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Poem adapted from Meditation XVII, Devotions Upon Emergent Occasions, John Donne, 1624. 

DEDICATION 

No person is an island entire of itself; every person  

is a piece of the continent, a part of the main;  

if a clod be washed away by the sea, all  

are less, as well as if a promontory were, as  

well as any manner of thy friends or of thine  

own were; any person's death diminishes me,  

because I am involved in humankind.  

And therefore, never send to know for whom  

the bell tolls; it tolls for thee 

 

 

 

Without the love and support of my parents and fiancée Kendal,  

nothing would be possible. 
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ABSTRACT 

Multiple sclerosis (MS) is a debilitating disorder of the central nervous system (CNS) 

characterized by motor, sensory, and visual deficits. Published literature supports the contention 

that MS is an autoimmune disease mediated by auto-reactive CD4+ T-helper (Th) cells which 

infiltrate the CNS from circulation. Infiltrating Th cells are reactivated within the CNS in an 

antigen-specific manner, driving recruitment, differentiation, and activation of circulating myeloid 

cells, and ultimately resulting in demyelination and axonopathy. Much work has been devoted to 

elucidating the roles of each of the known Th cell subsets, and the inflammatory mediators they 

produce, in CNS autoimmune disease. One Th cell mediator, granulocyte-macrophage colony-

stimulating factor (GM-CSF), has been proposed to be a critical inflammatory cytokine that 

connects CNS-infiltrating Th cells with the pathogenic programming of tissue-invading myeloid 

cells. The aim of my dissertation project was to determine the mechanism of action of GM-CSF in 

the initiation, progression, and maintenance of experimental autoimmune encephalomyelitis 

(EAE), widely used as an animal model of MS. 

The Segal lab and others have previously shown that C57BL/6 mice deficient in GM-CSF 

are resistant to EAE. We found that lymph node cells from immunized GM-CSF deficient mice 

mount an impaired MOG35-55-specific proliferative and cytokine response. Insufficient Th priming 

could explain, in part, the resistance of those mice to EAE. To study the role of GM-CSF during 

the effector phase, we transferred encephalitogenic T cells from MOG35-55-primed wild-type (WT) 

mice into naïve GM-CSF receptor-deficient mice (Csf2r-/-). Although Csf2r-/- recipients developed 

EAE with similar incidence and initial disease trajectory as their WT counterparts, they underwent 
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clinical remission. The total number of cells infiltrating the CNS at peak EAE were comparable 

between groups, but neutrophils, myeloid-derived dendritic cells (mDCs), and MOG35-55-specific 

T cells were reduced in Csf2r-/- recipients. This suggested that either a paucity of infiltrating 

neutrophils, mDCs, and/ or encephalitogenic T cells could be responsible for the remitting 

phenotype exhibited by Csf2r-/- recipients.  

To investigate the basis of the differences in the CNS infiltration, we compared chemokine 

expression in the spinal cords of WT and Csf2r-/- recipients during EAE. The myeloid cell 

chemoattractants CXCL1, CXCL2, and CCL2 were consistently comparable between groups, and 

CCL6 was comparable at disease onset but diverged thereafter. CCL6 levels progressively rose in 

the CNS of WT mice but dropped dramatically in Csf2r-/- mice by peak disease. CCR1, the sole 

receptor for CCL6, is expressed by subsets of leukocytes and has been detected on inflammatory 

cells in MS lesions. Its role in EAE remains to be elucidated. CCR1 blockade beginning at the time 

of T cell transfer reduced CNS-infiltration by monocytes and classical DCs (cDCs) and prevented 

the development of EAE. Conversely, CCR1 blockade following EAE onset triggered clinical 

remission associated with a reduction in CNS-infiltrating neutrophils, closely resembling the 

phenotype of Csf2r-/- recipients.  

 Together, these studies provide insight into the pleiotropic, and extensive, roles GM-CSF 

plays in the development and maintenance of CNS autoimmunity. We propose the following 

model: encephalitogenic T cells are reactivated in the CNS by cDCs and secrete GM-CSF. GM-

CSF promotes the production of CCL6 within the CNS and expression of CCR1 by peripheral 

myeloid cells. CCL6:CCR1 interactions promote the migration of monocytes and neutrophils 

across the blood-brain-barrier and into the CNS parenchyma where they directly damage the 

myelin sheath and axons. Concurrently, GM-CSF enhances expansion of CNS-resident cDCs and 
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differentiation of monocytes into mDCs. cDCs and mDCs perpetuate neuroinflammation by 

activating myelin-reactive T cells, in a feed-forward pathway. The collective actions of GM-CSF 

result in sustained neuroinflammation and chronic disability. The results presented herein provide 

evidence to support the development of new MS therapeutics targeted at the myeloid cell 

compartment and the GM-CSF/ CCL6/ CCR1 pathway, in particular. 
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CHAPTER 1 – Introduction 
 
 Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS) 

that presents with visual, motor, and sensory deficits (1). It is estimated that more than 2 million 

people have MS, at least 400,000 reside in the United States (2). The majority of people with MS 

initially present with a relapsing-remitting (RRMS) course, characterized by self-limited episodes 

of neurological dysfunction (relapses), separated by clinically quiescent periods (remissions). 

Within 20 years, the majority of individuals with RRMS enter a progressive stage of disease 

(secondary progressive MS, SPMS) during which they experience a relentless, gradual decline in 

neurological function. Over the past 20 years, 15 disease-modifying therapies (DMTs) have been 

introduced that significantly reduce the frequency of MS relapses. However, none are cures, and 

none reverse existing CNS damage (3–5). A significant percentage of patients are unresponsive to 

each of the currently available DMTs (6). MS imparts substantial financial and personal burdens 

to patients and society. There is a dire need for novel, more effective therapies. 

 

Multiple Sclerosis: Pathology, Treatment, and Immunology 

 While the cause of MS is unknown, the pathological consequences of the disease have been 

appreciated for over 150 years (7). By definition, MS lesions are disseminated over space and time. 

Lesions can form at literally any site in the CNS, including the brain, spinal cord, and/ or optic 

nerves. The pathological hallmarks of MS lesions are perivascular inflammatory infiltrates, 

surrounded by focal demyelination and axonopathy (8, 9). CNS infiltrates in MS post-mortem 

tissues are composed of macrophages, DCs, B cells, and T cells (10, 11). It is widely believed that 
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damage to the myelin sheath causes initial neurological symptoms by reducing the efficiency of 

axonal signaling. While remyelination can occur in MS lesions, irreversible axonal transection has 

been observed even in early stage disease (8).  

