≤
∣∣∣∣DT(I − PM̃D

)
∣∣∣∣

2
·
∣∣∣∣ 1√

n
(I − PM̂∗)g(W )

∣∣∣∣
2

.p
∣∣∣∣DT(I − PM̃D

)
∣∣∣∣

2
· λmin(XT

M̃Y
XM̃Y

/n) ·
∣∣∣∣ 1√

n
(I − PM̂∗)g(W )

∣∣∣∣
2

≤
∣∣∣∣DT(I − PM̃D

)XM̃Y
/
√
n
∣∣∣∣

2
·
∣∣∣∣(I − PM̂∗)g(W )/

√
n
∣∣∣∣

2

≤
√
s
∣∣∣∣DT(I − PM̃D

)XM̃Y
/
√
n
∣∣∣∣
∞ ·
∣∣∣∣(I − PM̂∗)g(W )/

√
n
∣∣∣∣

2

= Op(
√
s log p) · op(n−1/4) = op(1).
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3.6 Implementation details

In the simulation studies and the examples provided in Section 2.2 and 3.3, we used the

adaptive Lasso Zou (2006) for model selection. In this part, we provide the implementation

details for the adaptive Lasso.

The adaptive Lasso weights are chosen via the high dimensional ordinary least squares

projection for screening variables (HOLP) in Wang and Leng (2016). Following Wang and

Leng (2016), HOLP is used to select a screening set Ĥ of size d,

θ̃H = Z(ZZT)−1ZY, (3.18)

Ĥ = {j : |θ̃H|j are among the largest d of all |θ̃′H|j’s}.

The authors suggest selecting at least n variables to preserve the true model with an over-

whelming probability. In the cases when p ≈ n or p ≤ n, ZZT becomes singular but

screening is not necessary and can be omitted. In our simulation studies, we choose d =

300. Then let Ĥk be the kth component of set Ĥ, and we denote the covariates after screen-

ing as Xi,Ĥ,and the observations after screening as {Yi, Di, Xi,Ĥ}ni=1, for i = 1, · · · , n.

By allowing a relatively higher penalty for the zero coefficients and a lower penalty for

nonzero coefficients, we take θ̃H from the screening step to weight the L1 penalties. The

adaptive Lasso is then implemented as follows

(α̂L, β̂
′
L)′ = arg min

α∈R,β∈R(d−1)×1

n−1

n∑
i=1

(Yi − αDi −X ′i,Ĥβ)2 + λ
∑
k∈Ĥ

|βk|
wk

, (3.19)

M̂ = supp(β̂L) =
{
k : βk 6= 0, k ∈ Ĥ

}

where wk is the Ĥkth component of |θ̃H| defined in (3.18), βk is the coefficient for Xi,Ĥk

and M̂ is the selected model with cardinality |M̂ | = s.

Additionally, from package glmnet, the selected model size s can be controlled by

tuning parameter λ. The Lasso coefficient path is built over a grid of tuning parameter
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λ1 > · · · > λQ and each λq indexes a different set of sparse solutions β̂λq . We use M̂s

as the model on the path whose model size is the closest to s. To be more specific, let the

support set M̂λq = supp(β̂λq), clearly, the support sets satisfy

M̂λ1 ⊂ M̂λ2 ⊂ · · · ⊂ M̂λQ , and |M̂λ1 | < |M̂λ2| < · · · < |M̂λQ |,

where |M̂λq | refers the cardinality of each set. To control the working model size s, we

simply pick the model M̂s through:

|M̂s| = arg min
M̂λq , q∈{1,··· ,Q}

∣∣∣s− |M̂λq |
∣∣∣ .

72



CHAPTER 4

Average Treatment Effects Estimation

In this chapter, we consider a special case whereD ∈ {0, 1} is a binary random variable and

study the average treatment effect (ATE) estimation following the Neyman-Rubin causal

model; see Neyman (1923) and Rubin (1974). In the first part of the chapter, we discuss the

ATE estimation with regression adjustment and show that the procedures and theoretical

properties discussed in Chapter 2 and 3 also apply to this context. As the validity of the

procedures discussed in the previous chapter generally depends on a correctly specified

regression model (1.2), in the second part of the chapter, we provide an extension of R-

Split that combines the doubly robust estimator studied in Robins and Rotnitzky (1995)

and Hahn (1998). This extension is proven to provide a consistent estimate of ATE if either

the propensity score model or the model (1.2) is correctly specified. In the last part of the

chapter, we provide a potentially interesting extension of repeated data splitting approach

for estimating heterogeneous treatment effect (HTE).

