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ABSTRACT 

 

 The human adrenal cortex can be divided into three zones that secrete distinct 

steroid hormones. The zona glomerulosa (ZG) produces aldosterone, a 

mineralocorticoid that is important for sodium/potassium homeostasis and blood 

pressure regulation. The zona fasciculata (ZF) produces cortisol, a glucocorticoid that 

participates in glucose homeostasis, and the zona reticularis serves as a secondary site 

for sex steroid production. The adrenal cortex undergoes cell renewal through 

centripetal displacement from the outer ZG to the inner adrenomedullary border where 

cells undergo apoptosis. Cells transition to the steroidogenic phenotype of each zone 

during the displacement process through gaining and losing zone-specific steroidogenic 

enzymes. There remain many unanswered questions regarding the cellular and 

molecular processes that regulate adrenocortical zonation. Understanding the 

mechanisms leading to cortical zonation and factors that cause dysregulation of steroid 

production could provide insight into adrenal physiology and disease. 

Primary aldosteronism (PA) is a common cause of hypertension that results from 

excess aldosterone production and inappropriate adrenal expression of aldosterone 

synthase (CYP11B2). Despite its high prevalence, there are few appropriate animal 

models for PA. Physiologic adrenal aldosterone production is regulated by the renin 

angiotensin-aldosterone system (RAAS) which is activated in states of low renal tubule 

sodium levels or intravascular volume, leading to increased renal sodium retention. 
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Angiotensin II induces ZG aldosterone production via Gq-coupled receptors that 

trigger calcium signaling and transcription of CYP11B2. Recently, a series of DREADD 

(designer receptors exclusively activated by designer drugs) were developed to provide 

a chemogenetic method to modulate G-protein pathways. Included are transgenic 

receptors that stimulate Gq signaling only upon the binding of a synthetic ligand 

(clozapine N-oxide, CNO). This dissertation project tested the overall hypothesis that 

transgenic mice with targeted ZG/ZF GqDREADD expression would provide an 

inducible/reversible model for primary aldosteronism and a model to define the role of 

Gq signaling in functional adrenal zonation.    

In this study, we demonstrated that ASCre/+::hM3Dq mice respond to CNO 

treatment with an increase in aldosterone production and upregulation of Cyp11b2 

expression in both the ZG and ZF. This increase in aldosterone caused renal negative 

feedback with suppression of renin in a manner similar to that seen in patients with PA. 

When mice were given CNO in conjunction to a high sodium diet, Cyp11b2 

mRNA/protein and aldosterone were highly elevated, confirming that the induction of 

Cyp11b2 was autonomous and not RAAS dependent. Mice treated with CNO plus high 

sodium diet also developed hypertension in response to elevated aldosterone 

concentration. Analysis of adrenals from CNO treated mice demonstrated that ZF cells 

take-on some, but not all properties of ZG cells.  The transcriptional, histological, 

hormonal and hypertensive phenotypes were all reversible upon CNO washout. In 

summary, this dissertation project resulted in the development of an inducible and 

reversible mouse model of adrenal-derived hyperaldosteronism and hypertension. The 

project also provides evidence that Gq signaling contributes to functional zonation and 
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cellular ability to produce aldosterone. Future work will be needed to address the 

molecular mechanism by which Gq signaling activates Cyp11b2 expression and 

aldosterone production in ZF cells.  This mouse model will also facilitate testing and 

discovery of therapeutic targets to block inappropriate aldosterone production and 

action in patients with PA.
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CHAPTER 1 

 

Introduction 

 

  

1.1  Background 

 The adrenal gland is a multifaceted organ that controls electrolyte balance, the 

stress response, and in humans, acts as a secondary site for sex steroid precursor 

production. The adrenal cortex is comprised of cells that produce the steroid hormones 

responsible for these tasks, and makes up 90% of the tissue. The remaining 10% of the 

gland located in its center is the adrenal medulla, which produces catecholamines, a 

class of hormones that mediate the sympathetic nervous system response to stress.  

The cortex is derived from mesoderm, whereas the medulla is derived from 

neuroectoderm. While there are known interactions between the cortex and medulla, 

they largely function separate from one another. 

  The adrenal glands are located above the kidneys in humans, and were not 

documented by the earliest anatomists, but were first anatomically described by 

Bartolomeo Eustachius as a suprarenal organ in 1563 (1, 2). The differentiation 

between cortex and medulla was not recognized until 1805 by Georges Curvier (1), with 

adrenocortical zonation characterized by Julius Arnold in 1866 (3, 4). The physiological 

functions of the adrenals went unrecognized until the middle of the 19th century, when 

physiologists such as Thomas Addison and Charles-Edouard Brown-Sequard began to 
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describe adrenal function and disease (1, 5). Through adrenalectomy experiments, 

Brown-Sequard was the first to show that adrenal glands secreted hormones that were 

necessary for life (6). Nearly 100 years later, Hans Selye provided the first description of 

the hypothalamic-pituitary-adrenal axis, and named two of the main adrenal steroid 

classes ‘glucocorticoids’ and ‘mineralocorticoids,’ arguing for the first time that both 

were essential for life (7). Subsequent studies from the mid to late 1900s identified the 

adrenal steroid products and the enzymes that were responsible for the steps required 

for steroidogenesis. With this came the identification of several adrenal diseases of 

hormone excess and deficiency.  The mechanisms that control adrenal homeostasis 

and the factors that contribute to the etiology of adrenal diseases remain active areas of 

research. 

 Aldosterone is the primary mineralocorticoid produced in humans, and its 

function is to facilitate sodium retention, effectively maintaining intravascular volume 

and pressure. Autonomous excessive secretion of aldosterone that results in 

hypertension was first described by Jerome Conn in 1954 (8) and is now commonly 

referred to as primary aldosteronism (PA) or Conn Syndrome. Significant progress has 

been made with regard to the diagnoses and treatment options for this disease. 

However, treatment and diagnoses can be improved through further understanding of 

how the adrenal cortex maintains its zonation of steroidogenic enzymes and the 

mechanisms that cause zonal dysregulation, as seen in PA. 
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1.2   Adrenal Zonation 

 The three steroid-producing functions of the human adrenal cortex are separated 

into distinct zones: the outermost zona glomerulosa (ZG) controls mineralocorticoid 

secretion, the middle zona fasciculata (ZF) produces glucocorticoids, and innermost 

zona reticularis (ZR) is a secondary site for sex steroid precursor production (Figure 

1.1A). The medulla resides below the ZR, and the adrenal capsule is a connective 

tissue comprised of mesenchymal cells that surround the cortex. Upon histological 

examination, it is apparent that the three zones are morphologically different. The ZG is 

distinguished by closely packed cells, described as ‘rosette’-like structures (3). These 

cells are responsible for the secretion of aldosterone, the main mineralocorticoid. 

Aldosterone’s primary actions are to control renal sodium retention and potassium 

excretion. The ZG is molecularly characterized by its exclusive expression of 

aldosterone synthase (CYP11B2) (9). Aldosterone is tightly controlled by the renin-

angiotensin-aldosterone system (RAAS). The restriction of CYP11B2 to the ZG is due to 

the exclusive ZG expression of the angiotensin II (AngII) receptor type 1 (AT1R) (10), 

which initiates aldosterone production through its binding of AngII. The mechanism of 

action of AT1R, a G-protein coupled receptor, will be covered in further detail in the 

coming sections. 

 The ZF is the largest zone in the normal adrenal gland, with lipid-rich cells that 

are organized in cord-like fascicles in between the ZG and ZR. The ZF is the 

glucocorticoid-producing zone that impacts physiologic metabolism via a circadian cycle 

but is also known to be highly responsive to stress and infection. The main 

glucocorticoid in humans is cortisol, and its production relies on the hypothalamic-
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pituitary-adrenal (HPA) axis. Corticotropin-releasing hormone (CRH) is released from 

the periventricular nucleus of the hypothalamus in response to stress. CRH signals to 

corticotroph cells of the anterior pituitary gland, which respond through the synthesis 

and release of adrenocorticotropic hormone (ACTH). ACTH binds to its receptor 

(melanocortin receptor type 2, MC2R) in the adrenal cortex, which acts through Gs 

signaling to upregulate cyclic adenosine monophosphate (cAMP) through activation of 

adenylate cyclase (11). This pathway increases steroidogenesis through increased 

expression of the enzymes required for cortisol synthesis and LDL receptors for uptake 

of cholesterol, the precursor to all steroids (11, 12). 11β-hydroxylase (CYP11B1) is the 

final enzyme in cortisol synthesis, and is expressed exclusively in the ZF (9). Its 

transcription is also upregulated by ACTH (13, 14). Glucocorticoids, primarily cortisol in 

humans, are synthesized and secreted into circulation. Cortisol acts on target tissues to 

regulate metabolism and immunity, among several diverse functions.  

 Finally, humans and higher level primates have an innermost ZR comprised of 

eosinophilic cells arranged in a net-like ‘reticular’ pattern. The ZR does not appear in 

humans until around age 6-8, during a period called adrenarche (15, 16). Adrenarche 

precedes puberty and is the postnatal emergence of the adrenal’s production of 

precursor sex steroids coinciding with the differentiation of the ZR. In children, the 

increase in ZR synthesized steroids initiate development of pubic and axillary hair 

growth (17). The ZR continues to produce these sex steroid precursors until later in life 

when the production declines. The production of these steroids is partly increased 

through ACTH, as the MC2R receptor is also present in the ZR, but it is thought that 

other unknown factors also regulate adrenal androgen production (18). ACTH is also 



5 
 

necessary for ZR development at adrenarche (19-21). Androgen biosynthesis is zonally 

regulated through the ZR specific expression of cytochrome B5 (CYB5), which 

enhances the 17, 20 lyase activity of CYP17A1. Additionally, the sulfotransferase 

enzyme SULT2A1 is exclusive to the ZR, allowing for sulfated products. 

Stem/Progenitor Cells and Centripetal Displacement 

 Early research involving adrenal enucleation (removal of the adrenal cortex and 

medulla, leaving only the adrenal capsule and subcapsular cells) in rats illustrated that 

stem/progenitor cells exist in the capsule and adrenocortical periphery, and can 

repopulate the entire adrenal cortex (22). Further research has confirmed that the 

primary site for adrenocortical cellular proliferation is the ZG and the outer ZF, where 

there are presumed stem/progenitor cells (23-26).  Like many epithelial tissues, the 

adrenocortical homeostasis is maintained through self-renewal (24, 27). Several studies 

have demonstrated that this renewal is centripetal in nature, with cells underlying the 

capsule moving inward toward the medulla during their life-cycle (25, 28-34). In 

contrast, cells undergo apoptosis in the ZR near the medullary border (35, 36). The 

length of time for the entire adrenal cortex to regenerate has been studied in mice, with 

data showing anywhere from ~20-120 days, which suggests that this process may be 

variable between cells, age, sex and other factors (25, 28, 33, 36). One particular recent 

study used a Rosa26-mTomato/mGFP reporter mouse crossed to a mouse with a 

knock-in allele of Cre recombinase in the Cyp11b2 locus (AS-Cre), allowing for 

irreversible GFP marking and lineage tracing of Cyp11b2-positive cells (28). Over time, 

this revealed that Cyp11b2-positive cells repopulate the entire adrenal cortex, even after 

losing Cyp11b2 expression and gaining Cyp11b1 expression. This suggests that the 
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majority of ZF cells were once aldosterone-producing ZG cells. It also argues that the 

majority of progenitor cells give rise to mainly ZG cells, rather than the other 

differentiated steroidogenic cell types.  

 In addition to the subcapsular cells, cells of the capsule have been demonstrated 

to have stem-like properties. These cells are mesenchymal, and do not express 

steroidogenic factor-1 (Sf1), the master regulator transcription factor of steroidogenesis. 

One capsular cell population is sonic hedgehog (Shh) responsive and is marked by the 

Shh target gene Gli1 (37, 38). The Gli1-postive cells play a role in the establishment of 

the early definitive cortex during development and have the capacity to convert to a Sf1- 

positive steroidogenic cell phenotype (37). Another described capsular cell pool 

expresses the Wilms tumor protein homolog 1 (WT1). These cells were demonstrated to 

have the capacity to differentiate into a steroidogenic phenotype, as well as into a Gli1 

expressing capsular cell, and WT1 expression can regulate Gli1 transcription. While 

these cell populations have stem-like properties, the capsular contribution to the normal 

cortical homeostasis seems to be uncommon.  

 

Pathways Controlling Zonation and Cell-Renewal 

Paracrine signals play a dynamic role in the control of adrenal cell renewal and 

zonation. Wnt/β-catenin signaling has been characterized as vital for the maintenance 

of a ZG state and the cortex as a whole. The disruption of this pathway through 

knockdown of β-catenin in Sf1-positive cells causes adrenal developmental defects, as 

well as adrenal atrophy in later adult life, while full adrenal knockout of β-catenin results 

in adrenal aplasia (39). Furthermore, constitutive activation of this pathway leads to a 
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disorganization of the ZG/ZF boundary, dysregulated steroidogenesis, and increased 

aldosterone synthesis (40-42). Mutations in this pathway can also cause adrenal 

diseases such as adrenocortical carcinoma, and aldosterone-producing adenomas (43-

45). Further evidence for the importance of the Wnt pathway lies in the newly found role 

of capsular R-spondin 3 (Rspo3) to signal to ZG cells to maintain Wnt pathway 

activation. Disruption of Rspo3 leads to loss of the ZG and cell replenishment (46). 

Together, these studies outline a vital role for the Wnt pathway in adrenal cell renewal 

and maintenance of undifferentiated progenitor cells.  

Another well-characterized pathway involved in adrenal cell renewal is Shh 

signaling. Shh-positive cells are localized to the ZG in the subcapsular region. In 

addition to the previously mentioned capsular cells, lineage tracing has been performed 

in Shh-positive subcapsular cells (37). The study demonstrated that the shortly after 

birth, the entire cortex is derived from these cells. It is likely that these Shh-positive cells 

also interact with the previously mentioned Gli1-postive cells of the capsule, as Gli1 is a 

Shh target (47). Additionally, disruption of Shh in mice results in adrenal hypoplasia and 

decreased cell proliferation (48, 49). Most recently, it has also been shown that Shh-

positive progenitors in the ZG are necessary for the regeneration of the adrenal gland 

following atrophy, and that a cross-talk between Shh-signaling and Wnt/β-catenin 

signaling exists (38). In summary, it is clear that both the Shh and Wnt pathways are 

critical to the adrenocortical progenitor cells and the cell renewal of the cortex.  

 Endocrine factors are also a key regulator in the maintenance of adrenal zones, 

as it has been demonstrated that both AngII and ACTH increase proliferation (50). With 

respect to AngII, this has been exhibited through low sodium or high potassium 
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treatment in rats, which both activate the RAAS and cause an expansion of the ZG (51-

56). Conversely, when animals are fed a high sodium diet, the ZG regresses (56, 57). 

These changes in proliferation have been attributed to AT1R, as demonstrated through 

experiments involving its blockade (51, 57). Similarly, ACTH administration in rats 

produces hyperplasia of the ZF (58, 59), and conversely, dexamethasone (a synthetic 

corticosteroid that exerts negative feedback regulation on the HPA axis) causes the ZF 

to drastically regress (60). One study used BrdU pulse-chasing to illustrate that ACTH 

can stimulate proliferation in a population of possibly quiescent progenitor cells in the 

outer cortex (25).   

 The action of ACTH through its receptor, effectively activating cAMP/PKA 

signaling, is a main driver of ZF zonation and identity (61, 62). Mutation of a regulatory 

subunit of PKA (Prkar1a) that causes constitutive PKA activation results in 

glucocorticoid excess and a Cushing’s syndrome-like phenotype (63, 64). This mutation 

also has clinical significance, as it is a reported cause of ACTH-independent Cushing’s 

syndrome (glucocorticoid excess) (65). Furthermore, transgenic expression of this 

mutation in mice  demonstrated that PKA inactivates Wnt signaling, enhancing the ZG 

to ZF lineage conversion and increasing the rate of centripetal migration (66). Through 

these studies, the effects of the ZF-specific ACTH-mediated PKA signaling pathway on 

adrenal zonation have been well-characterized. However, future work is needed to 

further understand the contribution of the ZG-specific AngII-mediated Gq signaling 

pathway in maintaining adrenal zonation. 
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Mouse vs. Human Zonation 

 Mice are a common model for human adrenal function and disease, including 

within this dissertation project. Because of this, it is worth noting that mice have several 

adrenal differences compared to humans. The most striking difference is that mice lack 

a functional ZR, and therefore do not make adrenal androgens (27). Moreover, after 

birth, mice have an ‘X-zone’ located in between the ZF and medulla (67, 68) (Figure 

1.1B). The X-zone is thought to be remnants of the fetal adrenal gland, and it 

disappears after puberty in males and pregnancy in females (67, 69, 70). This zone has 

high expression of the enzyme 20α-hydroxysteroid dehydrogenase, which has been 

suggested to play a role in catabolism of progesterone and 11-deoxycorticosterone, 

precursor steroids in adrenal steroidogenesis (27, 71). However, the role of the X-zone 

is largely undetermined at this point. The presence of this zone is similar to the human 

‘fetal zone,’ however unlike mice, this human zone regresses rapidly after birth through 

apoptosis (72-74). Other species differences related to steroidogenesis will be covered 

in the following section. 