  Multiple sclerosis is believed to be an autoimmune disease, mediated by myelin-reactive 

CD4+ T cells. This theory is supported by the animal model, experimental autoimmune 

encephalomyelitis (EAE), which can be induced by the transfer of highly purified myelin peptide 

reactive CD4+ Th1 or Th17 cell lines or clones into naïve syngeneic rodents. The majority of 

DMTs currently used to manage MS were first demonstrated to be effective in EAE as a proof of 

concept, thereby validating the translational relevance of the model. DMTs have evolved 

dramatically since the introduction of the immunomodulating agent, interferon (IFN) beta-1b, in 

1993 (7). Each of these agents, which decrease the rate of MS relapses, is believed to primarily act 

by modulating immunological pathways, either broadly, such as in the case of IFNbeta-1b, or in a 

more targeted fashion, as in the case of B cell depleting monoclonal antibodies. The newest 

generation of DMTs were deliberately designed to directly target T and/ or B lymphocytes via 

depletion (alemtuzumab and ocrelizumab), or blockade of their migration to the CNS (natalizumab 

and fingolimod) (12, 13). 

Further justification for targeting the immune system as a therapeutic strategy in MS comes 

from genome-wide association studies. Among the 200+ MS susceptibility loci thus far identified, 

most are immune related, and many overlap with those associated with other autoimmune diseases 

(14). The strongest heritable factors have been linked to major histocompatibility complex class II 

(MHCII) loci, which are requisite genes in activation of CD4+ T lymphocytes, and genes that 

encode receptors for the T cell survival/ growth cytokines, IL-2 and IL-7 (15–17). Despite the 

contribution of genetic factors to MS pathogenesis, environmental factors are also important. 



3 
 

Hence, the concordance rate of MS among monozygotic twins is only 25% at most (18–20). 

Several studies have found comparable frequencies of myelin-reactive T cells among blood cells 

from healthy individuals and people with MS, and it is postulated that environmental exposures in 

some way enhance the priming, differentiation, and/ or CNS access of encephalitogenic T cells, or 

inhibit endogenous immunoregulatory pathways (21–23).  

 

Experimental Autoimmune Encephalomyelitis 

 Experimental autoimmune encephalomyelitis (EAE) is an animal model which simulates 

many of the clinical and pathological features of MS. EAE was serendipitously discovered in the 

late 1920s when it was recognized that a subset of patients vaccinated against rabies developed an 

inflammatory demyelinating syndrome shortly thereafter (24). The vaccine was produced by 

infecting animals with active rabies virus and recovering the virus from CNS tissue. The virus 

within the isolated material was “inactivated” by a chemical procedure and then administered 

intramuscularly to vaccinate humans (25). It was ultimately demonstrated that the post-vaccination 

demyelinating syndrome resulted from the induction of an immune response against heterologous 

CNS myelin, which contaminated the vaccine. Rivers and Schwentker subsequently showed that 

immunizations of macaque monkeys with brain tissue emulsified in adjuvant reproducibly induced 

a demyelinating encephalitis (24, 26). Later analyses of the CNS of rhesus monkeys with 

experimentally induced encephalitis revealed disseminated lesion formation and CSF 

abnormalities reminiscent of MS (27). 

 These studies first suggested that MS might have an autoimmune etiology and led to the 

development of EAE models in a range of mammalian species, most commonly rodents. EAE can 

be induced in mice from different genetic backgrounds and with different immunogenic myelin 
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proteins or peptides. The clinical course may vary with mice strain and autoantigen. For example, 

B10.PL mice immunized with the N terminal region of myelin basic protein (MBP) develop a self-

limited single attack of myelitis, followed by complete remission. In contrast, EAE induced in SJL 

mice with the immunogenic peptide of proteolipid protein (PLP139-151), manifests as a relapse-

remitting course that mirrors to RRMS (28, 29). C57BL/6 mice immunized with the immunogenic 

peptide of myelin-oligodendrocyte glycoprotein (MOG35-55) develop a monophasic disease, often 

characterized by complete hindlimb paralysis and sustained disability. The latter is the most 

common mouse model of MS, due in large part to the wide availability of genetically engineered 

mice on the C57BL/6 background. All of the EAE models display clinical and pathological 

similarities to MS, are mediated by CD4+ T cells, and require MHCII expressing antigen presenting 

cells (APCs) to prime the encephalitogenic T cells in the peripheral lymphoid tissues and to 

reactivate them in the CNS. 

 EAE can be induced either by active immunization with the relevant immunogenic 

peptides, or proteins, or by the adoptive transfer of myelin-reactive CD4+ T cells to syngeneic 

recipients. The EAE model has not only contributed to our understanding of MS pathogenesis and 

guided the development of DMTs, but it has increased our understanding of target organ-specific 

autoimmunity and immunoregulatory pathways in general. 

 

CD4+ T cells Activation, Function, Phenotypes, and Autoimmunity 

 The immune system is broadly separated into innate and adaptive immune cells. Innate 

cells, including monocytes, macrophages, dendritic cells, and granulocytes, directly interact with 

highly conserved pathogen and danger associated molecular patterns (PAMPs and DAMPs) to 

sense pathogens and produce the appropriate pro-inflammatory cytokines and immune mediators 
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for their eradication. One prominent function, which is carried out most efficiently by dendritic 

cells, is phagocytosis of pathogens or their components, processing of foreign proteins, and 

presentation of the resultant peptides to T cells. CD4+ T cells are a member of the adaptive immune 

system and respond to antigenic peptides presented bound to the MHCII complex on the surface 

of professional APCs by proliferating and producing effector cytokines. 

 Each T cell clone expresses a unique antigen-specific receptor (the T cell receptor or TCR) 

which is generated via genetic recombination. The rearrangement of genes at the TCR locus 

confers the ability to produce over 1015 possible TCR variants. TCR diversity allows the immune 

system to respond to a broad range of bacteria, viruses, and parasites, as well as mutated proteins, 

in a customized fashion (30). Ideally, each CD4+ TCR would be specific to antigens derived from 

microbial pathogens, parasites, or mutated cells exclusively. However, inevitably TCRs are 

generated that have the capacity to recognize native host peptides (often referred to as “self” or 

autoantigens). The failure to delete such autoreactive T cells during negative selection in the 

thymus can ultimately lead to the development of autoimmune diseases such as arthritis and MS. 

 When the TCR is engaged on naïve CD4+ T cells, they proliferate, produce growth factors 

such as IL-2, and upregulate homing molecules. They differentiate along a particular T-helper (Th) 

cell lineage and acquire a particular effector cytokine panel, depending on the polarizing cytokines 

they are exposed to during the course of activation. APCs express a number of T cell costimulatory 

molecules and secrete polarizing cytokines that guide Th cell differentiation along lineages that 

are commensurate with the type of pathogen eliciting the immune response. Researchers have 

identified a broad range of CD4+ T cells that have distinct functional phenotypes. The most 

common of these have been designated Th1, Th2, Th17, and T regulatory (Treg) cells. Th1 cells 

arise largely in response to intracellular pathogens, such as viruses and some bacteria, and are 
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polarized by interleukin 12 (IL-12). Memory Th1 cells produce interferon gamma (IFNγ) as their 

signature cytokine. IFNγ has pleiotropic effects including the recruitment of monocytes/ 

macrophages to sites of inflammation, promotion of immunoglobulin class switching to IgG2a, 

induction of free radical species by myeloid cells, and elimination of pathogen-infected cells. 