4.1 ATE estimation with regression adjustment

4.1.1 Notation and setup

In a special case where Di ∈ {0, 1} represents the treatment indicator, suppose that there

are two potential outcomes for each unit, denoted by Yi(0) for the outcome under the

control and Yi(1) for the outcome under an active treatment, and then Yi stands for the
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realized (or observed) outcome. We work under the framework that the potential con-

foundersWi are not affected by the treatment, and should be observed before any treatment.

The parameter of interest is the average treatment effect (ATE) which is defined through

α = E(Yi(1)− Yi(0)).

When the treatment assignment is not completely random, we may build a model for

the response in the treated and the control group separately, and this yields the model:

Yi = Di(µDi(Wi) + εDii ) + (1−Di)(µ1−Di(Wi) + ε1−Di
i ), (4.1)

µDi(Wi) = XT

i β
Di +RDi

ni , i = 1, . . . , n,

for Di ∈ {0, 1}, where µDi(Wi) and µ1−Di(Wi) are unknown functions that can be approx-

imated by a linear combination of the covariatesXi. Following the similar setup in Chapter

1, we assume that βDi ∈ Rp is an unknown sparse parameter vector, RDi
ni is the approxi-

mation error, and εDii is the random error that satisfies the assumption E(εDii |Wi) = 0. In

this context, if the approximation error is negligible, the average treatment effect equals

α = (EX1)T(β1−β0), where EX1 denotes the mean of the covariate vector. Then we note

that Model (4.1) is equivalent to the following linear model with interactions

Yi = αDi +XT

i β
0 +Di(Xi − EX1)Tδ +Rni + εi, i = 1, . . . , n, (4.2)

where δ = β1 − β0, Rni = DiR
1
ni + (1−Di)R

0
ni and εi = Diε

1
i + (1−Di)ε

0
i . Therefore

to estimate α, we can consider the regression model

Yi = αDi + X̃T

i β +Rni + εi, i = 1, . . . , n, (4.3)

where X̃i = (XT
i , Di(Xi − X̄)T)T and β = (β0 T, δT)T. Models (4.2) and (4.3) are asymp-

totically equivalent as long as s0 = o(
√
n), where s0 is the size of the support set of β.

Except that the dimension of the covariates X̃i has doubled from that of Xi, what we dis-
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cuss in the previous section still applies to the ATE estimation in this context. We note that

the procedures and the theoretical properties to be discussed in the paper for model (1.1)

apply to the estimation of the ATE through Model (4.3). To simplify presentation, we shall

focus on Model (1.1) in the rest of the thesis except in the simulation study.

In the literature of average treatment effect estimation, it is known that regression ad-

justment in randomized trials provides consistent estimates when p is fixed, and is as least

as efficient as the naive estimate which is the mean difference between the responses in

the treated group and the control group -even when the linear model is misspecified; see

Lin (2013) and Imbens and Rubin (2015). However, in the presence of high dimensional

covariates, such a statement needs to be examined with caution. It has been shown in Blo-

niarz et al. (2016), given an ultra-sparsity assumption in the sense that s0 log p = o(
√
n),

regression adjustments using Lasso are more efficient than the naive estimate. Once the

ultra-sparsity assumption is violated, it is difficult to consistently estimate the average treat-

ment effect from Lasso without further restrictions on Σ. Wager et al. (2016) proposed an

estimate which is built on cross-estimation, and then the ultra-sparsity assumption can be

relaxed to s0 = o(n).

When the goal is to estimate the average treatment effect in non-randomized trials, re-

gression adjustment may not work well when the regression model is misspecified. Another

type of estimators has been constructed by estimating the propensity scores, and doubly ro-

bust estimators may be used to remove the bias; see Farrell (2015), Robins et al. (2017)

and Chernozhukov et al. (2018). To achieve the
√
n-rate of convergence, these procedures

would need either a consistent estimator of the propensity score or a correctly specified

linear model for the potential outcome. More recently Athey et al. (2018) proposed the

approximate residual balancing method without estimating the propensity score, but they

required the potential outcome to follow a ultra-sparse linear model to achieve asymptotic

normality of the estimator.

Finally, we note that the procedures and the theoretical properties discussed in the pre-
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vious chapters for model (1.1) apply to the estimation of ATE through Model (4.3).