 

1.3  Adrenal Steroidogenesis 

 The adrenal cortex is the site of corticosteroid hormone synthesis, and produces 

three main classes of steroids: mineralocorticoids, glucocorticoids and androgens and 

androgen precursors. All adrenal steroids are derived from de novo synthesis with 

cholesterol as the precursor. While some enzymatic steps overlap between zones, the 

exclusive expression of certain enzymes in each zone dictates the products that are 

synthesized (Figure 1.2A). 
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Cholesterol Mobilization and Early Regulatory Steps 

 Adrenal cells have stores of cholesteryl esters in cytoplasmic lipid droplets, most 

of which is derived from dietary cholesterol. Dietary cholesterol circulates in the plasma 

as low density lipoprotein (LDL), and upon adrenal cell uptake, cholesterol is esterified 

for storage through a mechanism mediated by acyl-coenzyme A:cholesterol 

acyltransferase 1 (75, 76). De novo synthesis of cholesterol is also possible in adrenal 

cells, albeit not a major source compared to the LDL pathway. This synthesis occurs 

through the conversion of acetate to cholesterol by the enzyme 3-hydroxy-

3methylglutaryl co-enzyme A reductase, which is suppressed when cellular LDL-derived 

cholesterol concentrations are high.   

Adrenal cellular cholesterol mobilization is critical to initiate steroid hormone 

production and is controlled by steroid acute regulatory protein (StAR). StAR is a 

transport protein responsible for the movement of cholesterol from the outer 

mitochondrial membrane to the inner mitochondrial membrane (77). Upon transport, 

cytochrome P450 side-chain cleavage, encoded by CYP11A1, catalyzes the 3 

reactions, converting cholesterol to pregnenolone (21, 26). The cholesterol mobilization 

and side-chain cleavage are the early rate-limiting steps in steroidogenesis. The 

enzymatic steps that follow are facilitated by a series of cytochrome P450s and 

hydroxysteroid dehydrogenases that differ depending on the zone. 
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Late Steps of Steroidogenesis 

 In the ZG, the first enzymatic step following side-chain cleavage is the 

irreversible conversion of pregnenolone to progesterone by 3β-hydroxysteroid 

dehydrogenase type 2 (HSD3B2, Hsd3b1 in mice). This is followed by theprogesterone 

to 11-deoxycorticosterone conversion by 21-hydroxylase (CYP21A2, Cyp21a1 in mice). 

At this point, ZG cells are specifically primed to make aldosterone with their expression 

of CYP11B2, which carries out three reactions to the final product of aldosterone. 11β-

hydroxylation takes 11-deoxycorticosterone to corticosterone, and 18-hydroxylation 

converts this to 18-hydroxycorticosterone, which is also a bioactive mineralocorticoid. 

Finally, 18-methyl oxidation produces aldosterone (78). 

 ZF specific cortisol synthesis is a direct result of the higher expression of 17α-

hydroxylase (CYP17A1) in the ZF compared to the ZG. Pregnenolone or progesterone 

can undergo the 17α–hydroxylation step catalyzed by this enzyme. As in the ZG, the 

next steps are mediated by HSD3B2 (before or after the 17α–hydroxylation) and 

CYP21A2, which produces 11-deoxycortisol. The ZF also has specific expression of the 

final enzyme CYP11B1, a cytochrome P450 with high sequence homology to CYP11B2 

(13). CYP11B1 catalyzes the final step to produce cortisol. 

 The ZR produces small amounts of active androgens but large amounts of 19 

carbon (C19) steroids that have minimal androgenic activity, but are precursors to 

bioactive androgens. ZR cells also utilize CYP17A1, which in this case carries out two 

reactions that convert pregnenolone to the androgen precursor dehydroepiandrosterone 

(DHEA). 17α-hydroxylation is the first step catalyzed by CYP17A1, as in ZF cells. Then, 

specifically in the ZR, the same enzyme carries out a 17, 20-lyase conversion. As 
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previously mentioned, the activity of this second step is increased through the ZR 

specific expression of CYB5 (79).  The relatively low ZR HSD3B2 expression also helps 

facilitate DHEA synthesis. Finally, sulfated steroids are synthesized in the ZR through 

the activity of SULT2A1. 

 

Mouse vs. Human Steroidogenesis 

 In addition to zonation, mice have differing features of steroidogenesis compared 

to humans (Figure 1.2B). First, although humans use LDL as their main source of 

cholesterol, mice rely on high density lipoproteins (HDL) for most of their cholesterol. 

This uptake of cholesteryl esters from HDL occurs through scavenger receptor B1, a 

process that seems to be less utilized in human adrenal cells (80). Another important 

difference is the lack of CYP17A1 in the mouse adrenal gland. Without this 17α-

hydroxylation step, the ZF cannot produce cortisol, leaving corticosterone as the 

dominant glucocorticoid in mice (Figure 1.2) (27, 81). Additionally, the absence of 

CYP17A1 is also a reason that the mouse adrenal gland does not make sex steroid 

precursors (Figure 1.2) (27, 81). 

 

1.4  Adrenal Aldosterone Production 

Adrenal aldosterone production is a tightly regulated process occurring only in 

adrenal ZG cells that has multiple mechanisms of stimulation. Aldosterone production is 

regulated both acutely and chronically, with rate-limiting steps at both stages. The main 

agonists to aldosterone production are AngII, elevated serum potassium (K+), and to 

some extent, ACTH. AngII is the primary stimulator of aldosterone synthesis, and is 
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controlled by the RAAS feedback loop.  The juxtaglomerular (JG) cells of the kidney 

increase transcription of REN (Ren1 in mice), the gene that encodes renin, in response 

to decreased renal perfusion (82). Renin secretion from JG cells is also stimulated by 

the macula densa cells of the renal distal convoluted tubule in response to low sodium 

concentration. Renin is responsible for the hydrolysis of the liver secreted protein 

angiotensinogen to angiotensin I, which is then converted to AngII in the vasculature of 

many tissues by angiotensin-converting enzyme (83). In addition to its action on ZG 

cells, AngII is a potent vasoconstrictor, acting on its receptor (AT1R) in vascular smooth 

muscle cells (84). The other mechanism through which AngII exerts its effect on blood 

pressure is stimulation of aldosterone secretion. AT1R is highly expressed in the adrenal 

gland, specifically in ZG cells, and it activates downstream pathways that result in the 

production of aldosterone. Aldosterone’s action to increase sodium retention in renal 

distal convoluted tubules and collecting ducts initiates a negative feedback signal to 

inhibit renin production, thus completing the feedback loop. 

 

Acute Regulation of Aldosterone Production 

 AngII mediates the mobilization of cholesterol in ZG cells, which is the early rate-

limiting step of aldosterone production (85). This starts by the activation of cholesteryl 

ester hydrolase through ERK signaling (86). The second step of this process is the 

mobilization within the mitochondria by StAR, which has been detailed above. StAR is 

regulated in both a transcriptional and post-translational manner following AngII binding 

(87). This response occurs within minutes of the AngII stimulus (88). 
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 The ligand bound AT1R can trigger several signaling pathways. Since it is a Gq 

coupled receptor, it activates the Gq family of proteins, leading to phosphoinositide-

specific phospholipase C (PLC) stimulation (89-93). PLC hydrolyzes 

phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). The role of IP3 is to increase cytosolic calcium through initiating 

its efflux into the cytoplasm from the smooth endoplasmic reticulum (94, 95) (Figure 

1.3). AngII also activates L- and T-type calcium channels to increase extracellular 

calcium influx (96). The induction of cytoplasmic calcium concentration through these 

mechanisms is essential for aldosterone synthesis. Calcium activates 

calcium/calmodulin-dependent kinases (CaMKs), a step that is critical to aldosterone 

production (97, 98). Meanwhile, DAG activates protein kinase C (PKC), an enzyme that 

has conflicting reports as to its role of either enhancing (91, 99) or suppressing (94, 

100) aldosterone secretion. In addition, it has been demonstrated that DAG activation of 

PKC can increase the expression and phosphorylation of StAR, corroborating its 

participation in aldosterone secretion (101, 102). Phospholipase D activation is another 

pathway acutely regulated by AngII, which is an additional route to elevate DAG levels 

(103-105). 

 K+ and ACTH can also activate the early stages of aldosterone production. The 

main reported K+ effect is glomerulosa cell membrane depolarization that opens L- and 

T-type calcium channels (106, 107). ACTH binding to the Gs coupled MC2R activates 

cAMP/PKA signaling, as described above. The phosphorylation of StAR by PKA 

activates the early rate-limiting step of aldosterone production. PKA can also open L-
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type calcium channels through phosphorylation, which increase calcium concentrations 

and aldosterone secretion (108, 109). 

 

Chronic Regulation of Aldosterone Production 

 The “chronic” regulatory step for aldosterone production is the AngII-increased 

expression of CYP11B2 in ZG cells, through activation of CYP11B2 transcription and 

expansion of the ZG through hypertrophy and hyperplasia. The chronic response is 

delayed, depending on an increase in intracellular calcium, and taking several hours to 

days before an effect is observed (110). Several in vivo studies, most often with a 

stimulus such as a low sodium diet, have demonstrated the specificity of AngII 

regulation of CYP11B2 with no effect on CYP11B1 (111-113). This illustrates that AngII 

does not participate in glucocorticoid synthesis, and is solely a mineralocorticoid 

agonist. The AngII-mediated increase in CYP11B2 expression is at the transcriptional 

level, and several studies have defined the transcription factors that participate in this 

response. Following the increase in cytosolic calcium, CaMKs increase expression or 

phosphorylation of regulatory transcription factors that include Nurr1, cAMP response 

element binding protein (CREB), and activating transcription factor family members 

(ATFs). These factors then bind to the promoter region of CYP11B2, upregulating its 

transcription within the nucleus (110, 114, 115) (Figure 1.3). On the contrary, high 

expression of the transcriptional regulator SF1 has been shown to repress AngII-

stimulated CYP11B2 expression (116, 117).  

 Potassium can also stimulate CYP11B2 in a similar manner to that of AngII (118, 

119) and a high potassium diet expands the ZG in vivo (120). ACTH can activate 
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CYP11B2 expression in vitro, but sustained ACTH treatment of ZG cells convert them to 

a glucocorticoid-producing phenotype (121). It appears that initially, ACTH can activate 

CYP11B2, but over time this effect is diminished (111, 122). One possibility for why 

ACTH might not effectively activate ZG aldosterone production is that the activated 

AT1R can also couple to Gi proteins, which directly inhibits ACTH’s ability to increase 

cAMP signaling. Thus, mechanisms are in place to prevent ZG glucocorticoid 

production (123).  

 

1.5  Primary Aldosteronism 

In 1954, the University of Michigan clinician scientist Dr. Jerome Conn 

encountered a 34-year old female patient that presented with a history of hypertension, 

described muscle spasms, and weakness (8). Conn suspected that the metabolic 

alkalosis and hypokalemia observed in this patient might be due to high aldosterone 

levels. This was confirmed by a urinary test, and when potassium supplementation did 

not chronically correct the symptoms, the adrenal glands were examined. When a 

benign adrenal tumor was found and removed, the symptoms were cured, and Conn 

reported the first case of PA (also termed Conn Syndrome) (8, 124). 

PA can be defined as the inappropriate (renin independent) secretion of 

aldosterone that results in hypertension. Due to the other role of aldosterone in 

mediating potassium secretion, PA can also cause hypokalemia. In some cases, such 

as with Conn’s patient, PA can cause metabolic alkalosis through concomitant loss of 

hydrogen ions with the retention of sodium. In the time that has followed since Conn’s 

initial description, many advances in PA research have been made. Antibodies against 
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CYP11B2 that do not cross-react with CYP11B1 have been developed, making 

detection of the localization of adrenal aldosterone producing cells possible (125, 126). 

New sequencing technologies have allowed for the identification of somatic and 

germline mutations that cause autonomous aldosterone production. In the last 20 years, 

research has demonstrated that PA is more common than previously thought, affecting 

anywhere from 5-10% of the hypertensive population (127-130), and 20% of those with 

resistant hypertension (131-133). The sustained hypertension and high levels of 

aldosterone in PA make those affected susceptible to severe cardiovascular 

complications, including cardiac fibrosis and stroke (134-141). With the prevalence and 

risks in mind, research to improve diagnostics and treatments of PA is imperative. 

 

Subtypes of Primary Aldosteronism  

 PA has 2 main subtypes: idiopathic hyperaldosteronism (IHA), which is often 

bilateral adrenal disease (also referred to as bilateral adrenal hyperplasia, BAH), and 

aldosterone-producing adenoma (APA), which is commonly unilateral. These two 

subtypes combine to represent approximately 95% of cases (~65% IHA and ~30% 

APA) (127). IHA refers to hyperplasia of the CYP11B2-expressing ZG with micro- 

and/or macronodules (142). APAs are benign tumors in the adrenal cortex with a high 

expression of CYP11B2 and often cause a more severe phenotype than seen in IHA 

patients (142). Unilateral hyperplasia, adrenocortical carcinoma, and ectopic secretion 

of aldosterone represent rare causes of sporadic PA. 

 There are also inherited forms of PA that comprise a much smaller population. 

Familial hyperaldosteronism (FH) type I is an interesting subtype caused by a chimeric 
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fusion between CYP11B1 and CYP11B2 (143). The chimeric enzyme is driven by 

ACTH, and can be suppressed through glucocorticoid treatment (144). FH type II refers 

to inherited incidents of APA or IHA and there is currently no known genetic cause. 

Recently, a mutation in the CLCN2 chloride channel was described in a subset of cases 

with FH type II (145). FH type III and IV refer to germline mutations in KCNJ5 and 

CACNA1H, respectively. All subtypes with each subtype’s prevalence (146, 147) are 

outlined in Table 1.2.    

 Recent discoveries have also uncovered non-neoplastic regions of CYP11B2 

expressing cells, termed aldosterone producing cell clusters (APCC) (126). These are 

found in otherwise normal adrenal glands or adjacent to APA (148-151), and their 

prevalence increases with age (152). A buildup of adrenal APCC may increase renin-

independent aldosterone production that may progress to PA, but further research is 

needed on this topic. 

 

Genetic Mutations Causing Primary Aldosteronism 

 Several somatic and germline mutations have been linked to cases of PA, 

especially those that are driven by APA. The most common APA mutations are in 

KCNJ5 (153-155), a gene that encodes an inward rectifying potassium channel. These 

mutations cause membrane depolarization due to a lack of ion selectivity, which leads 

to increased opening of calcium channels, and calcium influx into adrenal cells. 

CACNA1D encodes a voltage dependent L-type calcium channel and APA have 

mutations that increase intracellular calcium by lowering the threshold for channel 

opening (156-159). Recently, CACNA1D mutations were found in APCC (150, 160). 
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CACNA1H encodes a different voltage-gated calcium channel that is expressed in ZG 

cells, and its mutations has been reported in a form of early-onset familial PA. These 

mutations cause inappropriate aldosterone production through increased calcium 

cellular influx through the mutated channel (161). ATP1A1 is a subunit of an Na+/K+ 

ATPase.  APA mutations in ATP1A1 lead to membrane depolarization and H+ influx, 

acidification of the cell, and activation of aldosterone production (162). Finally, ATP2B3 

encodes a calcium ATPase responsible for pumping calcium out of the cytoplasm. APA 

have mutations in ATP2B2 that increase intracellular calcium through decreased 

function (162). There are several cases that do not contain these common mutations, 

suggesting that there are additional mutations to be discovered. 

 

Diagnosis and Treatment of Primary Aldosteronism 

 It is under a physician’s discretion as to whether to screen for PA in patients that 

present with hypertension. While some PA patients present with hypokalemia, the 

majority (72%) are normokalemic, thus serum potassium cannot be used to eliminate 

the need for PA screening (146). The current Endocrine Society guidelines recommend 

testing hypertensive patients that exhibit any of the following additional risks: sustained 

blood pressure over 150/100, resistant hypertension (uncontrolled blood pressure on 3 

or more drugs, or controlled blood pressure on 4 or more drugs), hypokalemia, adrenal 

incidentaloma, sleep apnea, family history of early onset hypertension, and first degree 

relatives with PA (146). However, PA remains severely underdiagnosed due to the 

difficulty of clinical workup and the false notion that PA is a rare disease (163, 164). 
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 In short, PA testing usually begins with biochemical determination of an initial 

aldosterone and renin ratio to help determine if autonomous aldosterone production is 

present. If positive, this is followed by a CT scan to determine if there are any nodules. 