Conversely, Th2 differentiation is driven by IL-4, secreted by accessory cells (including mast cells 

and innate lymphoid cells) in response to extracellular bacteria and fungi. Th2 cells produce IL-4 

themselves, as well as IL-5, and IL-33, all of which promote B cell proliferation, immunoglobulin 

class switching to IgG1, IgE antibody release and eosinophil mobilization and activation. 

Extracellular bacteria and fungi elicit a Th17 phenotype via induction of IL-6, IL-23, and TGF-β 

by APCs. Th17 cells produce IL-17 upon reactivation which promotes infiltration of neutrophils. 

Lastly, TGF-β-induced Tregs are programmed via the transcription factor FoxP3 to dampen 

potentially destructive inflammatory responses. Collectively, CD4+ T cell subsets interact in a 

coordinated fashion during homeostasis to protect the host from exogenous pathogens while 

preventing unnecessary bystander damage to healthy host tissues. When this finely balanced 

system becomes dysregulated, autoimmunity can ensue. 

 The manifestation of an autoimmune response, and its impact on the host, is dependent on 

the location of the autoantigen and the characteristics of the autoreactive Th subset that is 

dominant. MS was historically characterized as a Th1-mediated autoimmune demyelinating 

disease since large amounts of IFNγ and macrophage-rich infiltrates were detected in MS lesions. 

However, it is now believed that MS it is heterogeneous and can be driven by Th1 or Th17 cells, 

or a combination of both (31, 32). Unexpectedly, it has been shown that most of the Th1/ Th17 

cell polarizing cytokines, transcription factors, and canonical effector cytokines are dispensable, 

on an individual basis, for the induction of EAE in C57BL/6 mice actively immunized with 
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MOG35-55 in CFA (33–37). These observations are consistent with the contention that EAE can be 

driven independently by Th1 and Th17 pathways. Granulocyte-macrophage colony-stimulating 

factor (GM-CSF) has been portrayed as the only T cell effector cytokine that is universally required 

for the development of EAE (33, 35, 38–45). 

 

Granulocyte-Macrophage Colony-Stimulating Factor 

 GM-CSF is a myeloid cell growth and differentiation factor originally characterized by its 

ability to drive the development of granulocytes and macrophages from stimulated bone marrow 

cells in vitro (46). During homeostasis, GM-CSF promotes the development of circulating 

eosinophils and tissue-resident macrophages and dendritic cells, though GM-CSF deficient mice 

(Csf2-/-) only display minor perturbations in myeloid cell development (47, 48). Under 

inflammatory conditions, it acts peripherally to promote the mobilization of GM-CSF receptor 

(GM-CSFR) expressing myeloid cells from the bone marrow, into the blood, and locally to 

promotes myeloid cell activation, differentiation, and survival within inflamed tissues. Although 

GM-CSF can be produced by a variety of cells during homeostasis and inflammation, during EAE 

its primary source is encephalitogenic T cells (49).  

 At the initiation of EAE, it is believed that encephalitogenic T cells enter the CNS where 

they are reactivated by local APCs presenting endogenous myelin peptides bound to MHCII 

molecules (50). This interaction drives the myelin-reactive CD4+ T cells to secrete GM-CSF, 

which stimulates APCs to produce pro-inflammatory cytokines and chemokines including IL-1β, 

IL-6, IL-12, CCL2, TNFα, and IL-23. A feedforward loop is established whereby IL-23 signals 

encephalitogenic T cells to produce more GM-CSF, and GM-CSF signals APC to produce more 

IL-23 (38, 51–53). Circulating neutrophils, monocytes, dendritic cells, and additional lymphocytes 
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are secondarily recruited to the nascent EAE lesion. GM-CSF then acts on the infiltrating myeloid 

cells to enhance phagocytosis of myelin and production of toxic factors. GM-CSF also drives 

monocytes to differentiate into macrophages and monocyte-derived dendritic cells. It has been 

suggested that this GM-CSF dependent circular process, of T cell:APC reactivation and myeloid 

cell activation within the CNS, amplifies demyelination and axonopathy in mice with EAE, as 

summarized in the illustration by M. McGeachy in Fig. 1.1 (38). 

 

Figure 1.1 – Proposed functions of GM-CSF in CNS autoimmunity (38). 

Csf2-/- mice are resistant to EAE induced by active immunization with MOG35-55. The 

mechanism underlying this protection is subject to debate (39, 41, 42, 44, 45, 49). Studies in active 

immunization and adoptive transfer EAE models have suggested that GM-CSF is required to prime 

encephalitogenic T cells (42), drive T cell reactivation in the CNS (39, 44), activate CNS-resident 

microglia (49), enhance accumulation of Ly6Chi monocytes (54) in the CNS, and activate CCR2+ 

monocytes within the CNS (41). Despite their differences, these studies share certain conclusions. 

GM-CSF was consistently found to play a role in modulating myeloid cells (particularly 
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monocytes, macrophages, microglia and/ or dendritic cells) and often to have an indirect impact 

on the priming and/ or reactivation of encephalitogenic T cells. 

  

Dendritic Cell Heterogeneity and Functions in EAE 

 Dendritic cells were originally identified in secondary lymphoid tissues and distinguished 

by their morphological features, having large nuclei and “abundant cytoplasm arranged in 

processes of varying length and width” (55). In mice, DCs are generally characterized by 

expression of MHCII and CD11c and are considered professional APCs, due to their ability to 

activate and polarize naïve CD4+ T cells. DCs are a heterogeneous population of cells and have 

been subdivided based on their relative expression of CD11b, CD103, Langerin, CX3CR1, CD115, 

as well as a variety of other markers that vary with their location, ontogeny, and activation state 

(56). Although it is widely accepted that MHCII+ APCs are required for initiation of autoimmune 

demyelination, there remains a lack of clarity regarding exactly which cell type is the initiating 

APC in EAE, and potentially MS. 

 In the MOG35-55-induced model of EAE, B cells are dispensable for EAE pathogenesis (57, 

58). In-depth analyses have been performed to compare potential APC populations during the 

course of EAE (59, 60). Microglia are CNS-resident cells which upregulate MHCII and CD11c 

upon activation and have been proposed to be the requisite APC in EAE. A recent study compared 

microglia to resident macrophages which populate the meninges (mMΦs), perivascular spaces 

(pvMΦs), and choroid plexus (cpMΦs) in the naïve CNS (61). Microglia are restricted to the CNS 

parenchyma, derived from cells that migrate to the CNS from the embryonic yolk sac during early 

development, and are self-renewed. In contrast, macrophages that exist in border areas of the CNS 

are of mixed origin and transcriptionally diverse. Similar to microglia; mMΦs, pvMΦs, and 
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cpMΦs populate the CNS early in development. However, cpMΦs are rapidly replaced during 

development, while mMΦs and pvMΦs are more stable into adulthood. All populations were 

dependent on the transcription factor Pu.1 but only mMΦs required IRF8. During autoimmune 

CNS inflammation, mMΦs were rapidly replaced by circulating monocytes which infiltrated the 

CNS while pvMΦs and microglia were each self-renewing and expanded in situ.  