4.1.2 Simulation study

When D is binary, we consider a case similar to the many-cluster model used in Section

5.2 of Athey et al. (2018). Consider for i = 1, · · · , n,

Yi = (Ci +Xi)
Tβ +Di + εi, (4.4)

whereXi ∼ N(0, Ip), εi are white noise, β = cyβ0 with the constants cy chosen for desired

values of R2 given in Table 4.1, and Ci ∈ Rp are the cluster centers defined as follows. We

first choose 10 cluster centers {c1, · · · , c10} as a random sample from N(0, Ip), and then

draw Ci uniformly at random from the 10 cluster centers. The variable Di is drawn from

the Bernoulli distribution with probability η for the first 5 clusters and with probability

1 − η for the remaining clusters. For comparison, we include the methods discussed in

Section 3.3 and “BalanceHD” , which is the residual balancing method of Athey et al.

(2018) for estimating average treatment effect when D is binary only, and is implemented

by R package balanceHD.

Encouragingly, similar conclusions can be reached from the results in Table 4.1 for

Setting 3 in comparison to Settings 1 and 2 in Chapter 3.3. Meanwhile, we observe that

the residual balancing method can successfully reduce the bias in most of the cases. The

balancing weights used in this method involve a bias-variance trade-off. When n is small

but p is large, the balancing weights can successfully reduce the bias but at a cost of higher

variance. For the sample size up to n = 200, the variance of the estimator can be much

higher than R-Split and PODS for sparse models.
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Table 4.1: The results are based on the many-cluster setting in Model (4.4) with p = 500.
Oracle Double Double-2CV PODS R-Split PODS-Split De-sparsified Alasso+OLS BalanceHD

β is sparse, R2 = 0.5, ŝmin = 6, η = 0.25, n = 100√
nBias −0.08(0.09) −0.81(0.12) −0.37(0.19) −0.11(0.12) −0.14(0.11) −0.11(0.12) −0.69(0.11) −2.29(0.11) −0.07(0.12)
nMSE 3.91(0.23) 8.08(0.52) 18.22(2.42) 7.52(0.51) 5.96(0.37) 6.78(0.40) 6.33(0.38) 10.98(0.72) 7.58(0.46)
Cover 0.97(0.01) 0.94(0.01) 0.90(0.01) 0.92(0.01) 0.94(0.01) 0.95(0.01) 0.92(0.01) 0.61(0.02) 0.94(0.01)
Length 0.40(0.00) 0.52(0.00) 0.60(0.01) 0.46(0.00) 0.47(0.00) 0.50(0.00) 0.48(0.00) 0.31(0.00) 0.53(0.00)

β is sparse, R2 = 0.8, ŝmin = 6, η = 0.25, n = 100√
nBias 0.07(0.09) −0.64(0.11) −3.80(3.86) 0.20(0.11) 0.10(0.09) 0.09(0.10) −0.86(0.11) −1.21(0.10) 0.10(0.15)
nMSE 3.70(0.24) 6.27(0.52) 14.85(0.88) 6.09(0.70) 4.27(0.27) 4.81(0.33) 7.20(0.47) 6.79(0.47) 12.01(0.80)
Cover 0.96(0.01) 0.93(0.01) 0.91(0.01) 0.91(0.01) 0.96(0.01) 0.96(0.01) 0.92(0.01) 0.78(0.02) 0.93(0.01)
Length 0.41(0.00) 0.45(0.00) 0.68(0.01) 0.40(0.00) 0.44(0.00) 0.47(0.00) 0.47(0.00) 0.34(0.00) 0.63(0.00)

β is moderately sparse, R2 = 0.5, ŝmin = 10, η = 0.25, n = 100√
nBias −0.06(0.10) −0.46(0.14) −0.19(0.18) −0.08(0.13) −0.22(0.13) −0.13(0.13) −0.46(0.12) −2.41(0.12) −0.05(0.13)
nMSE 5.43(0.36) 9.34(0.73) 15.72(1.53) 8.88(0.66) 7.87(0.62) 8.57(0.67) 7.31(0.56) 12.80(0.97) 8.29(0.61)
Cover 0.93(0.01) 0.92(0.01) 0.90(0.01) 0.92(0.01) 0.93(0.01) 0.94(0.01) 0.93(0.01) 0.65(0.02) 0.92(0.01)
Length 0.46(0.00) 0.56(0.01) 0.61(0.01) 0.52(0.00) 0.53(0.00) 0.55(0.00) 0.52(0.00) 0.34(0.00) 0.55(0.00)