If there is a nodule detected, lateralization studies are still recommended due to the fact 

that CT scans are not  reliable for defining the affected adrenal in PA (165-167). The 

recommended next step to determine if PA is unilateral or bilateral is adrenal vein 

sampling (AVS). This is an invasive, difficult to perform and costly procedure that can 

distinguish unilateral from bilateral disease. Aldosterone is measured from the adrenal 

vein on both sides, and compared to peripheral blood. Cortisol is used as a positive 

control to ensure that the catheter is correctly placed (with higher levels in the AV than 

peripherally) (146). High aldosterone levels on both sides indicate bilateral disease and 

high aldosterone on one side suggests unilateral disease. From here, treatment options 

can be decided: typically, mineralocorticoid receptor antagonists (MRAs) for bilateral 

disease and adrenal resection for unilateral disease. The invasive procedures for this 

diagnostic workup highlight a need for PA biomarkers. Treatment improvements through 

current research are needed to lessen the use of adrenal vein sampling and to improve 

physician access to a more simple method to diagnose the subtypes of this disease 

(168).  

  

1.6 Animal Models of Primary Aldosteronism 

Since the discovery of PA, there have been a considerable amount of in vivo 

findings regarding disruptions in normal adrenal function that result in a phenotype of 

hyperaldosteronism (Table 1.2) (169). One of the first transgenic targets was leak-type 
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potassium channels, namely Task1 and Task3. Task1 (Kcnk3) deletion results in 

hyperaldosteronism in female mice due to ectopic expression of Cyp11b2 in the ZF, 

leading to elevated blood pressure (170). Interestingly, male mice appear normal and 

when females are administered testosterone the phenotype is abolished. The double 

deletion of Task1 and Task3 (Kcnk9) leads to a marked increase in aldosterone without 

zonation defects (171). High sodium diet is not able to suppress this aberrant 

aldosterone production. Mice with only a Task3 deletion do not have as robust of a 

response, but still have elevated aldosterone production, despite high sodium diet 

administration with suppressed renin (172, 173). These mice also exibit increased blood 

pressure. Additional studies have looked at the phenotype of mice with deletions of 

large Ca2+-activated potassium channels. Kcnmb1 deletion causes increased 

aldosterone production that is enhanced by a high potassium diet (174). Kcnma1 

knockout leads to a similar phenotype, albeit a minor hypertension response (175). 

These mice also have increased vascular tone, which could also be responsible for their 

hypertension. 

Constitutive activation of the Wnt pathway also appears to upregulate 

aldosterone production. Deletion of Apc, a member of the β-catenin destruction 

complex, causes an increase in aldosterone and corticosterone synthesis in these mice 

(176). When β-catenin is constitutively activated, as in the ΔCat mice, the adrenal gland 

undergoes hyperplasia, disruption of the ZG/ZF zonal boundaries and increased 

aldosterone levels are observed in female mice (42). The increased aldosterone is likely 

due to the expansion of the ZG cell population and consequently an increase in 
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Cyp11b2-postive cells. This is clinically relevant, as β-catenin activating mutations are 

drivers of adrenal disease, as previously mentioned. 

Several other mouse models disrupting various protein pathways have 

demonstrated phenotypes of autonomous aldosterone production as well. Mice with 

decreased expression of Tgfb1, which encodes TGFβ1, exhibited an increase in 

aldosterone and corticosterone with a negative correlation to the amount of Tgfb1 they 

expressed (10% to 300% of normal Tgfb1 expression) (177). These mice also had 

hypertension which was rescued through treatment with sprinonolactone. Mice with an 

irregular circadian clock through whole body inactivation of Cry1/Cry2 have increased 

aldosterone production, which appears to result from the high levels of hydroxysteroid 

dehydrogenase b6 (Hsd3b6) rather than increased Cyp11b2 expression (178). One 

group used a non-transgenic method of a mouse mutagenesis screening by treating 

mice with N-ethyl-N-nitrosourea (Enu) to introduce random point mutations. This 

resulted in some mouse lines that had increased aldosterone production, which was 

linked to the genes Sspo, Dguok, Hoxaas2, and Clstn3 (179). 

There have also been studies aiming to increase aldosterone production through 

transgenic implantation of Cyp11b2 itself. Using a transgenic approach, mice were 

made with a a more stable 3’ untranslated region for Cyp11b2 resulting in increased 

Cyp11b2 expression and aldosterone production, even in the presence of high sodium 

(180). In addition, another group described transgenic expression of human CYP11B2 

under the control of the human CYP11B1 promoter. These mice did exhibit elevated 

aldosterone and blood pressure as a result of expression of the human transgene (181). 
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Recently, a group found that deletion of the ubiquitin ligase Siah1a resulted in a 

smaller X-zone, larger medulla, and Cyp11b2 zonal localization defects (182). There 

was also increased aldosterone production in these mice. These mice had additional 

defects of higher levels of catecholamines and upregulated adrenal cAMP signaling. 

They also found a possible link to human disease, where patients with PA had variants 

of SIAH1. 

These current in vivo PA models have improved our understanding of the many 

factors that influence both physiologic and inappropriate aldosterone production.  

However, there are still several unknown factors contributing to aldosterone production 

that can be discovered in vivo. Furthermore, the current models of PA could  be 

improved to better recapitulate the disease. This dissertation project describes a new 

PA model of activated Gq signaling that is both inducible and reversible; characteristics 

that are not present in the current transgenic models.  

 

1.7 Summary 

 In recent years, the adrenal research field has seen major scientific 

breakthroughs, but there remain many questions regarding adrenal zonation, 

steroidogenesis, and causes of adrenal disease. New technologies such as liquid 

chromatography tandem mass spectrometry (LC-MS/MS) allow the detection of many 

steroids in one sample, giving the possibility to find biomarkers of adrenal disease for 

improved diagnostics. Furthermore, cutting edge sequencing tools have progressed our 

understanding of the genetic factors that underlie adrenal disease, providing targets for 

precision therapies to treat adrenal disease. Finally, improved mouse transgenic 
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technologies continue to provide models that improve our understanding of the 

mechanisms regulating zonation of the adrenal cortex.  

 The roles of several pathways have been described in maintaining adrenal zonal 

boundaries and determining adrenal cell fate. Moreover, many pathways have been 

implicated in adrenal aldosterone production through in vitro experiments. Within the 

adrenal cortex, Gq signaling is a ZG specific pathway that is activated through AngII 

and increases the transcription of CYP11B2 through intracellular calcium signaling. 

However, the function that Gq signaling might serve in the regulation of adrenocortical 

homeostasis has not been probed. Moreover, the level of plasticity of adrenal cells to 

transition to an alternate steroidogenic phenotype with the stimulus of Gq signaling is 

also unclear. The following dissertation project focuses on the role of Gq signaling in 

adrenal aldosterone production and regulation of adrenal functional zonation. Using a 

mouse model of adrenocortical-specific inducible Gq signaling, we determine that Gq 

signaling in the ZF can stimulate Cyp11b2 expression and aldosterone synthesis. This 

mouse model will help define the mechanisms controlling adrenocortical cell plasticity 

and serve as a tool for researchers interested in studying aldosterone excess and new 

treatment strategies. 
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Figure 1.1. Histology of the adrenal cortex in humans and mice. (A) Human adrenal histology. The adrenal gland 

is surrounded by a mesenchymal capsule that contains stem/progenitor cells. The zona glomerulosa (ZG) is the 

outermost zone which secretes mineralocorticoids, and is characterized by tightly packed rosette-structured cells. 

The zona fasciculata (ZF) is more lipid-rich in histology and the largest zone. Finally, the zona reticularis (ZR) is 

highly eosinophilic with densely packed nuclei, and is the innermost zone of the cortex above the medulla (M). (B) 

Mouse adrenal histology. In mice, the ZF and ZF have similar morphologies to that of humans. However, there is not 

a ZR present. Instead, there is an X-zone (X), remnants of the fetal adrenal whose function is still not well 

understood. Pictured here is the adrenal from male and female adult mice, showing that there is a sex difference in 

the regression of the X-zone. In males, the X-zone disappears at puberty, and in females it regresses at first 

pregnancy.  



26 
 

 

Figure 1.2. Adrenal steroid pathway in humans and mice. (A) Human adrenal steroid pathway. In all zones, the 

precursor for steroids is cholesterol, often derived from LDL in the cytoplasm. StAR is a transport protein that moves 

cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane. From there, several 

steroidogenic enzymatic reactions (denoted in red) occur. In the ZG, CYP11B2 carries out the final 3 steps of 

synthesis to aldosterone. In the ZF, 17α-hydroxylation pushes steroids down a path of glucocorticoid synthesis, 

where CYP11B1 carries out the final step to cortisol production. In the ZR, CYP17A1 not only has 17α-hydroxylation 

activity, but also 17, 20-lyase activity resulting in the production of the androgen precursor DHEA. Other androgen 

precursors such as androstenedion and DHEA-sulfate (DHEA-S) are also produced in the ZR. (B) Mouse adrenal 

steroid pathway. Mice differ from humans in a few respects related to steroidogenesis. First, mice do not express 

CYP17A1, so their primary glucocorticoid is corticosterone instead of cortisol. This is produced in one step by 

CYP11B1 in the ZF from deoxycorticosterone. Also, mice do not secrete adrenal androgens or contain a functional 

ZR.   
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Figure 1.3.  Gq signaling pathway activation by angiotensin II in adrenal ZG cells. The primary pathway 

activated by AT1R upon binding of AngII is Gq signaling. Gαq cleaves phosphatidylinositol 4,5-bisphosphate into 

inositol 1,4,5-trisphosphate (IP3), which binds to its receptor at the smooth endoplasmic reticulum (ER). This elicits 

release of calcium (Ca
2+

) into the cytosol, activating calmodulin, which activates calmodulin dependent protein 

kinases (CaMKs). CaMKs increase the transcription and activation of Nurr1, CREB, and ATF transcription factors in 

the nucleus that are important for activation of Cyp11b2 transcription. Cyp11b2 transcription and translation then 

leads to increased aldosterone production within the cell.   
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PA Subtype Description Prevalence  

Idiopathic hyperaldosteronism (IHA) Bilateral hyperplasia of the 
adrenal cortex 

50-70% 

Aldosterone-producing adenoma 
(APA) 

Benign aldosterone producing 
adrenocortical tumor; usually 
unilateral; common mutations: 
KCNJ5, CACNA1D, ATP1A1, 
ATP2B3 

30-50% 

Unilateral adrenal hyperplasia IHA phenotype, unilateral disease 2% 

Aldosterone-producing adrenocortical 
carcinoma (APACC) 

Malignant tumor that secretes 
aldosterone 

<1% 

Familial hyperaldosteronism (FH) type 
I  

Chimeric fusion of CYP11B1 and 
CYP11B2; activated by ACTH; 
Glucocorticoid-remediable 

<1% 

FH type II  Inherited APA or IHA <6% 

FH type III  Germline KCNJ5 mutation <1% 

FH type IV  Germline CACNA1H mutation <0.1% 

Ectopic APA or APACC APA or APACC located in a 
tissue outside of adrenal cortex, 
such as the ovaries 

<0.1% 

 

Table 1.1. Subtypes of primary aldosteronism. Listed are the subtypes of PA with a description and prevalence of 

each subtype. Data reported from Young, 2018 (146) and El Ghorayeb et al. 2016 (147). 

  



29 
 

Types of 
Models 

Mouse 
Model 

Description Phenotype 

Potassium 
channel 

deletions 

Kcnk3-/- 
Task1 (K+ channel) 
knockout 

High aldosterone and BP, 
disrupted Cyp11b2 zonation, 
decreased circulating renin 

Kcnk9-/- 
Task3 (K+ channel) 
knockout 

Milder phenotype of 
aldosterone increase and 
hypertension 

Kcnk3-/- and 
Kcnk9-/- 

Task1 and 3 knockout No zonation defect, but 
markedly higher aldosterone, 
regardless of Na+ diet level 

Kcnmb1-/- 
Ca2+-activated 
potassium channel β-
subunit deletion 

High aldosterone, BP, 
increased vasorelaxation 

Kcnma1-/- 
Ca2+-activated 
potassium channel α-
subunit deletion 

High aldosterone, small BP 
increase, low plasma K+, 
increased vascular tone 

Wnt/β-
catenin 
pathway 

activation 

Apcmin/+ 

Disruption of Apc, part 
of the β-catenin 
destruction complex 

Hypertension, increase in 
plasma aldosterone and 
corticosterone, increased 
K+/decreased Na+ excretion 

ΔCat 

Constitutive activation 
of β-catenin in the 
adrenal gland 

Severe hyperplasia, disrupted 
zonation, increased 
aldosterone and corticosterone 

Cyp11b2 
Stabilization 

Cyp11b2hi/hi Stabilization of 3’ UTR 
of Cyp11b2 

Mild phenotype of increased 
Cyp11b2 expression 

hAS+/- 

Insertion of human 
CYP11B2 under 
control of human 
CYP11B1 promoter 

High plasma aldosterone, BP, 
and CYP11B2 gene 
expression 

Other 
Causes 

Tgfb1L/L 
Knockdown of TGFβ1 
expression 

Highly increased aldosterone 
to renin ratio, high BP, 
impaired natriuresis  

Enu 
Random mutagenesis 
screen 

High aldosterone-to-renin ratio 
and Cyp11b2 expression 

Siah1a-/- 

Deletion of E3 ubiquitin 
ligase 

Disrupted adrenal morphology, 
zonation defects, increased 
aldosterone, decreased 
plasma K+ 

Cry-null 
Circadian rhythm 
disruption 

Increased aldosterone 
production and hypertension 
as a result of high Hsd3b6 

 

Table 1.2. Summary of previous mouse models of primary aldosteronism. Modified from Aragao-Santiago et al. 

2017 (169). BP, blood pressure; UTR, untranslated region. 
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CHAPTER 2 

Chemogenetic Gq Signaling Disrupts Adrenal Zonation and Causes 

Primary Aldosteronism 

 

2.1  Abstract 

 The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa 

(ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism 

(PA) results from renin-independent production of aldosterone, and is a common cause 

of hypertension.. PA is caused by dysregulated expression of the enzyme aldosterone 

synthase (Cyp11b2), which is normally restricted to ZG. Cyp11b2 expression and 

aldosterone production are predominantly regulated by AngII activation of the Gq 

signaling pathway. Here, we report the generation of transgenic mice with adrenal 

cortex expression of Gq-coupled designer receptors exclusively activated by designer 

drugs (DREADDs). We show that adrenal-wide ligand activation of Gq DREADD 

receptors triggered disorganization of adrenal functional zonation, with induction of 

Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent 

with increased renin-independent aldosterone production and hypertension. All 

parameters were reversible following termination of DREADD Gq signaling. These 

findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone 

production and implicate the pathway in adrenal zonation homeostasis. This transgenic 

mouse also provides an inducible and reversible model of hyperaldosteronism to 
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investigate PA therapeutics and the mechanisms leading to aldosterone’s damaging 

effects on the cardiovascular system. 

 

2.2  Introduction 

 The human adrenal glands synthesize and secrete steroid hormones that play 

critical roles in blood pressure regulation, stress mediation, and sexual maturation. To 

accomplish these roles, the adrenal cortex is organized into three functionally and 

histologically distinct zones. The outermost zona glomerulosa (ZG) is responsible for 

maintaining sodium and potassium balance through secretion of mineralocorticoids, 

predominantly aldosterone. Aldosterone synthesis and secretion are tightly controlled by 

the renin-angiotensin-aldosterone system (RAAS). The zona fasciculata (ZF) produces 

glucocorticoids and the zona reticularis (ZR) produces a variety of androgen precursors. 

This functional zonation is maintained through differential expression of the enzymes 

required for mineralocorticoid vs. glucocorticoid production. The adrenal zones undergo 

a cell renewal process that involves lineal centripetal conversion of steroidogenic cells 

from a ZG to ZF phenotype. This process initiates with subcapsular stem and progenitor 

cells differentiating into aldosterone-producing ZG cells. These cells are then displaced 

inward to the medullary border where they undergo apoptosis, changing their zone-

specific steroidogenic enzyme expression pattern throughout the process (25, 28-30, 

32-34, 36, 183). Most recently, a lineage-tracing study revealed that the outer ZG cells 

repopulate nearly the entire adrenal cortex within 3 months (28). Although 

adrenocortical centripetal migration has been experimentally demonstrated, there 

remains controversy as to what factors contribute to the cellular phenotypic switch that 

occurs at zonal boundaries.  
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Physiologic regulation of aldosterone production involves the binding of 

angiotensin II (AngII) to its receptor (angiotensin II receptor type 1, AT1-R) resulting in 

activation of the Gq protein family. Gq signaling through phospholipase C increases 

cytosolic calcium, which then activates calmodulin/calmodulin-dependent kinases 

(CaMKs) (89-93, 184-186). CaMKs initiate the activity of transcription factors that are 

critical for CYP11B2 transcription (114). Due to the ZG-specific expression of AT1R and 

CYP11B2 within the adrenal gland, aldosterone production is limited to adrenal ZG cells 

(10). 