Dendritic cells are also heterogeneous. Nakano et al. showed that the surface markers CD88 

and CD26 can be used to distinguish two subsets of DCs that differ based on their hematopoietic 

origin (62). CD88, the C5a complement receptor, is restricted to DCs derived from a common 

monocyte progenitor and can be used to reliably identify monocyte-derived DCs (moDCs). CD26, 

dipeptidyl peptidase (an enzyme that catalyzes peptide hydrolysis), is restricted to DCs derived 

from the common dendritic cell progenitor in the bone marrow and are termed classical DCs 

(cDCs). CD88+ moDC development is promoted by GM-CSF signaling and the transcription factor 

IRF4, while CD26+ cDCs are dependent on the ligation of the FLT3 receptor and the transcription 

factor ZBTB46 (63–65). The experimental tools necessary to study the importance of these subsets 

in inflammation have been developed, but they have yet to be studied in the EAE literature. 

 

Rationale and Specific Aims 

Although it is widely believed that CD4+ T cells initiate inflammatory lesions in MS, their 

activation represents one of many steps in the pathogenesis of CNS autoimmune demyelinating 

disease. Myeloid cells comprise a prominent component of the immune cells in MS and EAE 

lesions. GM-CSF holds a prominent role in connecting the lymphocyte mediated adaptive arm 

with the innate arm of the immune system. It drives myeloid cells to mobilize from the bone 

marrow into the circulation, home to sites of inflammation and differentiate into macrophages or 
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dendritic cells within the target tissue. The infiltrating myeloid cells escalate neuroinflammation 

by secreting chemokines and cytokines and can directly destroy myelin and damage axons. Current 

MS therapeutics target lymphocytes, either by depletion or blockade of CNS infiltration. However, 

none of the currently used drugs are effective in all patients; none are cures and none reverse 

existing damage. Understanding the interplay between CNS-autoantigenic lymphocytes, the 

myeloid cells they recruit, and the functions that the different leukocytes carry out in tandem, may 

reveal novel approaches to target the destructive immune cells and thereby attenuate autoimmune 

demyelination. 

 In the studies outlined in this dissertation, we investigate the role of GM-CSF dependent 

pathways in the initiation, progression, and maintenance of autoimmune demyelination. 

• Aim 1: Chapter 2: Interrogate the role of GM-CSF in the development of EAE. We used mice 

deficient in GM-CSF or GM-CSFR, and an anti-GM-CSF neutralizing antibody, to explore the 

impact of GM-CSF signaling on the clinical and histopathological aspects of EAE, and to 

elucidate its mechanism of action. We tested our hypothesis that GM-CSF plays its most 

important role during the effector stage of EAE, by shaping the cellular composition and spatial 

distribution of the inflammatory cells that infiltrate the CNS. 

• Aim 2: Chapter 3: Investigate GM-CSF-dependent activation of the CCR1 chemokine 

pathway during EAE and assess the impact of CCR1 ligands on histopathological and clinical 

features of the disease. We interrogated the relationship between GM-CSF signaling and the 

expression of CCR1 and its ligands on different immune subsets during EAE. We tested our 

hypothesis that GM-CSF promotes EAE pathology, in part, by a CCR1/ CCL6 dependent 

pathway. 
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• Aim 3: Chapter 4: Compare the contribution of monocyte-derived DCs vs conventional DCs 

as antigen presenting cells during the initiation of EAE. We characterized DC lineages in the 

CNS at successive stages of EAE, compared their abilities to process myelin proteins and 

activate naïve and effector myelin-specific T cells, and directly investigated their importance 

to clinical onset and progression. 

These studies provide insight into the role of GM-CSF, and its downstream mediators, in the 

interplay of the adaptive and innate branches of the immune system during the development of 

autoimmune demyelination and strongly supports further research into GM-CSF, CCR1, CCR1 

ligands, and the myeloid cell compartment, as therapeutic targets in the treatment of MS. 
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CHAPTER 2 – GM-CSF Promotes Chronic Disability in Experimental Autoimmune 
Encephalomyelitis by Altering the Composition of Central Nervous System-Infiltrating 

Cells, but Is Dispensable for Disease Induction 
 
Duncker PC, Stoolman JS, Huber AK, Segal BM. GM-CSF Promotes Chronic Disability in 
Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous 
System-Infiltrating Cells, but Is Dispensable for Disease Induction. J Immunol. 
2017;200(3):ji1701484. 

Abstract 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been portrayed as a 

critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, 

ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced 

by immunization with the 35-55 fragment of myelin oligodendrocyte glycoprotein (MOG35-55). 

The mechanism of action of GM-CSF in EAE is poorly understood. Here we show that GM-CSF 

augments the accumulation of MOG35-55-specific T cells in the skin-draining lymph nodes of 

primed mice, but is not required for the development of encephalitogenic T cells. Abrogation of 

GM-CSF receptor signaling in adoptive transfer recipients of MOG35-55-specific T cells did not 

alter the incidence of EAE, or the trajectory of its initial clinical course, but limited the extent of 

chronic CNS tissue damage and neurological disability. The attenuated clinical course was 

associated with a relative dearth of MOG35-55-specific T cells, myeloid dendritic cells, and 

neutrophils, and an abundance of B cells, within CNS infiltrates. Our data indicate that GM-CSF 

drives chronic tissue damage and disability in EAE via pleiotropic pathways, but is dispensable 

during early lesion formation and the onset of neurological deficits. 
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Introduction 

It is widely believed that CD4+ T cells mediate lesion development in individuals with 

Multiple Sclerosis (MS). This theory is supported by the identification of MHC Class II, and other 

genes that modulate T cell function, as MS risk alleles, and by the success of clinical trials of 

lymphocyte depleting or modulating agents in relapsing-remitting MS (66, 67). Furthermore, 

myelin-specific CD4+ Th1 or Th17 cells induce experimental autoimmune encephalomyelitis 

(EAE, an animal model with clinical and histopathological similarities to MS) upon adoptive 

transfer into naïve syngeneic mice. Unexpectedly, expression of the signature Th1 and Th17 

cytokines, IFNγ and IL-17, respectively, or their cognate receptors, were found to be dispensable 

for the manifestation of both active and passive EAE (33, 68, 69). The specific factors produced 

by myelin-reactive T cells that are required to mediate demyelination and axonopathy, and thereby 

cause neurological deficits, is a subject of intense research. The elucidation of those factors could 

have a profound translational impact on MS and other neuroinflammatory disorders by leading to 

the discovery of surrogate biomarkers and novel therapeutic targets. 