β is moderately sparse, R2 = 0.8, ŝmin = 10, η = 0.25, n = 100√
nBias −0.04(0.10) −2.09(0.19) −0.37(0.32) −0.28(0.19) −0.35(0.15) −0.37(0.18) −2.45(0.15) −1.71(0.13) −0.35(0.21)
nMSE 5.35(0.32) 21.62(1.45) 50.86(5.97) 18.98(1.44) 11.76(0.79) 16.59(1.09) 17.75(1.18) 11.83(0.85) 21.61(1.46)
Cover 0.95(0.01) 0.87(0.01) 0.88(0.01) 0.83(0.02) 0.93(0.01) 0.92(0.01) 0.84(0.02) 0.77(0.02) 0.93(0.01)
Length 0.46(0.00) 0.73(0.01) 0.97(0.01) 0.58(0.01) 0.64(0.00) 0.75(0.00) 0.59(0.00) 0.41(0.00) 0.83(0.00)

β is dense, R2 = 0.5, ŝmin = 10, η = 0.25, n = 100√
nBias - −0.12(0.14) −0.25(0.18) 0.02(0.13) 0.01(0.13) 0.04(0.13) −0.18(0.12) −2.47(0.12) 0.05(0.12)
nMSE - 9.42(0.85) 16.41(1.68) 8.95(0.84) 7.77(0.53) 7.94(0.52) 7.11(0.49) 12.91(0.90) 7.58(0.51)
Cover - 0.94(0.01) 0.90(0.01) 0.92(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.65(0.02) 0.95(0.01)
Length - 0.57(0.01) 0.62(0.01) 0.52(0.00) 0.55(0.00) 0.56(0.00) 0.53(0.00) 0.35(0.00) 0.55(0.00)

β is dense, R2 = 0.8, ŝmin = 10, η = 0.25, n = 100√
nBias - −0.80(0.23) 0.63(0.83) −0.09(0.23) −0.19(0.22) 0.01(0.22) −0.94(0.21) −2.54(0.19) −0.03(0.22)
nMSE - 27.42(2.23) 35.65(3.14) 27.57(2.54) 23.67(1.57) 24.62(1.59) 24.21(1.47) 24.57(1.71) 24.99(1.58)
Cover - 0.92(0.01) 0.89(0.01) 0.90(0.01) 0.93(0.01) 0.94(0.01) 0.89(0.01) 0.71(0.02) 0.91(0.01)
Length - 0.91(0.01) 1.02(0.01) 0.81(0.01) 0.85(0.01) 0.88(0.01) 0.79(0.00) 0.53(0.00) 0.89(0.00)

β is moderately sparse, ŝmin = 10, R2 = 0.5, η = 0.1, n = 200√
nBias 0.03(0.07) −0.12(0.08) 0.14(0.08) 0.12(0.08) 0.03(0.08) 0.06(0.08) −0.21(0.08) −1.56(0.08) 0.10(0.09)
nMSE 2.36(0.15) 3.22(0.19) 3.31(0.20) 3.09(0.18) 3.07(0.20) 3.31(0.20) 2.97(0.18) 5.39(0.35) 3.64(0.21)
Cover 0.93(0.01) 0.95(0.01) 0.96(0.01) 0.93(0.01) 0.92(0.01) 0.94(0.01) 0.92(0.01) 0.65(0.02) 0.97(0.01)
Length 0.29(0.00) 0.35(0.00) 0.36(0.00) 0.33(0.00) 0.33(0.00) 0.35(0.00) 0.33(0.00) 0.23(0.00) 0.38(0.00)

β is moderately sparse, ŝmin = 10, R2 = 0.8, η = 0.1, n = 200√
nBias 0.03(0.07) −0.59(0.08) 0.12(0.12) 0.01(0.08) −0.00(0.08) −0.03(0.08) −0.50(0.08) −1.15(0.08) 0.12(0.11)
nMSE 2.36(0.15) 3.30(0.22) 6.88(0.39) 2.83(0.18) 2.89(0.18) 3.21(0.19) 3.58(0.21) 4.55(0.30) 5.59(0.30)
Cover 0.93(0.01) 0.91(0.01) 0.96(0.01) 0.91(0.01) 0.94(0.01) 0.95(0.01) 0.92(0.01) 0.73(0.02) 0.95(0.01)
Length 0.29(0.00) 0.32(0.00) 0.52(0.00) 0.29(0.00) 0.33(0.00) 0.34(0.00) 0.33(0.00) 0.24(0.00) 0.44(0.00)

When β is not sparse, we omit the results for “Oracle”. The numbers in the parenthesis are
the standard errors of the estimated values. The nominal coverage probability is 0.95.