Disruption of zone-specific expression of steroidogenic enzymes is one 

characteristic of diseases of steroid imbalance.  One such disease is primary 

aldosteronism (PA), which is the most prevalent cause of secondary hypertension, 

affecting 5-10% of hypertensive patients and 20% of those with resistant hypertension 

(127-132, 187). Production of aldosterone that is independent of circulating renin 

causes inappropriate renal sodium retention and consequently high blood pressure. PA 

patients are therefore susceptible to severe cardiovascular risks and complications 

(134, 135, 137, 138, 188). In addition to PA causing hypertension, inappropriate 

aldosterone enhances deleterious effects on the cardiovascular system, including 

cardiac hypertrophy and fibrosis (136, 139-141). Despite the high prevalence and 

mortality associated with PA, animal models for this disease are limited (169).  

Designer receptors exclusively activated by designer drugs (DREADDs) are 

modified G protein-coupled receptors that bind synthetic ligands (189). This transgenic 

technology allows for chemogenetic activation of G protein signaling pathways. 

DREADD technologies include a modified human M3 muscarinic receptor used to 
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modulate Gq signaling (hM3Dq) (190-193). The receptor exclusively binds a small 

molecule ligand (clozapine N-oxide, CNO), thereby initiating Gq signaling. In the current 

study, we developed transgenic mice with pan-adrenocortical expression of hM3Dq 

receptors. Activation of adrenal Gq signaling promoted ectopic expression of Cyp11b2 

in the ZF. Mice also exhibited a PA phenotype with renin-independent aldosterone 

production and hypertension. Furthermore, beyond triggering aldosterone production, 

the presence of Gq signaling may contribute to maintenance of an adrenal ZG cellular 

phenotype. 

 

2.3  Results 

Generation of AS+/Cre::hM3Dq mice. hM3Dq mice contain a transgene encoding 

the hM3Dq DREADD (190). The hM3Dq transgene is expressed exclusively in the 

presence of Cre expression, and contains an HA-tag sequence (190). Expression of 

hM3Dq was driven specifically to the adrenal cortex through crossing to the aldosterone 

synthase Cre (AS-Cre) mouse line (Figure 2.1). AS-Cre mice have Cre-recombinase 

inserted into the Cyp11b2 locus (28). Mice were bred as heterozygous for AS-Cre 

(AS+/Cre::hM3Dq), allowing them to maintain Cyp11b2 expression (28). Expression of 

hM3Dq was confirmed by HA-tag immunofluorescence (IF) staining. Adrenal Cyp11b2 

expression arises after birth, therefore low-level adrenal hM3Dq expression was seen 

early in life at 3 weeks of age (Figure 2.8). Centripetal migration of Cre-recombined cells 

led to adrenocortical hM3Dq expression that increased through life (Figure 2.8). The 

majority of cortical cells contained hM3Dq by 20 weeks of age, with no expression in the 

medulla (Figure 2.1). Due to this caveat, experiments used AS+/Cre::hM3Dq mice that 
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were 18-22 weeks of age. In mice that lacked Cre and were wild-type for AS 

(AS+/+::hM3Dq), there was no expression of HA-tag stained hM3Dq (data not shown).  

Cortical activation of Gq signaling results in hyperaldosteronism. Female 

AS+/Cre::hM3Dq mice treated with CNO for 7 days significantly increased Cyp11b2 

transcript levels by 6.5-fold above vehicle (Veh) treated mice as assessed by 

quantitative RTPCR (qPCR) (Figure 2.2C). This correlated with a significant increase in 

Cyp11b2 protein expression and 3.1-fold higher circulating aldosterone levels in CNO-

treated females (Figure 2.2, D and E). Interestingly, zonation of Cyp11b2 was 

disordered, as Cyp11b2 positive cells were found in the ZF as well as the ZG. Double IF 

suggested that some ZF cells co-expressed Cyp11b1 and Cyp11b2 with a smaller 

subset exclusively expressing Cyp11b2 (Figure 2.2D). The increase in aldosterone 

levels was variable, with some CNO-treated mice producing greater than 1000 pg/ml of 

aldosterone, while others had more moderate increases (Figure 2.2E). 18-

hydroxycorticosterone (18OHB), the final steroid precursor for the synthesis of 

aldosterone, was also significantly increased following CNO treatment (2.6-fold), but 

there was no change in concentrations of the earlier precursor, 11-deoxycorticosterone 

(11DOC) (Table 2.1). Kidney RNA was isolated to detect Ren1 mRNA, the mouse 

transcript that encodes renin in the juxtaglomerular renal cells. Ren1 mRNA was 

significantly decreased in female CNO-treated mice, illustrating a suppression of the 

RAAS (Figure 2.2F). This verified that the hM3Dq-induced aldosterone production was 

renin independent, as seen in PA. Of the genes encoding adrenal steroidogenic 

enzymes, Cyp11b2 was the only upregulated gene. Furthermore, Star, Hsd3b1, and 

Cyp11b1 all had small but significant decreases in expression, with downward trends 
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also observed for transcripts encoding the other steroidogenic enzymes (Figure 2.2C). 

These data demonstrate that the increase in aldosterone secretion in CNO treated mice 

is a direct effect of increased Cyp11b2 transcript and protein levels, rather than targeted 

increases in other enzymatic steps in steroidogenesis. Despite the slight decrease in 

Cyp11b1 transcription, there was not a significant decrease in plasma corticosterone 

levels (Figure 2.2E). It is worth noting that AS+/+::hM3Dq control mice littermates did not 

have any significant responses (in steroids or steroidogenic enzyme mRNA expression) 

to 7 days of CNO treatment (data not shown). 

Female AS+/Cre::hM3Dq mice did not have a significant difference in body weight 

following 7 days of CNO treatment (Figure 2.9A). Interestingly, there was a minor but 

significant decrease in adrenal size relative to body weight in CNO-treated females in 

the left adrenal, and a trend for a decrease in the right adrenal (Figure 2.9C). 

Nevertheless, there were no obvious changes to adrenal morphology assessed by H&E 

staining after 7 days of CNO (Figure 2.9B).  

Male mice did not exhibit the same phenotype as females. Although plasma 

aldosterone production was significantly upregulated 1.8-fold higher than control mice, 

there were no significant changes in Cyp11b2 mRNA levels (Figure 2.10, A and C). 

Additionally, when IF was performed, the Cyp11b2 expression was largely sequestered 

to the ZG with less ZF expression compared to that of females (Figure 2.10B). The 

small increase in aldosterone did not inhibit renin production, as kidney Ren1 transcript 

showed no significant difference between groups (Figure 2.10D). This sexual dimorphic 

response could partly be explained by the unequal hM3Dq expression at 20 weeks of 

age in males and females (Figure 1.1C). A previous mouse model that also utilized the 
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AS-Cre mouse line to drive adrenal cortex Cre expression exhibited a similar sex 

difference in adrenal remodeling, which led to a more robust phenotype in females at an 

earlier age (64).  

Gq signaling contributes to the ZG cell phenotype. We also examined the 

expression of disabled homolog 2 (Dab2), a ZG-specific protein that participates in 

aldosterone production and is regulated by AngII (194). Following 7 days of CNO 

treatment, Dab2 was no longer restricted to the ZG in female mice, as several ZF cells 

were also positive for Dab2 (Figure 2.3A). This coincided with a 1.5-fold increase in 

Dab2 transcript levels in adrenals of female AS+/Cre::hM3Dq mice treated with CNO 

(Figure 2.3B). 

Wnt/β-catenin signaling has implications in adrenal development, growth, cell 

replenishment, and is preferentially activated in the ZG compared to other cortical zones 

(38-42, 66). Therefore, we determined whether chemogenetic Gq signaling would be 

sufficient to induce active Wnt/β-catenin signaling in the ZF. IF for active β-catenin 

found localization to be limited to the ZG in both vehicle control and CNO-treated female 

mice, with only minor activation in the outer ZF cells (Figure 2.3C). Furthermore, qPCR 

for the canonical Wnt pathway target gene Axin2 revealed no change between vehicle 

and CNO groups (Figure 2.3D). This suggests that the Cyp11b2 positive ZF cells have 

not undergone a complete phenotypic switch to a ZG cell. It also indicates that 

aldosterone production per se is not reliant on Wnt/β-catenin-signaling, as Cyp11b2 is 

able to turn on in the ZF following activation of Gq signaling. 

hM3Dq-induced aldosterone production bypasses high sodium diet suppression 

of the RAAS. High sodium diets (HS) inactivate adrenal aldosterone synthesis through 
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suppression of renin under normal physiological conditions (111). This was apparent in 

AS+/Cre::hM3Dq mice fed HS for 3 days prior to CNO treatment. To determine if CNO 

treatment could override RAAS suppression, mice were split into two groups: 1) HS + 2 

days of CNO treatment and 2) HS + 7 days of CNO treatment (Figure 2.4A). Alongside 

these groups, we used littermates treated with HS + Veh as controls. The two time 

points allowed us to examine the temporal regulation of aldosterone synthesis by the 

hM3Dq system. In female mice administered HS + CNO for 2 days, we found that 

aldosterone significantly increased 2.6-fold, and Cyp11b2 mRNA levels also increased 

8.3-fold above HS + Veh treated controls (Figure 2.4, B and C). When IF staining was 

assessed, Cyp11b2 protein was detected in the ZG and in the ZF at variable levels 

(Figure 2.4D). On day 2 of treatment, ZF Cyp11b2 expression was almost exclusively in 

cells that co-expressed Cyp11b1 in the majority of mice. In comparison, mice that were 

treated with HS + CNO for 7 days robustly increased aldosterone production by 105-fold 

through an upregulation of Cyp11b2 transcript levels by 44-fold relative to HS + Veh 

controls (Figure 2.4, B and C). The levels of aldosterone in these 7 day HS + CNO 

treated mice averaged 1949 pg/ml, a remarkable increase from the 285 pg/ml average 

of the 2 day HS + CNO mice. 18OHB also increased significantly in both the 2 day (1.8-

fold) and 7 day cohorts (33-fold) (Table 2.1). No significant changes were observed in 

11DOC or corticosterone under these protocols (Table 2.1). Moreover, the level and 

disorganization of Cyp11b2 protein expression was higher than in the 2 day treated 

samples (Figure 2.4D).  These mice also had a subset of ZF cells with exclusive 

expression Cyp11b2 after 7 days of HS + CNO treatment (Figure 2.4D). These 

observations validate the ability of CNO to elevate aldosterone secretion independent of 
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renin, even at an early timepoint. In addition, these data suggest that prolonged 

activation of ZF Gq signaling can promote the development of an aldosterone-producing 

cellular phenotype. 

Male AS+/Cre::hM3Dq mice in this cohort were also assessed. At the 2 day 

timepoint, HS + CNO treated males displayed a 3.8-fold upregulation in circulating 

aldosterone, with an average of 289 pg/ml (Figure 2.10F). In addition, adrenal Cyp11b2 

transcripts increased by 9.7-fold (Figure 2.10E). The 2 day male response was similar 

to that seen in females, but in the 7 days HS + CNO treated group the response of 

males diverged from females with lower levels of circulating aldosterone (482 pg/ml 

average) and adrenal Cyp11b2 (6.5-fold compared to controls) (Figure 2.10, E and F).  

Washout of CNO normalizes the PA phenotype in AS+/Cre::hM3Dq mice. To 

address whether the PA phenotype observed in the AS+/Cre::hM3Dq was reversible, we 

designed a CNO washout experiment. All mice were administered HS for a 3 day 

period, and then given HS + CNO for 7 days. One group of mice was sacrificed, 

whereas another group was maintained on HS diet without CNO (Figure 2.5A). When 

analyzing mRNA and steroid data, we compared both groups to the previously 

described 7 day HS + Veh group (Figure 2.4). Mice treated with HS + CNO had robust 

elevations of both Cyp11b2 and aldosterone, with the same level of disorganization in 

Cyp11b2 expression as described above (Figure 2.5, B-D). Strikingly, upon CNO 

removal, 10 days was sufficient to reverse the phenotype for all parameters back to 

baseline levels (Figure 2.5, B-D). 

hM3Dq activation causes hypertension. To ascertain whether the adrenal and 

steroid phenotype in the AS+/Cre::hM3Dq mice recapitulated the hypertension seen in 
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PA, we evaluated the blood pressure. Radiotelemetry allowed continuous monitoring of 

blood pressure in real time. After recovery from surgery, mice were given a HS diet for 3 

days, followed by 7 days of HS + CNO (Figure 2.6A). HS alone did not elevate mean 

arterial pressure (MAP), while HS combined with CNO increased blood pressure by an 

average of 11.2 mmHg compared to the HS alone across the full treatment period 

(Figure 2.6B). Treatment caused similar increases in both systolic and diastolic 

pressures. Hourly MAPs were increased within 24 hours of HS + CNO treatment, with 

significant increases observed within the animal’s dark cycle and every hour of the 

subsequent light cycle (Figure 2.6C). Upon CNO removal, MAP decreased over the 

course of the 10-day washout (Figure 2.6D).  

  

2.4  Discussion 

 The current study suggests that activation of Gq signaling is sufficient to cause 

glucocorticoid-producing ZF cells to regain the ability to produce aldosterone. The 

ectopic expression of Cyp11b2 leads to renin-independent hyperaldosteronism resulting 

in a significant increase of MAP. The AS+/Cre::hM3Dq phenotype is reversible upon 

removal of the activating ligand, CNO.  Taken together, targeted expression of hM3Dq 

to the adrenal cortex has provided new insights into adrenocortical cell plasticity and a 

new inducible/reversible model to study primary aldosteronism. 

There are several features that define the adrenal ZG. These include the 

capacity to produce aldosterone as well as the capacity to provide cells needed to 

repopulate the adrenal cortex through centripetal migration. Activation of hM3Dq 

receptors partially reverted ZF cells to a ZG phenotype, particularly regarding 

aldosterone production. This is illustrated by the ZF localization of Cyp11b2, elevated 
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circulating aldosterone and suppression of renal Ren1 expression. We also found that 

the ZG-specific protein Dab2 (182, 194) could be detected in some ZF cells following 

CNO treatment, combined with a significant increase in its adrenal mRNA. These 

findings imply that ZF loss of AT1-R expression, and consequently AngII-mediated Gq 

signaling might be a factor involved in the ZG to ZF cell transition. However, it appears 

that Gq signaling alone is not sufficient for a complete ZF to ZG cell transition. Our data 

suggest that activation of Gq signaling throughout the adrenal does not alter the 

localization of Wnt/β-catenin, which is primarily a ZG-restricted pathway. Wnt/β-catenin 

signaling has an important role in adrenal development and tissue homeostasis (39). 

Within the ZG most  cells are both β-catenin and Cyp11b2 positive (40), and it has been 

suggested that Wnt/β-catenin signaling can control aldosterone production (41, 195). 

Activating mutations in CTNNB1, the gene that encodes β-catenin, have also been 

described in a small subset of aldosterone-producing adenomas (43, 45, 196, 197). 

Therefore, while it is clear that the Wnt/β-catenin pathway is involved in ZG aldosterone 

production, these data demonstrate that it may not be essential for the Gq signaling 

steps downstream of AT1R binding of AngII. This aligns with the previously reported role 

of β-catenin in stimulating AT1R expression (41), a mechanism that is upstream of the 

hM3Dq-induced Gq activation. It is also possible that Wnt/β-catenin signaling could 

activate aldosterone synthesis through a separate mechanism than regulating the 

potential for Gq signaling. 

With the AS+/Cre::hM3Dq model, we have created a novel tool for researchers to 

study PA, hypertension, and peripheral tissue damage caused by inappropriate 

aldosterone production. There have been several previous mouse models that exhibit a 
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PA phenotype. A series of papers have linked constitutive inactivation of various 

potassium channels to hyperaldosteronism in vivo (170-175, 198, 199). Disruption of the 

circadian clock through Cry1/Cry2 knockout have also caused elevated plasma 

aldosterone and salt-sensitive high blood pressure (178). One study utilized a 

mutagenesis screen to link mutations to hyperaldosteronism phenotypes (179). 

Increasing aldosterone synthesis and salt-sensitive blood pressure has also been 

accomplished through transgeni stabilization of the 3’ untranslated region of Cyp11b2 or 

overexpression of the human CYP11B2 gene (180, 181). Most recently, inactivation of 

an E3 ubiquitin ligase, Siah1, led to an increase of Cyp11b2 expression and 

aldosterone production (182). While previous findings have advanced the field, the 

aforementioned transgenic models of PA are associated with the onset of autonomous 

aldosterone production at birth. Thus, these models do not accurately recapitulate PA 

as it is typically an adult onset disease. Furthermore, the aldosterone excess seen in 

these mice is not reversible. Mice can also be treated with mineralocorticoids for the 

study of peripheral effects of mineralocorticoid receptor activation, but this does not 

address the impaired adrenal zonation that exists in cases of PA. In addition, the 

minipumps used for administration of aldosterone, as well as the cost of this steroid, 

limits this experimental approach. Therefore, the AS+/Cre::hM3Dq mouse model provides 

an attractive transgenic PA model that is inducible and reversible, and is the first use of 

DREADD technology in the adrenal gland. 