In contrast to IFNγ and IL-17, the myeloid cell growth and mobilizing factor, granulocyte-

macrophage colony-stimulating factor (GM-CSF), has been identified as playing a critical role in 

EAE across different strains of mice and target autoantigens (45, 54). In addition to the adoptive 

transfer of myelin-specific Th1 or Th17 cells, EAE can be induced in C57BL/6 mice via active 

immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) suspended in 

CFA, and co-administration of pertussis toxin. C57BL/6 mice that are genetically deficient in GM-

CSF (Csf2-/-) are completely resistant to EAE induced by active immunization (45, 54). Disease 

susceptibility is restored by the systemic administration of recombinant GM-CSF from the day of 

immunization onward. Conversely, wild type (WT) mice are protected from EAE by serial 
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administration of a neutralizing antibody to GM-CSF from the time of active immunization with 

MOG35-55 onward (45, 54), indicating that the resistance of Csf2-/- mice is not solely attributable 

to the absence of GM-CSF during early development. 

 The mechanism of action of GM-CSF in EAE is a controversial issue. Several laboratories 

have reported that MOG35-55-primed CD4+ donor T cells, derived from Csf2-/-, as opposed to WT 

donors, are ineffective in transferring EAE to WT hosts (39, 44). This led some investigators to 

conclude that GM-CSF production by CNS-infiltrating T cells directly drives the development of 

demyelinating lesions in situ. An alternative explanation is that the optimal activation and/ or 

differentiation of encephalitogenic T cells are dependent upon their interaction with GM-CSF 

modulated antigen presenting cells (APCs) within secondary lymphoid tissues. Conflicting data 

have been published as to whether GM-CSF plays a significant role in the priming of autoreactive 

Th1 and Th17 cells (42, 45, 70, 71).  

In the current chapter, we revisit the mechanism of action of GM-CSF in EAE using 

reciprocal adoptive transfer experiments with WT donor T cells and GM-CSF receptor-deficient 

(Csf2r-/-) hosts, versus Csf2-/- donor T cells and WT hosts. In parallel, we compare the clinical 

impact of administering a GM-CSF-neutralizing antibody during the priming of MOG35-55-specific 

T cells in donors, versus during the effector phase in hosts. The results of these experiments 

indicate that, in the absence of GM-CSF, the frequency of MOG35-55-reactive Th1 and Th17 cells 

is modestly diminished in immunized mice. Nevertheless, GM-CSF is not absolutely required for 

the generation of encephalitogenic T cells. Surprisingly, disruption of GM-CSF signaling in 

adoptive transfer recipients does not reduce the incidence or mitigate the early clinical course of 

EAE, but does curtail the extent of tissue damage at peak disease and prevents chronic disability. 

Unlike WT recipients of WT encephalitogenic CD4+ T cells, which rarely recover function 
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following acute EAE, the majority of Csf2r-/- recipients undergo clinical remission. The milder 

chronic clinical course is associated with decreases in the number and frequencies of myelin-

reactive CD4+ T cells, myeloid dendritic cells, and neutrophils, and an increase in the frequency 

of B cells, within the neuroinflammatory infiltrate. 

 
Materials and Methods 

Mice. Six- to eight-week-old CD45.1 congenic and WT C57BL/6 mice were obtained either from 

National Cancer Institute Frederick or Charles River Laboratories. Csf2r-/- mice (B6.129S1-

Csf2rb1tm1Cgb/J) mice were obtained from L. Robb (The Walter and Eliza Hall Institute), Csf2-/- 

mice were obtained from D. McGavern (National Institutes of Health), and mT/mG (B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) mice were obtained from B. Moore (University of 

Michigan, Ann Arbor) and bred in our facility. Mice were housed in micro-isolator cages under 

specific pathogen-free conditions. All animal studies were approved by the University Committee 

on Use and Care of Animals. 

 

Induction and scoring of EAE. Mice were immunized s.c. with 100 µg of the MOG35-55 peptide 

(MEVGWYRSP-FSRVVHLYRNGK; Biosynthesis) in CFA (Difco) at four sites over the flanks. 

For active immunization, mice were also administered 300 ng inactivated Bordetella pertussis 

toxin i.p. on days 0 and 2. For adoptive transfer EAE, inguinal, axial, and brachial dLNs were 

harvested from donor mice 10-14 days post-immunization, pooled, homogenized, and passed 

through a 70 µm strainer (Fisher Scientific). Cells were cultured under Th17-polarizing conditions: 

MOG35-55 [50 µg/ml], rmIL-23 [8 ng/ml], rmIL-1α [10 ng/ml], and α-IFNγ [10 µg/ml]. Following 

96 hours of culture, CD4+ T cells were purified by positive selection using L3T4 magnetic 

microbeads (Miltenyi Biotec). 3-6x106 CD4+ T cells were injected i.p. to naïve recipients. The 
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recipient mice were observed daily for signs of EAE, and rated for degree of disability using a 5 

point scale, as previously described (68).  

 

Flow cytometry. For surface staining, cells were resuspended in PBS with 2% FBS and Fc Block 

(αCD16/32) [100 ng/ml] before 1:2 dilution with fluorochrome-conjugated Abs. For intracellular 

staining, cells were stimulated either; overnight with MOG35-55 before brefeldin A (BFA) [5 µg/ml] 

was added for 4-6 hours, or with PMA [50 ng/ml], ionomycin [2 µg/ml], and BFA [5 µg/ml] for 

4-6 hours. Cells were stained for surface markers, as above, fixed in 4% PFA, permeabilized with 

0.5% saponin, and incubated with fluorochrome-conjugated anti-cytokine mAbs. Flow gating 

began with comparison of SSC-A vs. FSC-A to exclude events outside the normal parameters of 

leukocytes followed by doublet exclusion comparing FSC-A vs. FSC-H. Dead cells were gated 

out using fixable viability dyes. Microglia were identified as CD45intCD11b+. CNS-infiltrating 

immune cells were identified as CD45hi. Data were collected with a FACSCanto II flow cytometer 

using FACSDiva software (v6.1.3 and v7.0, Becton Dickinson). A FACS Aria III cell sorter was 

used to purify immune cells from the CNS and spleen. Data were analyzed using FlowJo software 

(vX 10.0, Treestar). 