4.2 ATE estimation with doubly robust estimator

As the validity of regression adjustment estimator replies on a correctly specified linear

model in (1.2) for the response, in this section, we discuss the doubly-robust estimator

that combines regression imputation and inverse probability weighting. The doubly-robust

estimator proposed by Robins and Rotnitzky (1995) and Hahn (1998) remains consistent if

either the response model or propensity score model is misspecified. We will first discuss a

generalization of the doubly-roust estimator that incorporates high dimensional covariates.

Our analysis shows that as long as model selection is adopted in the estimation procedure,

doubly robust estimator can not avoid the over-fitting bias issue. As doubly robust estimator
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was originally proposed in the semi-parametric inference literature, later in the section, we

shall discuss the connection between the post-selection bias and the “over-fitting” bias in

the semi-parametric literature.

4.2.1 Doubly robust estimator with repeated data splitting

We write the propensity score, i.e. the conditional probability of receiving the treatment

given the covariates, as

e(Xi) = P(Di = 1|Xi). (4.5)

To estimate the propensity score in high dimensions, we assume that the propensity score

satisfies

log

(
e(Xi)

1− e(Xi)

)
= XT

i γ +Re
ni, i = 1, · · · , n, (4.6)

where Re
ni is an approximation error, and γ is a sparse vector of coefficients with ||γ||0 ≤

sγ . To estimate ATE, we work under the following assumption.

Assumption 16. We assume that (a) mean independence: E[Y (d)|D,X] = E[Y (d)|X],

and (b) overlap: e(X) is bounded away from zero for all d ∈ {0, 1}, i.e. there exist a

positive constant η such that η ≤ e(z) ≤ 1− η.

The mean independence condition in (a) is a relaxation of the unconfoundedness as-

sumption discussed in Rubin (1991). Intuitively, this condition requires that the treatment

assignment mechanism is similar to randomization within the group of units that share sim-

ilar features. The second overlap condition requires that for each unit in the treated group,

there exists a good proxy for this unit in the control group.

Given an i.i.d sample {Yi, Di, Xi}ni=1, a doubly robust estimator proposed in Robins
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and Rotnitzky (1995) and Hahn (1998) is defined as α̂DR = µ̂1 − µ̂0 with

µ̂1 =
1

n

n∑
i=1

[
DiYi
ê(Xi)

+
(ê(Xi)−Di)µ̂1(Xi)

ê(Xi)

]
, (4.7)

µ̂0 =
1

n

n∑
i=1

[
(1−Di)Yi
1− ê(Xi)

+
(Di − ê(Xi))µ̂0(Xi)

1− ê(Xi)

]
,

where µ̂d(·) and ê(·) are some generic model-based estimators of µd(·) and e(·) that may

require additional specification. α̂DR is a robust estimation of α in the sense that it remains

consistent if the model for either µd(·) or e(·) is misspecified.

In high dimensions, when model selection is adopted for estimating the propensity score

e(·) and conditional mean µd(·), a similar post-selection bias issue discussed in Chapter 2

also exists in α̂DR. To illustrate this bias issue, suppose the propensity score e(X) is known

for now, then the doubly robust estimator in (4.7) reduces to α̂∗ = µ̂∗1 − µ̂∗0 where

µ̂∗1 =
1

n

n∑
i=1

[
DiYi
e(Xi)

+
(ê(Xi)−Di)µ̂1(Xi)

e(Xi)

]
,

µ̂∗0 =
1

n

n∑
i=1

[
(1−Di)Yi
1− e(Xi)

+
(Di − e(Xi))µ̂0(Xi)

1− e(Xi)

]
.

If we estimate µd(X) with the refitted OLS estimator µ̂d,OLS(X) = X ′β̂OLS discussed in

Remark 1, we have in general E[Y − µ̂d,OLS(X)] 6= 0 unless perfect model selection is

achieved. Therefore, even if the propensity score is known, the doubly robust estimator is

still biased due to either over-fitting or under-fitting. To avoid the post selection bias, we

propose an extension of R-Split that incorporates doubly-robust estimator. We formalize

this idea in Algorithm 6.