Future studies will be needed to determine the cause of the sexual dimorphism 

observed in the AS+/Cre::hM3Dq mouse line. This can partially be attributed to a slower 

rate of adrenocortical cell turnover in males compared to females, resulting in lower 
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expression of the hM3Dq receptor in males until late in life. However, the rather large 

disparity between male and female response implies that additional underlying factors 

may be at play. Sexual dimorphism in the mouse adrenal is well established with clear 

sex differences in gene expression observed within the adrenal gland (200). Several 

previous mouse models of adrenal dysfunction have had varying results between sexes 

(64, 170, 172, 179, 198, 201). This further argues for a sex-dependent mechanism of 

adrenal regulation, possibly driven by androgens or estrogens. 

In summary, this study supports a role for Gq signaling in adrenocortical 

functional zonation and the induction of an aldosterone-producing cell phenotype. Our 

findings indicate that the Gq signaling pathway is sufficient to trigger Cyp11b2 

expression in non-aldosterone producing ZF cells. This suggests that adrenocortical 

cells possess plasticity in steroidogenic potential, and their steroidogenic role can be 

transformed when exposed to a stimulus such as Gq signaling. Nevertheless, further 

work will be needed to address whether Gq signaling is necessary for physiologic 

maintenance of a ZG cellular identity. Future studies with the AS+/Cre::hM3Dq mouse 

line will also aid in defining the mechanisms whereby sustained inappropriate 

aldosterone production causes deleterious effects in peripheral tissues, and provide a -

preclinical model to for potential PA therapeutic targets.  

 

2.5  Methods 

Mice. Both the AS-Cre (28) and hM3Dq (190) lines have been previously 

described. AS+/Cre::hM3Dq mice were maintained on a mixed background, with 

littermate controls used when possible to control for genetic variability. Mice in all 

experiments were 18-22 weeks old at the start of each experimental protocol. CNO 
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(Tocris Bioscience, Bristol, United Kingdom) was dissolved in dimethyl sulfoxide 

(DMSO) at 30 mg/ml. CNO treated mice were administered 50 µg/ml CNO in drinking 

water in addition to 5 mM saccharin for taste. Vehicle treated mice were administered 5 

mM saccharin and 0.17% DMSO (the same as CNO animals). The water was provided 

ad libitum, and replaced every 2 days. Mice were fed ad libitum with a standard chow 

diet (Research Diets, New Brunswick, NJ) or high sodium diet (Envigo, Huntington, 

United Kingdom) that contained 4% NaCl. All mice were maintained under a 12-hour 

light/12-hour dark cycle. Mice were housed in the Unit for Laboratory Animal 

Management facility at University of Michigan. 

Real-time PCR analysis. RNA was isolated from whole adrenals using bead 

homogenization method and the RNEasy Plus Mini Kit (Qiagen, Hilden, Germany). In 

kidney experiments, frozen kidneys were first pulverized into a frozen powder that was 

used for RNA extraction. Reverse transcription was performed using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). qPCR was 

performed using Taqman or SYBR green primer sets and data was analyzed as relative 

expression using the delta/delta CT method. Taqman primers from Applied Biosystems 

were: Cyp11a1 (Mm00490735_m1), Cyp21a1 (Mm00487230_g1), Hsd3b1 

(Mm01261921_mH), Ppia (Rn00690933_m1), Ren1 (Mm02342887_mH), Star 

(Mm00441558_m1). Taqman primers designed through Integrated DNA Technologies 

(Coralville, IA) were: Cyp11b1 F (5’– GTCCTCAATGTGAATCTGTATTCCA – 3’), 

Cyp11b1 R (5’-CCAGCGCTGAGGCATATAGC-3’), Cyp11b1 probe (5’-56-FAM/ 

CCGGAACCCTGCAGTG-3’), Cyp11b2 F (5-TGCTGGGACATTGGTCCTACT-3’), 

Cyp11b2 R (5’-CTTGGGAACACTGCAGGGTT-3’), Cyp11b2 probe (5’-56-FAM/ 
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TATCTCTAC /ZEN/ TCCATGGGC-3’). SYBR green primer sets from Integrated DNA 

Technologies were: Axin2 F (GAGGATGCTGAAGGCTCAAA), Axin2 R 

(GCAGGCAAATTCGTCACTC), Dab2 F (TGTTGGCCAGGTTCAAAGGT) Dab2 R 

(GCACATCATCAATACCGATTAGCT). 

Immunofluorescence and histology analysis. Whole adrenal glands were fixed in 

4% paraformaldehyde for 1 hour. These tissues were processed, embedded in paraffin, 

and sectioned at 5 µm thickness. Antibodies used were anti-HA High Affinity (1/500, 

Roche, Basel, Switzerland, 11867423001) anti-Cyp11b2 (1/200, gift from C. Gomez-

Sanchez, University of Mississippi), anti-Cyp11b1 (1/100, gift from C. Gomez-Sanchez, 

University of Mississippi), anti-Dab2 (1/500, BD Biosciences, San Jose, CA, #610464), 

and anti-β-Catenin (1/500, Cell Signaling, Danvers, MA, #8814). Histologic analysis of 

tissues was assessed on H&E stained sections. 

Steroid Measurements. Trunk blood from decapitated mice was collected in 

sodium heparin tubes, and plasma was isolated by centrifugation. We quantified 4 C18 

steroids using LC-MS/MS: 11-deoxycorticosterone, corticosterone, 18-

hydroxycorticosterone, and aldosterone. Unlabeled and deuterium-labeled steroids 

were obtained from Sigma-Aldrich, Cerilliant and C/D/N isotopes (Table 2.2). Steroid 

extraction by liquid-liquid extraction and quantitation was carried out as previously 

described (202). 

Samples (10 µL) were injected via autosampler and resolved with a pair of 

Agilent 1260/1290 binary pump HPLCs via 2D liquid chromatography, first on a 10 mm 

x 3 mm, 3 µm particle size Hypersil Gold C4 loading column (Thermo Scientific, 

Waltham, Massachusetts) followed by a Kinetex 50 mm x 2.1 mm, 2.6 µm particle size 
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biphenyl resolving column (Phenomenex, Torrance, CA). The mobile phases consisted 

of 0.2 mmol/L aqueous ammonium fluoride (mobile phase A) and methanol with 0.2 

mmol/L ammonium fluoride (mobile phase B). Steroids were eluted using gradient 

specifications as described in Table 2.3. The column effluent was directed into the 

source of an Agilent 6495 triple quadrupole mass spectrometer using electrospray 

ionization in positive ion mode for Δ4 and analyzed using multiple reaction monitoring 

(MRM) mode (Table 2.3). Quantitation was accomplished by comparing ion currents for 

the monitored ions with weighted (1/x) 12-point linear external calibration curves (r2 was 

>0.995) and corrected for specimen dilution and recovery of internal standards using 

ChemStation and MassHunter software (Agilent, Santa Clara, CA). Intra-assay and 

inter-assay coefficients of variation (CV) were assessed by measuring quality control 

pooled serum samples five times within a run and across five different runs, 

respectively, and they were < 12% for all steroids. The lower limit of detection (LOD) for 

each steroid was defined by the minimum concentration achieving an extrapolated 

signal-to-noise ratio of 3, and it ranged from 3.0 pg/mL for aldosterone to 44.4 pg/mL for 

corticosterone (Table 2.2). 

Radiotelemetry. Mice were surgically implanted with a telemetric blood pressure 

transducer (Data Sciences International, St. Paul, MN) by the University of Michigan 

Physiology Phenotyping Core, as previously described (203). The catheter of the device 

was passed into the carotid artery and the transducer was placed in the abdominal 

cavity. Mice were monitored postoperatively and were given 2 weeks to recover from 

surgery prior to treatment. Mice were individually housed in cages atop receiver pads 

allowing for real-time measurements of blood pressure. As stated by DSI, the mean 
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pressure parameter value was calculated by averaging the pressure values over 50 

sub-segments of the segment length. 

Statistics. Data is represented as mean ± SEM. The box and whisker plots in 

Figure 6 B and D depict the interquartile range between the 25th and 75th percentile with 

the median (box), along with the maximum and minimum (whiskers).  For groups of two, 

an unpaired two-tailed Student’s t-test was used for comparison. One-way ANOVA with 

a Bonferroni post-hoc analysis was used for groups of three or more. Figure 2.6B used 

a repeated measures one-way ANOVA with a Bonferroni Correction for multiple 

comparisons. Comparison of hourly blood pressure values (Figure 2.6C) used a 

repeated measures two-way ANOVA with a Bonferroni correction. Direct comparison of 

HS + CNO and CNO washout blood pressures (Figure 2.6D) used a paired two-tailed 

Student’s t-test. All immunofluorescent experiments were performed in n ≥ 5 animals. 

Statistical tests were calculated using GraphPad Prism 7.0 software. Data was 

considered statistically significant with a P value of less than 0.05. 

Study approval. All animal procedures were approved by the Institutional Animal 

Care and Use Committee at University of Michigan. 
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Figure 2.1. Adrenocortical specific expression of hM3Dq driven by AS-Cre. (A) AS
+/Cre

::hM3Dq mouse cross. 

AS-Cre mice were bred as heterozygous for the Cre allele (AS
+/Cre

) and crossed to the hM3Dq line. Mice were bred 

on a homozygous hM3Dq background. Cre recombination resulted in an excision of the upstream Pgk-neomycin 

cassette at the loxP sites, allowing transcription of hM3Dq in Cre positive cells. (B) Immunofluorescent labeling of 

hM3Dq. The hM3Dq transgene has an HA tag, allowing for detection of the receptor via HA tag immunofluorescence. 

Adrenals pictured are from 20 week old mice. DAPI (blue) marks the nuclei. Scale bars: 50 μm.    
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Figure 2.2. CNO activation of adrenal-hM3Dq upregulates Cyp11b2 expression and aldosterone production. 
(A) Experimental protocol. 18-20 week old female AS

+/Cre
::hM3Dq mice were treated with either CNO (50 μg/ml) or 

vehicle in their drinking water ad libitum for 7 days prior to sacrifice. (B) Mouse adrenal steroidogenic pathway. Star 

transports cholesterol to the inner mitochondrial membrane where it is converted to pregnenolone prior to 
downstream conversions to either glucocorticoids (ZF) or mineralocorticoids (ZG) by steroidogenic enzymes. (C) 

qPCR analysis of steroidogenic enzyme mRNA in whole adrenal tissue. For steroidogenic enzymes, n = 8 for both 
groups, except for Cyp11b1 and Cyp11b2, where n = 10 for vehicle and n = 11 for CNO. (D) Immunofluorescence of 
Cyp11b2 and Cyp11b1. (E) Steroid measurements measured by LC-MS/MS. For steroids, n = 13 for vehicle, n = 17 
for CNO. (F) qPCR analysis of kidney Ren1. For Ren1 analysis, n = 6 for vehicle, n = 5 for CNO. C, capsule; ZG, 

zona glomerulosa; ZF, zona fasciculata; Veh, vehicle. Bars in dot plots represent mean ± SEM. Scale bars = 50 µm. 
Statistical analysis used for dot plots was unpaired two-tailed Student’s t test. *P < 0.05, **P < 0.01.  
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Figure 2.3. AS
+/Cre

::hM3Dq mice have increased expression of ZG marker Dab2 with no changes in the ZG 
specific Wnt pathway. (A) Immunofluorescent staining for the ZG-specific Dab2 protein (green). (B) qPCR analysis 
for whole adrenal Dab2 mRNA. (C) Immunofluorescent staining for active β-Catenin (green). (D) qPCR analysis for 
whole adrenal mRNA expression of the Wnt pathway target gene Axin2. C, capsule; ZG, zona glomerulosa; ZF, zona 
fasciculata; Veh, vehicle; 7d, 7 days. For qPCR analysis, n = 8 for both groups. Bars in dot plots represent mean ± 
SEM. Scale bars = 50 µm. DAPI (blue) stained the nuclei in both A and C. Statistical analysis used for dot plots was 
unpaired two-tailed Student’s t test. *P < 0.05. 
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Figure 2.4. AS
+/Cre

::hM3Dq mice activate Cyp11b2 and aldosterone production in the presence of high 
sodium. (A) AS

+/Cre
::hM3Dq female 20-22 week old mice were fed a high sodium (HS) diet for 3 days. One group 

then received HS + CNO or HS + vehicle for 2 days and the other HS + CNO or HS + vehicle for 7 days prior to 
sacrifice. (B) qPCR analysis for whole adrenal Cyp11b2 mRNA. (C) LC-MS/MS analysis of plasma aldosterone 
concentration. (D) Immunofluorescent staining of Cyp11b2 (red) and Cyp11b1 (green). C, capsule; ZG, zona 

glomerulosa; ZF, zona fasciculata; Veh, vehicle; 7d, 7 days. For steroids and qPCR, n = 8 for all groups except HS + 
CNO (7d), where n = 10. Bars in dot plots represent mean ± SEM. Scale bars = 50 µm. Statistical analysis used for 
dot plots was unpaired two-tailed Student’s t test. **P < 0.01, ***P < 0.001, ****P < 0.001. 
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Figure 2.5. CNO washout causes reversal of the PA phenotype in AS
+/Cre

::hM3Dq mice. (A) Experimental 
protocol. 20-22 week old AS

+/Cre
::hM3Dq female mice were treated with high sodium (HS) diet for 3 days. All mice 

were then administered HS + CNO for 7 days. One group was sacrificed at 7 days (HS + CNO group) while the other 
initiated a washout protocol for an additional 10 days with HS diet but without CNO (HS + CNO WO group). (B) qPCR 

analysis of whole adrenal Cyp11b2 mRNA. For qPCR, HS Veh, n = 7, for HS CNO, n = 5, and for HS CNO washout, 
n = 7. (C) LC-MS/MS measurement of plasma aldosterone. For steroids, HS Veh, n = 8, for HS CNO, n = 6, and for 
HS CNO washout, n = 7. (D) Immunofluorescent staining of Cyp11b2 (red) and Cyp11b1 (green). For (B) and (C), 

mice from both groups were compared to previously described HS + Veh controls (Figure 4). C, capsule; ZG, zona 
glomerulosa; ZF, zona fasciculata. Bars in dot plots represent mean ± SEM. Scale bars = 50 µm. Statistical analysis 
used for dot plots was one-way ANOVA with a Bonferroni correction. ***P < 0.001. 
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Figure 2.6 High sodium diet plus CNO increases blood pressure in AS
+/Cre

::hM3Dq mice. (A) Experimental 
protocol. 20 week old AS

+/Cre
::hM3Dq female mice (n = 4) were implanted with a radiotelemetry device and given 2 

weeks for recovery. The final 4 days prior to treatment were analyzed as the baseline (normal sodium diet, NS). Mice 
then received a high sodium (HS) diet for 3 days followed by HS + CNO for 7 days. CNO washout then lasted 10 
days. HS was maintained during washout. Mean arterial pressure (MAP) was continuously recorded throughout the 
experiment. (B) MAP in NS, HS, and HS + CNO complete treatment periods. (C) Hourly MAP overlaid for the same 

mice using the final 24 hours of HS alone (blue), and the 24 hours of the 2
nd

 day of CNO treatment (Day 4 in panel 
A). Gray box signifies dark (active) period. The 2

nd
 day was chosen to allow orally given CNO to raise aldosterone 

levels. (D) MAP in HS + CNO and HS CNO washout complete treatment periods.  Data in (B) and (D) represented as 

the interquartile range with median (box) and the minimum/maximum (whiskers). Data in (C) represented as mean ± 
SEM of the mice within each hour. Statistical analysis used for (B) was repeated measures one-way ANOVA with a 
Bonferroni correction. Statistical analysis used for (C) was a repeated measures two-way ANOVA with a Bonferroni 
correction. Statistical analysis used for (D) was a paired two-tailed Student’s t-test. *P < 0.05. 
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Figure 2.7. Activation of Gq signaling in both the normal and AS
+/Cre

::hM3Dq mouse adrenal cells. (A) 

Angiotensin II (AngII) binding to its receptor (AT1-R) specifically on the cellular membrane of zona glomerulosa (ZG) 
cells activates the Gq protein family, leading to Cyp11b2 transcription and aldosterone production. (B) Rationale for 

the use of DREADD technology. hM3Dq is a modified human muscarinic M3 receptor that binds CNO and not 
endogenous ligands. This receptor can couple to Gq proteins in the same manner as AT1-R and activate Gq 
signaling.  
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Figure 2.8. Expression of hM3Dq increases with age in the AS
+/Cre

::hM3Dq model. Untreated male and female 
AS

+/Cre
::hM3Dq mice were sacrificed at the indicated ages and stained for HA tag (hM3Dq) (red) by 

immunofluorescence. DAPI (blue) marks the nuclei. Scale bars = 50 µm. 
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Figure 2.9. Additional phenotyping of AS

+/Cre
::hM3Dq mice. (A) In 20-21 week old post- treatment females, body 

weight was measured prior to sacrifice and showed no significant difference between CNO and vehicle. (B) The 
histology of the adrenal glands was examined by H&E staining. (C) Adrenal weights were measured and then 

normalized to each animal’s body weight as a percentage of body weight. For weights, n = 7 for vehicle and n = 9 for 
CNO. Bars in dot plots represent mean ± SEM. Scale bars = 50µm. Statistical analysis used for dot plots was 
unpaired two-tailed Student’s t test. *P < 0.05. 
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Figure 2.10. CNO treated 20 week old male AS
+/Cre

::hM3Dq mice exhibit a moderate response in aldosterone 

production. (A) Whole adrenal mRNA expression of Cyp11b2 and Cyp11b1 in vehicle (n = 10) or CNO treated (n = 

11) males. (B) Immunofluorescence of Cyp11b2 (red) and Cyp11b1 (green). (C) LC-MS/MS steroid measurements in 

vehicle (n = 11) and CNO treated (n = 14) males (D) qPCR analysis of kidney Ren1 mRNA expression showed no 

difference between vehicle (n = 5) and CNO treated (n = 4) male mice. (E) High sodium diet plus CNO Cyp11b2 

expression. 20-22 week old male mice were treated under the same 2 day and 7 day protocols described in Figure 4. 