 

Antibodies and reagents. The following antibodies were obtained from eBioscience: 

Allophycocyanin-(αB220 [RA3-6B2], αCD11c [N418]), eFluor 450-(αCD45 [30-F11], αCD45.1 

[A20]), eFluor 506-Fixable Viability, eFluor 780-Fixable Viability, FITC-(αGM-CSF [MP1-

22E9], αMHCII [M5/114.15.2]), PE-αCD4 [RM4-5], PE-Cy7-(αCD44 [IM7], αCD11b [M1/70], 

αCD4 [RM4-5]), and PerCP-Cy5.5-(αIL-17A [eBio17B7], αCD11c [N418]). The following 

antibodies were obtained from BD Biosciences: Allophycocyanin-Cy7-(αIFNγ [XMG1.2], α-
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Ly6G [1A8]). PE-labeled MOG38-49 tetramers were obtained from the NIH Tetramer Core Facility. 

rmIL-23 and rmIL-1α were obtained from R&D Systems. αGM-CSF (22E9.11), αIFNγ (XMG1.2), 

and αCD16/32 (2.4G2) were produced in-house via hybridoma. 500μg of αGM-CSF or whole rat 

IgG (Sigma Aldrich) was administered i.p. every other day, beginning at the time of immunization 

or T cell transfer, during blocking experiments. 100μg of αCD20 (clone 5D2, Genentech) or mouse 

IgG2a (clone C1.18.4, Bio X cell) was administered i.p. every other day, beginning at the time of 

T cell transfer, in B cell depleting experiments. 

 

Isolation of inflammatory cells from the CNS, spleen, and blood. Tissue was harvested following 

intracardiac perfusion with 1X PBS. CNS was separated into whole brain or spinal cord, 

homogenized in 1 ml 1X PBS containing a protease inhibitor (Roche), and pelleted at 800 x g for 

5-10 min. Supernatants were isolated and stored at -80°C. Pellets were resuspended in 3 ml 

collagenase A (1 mg/ml) and DNase I (1 mg/ml) in HBSS with calcium and magnesium and 

incubated in a 37°C water bath for 10 minutes. Samples were pelleted at 800 x g, resuspended in 

27% percoll, and centrifuged for 10 minutes at 800 x g. The myelin/ debris layer and percoll were 

removed, and the cell pellet used for flow cytometric staining. Splenic immune cells were isolated 

by homogenization through a 70 µm strainer (BD Falcon). RBCs were lysed using ACK lysis 

buffer (Quality Biologicals). Blood was isolated into microtainers with EDTA (Becton Dickinson). 

Following centrifugation, plasma was isolated and stored at -80°C. Cells were resuspended in 6 

ml 1X PBS with 2% FBS and underlayed with 3 ml pre-warmed Lympholyte-M (Cedarlane) 

before centrifugation at 1750 x g for 20 min at room temperature. White blood cells were harvested 

from the interface, washed, and remaining RBCs were lysed using ACK lysis buffer. 
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Construction of mixed bone marrow chimeric mice. Mixed bone marrow chimeras were 

constructed by first ablating the endogenous hematopoietic cells of congenic (CD45.1) C57BL/6 

WT mice with a lethal dose of 1300 Rads, delivered in two 650 Rad doses separated by 3 hours. 

For experiments comparing WT to Csf2-/- myelin-reactive T cells, irradiated mice were 

reconstituted with a 1:1 mixture of WT CD45.1 congenic:Csf2-/-
 bone marrow. For experiments 

comparing CNS immune cell infiltrates at peak EAE, irradiated mice were reconstituted with 

mT/mG and Csf2r-/- bone marrow mixed at a 1:2 ratio, respectively, to obtain an approximate 50:50 

composition of circulating leukocytes following reconstitution. Animals were kept on acid water 

for 2 weeks and allowed to reconstitute for an additional 6 weeks before induction of EAE.  

 

Nanostring and qPCR. Mononuclear cells were isolated from the brain and spinal cord tissues of 

mixed bone marrow chimeric mice as detailed above. To obtain enough cells for RNA analysis, 

CNS immune isolates were combined from 4-5 mice before staining with myeloid cell markers for 

flow sorting of CD45.1+ or mT/mG WT vs CD45.2+ knock-out monocytes (CD45hiCD11b+Ly6G-

CD11c-) and mDCs (CD45hiCD11b+Ly6G-CD11c+). Samples prepared for nanostring analysis 

were resuspended in RLT buffer at a concentration of 4,000 cells/µl, frozen, and run on the 

nCounter platform (Nanostring Technologies). Cells used to confirm nanostring results by qPCR 

were resuspended in either 300 µl RLT buffer or 1 ml Trizol (Life Technologies) before Qiagen 

RNeasy RNA purification. Purified RNA was converted into cDNA using the High Capacity 

cDNA Reverse Transcription Kit (Life Technologies). Relative RNA levels were quantified by 

SYBR Green qPCR performed on an iQ Thermocycler (Bio-Rad). 
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Multiplex cytokine analysis and ELISA. CNS cytokine levels in homogenate supernatants were 

measured using Luminex multiplex bead-based analysis (Millipore) using a Bio-Plex 200 system 

following the manufacturer’s protocols. Data shown indicate levels within the linear portion of 

appropriate standard curves. CXCL13 Quantikine ELISA kit (R&D Systems) was used, according 

to manufacturer protocols, to determine the concentration of CXCL13 in CNS homogenate 

supernatants. Total protein was determined via Bradford assay (Thermo Scientific) and used to 

normalize analyte concentrations. 

 

Immunofluorescence. Following intracardiac perfusion with Tyrode’s and 4% paraformaldehyde 

(PFA), spinal columns were removed, post-fixed for 3 days in PFA, decalcified in 0.5 M EDTA 

for 4 days, cryoprotected in 30% sucrose, and embedded and frozen in OCT (Cellpath). 12 μm 

sections were blocked with Avidin B and biotin (Vector Labs) before staining with the following 

primary and secondary antibodies: goat anti-MBP (Santa Cruz Biotechnology), Alexa Fluor 488-

conjugated donkey anti-goat IgG (Life Technologies), rat anti-CD45 (eBiosciences), Alexa Fluor 

647-conjugated goat anti-rat (Life Technologies), mouse anti-SMI-32 (Covance), and Alexa Fluor 

594 conjugated goat anti-mouse IgG. DAPI (Life Technologies) was used to label nuclei. Images 

were acquired on a Nikon Eclipse Ti, CoolSnap EZ camera, and NIS Elements: Basic Research 

v3.10. Appropriate image processing, including image merging and black level and brightness 

adjustments, was performed in Photoshop CC 2017 and applied equally to all samples. 

 

Statistical analysis. Statistical analyses were performed using GraphPad Prism software (v6.05). 

Disease curves were compared by Two-way ANOVA and T-tests (day-by-day) without multiple 

comparisons. Immune parameters were compared using unpaired t-test with Welch’s correction. 
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Leukocyte numbers and mRNA from mixed bone marrow chimera mice were analyzed via paired, 

parametric T-test. Outliers were identified by ROUT analysis and removed as necessary. A p-value 

< 0.05 (*) was considered significant, with p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). 

 

Results 

MOG35-55-specific T cell priming is compromised in the absence of GM-CSF. Consistent 

with published studies, we found that Csf2-/- and Csf2r-/- mice, as well as WT mice treated with 

αGM-CSF neutralizing antibodies, were resistant to EAE induced by active immunization (Fig. 