Similar to R-Split in Chapter 2, any reasonable model selection method can be adopted

in Step 2. In Step 3, because the estimated functionals ê(·) and µ̂d(·) are independent with

the data in S2, the over-fitting bias can be removed. In theory, we require that B equals the

number of all possible subsample of size n2, and the doubly-robust smoothed estimator can
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Algorithm 6 ATE: R-Split with Doubly-robust estimator
For b← 1 to B do

Step 1. Randomly split the data {(Yi, Di, Xi)}ni=1 into group S1 of size n1

and group S2 of size n2 = n− n1. Let vbi = 1(i∈S2), for i = 1, · · · , n.
Step 2. Obtain ê(·) and µ̂d(·) on S1 for d ∈ {0, 1}.
Step 3. “Predict” on S2:

µ̂1,b = 1
n2

∑
i∈S2

[
DiYi
ê(Xi)

+ (ê(Xi)−Di)µ̂1(Xi)
ê(Xi)

]
µ̂0,b = 1

n2

∑
i∈S2

[
(1−Di)Yi
1−ê(Xi) + (Di−ê(Xi))µ̂0(Xi)

1−ê(Xi)

]
.

The doubly-robust “smoothed” estimator of α is α̃DR = 1
B

∑B
b=1(µ̂1,b − µ̂0,b).

be viewed α̃DR = E (µ̂1,b − µ̂0,b|X ). To study the theoretical property of α̃DR, we assume

that the observed data follow the data generating process listed in Assumption 1, and the

model selection procedure satisfies Assumption 17.

Assumption 17. For all d ∈ {0, 1}, the estimators of µd(·) and e(·) satisfy that

(a) E
[

1
n

∑n
i=1

(
1

êV (Xi)
− 1

e(Xi)

)2
∣∣∣∣X] = op(1).

(b) E
[

1
n

∑n
i=1

(
µ̂dV (Xi)− µd(Xi)

)2

∣∣∣∣X] = op(1).

(c) E

[(
1
n

∑n
i=1(µ̂1,vb(Xi)− µ1(Xi))

2
)1/2 ·

(
1
n

∑n
i=1

(
1

êV (Xi)
− 1

e(Xi)

)2
)1/2 ∣∣∣∣X

]
= op(n

−1/2).

Assumption 17 (a) requires estimation bias in êV (·) to be negligible after aggregat-

ing over all splits. If we use logistic Lasso proposed in Meier et al. (2008) to estimate the

propensity score, this assumption places a limit on the sparsity level of sγ in model (4.6). As

the asymptotic results in Corollary 1 of Farrell (2015) indicate that 1
n

∑n
i=1

(
1

êV (Xi)
− 1

e(Xi)

)2

=

Op(sγ log p/n) under some mild conditions, we expect Assumption 17 (a) to be satisfied

as long as sγ log p/n = o(1) but further investigation is necessary. Assumption 17 (b) is

similar to Assumption 5 in Chapter 2, see Chapter 3.5.5 for more discussion. Assumption

17 (c) requires a rate on the product of errors and is thus easier to satisfy as long as one

function is moderately sparse; see Chernozhukov et al. (2018) and Dukes et al. (2018) for

more discussion.
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Theorem 3. Under Assumption 1, 16, and 17, by letting µ̃d = E(µ̂d,V |X ), we have for

d ∈ {0, 1},

√
n(µ̃d − µd) =

1

n

n∑
i=1

φd(Zi) + op(1),

where

φ1(Zi) =
DiYi
e(Xi)

− µ1 +
(e(Xi)−Di)µ1(Xi)

e(Xi)

φ0(Zi) =
(1−Di)Yi
1− e(Xi)

− µ0 +
(Di − e(Xi))µ0(Xi)

1− e(Xi)

Given the linear expression above, we have
√
nσ−1

d (µ̃d − µd)  N(0, 1), where σ2
d =

E
[

Var(εdi )

e(X)1(d=1)+(1−e(X))1(d=0)

]
+ E (µd(Xi)− µd)2.

4.2.2 Comparison between R-Split estimator and α̃DR

In this section, we provide a heuristic comparison on the statistical asymptotic efficien-

cies between R-Split estimator and α̃DR discussed in Algorithm 6. As R-Split works with

model (1.2), a simplified asymptotic variance expression of α̃DR under this model shall be

provided. Given model (1.2), we have E (µd(Xi)− µd)2 = 0, therefore under the assump-

tions for Theorem 3

σ2
DR = E

(
σ2
ε

e(Xi)(1− e(Xi))

)
. (4.8)

where σ2
DR is the asymptotic variance of

√
n(α̃DR − α). Given a fixed model M , following

a similar derivation in Section 3.5.4, we have (Σ−1
M )11 = Var(D) − Var(E(D|XM)) =

E(Var(D|XM)). Therefore for R-Split, given the derivation in (3.12) and the fact that
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D ∈ {0, 1} is a binary random variable, we have

σ̃2
n ≤ E

(
σ2
ε

e(Xi,M̂)(1− e(Xi,M̂))