Male HS + CNO mice had significantly upregulated Cyp11b2 mRNA expression at both 2 days and 7 days (F) HS + 

CNO plasma aldosterone concentration. Male HS + CNO mice had significantly elevated concentrations of 

aldosterone compared to HS + vehicle at both 2 days and 7 days. For 2 and 7 day experiments, n = 9 for both HS + 

vehicle (2d) and HS + CNO (7d), and n = 8 for both HS + CNO (2d) and HS + vehicle (7d). Bars in dot plots represent 

mean ± SEM. C, capsule; ZG, zona glomerulosa; ZF, zona fasciculata; Veh, vehicle; 2d, 2 days; 7d, 7 days. Scale 

bars = 50 µm. Statistical analysis used for dot plots was unpaired two-tailed Student’s t test. *P < 0.05, **P < 0.01, 

****P < 0.0001. 
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Sex Treatment n 
 
11DOC (ng/ml) 
 

Corticosterone (ng/ml) 18OHB (pg/ml) Aldosterone (pg/ml) 

F Veh (7d)  13 19.3 ± 3.3 342.0 ± 95.1 987.2 ± 145.0 418.8 ± 58.3 

 CNO (7d) 17 19.9 ± 4.3 243.4 ± 25.9 2544.5 ± 620.9* 1302.4 ± 265.1** 

 HS + Veh (2d)  8 26.4 ± 7.2 288.8 ± 42.8 273.7 ± 54.3 108.8 ± 30.0 

 HS + CNO (2d) 8 11.9 ± 4.5 230.3 ± 36.4 488.6 ± 68.5* 285.8 ± 44.9** 

 HS + Veh (7d) 8 39.4 ± 9.7 356.4 ± 42.3 110.5 ± 20.4 18.5 ± 5.6 

 HS + CNO (7d) 10 20.0 ± 5.0 305.0 ± 28.4 3655.3 ± 1046.0** 1935.2 ± 461.3** 

M Veh (7d) 11 12.4 ± 2.8 239.6 ± 48.5 641.2 ± 128.4 318.2 ± 56.1 

 CNO (7d) 14 10.2 ± 2.3 200.5 ± 20.8 1140.5 ± 166.7* 696.1 ± 113.6* 

 HS + Veh (2d) 9 23.5 ± 5.2 212.0 ± 27.0 179.5 ± 17.5 75.1 ± 10.2 

 HS + CNO (2d) 8 6.0 ± 2.6* 147.4 ± 22.2 466.6 ± 42.7**** 289.9 ± 27.6**** 

 HS + Veh (7d) 8 8.8 ± 2.3 202.5 ± 26.5 170.2 ± 55.0 62.8 ± 17.5 

 HS + CNO (7d) 9 6.9 ± 2.4 210.4 ± 30.8 699.7 ± 62.6**** 481.9 ± 44.0**** 

 

Table 2.1. Concentrations of adrenal steroids in AS
+/Cre

::hM3Dq under various treatment protocols. LC-MS/MS was performed to detect steroid 

concentrations in mice from the various treatment protocols. Data for Veh/CNO (7d) corticosterone is presented as dot plots in Figure 2.4 and Figure 2.10. Data for 

aldosterone under all conditions is presented as dot plots in Figures 2.2 and 2.4, and Supplemental Figure 4. Data is represented as mean ± SEM. Unpaired two-

tailed Student’s t-test was performed within each sex/treatment regimen group. *P<0.05, **P<0.01, ****P<0.0001. F, female; M, male; 11DOC, 11-

deoxycorticosterone; 18OHB, 18-hydroxycorticosterone; HS, high sodium; Veh, vehicle; 2d, 2 days; 7d, 7 days.
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Steroid Steroid 
Manufacturer 

Precursor/ 
Product Ions 

(m/z) 

RT 
(min) 

LOD 
(pg/ml) 

Internal 
Standard 

Internal 
Standard 

Manufacturer 

11DOC Cerilliant 331.2 / 109.0 8.6 11.2 11DOC-d8 Sigma-Aldrich 

B Cerilliant 347.2 / 329.2 6.8 44.4 B-d8 C/D/N Isotopes 

18OHB Cerilliant 363.2 / 269.3 4.7 23.0 Cortisol-d4 Cerilliant 

Aldo Cerilliant 361.2 / 343.1 5.6 3.0 Aldo-d8 Sigma-Aldrich 

 

Table 2.2. Steroids standards used for LC-MS/MS. m/z, mass to charge ratio; RT, retention time; LOD, limit of 

detection (calculated by measuring a signal-to-noise ratio of 3). Steroid abbreviations: 11DOC, 11-

deoxycorticosterone; B, corticosterone; 18OHB, 18-hydroxycorticosterone; Aldo, aldosterone. 
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(A) 1260 HPLC Pump - C4 loading column 

Mobile Phase A: 0.2 mmol/L Ammonium fluoride (NH4F) 

Mobile Phase B: Methanol + 0.2 mmol/L NH4F 

 

Time (min) A (%) B (%) Flow (mL/min) 
Pressure 

(bar) 

Δ4     
1.00 81.0 19.0 0.500 435 
1.20 0.0 100.0 0.500 435 
2.50 0.0 100.0 0.500 435 
2.51 0.0 100.0 0.000 435 
3.90 0.0 100.0 0.000 435 
3.91 0.0 100.0 0.100 435 
7.20 0.0 100.0 0.100 435 
7.40 0.0 100.0 0.100 435 
7.41 0.0 100.0 0.500 435 
8.99 0.0 100.0 0.500 435 
9.00 81.0 19.0 0.500 435 

12.00 81.0 19.0 0.500 435 
12.10 81.0 19.0 0.500  435 

 

 (B) 1290 HPLC Pump - Biphenyl resolution column 

Mobile Phase A: 0.2 mmol/L Ammonium fluoride (NH4F) 

Mobile Phase B: Methanol + 0.2 mmol/L NH4F 

 

Time (min) A (%) B (%) Flow (mL/min) 
Pressure 

(bar) 

Δ4     
0.99 81.0 19.0 0.500 480 
1.00 55.0 45.0 0.500 480 
1.80 55.0 45.0 0.500 480 
2.00 40.0 60.0 0.200 480 
3.01 40.0 60.0 0.200 480 
7.50 23.0 77.0 0.200 460 
8.90 23.0 77.0 0.200 460 
9.80 10.0 90.0 0.700 600 
10.20 0.0 100.0 0.700 600 
11.20 0.0 100.0 0.700 600 
11.30 81.0 19.0 0.700 600 
11.50 81.0 19.0 0.500 600 

 

Table 2.3. Gradient specifications of the Agilent LC system. 
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CHAPTER 3 

Synthetic High Density Lipoprotein (sHDL) Inhibits Steroid Production 
in Adrenal HAC15 Adrenal Cells 

 
Modified from: Taylor MJ, Sanjanwala AR, Morin EE, Rowland-Fisher E, Anderson 

K, Schwendeman A, et al. Synthetic High-Density Lipoprotein (sHDL) Inhibits Steroid 
Production in HAC15 Adrenal Cells. Endocrinology. 2016;157(8):3122-9. 

 

3.1 Abstract 

Background: High density lipoprotein (HDL) transported cholesterol represents one of 

the sources of substrate for adrenal steroid production. Synthetic HDL (sHDL) particles 

represent a new therapeutic option to reduce atherosclerotic plaque burden by 

increasing cholesterol efflux from macrophage cells. The effects of the sHDL particles 

on steroidogenic cells have not been explored.  

Methods: sHDL, specifically ETC-642, was studied in HAC15 adrenocortical cells. Cells 

were treated with sHDL, forskolin, 22R-hydroxycholesterol (22OHC), or pregnenolone. 

Experiments included time and concentration response curves, followed by steroid 

assay. Quantitative-RT PCR (qPCR) was used to study mRNA of 3-hydroxy-3-methyl-

glutaryl-CoA reductase (HMGCR), lanosterol 14 -α- methylase (CYP51A1), cholesterol 

side-chain cleavage enzyme (CYP11A1), and steroid acute regulatory protein (StAR). 

Cholesterol assay was performed using media and cell lipid extracts from a dose 

response experiment.   

Results: sHDL significantly inhibited production of cortisol. Inhibition occurred in a 

concentration- and time-dependent manner and in a concentration range of 3-50 µM. 
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Forskolin (10 µM) stimulated cortisol production was also inhibited. Incubation with 

22OHC (10 µM) and pregnenolone (10 µM) increased cortisol production, which was 

unaffected by sHDL treatment. sHDL increased transcript levels for the rate-limiting 

cholesterol biosynthetic enzyme, HMGCR. Extracellular cholesterol assayed in culture 

media showed a positive correlation with increasing concentration of sHDL, while 

intracellular cholesterol decreased following treatment with sHDL.  

Conclusion: The current study suggests that sHDL inhibits HAC15 adrenal cell steroid 

production by efflux of cholesterol, leading to an overall decrease in steroid production 

and an adaptive rise in adrenal cholesterol biosynthesis. 

 

3.2 Introduction 

Low and high density lipoproteins (LDL and HDL) are extracellular carriers that 

deliver cholesterol to steroidogenic tissues such as the ovaries, testes and adrenal 

glands. Low density lipoprotein receptor (LDL-R) and scavenger receptor BI (SR-BI) are 

highly expressed in adrenal tissue allowing the adrenal gland to efficiently take up 

cholesterol from lipoprotein particles (204-208). Both LDL and HDL have been shown to 

provide cholesterol for steroidogenesis (204, 209-211). In addition, the lipoprotein 

cholesterol levels (LDL-C and HDL-C) are indicators of cardiovascular health and 

ischemic event risk (212). HDL inhibits atherosclerotic development through reverse 

cholesterol transport, a mechanism by which nascent HDL effluxes cholesterol from 

peripheral tissue and delivers it to the liver for elimination (213).   

Strong epidemiological evidence for the cardio protective properties of HDL 

prompted development of several therapeutic agents to either increase HDL-C or to 
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stimulate reverse lipid transport. While niacin is FDA approved to elevate HDL levels, 

the clinical efficacy is somewhat controversial. Additionally, inhibiting cholesteryl-ester 

transfer protein (CETP) with torcetrapib or anacetrapib increased HDL-C levels 

clinically, but did not show either plaque or event reduction (214). Of interest, torcetrapib 

increased adrenal aldosterone production through non-specific activity of this CETP’s 

chemical structure, and not through the resultant increase in HDL-C (215).  

Infusion therapy with nascent, cholesterol free synthetic HDL (sHDL) represents 

an alternative strategy to stimulate reverse cholesterol transport through targeted 

increase of efflux capacity, rapid mobilization, and elimination of cholesterol (216). 

There is strong in vitro evidence that sHDL enhances cholesterol efflux from foam 

macrophages (217). Several of these products are clinically tested including ETC-216 

(218), CSL-111 (219), ETC-642 (220), CSL-112 and CER-001 (221). While ETC-216 

and CSL-111 were shown to reduce atheroma burden (218, 219), CER-001 failed to 

show efficacy (221). CSL-112 was shown to be effective in initiating cholesterol efflux in 

patients(222) and a larger safety and efficacy Phase 2 trial is ongoing (223). 

Though sHDL may lower intracellular cholesterol and its clinical use is being 

expanded, the effects of sHDL on steroidogenic tissues, which use cholesterol as a 

substrate for steroid hormone synthesis, have not been investigated. Therefore, the 

current study defined the effects of sHDL on adrenal cell steroidogenesis using the 

forskolin responsive human adrenocortical cell line (HAC15) as a model (224).  HAC15 

cells are a clonal cell line derived from the non-clonal H295R human adrenocortical 

cancer cells. HAC15 cells have a modest response to ACTH which is not found in the 

original H295R line (224, 225). Herein, the HAC15 cell line was used to define the 
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effects of sHDL on steroidogenesis. Our results demonstrate a broad inhibition of 

steroid production that is associated with sHDL depletion of cellular cholesterol. 

 

3.3 Materials and Methods 

 Materials. Apolipoprotein A-I mimic peptide was synthesized by Genscript 

(Piscataway, NJ) using solid-phase flourenylmethyloxycarbonyl (FMOC) chemistry. 

Peptide purity was > 95 % as determined by high performance liquid chromatography 

(HPLC). Egg sphingomyelin and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 

were generously donated by Nippon Oil and Fat (Osaka, Japan).  All other materials 

were obtained from commercial sources.  

 Preparation of sHDL. ETC-642, a model sHDL nanoparticle, was prepared using 

homogenization method as follows: the composition of sHDL was apolipoprotein A-I 

mimetic peptide (ESP 24218) combined with sphingomyelin and DPPC at 1:3.75:3.75 

molar ratio (226). Phospholipids were dispersed in phosphate buffered saline (PBS) by 

sonication. Peptide was dissolved in PBS mixed with lipid suspension. The mixture was 

heated to 50°C and incubated for 15 min until the solution became clear indicating 

sHDL formation.  The resulting sHDL solution concentration was 7.5 mg/mL of 

ESP24218 peptide corresponding to approximately 3 mM sHDL concentration. The 

solution was sterile filtered and stored frozen at -20°C until use. The purity and size of 

sHDL remained unchanged after three freeze-thaw cycles.  

 Characterization of sHDL. The size distribution of sHDL was assessed by 

dynamic light scattering (DLS) using a Zetasizer Nano, Malvern Instruments 

(Westborough, MA). The number and intensity average values were reported. The 
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purity of sHDL was analyzed by gel permeation chromatography with UV detection at 

220 nm using a Tosoh TSK gel G3000SWxl column (Tosoh Bioscience, King of Prussia, 

PA) on a Waters Breeze Dual Pump system. The samples were diluted to a 200 μM 

concentration and a 50 μL injection volume was used. 

Transmission electron microscopy (TEM) images were obtained using a Tecnai 

T12 electron microscope (JEOL USA) equipped with a Gatan US4000 CCD camera. 

Images were acquired at 120 kV in low dose mode with a defocus of approximately – 

0.96 μm. The samples were negatively stained with uranyl formate solution. 

 Cell Culture and Treatment. HAC15 cells were plated at a density of 100,000 

cells per well in a 48 well plate (Figures 3.1, 3.2, 3.4, and 3.5A), 200,000 cells per well 

in a 24 well plate (Figure 3.5B and C), or 400,000 cells per well in a 12 well plate 

(Figures 3.3 and 3.6). Cells were plated in DMEM/F12 media supplemented with 10% 

Cosmic Calf serum (Hyclone, Logan, Utah), 1% insulin/transferrin/selenium Premix 

(ITS, BD Biosciences), 1% Penicillin/Streptamicin, and 0.01% Gentamicin and were 

given 48 h to adhere to the plate. Prior to treatment with sHDL, the cells were cultured 

in experimental media (0.1% Cosmic Calf serum and antibiotics) for 18 h. Cells were 

then treated with varying concentrations and times with sHDL as well as 

steroidogenesis substrates (22R-hydroxycholesterol [22OHC], pregnenolone, or 

forskolin).For cholesterol flux experiments, cells were treated in phenol free DMEM/F12 

media in order to not interfere with the colorimetric cholesterol assay. 