2.1A, B). Bone marrow chimeric mice, constructed by reconstituting lethally irradiated WT mice 

with Csf2r-/- donor bone marrow cells, were also resistant to EAE (Fig. 2.1C). These findings 

indicate that GM-CSF signaling into hematopoietic cells is required for the development and 

expansion of encephalitogenic T cells in the periphery, and/ or for their function as mature effector 

cells within the CNS. We previously reported that the frequencies of MOG35-55-reactive IFNγ- and 

IL-17-producing lymph node cells, measured by ELISPOT, are diminished in MOG35-55-

immunized Csf2-/- or Csf2r-/- versus WT mice (42). Similarly, Bernard and colleagues found that 

splenocytes harvested from primed Csf2-/- mice are impaired in mounting MOG35-55-specific 

proliferative and cytokine recall responses upon antigenic challenge ex vivo (45). In contrast, 

another laboratory found that splenocytes harvested from GM-CSF sufficient or deficient 2D2 

mice (which express a transgenic T cell receptor specific for MOG35-55) produce comparable 

amounts of IFNγ and IL-17 when polarized in vitro and challenged with a mitogenic stimulus (44). 
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Figure 2.1 – GM-CSF is required for the development of EAE induced by active 
immunization. 
(A) EAE was induced in WT (n=15), Csf2-/-(n=18), and Csf2r-/- (n=5) mice via active 
immunization with MOG in CFA and administration of pertussis toxin. (B) WT mice were actively 
immunized with MOG, as in (A), and treated with αGM-CSF (n=10) or control Rat IgG (n=10) 
from days 0 through 16. (C) Bone marrow chimeras were constructed by injecting lethally 
irradiated WT mice with bone marrow cells from either WT (n=10) or Csf2r-/- (n=8) donors. 
Following reconstitution, EAE was induced by active immunization. * p<0.05 and **** p<0.0001 
as determined by multiple T-tests with Welch’s correction comparing daily clinical scores 
(significance shown above the curves). **** p<0.0001 as determined by Two-Way ANOVA 
(significance is shown to the right of curves). 
 

In order to investigate the basis of these discrepant findings, we subjected draining lymph 

node (dLN) cells harvested from MOG35-55/ CFA-immunized WT or Csf2-/- mice to flow 

cytometric analysis directly ex vivo. The absolute number of dLN cells, as well as the percentage 

of CD4+ T cells among CD45+ cells, were reduced in the Csf2-/- cohort (Fig. 2.2A-C). In contrast, 

the frequency of B cells was elevated in Csf2-/- lymph nodes (Fig. 2.2B, C). Following 96 hours of 

stimulation with MOG35-55 under Th17 polarizing conditions, Csf2-/- lymph node cells maintained 
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a lower frequency of CD4+ T cells, of which fewer were antigen-experienced (CD44hi) or capable 

of binding a MOG38-49/ MHCII tetramer, when compared with their WT counterparts (Fig. 2.2D-

F). The frequency of CD4+CD44hiTetramer+ T cells was approximately 1.8-fold higher in WT 

compared with Csf2-/- lymph node cells. Lymph node cells derived from primed Csf2-/- mice also 

had lower percentages of CD4+ T cells that expressed IFNγ or IL-17 in response to short-term 

incubation with PMA/ ionomycin (Fig. 2.2G), or following rest and restimulation with MOG35-55 

(Fig. 2.2H). Similar results were obtained when lymph node cell composition and recall responses 

were compared between MOG35-55-immunized Csf2r-/- versus WT mice, or WT mice treated with 

αGM-CSF versus control antibodies (Fig. 2.3). 

Figure 2.2 – MOG35-55-specific CD4+ T cell priming is diminished in Csf2-/- mice.  
(A-C) dLN cells were isolated from WT and Csf2-/- C57BL/6 mice 14 days after immunization 
and analyzed directly ex vivo by flow cytometry. The total number of dLN cells was determined 
per mouse (A), as well as the frequency (B) and number/ mouse (C) of CD4+ and B220+ cells. (D-
F) dLN cells from each group were cultured with MOG35-55 and Th17 polarization factors. After 
96 hours, cells were subjected to flow cytometric analysis to determine the frequencies of CD4+ 
cells among CD45+ cells (D), CD44hi cells among CD45+CD4+ cells (E), and MOG38-49 Tetramer+ 
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cells among CD45+CD4+ cells (F). (G, H) Cells were either cultured with PMA/ ionomycin for 4 
hours (G) or rested for 48 hours prior to overnight co-culture with MOG35-55-pulsed T-depleted 
splenocytes (H). Brefeldin A (BFA) was added at the start of culture in (G) and for the last 4 hours 
of culture in (H). Cells were analyzed by intracellular cytokine staining and flow cytometry. Data 
(± SEM) are representative of 3 (A-F) or 2 (G, H) independent experiments with 4-7 mice per 
group. * p<0.05, ** p<0.01, and *** p<0.001. 
 

Figure 2.3. Neutralization of GM-CSF in immunized mice inhibits MOG-specific T cell 
priming. 
(A) Total number of cells isolated from draining LNs of MOG-immunized WT mice treated with 
either control Rat IgG or αGM-CSF from days 0 to 14. (B) Number of CD4+ and B220+ cells in 
draining LNs per mouse. (C-E) Primed LN cells from each group were cultured with MOG in the 
presence of recombinant IL-23 and IL-1. Cells were harvested after 96 hours and subjected to 
flow cytometric analysis to determine the frequencies of CD4+ and B200+ cells among CD45+ cells 
(C), CD44hi cells among CD45+CD4+ cells (D), and MOG Tetramer+ cells among CD45+CD4+ 
cells (E). (F, G) WT and Csf2-/- MOG-reactive, Th17-polarized LN cells were either cultured with 
PMA/ ionomycin for 4 hours (F) or rested for 48 hours prior to overnight co-culture with MOG-
pulsed T-depleted splenocytes (G). BFA was added at the start of culture in (F) and for the last 4 
hours of culture in (G). Cells were harvested and subjected to intracellular cytokine staining and 
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flow cytometric analysis * p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001 by T-test with 
Welch’s correction. The figure shows 1 representative experiment of 2 with 5-7 mice per group. 
 

We next assessed the encephalitogenicity of IL-23-polarized CD4+ Th17 cells derived from 

MOG35-55-primed Csf2-/- donors. In contrast to previous studies, we found that Csf2-/- Th17 cells 

readily induced EAE in WT C57BL/6 mice when injected at a dose of 3x106 cells per host (Fig. 

2.4A). The day of onset and incidence of disease were similar in mice injected with 3x106 Csf2-/- 

or WT effector cells (Table I). Hence, despite a modest impairment in T cell priming, Csf2-/- mice 

are capable of generating encephalitogenic T cells and are competent adoptive transfer donors 

when a sufficient number of cells are transferred.  