∣∣∣∣X
)

+ op(1). (4.9)

From the comparison between (4.8) and (4.9), unless e(XM̂) ≈ e(X) for possible

models M̂ , R-Split estimator has smaller asymptotic variance than α̃DR. Recall that the

propensity score e(XM̂) is essentially the proportion of the treated units in the strata with

features XM̂ . In observational studies, e(X) is likely to be much smaller than e(XM̂) since

e(X) calculates the proportion of the treated units in a much finer strata. On the other

hand, in randomized trials, because treatments are randomly assigned and the probability

of being assigned to the treatment group equals P (D = 1) in all possible strata, therefore

we normally have e(XM̂) = e(X). As a conclusion, we expect that R-Split is more efficient

than α̂DR in observational studies.

4.3 Heterogeneous treatment effects

In this section, we propose a potential extension of R-Split for estimating heterogeneous

treatment effect, which can be particularly interesting in subgroup analysis ; see Wang et al.

(2007) and Pocock et al. (2002). For example, studies in marketing often try to identify

a subgroup of individuals for whom a job training program is most beneficial; studies

in biomedical science evolve identifying subgroups of patients for whom the treatment

may be most beneficial or harmful. Therefore, in this section, we consider the problem of

estimating

µd(w) = E[Y (d)|W = w], µd(W) = E[Y (t)|W ∈ W ], for d ∈ {0, 1},

where W is a continuous treatment or exposure variable as part of the covariates X in the

sense that X = (W,ZT)T. Then, the heterogeneous treatment effect can be calculated by

82



the difference between µ1(w) and µ0(w), i.e.,

τ(w) = E[Y (1)− Y (0)|W = w] = µ1(w)− µ0(w).

As the quantities of interest are defined in terms of the potential outcomes that are not

observed, we must consider assumptions under which these quantities can be expressed

based on observed data. Thus, in this section, we again work under Assumption 16. Under

Assumption 16 and given W = w, µ1(w) can be identified with the observed data through

µ1(w0) =E[Y (1)|W = w]

=E {E (Y (1)|Z,W = w) |W = w}

=E {E (Y (1)|D = 1, Z,W = w) |W = w}

=E {E (Y |D = 1, Z,W = w) |W = w} ,

then the conditional treatment effect equals

τ(w) = E {E (Y |D = 0, Z,W = w) |W = w} − E {E (Y |D = d,X) |W = w} .

Following the derivations above, it would be interesting to derive the semi-parametric ef-

ficiency bound and the efficient influence function for estimating τ(w), but further studies

are needed.

83



4.4 Proofs

4.4.1 Proof of Theorem 3

As the proofs for µ̃1 and µ̃0 are very similar, to avoid redundancy, we focus on µ̃1. In a

single split, µ̂1,b can be decomposed

µ̂1,vb − µ1 =
1

n2

n∑
i=1

vbiφ1(Zi) + (rn1,b + rn2,b + rn3,b)/
√
n2,

where

φ1(Zi) =
DiYi
e(Xi)

− µ1 +
(e(Xi)−Di)µ1(Xi)

e(Xi)
,

rn1,b =
1
√
n2

n∑
i=1

vbiDi(Yi − µ1(Xi))

(
1

êvb(Xi)
− 1

e(Xi)

)
,

rn3,b =
1
√
n2

n∑
i=1

vbi(µ̂1,vb(Xi)− µ1(Xi)) ·
e(Xi)−Di

e(Xi)
,

rn3,b =
1
√
n2

n∑
i=1

vbiDi(µ̂1,vb(Xi)− µ1(Xi))
êvb(Xi)− pt(Xi)

êvb(Xi)pt(Xi)
.

As the weights are independently generated with data, the smoothed estimator is of the

form µ̃t = E(µ̂1,vb|X ) satisfies

√
n(µ̃t − µ1) =

√
n (E(µ̂1,V |X )− µ1)

=
1

n

n∑
i=1

φ(Zi) + E(rn1,b + rn2,b + rn3,b|X ).
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The proof proceed by showing that E(rni,b|X ) = op(1) for i = 1, 2, 3. Applying the mean

independence condition in (16), we may write r1n,b as

E(r1n,b|X ) = E

[
1
√
n2

n∑
i=1

ViDi(Yi − µ1(Xi))

(
1

êvb(Xi)
− 1

e(Xi)

) ∣∣∣∣X
]

= E

[
1
√
n2

n∑
i=1

ViDiε
1
i

(
1

êvb(Xi)
− 1

e(Xi)