 Protein Extraction and Protein Assay. Cells were lysed in mammalian protein 

extraction buffer (Pierce Chemic Co., Rockford, IL). Protein content in wells was 

determined by bicinchoninic acid (BCA) protein assay using the micro BCA protocol 
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(Pierce Chemical Co.). Samples were read on an Epoch Microtiter Spectrophotometer 

(Sugar Land, TX) at 562 nm absorbance. 

 mRNA Isolation and qPCR Analysis. RNA was extracted from cells using the 

RNA isolation kit (Qiagen Sciences, Valencia, CA) according to manufacturer 

recommendations. Briefly, RNA was extracted using proprietary RLT lysis buffer and 

isolated using spin columns provided in the kit. Total RNA was re-suspended in 

nuclease free water (Qiagen Sciences, Valencia, CA) and reverse transcribed using 

random primers (Life Sciences, Carlsbad, CA). Quantitative polymerase chain reactions 

(RT-qPCR) were performed with Taqman primer probes for 3-hydroxy-3-methyl-glutaryl-

CoA reductase (HMGCR) (Life Technologies, Hs00168352_m1) and lanosterol 14 -α- 

methylase (CYP51A1) (Life Technologies, Hs00426415_m1).  Primer probes for steroid 

acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme 

(CYP11A1) were designed by the Rainey laboratory and purchased through IDT.  The 

following primer sequences were used: StAR forward, 5’-

ATGAGTAAAGTGGTCCCAGATG-3’, reverse 5’-ACCTTGATCTCCTTGACATTGG-3’, 

and probe, 5’-/56-FAM/ATCCGGCTGGAGGTCGTGGTGGA-3’; CYP11A1 forward 5’-

GAGATGGCACGCAACCTGAAG-3’, reverse 5’-CTTAGTGTCTCCTTGATGCTGGC-3’, 

and probe 5’-/56-FAM/CGATCTGCCGCGCAGCCAAGACC-3’. 

 Steroid Assays. Cortisol immunoassay was performed according to the 

manufacturer’s recommendations (Alpco, Salem, New Hampshire). The standard curve 

was prepared using cortisol standards dissolved in the cell culture media. Briefly, 20 µL 

of experimental media was incubated on antibody-coated plates, in proprietary assay 

buffer, for 45 min at room temperature. Following incubation, the cells were washed with 
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1x wash buffer. Tetramethylbenzidine substrate was added followed by 20 min 

incubation with shaking. Stop buffer was then added and absorbance was measured at 

450 nm on a microtiter spectrophotometer. 

Aldosterone and androstenedione radioimmunoassays (Coat-a-Count) were 

performed according to the manufacturer’s recommendations (Siemens, Washington 

D.C). Steroid standard curves were prepared using aldosterone and androstenedione 

dissolved in cell culture media. Radioactivity was measured on a Wallac Wizard 1470 

multicrystal gamma counter (Perkin Elmer, Waltham, MA). 

 Intracellular Cholesterol Extraction and Colorimetric Cholesterol Assay. 

Intracellular cholesterol was extracted from cells using a 2:1 mixture of 

chloroform:methanol. Purified water was then added, and upon centrifugation, the 

organic, bottom phase was taken and dried by vacuum centrifugation. The resulting lipid 

pellet was re-suspended in 1X cholesterol assay buffer from the kit described below.  

Extracellular cholesterol assay (Cell Biolabs, San Diego, CA) was performed, 

according to manufacturer’s directions with phenol-free experimental cell culture media. 

The intracellular assay was performed with the suspended pellet described above. In 

short, 50 μL of sample was added to 50 μL of cholesterol reaction reagent containing 

cholesterol esterase, cholesterol oxidase, colorimetric probe, and horseradish 

peroxidase diluted in assay buffer.  Following an incubation step, absorbance was read 

at 562 nm.  Cholesterol standards were prepared in phenol free experimental cell 

culture media for extracellular cholesterol and in 1X assay buffer for intracellular 

cholesterol.  
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Statistical Analysis. Studies were replicated in a minimum of three independent 

experiments. Results are expressed as means ± SD. Statistics were calculated using a 

one-way ANOVA with pairwise analysis, when necessary (Sigma Plot 12.5, San Jose, 

CA).  p < 0.05 was considered statistically significant.  

 

3.4 Results  

 sHDL Characterization. Analysis of sHDL nanoparticles by gel permeation 

chromatography revealed formation of a mono-dispersed nanoparticle and absence of 

unbound apolipoprotein A-I peptide or liposomes (Supplementary Figure 3.1A). The size 

distribution by DLS confirmed the presence of mono-dispersed particles of 8.3 nm in 

average diameter (number averaged distribution was used for DLS data fitting) 

(Supplementary Figure 3.1B). Electron microscopy showed a discoidal shape of sHDL 

that is characteristic of nascent or cholesterol free HDL (Supplementary Figure 3.1C).  

 Steroid Production. Treatment of HAC15 adrenal cells with increasing 

concentrations of sHDL for 24 h caused a decrease in aldosterone, cortisol, and 

androstenedione (Supplementary Figure 3.2). Compared to basal steroid levels, sHDL 

profoundly inhibited cortisol production in a concentration dependent manner. Inhibition 

of cortisol production plateaued at 80% with a 30 µM concentration with no additional 

effects seen at 50 μM sHDL (Figure 3.1). Importantly, 48 h sHDL treatments as high as 

100 μM did not have cytotoxic effects on the HAC15 cells (data not shown). To establish 

the time-dependence of sHDL effect on cortisol production, cells were incubated in the 

presence of 30 μM sHDL for up to 24 h (Figure 3.2). Cortisol production dropped to 
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approximately 20% of basal levels after 6 h of treatment and steroidogenesis was 

consistently inhibited through all time points examined.   

Cortisol production was also examined in cells that were untreated, treated with 

forksolin (10 μM), an activator of cAMP production, alone, and forskolin with sHDL (50 

μM) for 3, 6, 12, 24 h (Figure 3.3). Compared with basal levels, forskolin significantly 

increased cortisol production at each time point (ranging from approximately 1.7-fold 

above basal at 3 h, to 2.6-fold at 24 h) (Figure 3.3). However, in the presence of sHDL, 

the forskolin effect was significantly abrogated, as the production of cortisol was 

decreased to near basal levels for each time point (1.1-fold at 6h, 0.8-fold at 12 h, and 

0.7-fold at 24 h compared to basal levels) (Figure 3).  This highlights the ability of sHDL 

to inhibit both basal and agonist stimulated cortisol production. 

The rate-limiting step in adrenal cell steroid production can be bypassed by 

incubation of cells with 22OHC or pregnenolone. Addition of 22OHC (10 μM) or 

pregnenolone (10 μM) increased basal cortisol production significantly (approximately 

2.5 and 3-fold respectively).  As noted above, treatment with sHDL (30 μM) alone 

inhibited cortisol production to 20% of that seen in control cells. Co-incubation of sHDL 

with 22OHC or pregnenolone showed no significant difference when compared to 

treatment groups without sHDL (Figure 4). The lack of sHDL inhibition of 22OHC 

metabolism to cortisol suggests that sHDL is not cytotoxic and likely acts prior to 

mitochondrial pregnenolone production.  

 Transcript levels. The enzymes required for cholesterol biosynthesis are 

increased in response to experimental manipulations that cause depletion of cellular 

cholesterol levels.  HMGCR and CYP51A1 represent two cholesterol biosynthetic 
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enzyme transcripts that increase following depletion of cellular cholesterol levels.  

Adrenal cells responded to sHDL with a time-dependent increase in HMGCR which 

peaked with a 2.6-fold increase at 6 h (Figure 3.5A). HMGCR transcripts remained 

significantly elevated at 12 and 24 h. CYP51A1 encodes a cholesterol biosynthetic 

enzyme responsible for removing the 14-α-methyl group from lanosterol. CYP51A1 

mRNA was also significantly increased at 3 h, 6 h, 12 h, and peaked at 24 h 

(approximately 2.5-fold), further illustrating the induction of the cholesterol biosynthetic 

pathway. In contrast, the transcripts for both CYP11A1 and StAR, two important 

proteins in the early steroidogenesis pathway, were not significantly changed after 6 h 

of incubation with sHDL (Figure 3.5C). 

 Cholesterol Efflux. Extracellular cholesterol was measured in HAC15 cell 

experimental media following 24 h incubation of untreated cells, as well as from cells 

treatment with 10 μM and 50 μM sHDL (Figure 3.6). Intracellular cholesterol was 

measured in the same cells of the respective experiments following cell lysis and lipid 

extraction. While basal levels of extracellular cholesterol were undetectable, the cells 

incubated with 50 μM sHDL effluxed approximately 100 nmol/mg cell protein after 24 h 

of incubation (Figure 3.6). Intracellular cholesterol was significantly depleted compared 

to basal at the 50 μM concentration of sHDL (approximately 40 nmol cholesterol/mg 

protein compared to the 65 nmol/mg protein at basal), while no significant effect was 

observed at the 10 μM concentration (Figure 3.6). 

3.5 Discussion 

The adrenal gland produces considerable amounts of steroid hormones using 

cholesterol as a precursor. Sources for adrenal cholesterol include de novo synthesis, 
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LDL, and HDL (206, 209-211, 227). As an indication of the important roles for each of 

these cholesterol sources, the adrenal expresses high levels of the enzymes needed for 

cholesterol synthesis, as well as the receptors for both HDL (SR-BI) and LDL (LDLR) 

(204, 228-230). Because of the beneficial cardio-protective effects of HDL, several 

groups have developed synthetic versions of HDL as potential therapeutics. Despite the 

fact that the adrenal cortex has the highest tissue expression of SR-BI, the effects of 

sHDL on adrenal steroid hormone production have not been previously reported.  

There have been numerous studies directed at defining the role of native HDL 

and LDL in the adrenal using human, bovine, rat and mouse adrenal models (209, 210, 

231, 232),(233, 234). Evidence for the steroidogenic role of LDL is fairly consistent. LDL 

has been demonstrated to increase steroidogenesis in murine Y1 cells in the presence 

of agonist ACTH (231). En suite, in the 1980s, several studies demonstrated the ability 

of LDL to increase steroidogenesis in the human adrenal cell (207, 235, 236). On the 

other hand, the role of HDL in human steroidogenesis has not been as clearly defined. 

While a stimulatory effect on cortisol and aldosterone production has been documented 

on adult adrenal cells (209, 210), HDL had little effect on fetal adrenal cell 

steroidogenesis (211, 227).  So far, there have been no studies indicating an inhibitory 

role for either native LDL or HDL. Our findings clearly demonstrated that sHDL inhibited 

cortisol, aldosterone, and androstenedione. This effect may be attributed to the 

difference in composition between synthetic and mature native HDL. Unlike native HDL, 

sHDL does not have a cholesterol component. The lack of cholesterol in sHDL and its 

ability to efficiently take up cholesterol may explain its inhibitory effects on steroid 

production.   
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As opposed to steroidogenesis, sHDL appeared to increase HAC15 adrenal cell 

cholesterol biosynthesis. To assess cellular cholesterol synthesis we monitored 

HMGCR and CYP51A1, two key enzymes in its synthetic pathway.  HMGCR is the rate 

controlling enzyme for cholesterol biosynthesis and acts to convert acetyl–CoA to the 

sterol precursor melavonate. Rainey et al. demonstrated that adrenocorticotropic 

hormone (ACTH), in the absence of an extracellular source of cholesterol, significantly 

increased levels of HMGCR activity in primary adrenal cells (237).  The induction of 

HMGCR appears directly related to increased cellular needs for cholesterol. Studies in 

the 1970s by Balasubramanian and Brown et al. demonstrated an inverse relationship 

between HMGCR activity and plasma cholesterol levels in rats (238, 239). When the 

plasma cholesterol levels were low, the adrenal gland increased cholesterol synthesis 

through activity of HMGCR by almost 30 fold to maintain steroidogenesis. Herein, we 

found that transcripts for CYP51A1 and HMGCR significantly increased in HAC15 cells 

following treatment with sHDL, suggesting that sHDL activates cholesterol biosynthesis. 

This observation was in direct contrast to the inhibitory effects on steroid production.  

 As a possible explanation for the activation of cholesterol synthesis but inhibition 

of steroid production, we tested the hypothesis that sHDL caused a loss of steroid 

substrate as a result of cholesterol efflux from the cells. This concept is based on 

previous findings in macrophage cells where formulations of sHDL cause dose- and 

time-dependent cholesterol efflux through interaction with ATP-binding cassette 

transporter sub-family G member 1 (ABCA1) (240). In addition kidney cells transfected 

with SR-BI, ATP-binding cassette transporter sub-family G member 1 (ABCG1), and 

ABCA1 also demonstrate cholesterol efflux when treated with sHDL (241, 242). We 
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observed that sHDL caused a dose-dependent increase in the cell culture media levels 

of cholesterol. Inversely, intracellular cholesterol was significantly decreased at higher 

doses of sHDL treatment. The activation of cholesterol efflux appeared to parallel the 

activation of cholesterol synthesis. Taken together, our study suggests that sHDL 

inhibits HAC15 cell steroidogenesis through its efflux of cholesterol, causing an increase 

in cholesterol synthesis in an attempt to maintain output of steroid hormones. 

There are potential concerns regarding the study that we attempted to resolve. 

One potential concern of the study was a possible cytotoxic effect of sHDL that might 

inhibit steroid production and raise extracellular cholesterol. To address this issue we 

did not see any effect on viability of cells treated with doses as high as 100 μM of sHDL 

over 48 h (data not shown).  It is also important to note that the concentrations of sHDL 

used in the current in vitro study are within the levels generated in vivo during sHDL 

therapy. A recent study using 10-30 mg/kg of the sHDL particle, ETC-642, caused peak 

plasma concentrations of 0.250 mg/ml (243). Our experiments were conducted with 

doses up to 0.130 mg/mL (50 μM). This is significantly lower than the peak plasma 

concentration of the lowest dose of the ETC-642 trial.   Finally, the experiments of this 

study were performed in the HAC15 adrenal cell line. This represents the only available 

human steroidogenic adrenal cell model, but this model originated from an 

adrenocortical tumor.  Therefore additional studies using primary cultures of human 

adrenal cells and/or in vivo animal model studies are warranted to confirm the current 

findings. 

In summary, sHDL inhibits HAC15 adrenal cell steroidogenesis in both a dose 

and time-dependent manner through its effects on the efflux of cholesterol. Decreased 
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availability of cholesterol causes a compensatory rise in adrenal cell cholesterol 

biosynthesis that allows the cells to partially maintain steroid output. sHDL therapeutics 

have great potential for treating cardiovascular disease. However, as sHDL clinical trials 

move forward, it will be important to monitor the adrenal hormonal axis as a potential 

unanticipated target.  
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Figure 3.1.  Concentration-dependent effects of sHDL (ETC-642) on adrenal cell cortisol production.  HAC15 

adrenocortical cells were incubated for 24 h with increasing amounts of ETC-642.  Cortisol from the media was then 
measured and normalized to cell protein. Values shown are the mean ± SD from 3 independent experiments. (* 
denotes p < 0.05 compared to basal) 



75 
 

 

Figure 3.2. Time-dependent effects of sHDL (ETC-642) on adrenal cell cortisol production.  HAC15 adrenal 

cells were incubated for the indicated times with or without ETC-642 (30 μM). Cortisol was measured in medium and 
normalized to cell protein. Results represent means ± SD from 3 independent experiments. (* denotes p < 0.001 
compared to basal) 

  



76 
 

 

Figure 3.3.  Time-dependent effect of sHDL (ETC-642) on agonist-stimulated adrenal cell cortisol production. 

HAC15 adrenal cells were incubated for the indicated times with or without forskolin (10 μM), as well as forskolin + 
ETC-642 (50 μM). Cortisol production was measured in the experimental media and normalized to protein. Results 
represent means ± SD from 3 independent experiments. (‡ denotes p < 0.05 for forskolin compared to basal, and * 
denotes p <  0.05 for forskolin + sHDL compared to forskolin) 
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Figure 3.4. Effect of sHDL (ETC-642) on 22R-hydroxycholesterol (22OHC) and pregnenolone stimulated 
cortisol production.  HAC15 cells were treated for 24 h with and without ETC-642 (30 μM). Samples were then 

incubated for 6 h with and without 22OHC (10 μM) and pregnenolone (10 μM). Cortisol production was measured in 
media and normalized to protein. Results represent means ± SD from 3 independent experiments. (* denotes p < 
0.001, pairwise analysis comparing treatment group with and without sHDL) 
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Figure 3.5. Effect of sHDL (ETC-642) on cholesterol biosynthesis and steroidogenic genes. (A) Time-
dependent effects of sHDL on HMG-CoA-Reductase (HMGCR) gene expression. (B) Time-dependent effects of 
sHDL on the cholesterol biosynthetic gene, CYP51A1. (C) Effect of sHDL on the expression of key steroidogenesis 
genes, cholesterol side-chain cleavage enzyme (CYP11A1) and steroid acute regulatory protein (StAR).  For all 

experiments, HAC15 cells were incubated with or without ETC-642 (50 μM, for the times indicated in A and B, and 6 
h - the peak of HMGCR expression - in C). For A and B, results represent means ± SD from 2 independent 
experiments with 3 replicates within each experiment. For C, results represent means ± SD from 3 independent 
experiments. (* denotes p < 0.05 compared to basal) 
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Figure 3.6.  Increasing concentration of sHDL leads to cholesterol efflux from adrenocortical cells. HAC15 

adrenocortical cells were incubated for 24 h with or without ETC-642 at the indicated concentration. Extracellular 
cholesterol was measured in the media. Intracellular cholesterol was measured from the cell lysate as described in 
the methods section. Both were normalized to total cell protein. Results represent means ± SD from 3 independent 
experiments. (* denotes p< 0.05 compared to extracellular basal, ‡ denotes p< 0.05 compared to intracellular basal) 
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Figure 3.7. sHDL (ETC-642) characteristics. (A) Gel permeation chromatography profile of sHDL (ETC-642). Single 
peak at the HDL retention time indicates purity of sHDL and absence of free peptide or liposome impurities. (B) 

Dynamic light scattering analysis of sHDL. Mono-model peak indicates formation of homogeneous sHDL with an 
average diameter of 8.3 nm. (C) Electron microscopy image of sHDL. ETC-642 was stained with uranyl formate and 

imaged using a Tecnai T12 electron microscope at 120 kV. Individual nano-discs indicated with a bold arrow. 
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Figure 3.8. Effect of sHDL (ETC-642) on adrenal steroid production. Cells were treated for 24 h with and without 
sHDL at the concentration indicated in the figure. At the end of treatment, cell media was assayed for (A) 
aldosterone, (B) cortisol, and (C) androstenedione. Results represent means ± SD from 3 independent experiments. 

(* denotes p < 0.05 compared to basal) 
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CHAPTER 4 

Conclusions and Future Directions 

4.1 Summary 

 This dissertation project used transgenic mouse modeling to define the role of Gq 

signaling in adrenocortical aldosterone production. The ASCre/+::hM3Dq mouse model 

demonstrated a dominant role of Gq in controlling both ZG (physiologic) and ZF 

(aberrant) aldosterone production. Specifically, this model suggests that ZF cells have 

the capacity to make aldosterone if the stimulus of Gq signaling is present. This brings 

forth new questions regarding the influence of Gq signaling on adrenal cell fate that 

need to be addressed through future work. In addition this model provides the first 

transgenic in vivo model of aldosterone excess and hypertension that is both inducible 

and reversible. 

The ASCre/+::hM3Dq model represents the first use of DREADD technology in the 

adrenal gland. This chemogenetic in vivo technology used to modulate G protein 

pathways was first developed in 2007 and predominantly applied to research in the 

neuroscience field (193). Now, DREADD technology and the field of chemogenetics 

have moved beyond neurons (244), into glia (245), hepatocytes (246), triple-negative 

breast cancer cells (247), transformed fibroblasts (248), and induced pluripotent stem 

cells (249). DREADDs have even recently been used in the endocrinology field, within 
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pancreatic β cells (191, 250). However, the work described in Chapter 2 marked the first 

use of DREADD technology within a steroidogenic tissue, allowing for future 

applications in studies of G protein pathways in steroidogenic tissues. 

 

 4.2 ASCre/+::hM3Dq Mice as a Model for Primary Aldosteronism 

 The ASCre/+::hM3Dq model harbored several characteristics of PA after chronic 

CNO treatment. Activation of the GqDREADD receptor resulted in elevated plasma 

aldosterone concentrations and Cyp11b2 expression. The increase in aldosterone 

production even in with the presence of a HS diet, indicates that the aldosterone 

secretion was RAAS independent. CNO treated mice displayed a significant decrease in 

the transcript levels of kidney Ren1 as well, further supporting aldosterone production 

that was independent of renin, as seen in PA. Finally, mice developed hypertension 

when CNO was combined with HS, which was reversed upon CNO washout. 

 The excess aldosterone production in the ASCre/+::hM3Dq mouse model occurs 

through activation of Gq proteins. As discussed previously, the downstream events in 

the Gq signaling pathway result in an increase in cytosolic calcium. This elevation in 

cytosolic calcium concentration is the main catalyst in increasing the transcript levels of 

intracellular CYP11B2 in physiologic human aldosterone production. Furthermore, the 

most common molecular mechanisms of PA onset involve various gene mutations that 

also increase intracellular calcium. Mutations in genes that encode calcium channels 

and transport proteins (CACNA1D, CACNA1H, ATP2B3) alter the encoded protein 

function, thereby directly increasing calcium concentration. Other mutations (KCNJ5, 

ATP1A1) cause depolarization of the cellular membrane, indirectly leading to elevated 
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cytosolic calcium through the opening of calcium channels. Thus, while the 

ASCre/+::hM3Dq mouse model does not completely resemble genetic causes of PA, the 

calcium signaling mechanism through which it acts recapitulates many forms of the 

disease. Moreover, perhaps the subtype of PA that the ASCre/+::hM3Dq mice most 

closely represent is FH type I. This rare subtype is characterized by a chimeric fusion of 

the CYP11B1 and CYP11B2 genes, allowing for CYP11B2 transcription driven by 

ACTH binding to its receptor in ZF cells. This receptor-ligand interaction that controls 

aldosterone production in ZF cells is reminiscent of the mechanism in the 

ASCre/+::hM3Dq model. Therefore, this model may be used to further probe the 

molecular mechanisms contributing to aldosterone production that underlie several 

forms of PA. 

   The ASCre/+::hM3Dq mouse model will also facilitate future research on 

peripheral effects of high circulating aldosterone. Previous studies have illustrated that 

elevated aldosterone exerts deleterious effects such as inflammation and fibrosis on 

peripheral tissues, including the renal (251-255) and cardiovascular (74, 134-141, 188) 

systems. There are questions that remain regarding the mechanisms that lead to this 

aldosterone-mediated peripheral damage and the possible recovery after treating this 

disease. In this dissertation project, the longest reported CNO treatment was 7 days. It 

is possible that there is an upregulation of pro-inflammatory cytokines at this time point. 

However, it is likely that a more chronic treatment regimen, such as 1-2 months on CNO 

plus HS diet, would be needed to observe end organ damage such as renal or cardiac 

fibrosis. The ASCre/+::hM3Dq mouse model can be used to study the effects on other 

tissues as it has the benefit of being inducible. This model also has a lower financial 
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cost, less hands-on work, and provides less stress to the animal compared to 

exogenous mineralocorticoid treatments. Additionally, in the ASCre/+::hM3Dq mouse 

model, the mineralocorticoids are derived endogenously from a dysfunctional adrenal 

cortex, as in PA. The model can also be reversed, which can be used to mimic the 

phenotype of a successful treatment that reverses the effects of excessive aldosterone. 

In summary, while this project has established ASCre/+::hM3Dq mice as an accurate 

model of PA, there are still several questions to be addressed regarding the role of Gq 

signaling in adrenal aldosterone production and the effects of aldosterone action on 

target organs. 

  

4.3 Gq Signaling in Adrenal Functional Zonation 

 ASCre/+::hM3Dq mice treated with CNO exhibited a disruption of the zonal 

expression of Cyp11b2, an enzyme normally restricted to ZG cells. Many cells in the ZF 

expressed Cyp11b2, with some cells exclusively expressing this enzyme rather than the 

typical ZF-related enzyme Cyp11b1. Other cells exhibited co-expression of both 

Cyp11b1 and Cyp11b2. The localization of Cyp11b2 was variable at 2 days following 

CNO plus HS diet treatment. Some mice responded with robust Cyp11b2 expression 

throughout their cortex, whereas others displayed Cyp11b2 localization predominantly 

in the ZG and outer ZF (with Cyp11b1 co-expression). Nevertheless, the findings at this 

early time point strongly suggests that ZF cells have initiated Cyp11b2 expression, as 

opposed to the alternative explanation that CNO caused Cyp11b2 positive ZG cells to 

migrate into the ZF. After 1 week of CNO plus HS diet, all mice had Cyp11b2 

localization in the ZF, with some cells still harboring co-expression of both enzymes. 
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Taken together, these data imply that possibly there is a slower transition from a 

Cyp11b1+ to Cyp11b2+ state in some cells. Additionally, cells that are exclusively 

Cyp11b2+ at the early time point of 2 days suggests that these cells were more primed 

for a transition to an aldosterone-producing phenotype. Further work is needed to 

understand the factors that contribute to the plasticity of a ZF cell to revert to 

aldosterone production. It is possible that the presence of Gq signaling dominates over 

the ACTH-induced glucocorticoid-producing signal present in ZF cells. Therefore, in 

physiological conditions, loss of the AT1R and Gq signaling may be a critical regulatory 

event in the transition from a ZG to ZF cell state. Measuring circulating ACTH 

concentration in these mice will be an important next step to understand how the 

GqDREADD activation influences the ZF-specific HPA axis. 

Immunofluorescent staining also revealed that DREADD-induced Gq signaling 

activation upregulated the expression of the ZG marker Dab2, with localization in the 

ZG and ZF. This was confirmed with an increase in Dab2 mRNA. In vitro studies have 

shown that Dab2 plays a role in aldosterone production, as transfection of a Dab2 

plasmid increased AngII-mediated aldosterone production (194). Furthermore, Dab2 

has been characterized as a ZG protein that mirrors the expansion of Cyp11b2 under 

low sodium conditions (194). However, in conditions of high sodium when Cyp11b2 

expression regresses, Dab2 expression remains stable in the ZG (194), suggesting that 

it does not always follow Cyp11b2 expression but remains a ZG marker. Taken 

together, this suggests that Gq signaling may regulate additional ZG-specific factors 

beyond Cyp11b2. 
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Conversely, we observed no significant changes in the expression or localization 

of active β-catenin, part of the ZG-enriched Wnt signaling pathway. There was also no 

significant change in the mRNA expression of Axin2, a β-catenin responsive gene. 

Wnt/β-catenin signaling has been suggested to influence aldosterone production (41, 

199). Our data indicate that this pathway is not necessary for Cyp11b2 expression if the 

cell has active Gq signaling. It is likely that the Wnt pathway still has a role in 

aldosterone production, perhaps upstream of activated Gq, such as the upregulation of 

ZG AT1R expression (41).  

 In order to address the impact of Gq signaling on the ZG to ZF cell transition, 

further analysis is needed. A detailed transcriptome analysis, such as microarray or 

single-cell RNA-seq, would help characterize the broad transcriptome changes in mice 

treated with CNO vs. control water. Our preliminary microarray analysis using mice on a 

normal sodium diet treated with CNO or control water yielded variable results. 

Therefore, in future studies it might be beneficial to focus on groups with a HS diet 

which helped minimize variability for aldosterone production and adrenal Cyp11b2 

expression. Comparing these groups to mice on a sodium deficient diet would provide a 

physiological control for the upregulation of ZG-related genes. 

 Another important future direction of this work would be to better define the 

mechanism through which GqDREADD can activate aldosterone production in non-

aldosterone producing cells. To address this question, in vitro mechanistic studies with 

GqDREADD viral transduction might allow targeted cell signaling and molecular studies. 

During this dissertation project, we attempted the transduction of a GqDREADD viral 

construct under a CMV promoter control into the HAC15 adrenocortical carcinoma cell 
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line (225).  Despite observing expression of the mCherry fluorescent tag in a subset of 

cells, we saw a minimal increase of Cyp11b2 mRNA in response to CNO, compared to 

the normal HAC15 agonist AngII (data not shown). Cell sorting for a purer population of 

GqDREADD-expressing cells did not lead to an increase in CNO response. The rational 

for these findings is not clear, but future studies might consider use of a different 

GqDREADD constructs (available through Addgene) or alternative cell model. An 

additional possibility would be to study Gq signaling in the context of the transgenic 

GqDREADD mouse primary cultures. These platforms would enable research into a 

possible molecular mechanism for Gq signaling induced differentiation of glucocorticoid-

producing cells to a mineralocorticoid producing phenotype. 

Interestingly, there was a minor decrease in adrenal weight (significant in the left 

adrenal and a trend in the right adrenal) following 1 week of CNO treatment. Additional 

experiments involving long-term treatments of CNO (>1 month) would be useful to 

determine if Gq signaling activation causes adrenal hypoplasia. Preliminary data 

suggested that cellular proliferation was decreased as assessed by Ki67 staining. 

Moreover, our preliminary microarray data revealed the downregulation of several cell 

cycle genes following 1 week of CNO treatment. These data will need to be confirmed 

by qPCR and reassessed in long-term treated mice. This could lead to additional 

studies to determine whether Gq signaling regulates cell growth and proliferation in the 

adrenal gland. 

Regarding potential future mouse models, this project suggests that DREADD 

technology can be applied to the adrenal and possibly other endocrine glands. As 

mentioned previously, AngII also activates the inhibitory G protein (Gi) signaling 
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pathway. Future studies using a GiDREADD (256) in the adrenal cortex could be 

additive to our findings in the GqDREADD system. Together, these mice could aid in the 

understanding of the specific roles played by each pathway activated through AngII 

binding to adrenal AT1R. Beyond the adrenal ZG, a recently developed GsDREADD 

system could be valuable for researchers studying ZF cell signaling and glucocorticoid 

synthesis. This DREADD activates the cAMP pathway and protein kinase A activity 

(257), the predominant pathway in glucocorticoid production. The adrenal use of this 

inducible transgenic technology would allow further elucidation of several critical 

signaling pathways in normal adrenal function and adrenal disease. 

Finally, a follow-up to this dissertation work would be the inverse in vivo 

manipulation – by inactivation of Gq signaling in the adrenal cortex. One way to 

accomplish this would be to ablate the Gαq protein specifically in the adrenal cortex. 

This would also address the importance of this signaling pathway over other pathways 

in the synthesis of aldosterone. The gnaqflox mice are available and characterized (258). 

This mouse line could be crossed to the AS-Cre line to specifically delete Gαq in 

aldosterone producing cells after birth. This project would address two important 

unanswered questions related to this dissertation research: 1) the importance of Gq 

signaling in adrenal aldosterone production relative to the other routes to aldosterone 

synthesis and 2) the role for Gq signaling in the establishment of the postnatal ZG and 

the maintenance of a ZG cellular state in adult life. While this project has demonstrated 

that Gq signaling is sufficient for aldosterone production, this future study would 

determine whether Gq signaling is a necessary factor. 
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4.4 Sex Differences in ASCre/+::hM3Dq Mice 

 An interesting finding of this project was the sexual dimorphism that exists in 

response to CNO treatment. Males exhibited less expression of the GqDREADD 

receptor and slower rates of adrenocortical cell turnover. This was expected given 

similar findings in a previous report using the same AS-Cre line (64). However, our 

preliminary studies have demonstrated that in aged mice (40 weeks) that have high 

GqDREADD in both males and females (Supplemental Figure 2.2), there is still a 

substantial sex difference in response to CNO treatment. As mentioned previously, 

other models of adrenal disease have exhibited a more robust phenotype in females 

compared to males (64, 170, 172, 179, 198, 201). This includes sex differences in 

previous models of hyperaldosteronism (170, 172, 179, 198). This study provides 

further evidence for a possible molecular mechanism that prevents males from excess 

aldosterone production and ectopic Cyp11b2 expression in the adrenal cortex. 

Alternatively, there may be unknown factors that cause females to be more susceptible 

to dysregulated Cyp11b2 expression. Additional experiments directed at defining the 

mechanisms leading to this differential response between sexes will be required.   

 We propose that this sexual dimorphism is an androgen driven event in males. 

The male adrenal has a high expression of androgen receptors throughout the adrenal 

cortex (259). Likewise, the male adrenal gland has high tissue expression of 5α-

reductase type 2 (Srd5a2) (200), the enzyme that converts testosterone to DHT and 

also is a gene target of AR. The presence of AR and ability to generate DHT suggests 

that the adrenal is an androgen responsive tissue. We have confirmed this result in wild-

type mice in preliminary experiments. The transgenic adrenal-specific ablation of AR in 
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adrenocortical cells would be a possible future approach to define the role of AR in the 

adrenal cortex. Crossing the ARflox mouse line (260) to the AS-Cre line would achieve 

the transgenic deletion of AR. As previously reported, the transcriptional regulator Dax1 

is suppressed by the androgen receptor, leading to a sexually dimorphic expression 

pattern of Dax1 (259), where it is only expressed in the ZG of males. We hypothesize 

that Dax1 is necessary for the expression of Cyp11b2 in the ZF of female GqDREADD 

mice, and that its expression is repressed by adrenal AR in males. Therefore, in the 

adrenal AR knockout mice, assessing Dax1 expression patterns might also aid in 

defining the causes of mouse adrenal sex differences. Ablating AR on an 

ASCre/+::hM3Dq background would determine if disruption of AR increases the male 

response to CNO, causing a more ‘female-like’ phenotype. 

 

4.5 Final Thoughts 

 This dissertation research examined the ability of Gq signaling to activate 

aldosterone production in vivo. The findings of this dissertation project outline a role for 

Gq signaling in maintenance of an aldosterone-producing cellular state, and suggest 

that Gq pathway activation is enough to drive adrenocortical cells (both ZG and ZF) to 

produce aldosterone. These data also imply that loss of Gq signaling might be a factor 

that impacts the ZG to ZF cell transition during adrenal centripetal displacement. This 

dissertation project has also created a novel tool in the ASCre/+::hM3Dq mouse model for 

researchers in the PA, aldosterone action, and hypertension fields. Future work using 

this model will attempt to further uncover the role of Gq signaling in maintenance of 

adrenal functional zonation, the deleterious actions of circulating aldosterone on 
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peripheral tissues, and sex differences that may be present in adrenal physiology. This 

dissertation project combined with future studies using the newly developed mouse 

model may lead to improved therapeutic interventions of adrenal disease. 
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