) ∣∣∣∣X
]

=
1

B

B∑
b=1

1
√
n2

n∑
i=1

vibDiε
1
i

(
1

êvb(Xi)
− 1

e(Xi)

)
,

To this end, it is enough to control the variance of E(R11,b|X ). By data splitting, the noise

term ε1
i is independent of êV (·), we have

Var(E(R11,b|X )|{Zi}ni=1) ≤ 1

B

B∑
b=1

1

n2

Var

[
n∑
i=1

vibDitε
1
i

(
1

êV (Xi)
− 1

e(Xi)

) ∣∣∣∣{Zi}ni=1

]

=
1

B

B∑
b=1

1

n2

n∑
i=1

σ2
ε1E

[
Ditvib

(
1

êV (Xi)
− 1

e(Xi)

)2 ∣∣∣∣{Zi}ni=1

]

≤ σ2
ε1

1

B

B∑
b=1

1

n2

n∑
i=1

vibE

[(
1

êV (Xi)
− 1

e(Xi)

)2 ∣∣∣∣{Zi}ni=1

]

= σ2
ε1

n∑
i=1

(
1

n2

1

B

B∑
b=1

vib

)
E

[(
1

êV (Xi)
− 1

e(Xi)

)2 ∣∣∣∣{Zi}ni=1

]

= σ2
ε1E

[
1

n

(
1

êV (Xi)
− 1

e(Xi)

)2 ∣∣∣∣{Zi}ni=1

]
= op(1),

where the last step is obtained by Assumption 17 (a). Variance of E(R12,b|X ) can be

controlled similarly by Assumption 17 (b).
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Applying Assumption 17 (c) and by Cauchy’s inequality, we have

E(Rn2,b|X ) = E

[
1√
n

n∑
i=1

Vi(µ̂1,V (Xi)− µ1(Xi))
êV (Xi)− e(Xi)

êV (Xi)e(Xi)

∣∣∣∣X
]

≤
√
n E

( 1

n

n∑
i=1

(µ̂1,vb(Xi)− µ1(Xi))
2

)1/2

·

(
1

n

n∑
i=1

(
1

êV (Xi)
− 1

e(Xi)

)2
)1/2 ∣∣∣∣X


= op(1).
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CHAPTER 5

Conclusion and Future Work

In the previous chapters, we address the issue of bias after model selection and its impact

on statistical inference on treatment effects from a linear or partially linear model in a

high dimensional setting. We consider the method of repeated data splitting to remove the

over-fitting bias without much sacrifice in efficiency. We also revisit some of the well-

known two-stage selection estimators and discuss a delicate bias-variance trade-off with

those methods. As made clear in the thesis, there are pros and cons in each method. While

the method of repeated data splitting eliminates the over-fitting bias and helps minimize the

efficiency loss, it is subject to the risk of under-fitting, especially in a non-sparse model.

The two-stage selection methods reduce the under-fitting bias but at the cost of efficiency

loss when the treatment variable is correlated with some of the inactive covariates in the

model. In the latter cases, we propose a new variant, PODS, that aims to suppress the over-

and under-fitting biases simultaneously. Our theoretical and empirical investigations show

that the proposed methods improve the validity of inference on the treatment effect in a

high dimensional regression model.

Our current work on post selection inference discuss the bias issues under the frame-

work of high dimensional linear or partially linear sparse models. In the future, built on

these insights, it would be interesting to generalize our work to other problems. For ex-

ample, the inferential problems in high dimensional dense models or in mis-specified re-

gression models could be potentially interesting. The motivation for this line of research is
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that any statistical model is only an approximation to the real world. Therefore, it would

be meaningful to push the limits of standard statistical technique and propose more robust

alternatives whenever possible.

Post model selection inference also has broad applications in other statistical areas such

as subgroup analysis briefly mentioned in Chapter 4. It is known in Thomas and Bornkamp

(2017) that a naive estimation of the treatment effect, which ignores a subgroup selection

has taken place, leads to biased estimates that give overly optimistic conclusions. As this

bias in subgroup analysis is in a spirit similar to the post-selection over-fitting bias, the

procedures proposed in the current thesis have the potential to provide valid inference after

subgroup selection.

Another future direction is to develop “precision model selection” methods for esti-

mating heterogeneous treatment effects. There is a vast literature on model selection for

prediction, but relatively little work on model selection for causal inference. The purpose

of what we call “precision model selection is to assign models tailored towards individuals

on the basis of their unique characteristics that distinguish a given set of individuals from

other individuals.
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