Table 2.1 – Csf2-/- and WT encephalitogenic CD4+ T cells induce EAE in naive WT 
recipients at a comparable incidence.  
Shown are the results of three independent experiments. Remission is defined as a sustained 
decrease in clinical score by ≥2 points. 

GM-CSF signaling during the effector phase augments disease severity and prevents 

remission. Although 85% of WT mice injected with 3x106 Csf2-/- Th17 effector cells developed 

EAE, they experienced a slightly lower peak clinical score than recipients of the same number of 

WT donor cells (Fig. 2.4A). Nearly 95% (16/17) of the recipients of Csf2-/- Th17 cells underwent 

remission, compared with 14% (2/14) of the recipients of WT cells (Table I). Similarly, Csf2-/- 

CD4+ Th17 cells sorted from the dLNs of primed Csf2-/-:WT mixed bone marrow chimeras induced 

a monophasic course of EAE in WT hosts, whereas Th17-polarized WT CD4+ T cells obtained 

from the same chimeras induced chronic EAE (Fig. 2.4B). Doubling the number of Csf2-/- donor 
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CD4+ T cells to 6x106/ host did not normalize the clinical course to that of the recipients of 3x106 

WT CD4+ T cells (unpublished data). This suggests that the milder clinical course experienced by 

the Csf2-/- T cell recipients is not simply secondary to a lower frequency of MOG35-55-specific 

donor T cells in the transferred population, but that GM-CSF production is specifically required 

during the effector phase for heightened clinical disease severity/ chronicity.  

Figure 2.4 – GM-CSF signaling during the effector phase is dispensable for the induction of 
EAE. 
(A) Purified Th17-polarized CD4+ T cells from WT and Csf2-/- were injected into naïve syngeneic 
WT mice. The clinical courses of recipients of WT (closed circles; n=15) and Csf2-/- (open squares; 
n=20) cells are shown. (B) After 96 hours of Th17-polarization, CD4+ T cells from primed mixed 
bone marrow chimeric mice (CD45.1+Csf2+/+:CD45.2+Csf2-/-) were flow sorted based on CD45.1 
versus CD45.2 expression and transferred into naïve WT recipients. The clinical courses (mean ± 
SEM) of mice injected with CD45.1+Csf2+/+ CD4+ T cells (closed circles; n=4) or CD45.2+Csf2-/- 

CD4+ T cells (open diamonds, n=3) are shown. (C) Th17-polarized, MOG35-55-reactive, WT CD4+ 
T cells were adoptively transferred into naïve WT (closed squares; n=21) or Csf2r-/- mice (open 
triangles; n=14). Data (mean ± SEM) were pooled from 3 independent experiments with similar 
results (A, C). * p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001 
 
 In order to focus exclusively on the role of GM-CSF during the effector phase of EAE, we 

transferred WT donor T cells into Csf2r-/- versus WT hosts, or into WT hosts treated with αGM-

CSF versus control antibodies. As anticipated, the Csf2r-/- and αGM-CSF treated WT recipients 
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experienced an abbreviated clinical course, mimicking that of WT mice injected with MOG35-55-

reactive Csf2-/- Th17 cells (Fig. 2.4A, C, and Fig. 2.6B). Similar results were observed when Th1-

polarized WT encephalitogenic CD4+ T cells were transferred to naïve WT or Csf2r-/- recipients 

(Fig. 2.6A). Immunohistochemical analyses of spinal cord tissue revealed more extensive 

demyelination in WT versus Csf2r-/- adoptive transfer recipients that were matched for degree of 

neurological impairment (Fig. 2.5). This was particularly evident in mice with clinical scores 

between 2 and 3. Furthermore, inflammatory cells in the spinal cords of Csf2r-/- recipients were, 

in large part, restricted to the meningeal space and peripheral white matter. In contrast, 

inflammatory cells penetrated deep into the parenchyma of WT spinal cords.  

Figure 2.5 – Inflammatory infiltrates are confined to the meninges and peripheral white 
matter, and demyelination is sparse, in Csf2r-/- compared to WT Th17 transfer recipients. 
Representative spinal cord sections of WT and Csf2r-/- recipients of WT Th17 encephalitogenic T 
cells, matched by clinical scores. Clinical scores at the time of euthanasia are shown above each 
pair of panels. Sections were stained for MBP (green), SMI-32 (red), and DAPI (blue). White 
arrows point to immune cells penetrating into the parenchyma. Scale bar, 300 μm. 
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Figure 2.6 – GM-CSF disruption during adoptive transfer EAE leads to a monophasic 
disease course. 
(A) WT MOG-primed LN cells were cultured under Th1-polarizing conditions prior to CD4+ T 
cell isolation and transfer into naïve WT (n=10) or Csf2r-/- (n=10) mice. (B) WT MOG-primed LN 
cells were cultured under Th17-polarizing conditions prior to CD4+ T cell isolation and transfer 
into naïve WT which were treated every other day with αGM-CSF, or control antibody, starting at 
the time of transfer. * p<0.05 as determined by multiple T-tests with Welch’s correction comparing 
daily clinical scores (significance shown above the curves). *** p<0.001 as determined by Two-
Way ANOVA (significance shown to the right of the curves). 
 

GM-CSF signaling alters the composition of immune cells infiltrating the CNS during the 

development and progression of EAE. To investigate the impact of GM-CSF signaling on the size 

and composition of neuroinflammatory infiltrates, we performed flow cytometric analysis of CNS-

infiltrating cells collected from Csf2r-/- or WT recipients at the pre-clinical, onset, peak, and late 

stages of adoptively transferred EAE. The total number of CD45hi cells recovered per spinal cord 

were comparable between the two groups at all stages of disease (Fig. 2.8A). There were no 

significant differences in the number of monocytes/ macrophages (CD45hiCD11b+Ly6G-CD11c-) 

at any of the time points (Fig. 2.8C). At pre-clinical, onset, and peak disease, the number of 

granulocytes (CD45hiCD11b+Ly6G+CD11c-) was significantly lower in the CNS of Csf2r-/- hosts 
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relative to WT hosts. Donor (CD45.1+) CD4+ T cells were also reduced in CNS infiltrates of Csf2r-

/- hosts at peak disease, and there was a consistent trend towards a lower number of myeloid DCs 

(mDCs) (CD45hiCD11b+Ly6G-CD11c+) at the same time point (Fig. 2.8D, F). Conversely, the 

number of B cells (CD45hiCD11b-Ly6G-CD11c-B220+MHCII+) was significantly increased in the 

spinal cords of Csf2r-/- hosts at onset and peak (Fig. 2.8E). These findings were recapitulated in 

WT transfer recipients treated with αGM-CSF (Fig. 2.7). The percentages of IFNγ- and IL-17-

producers among CNS donor T cells, following short-term stimulation with PMA/ ionomycin or 

overnight stimulation with MOG35-55, were comparable between the WT and Csf2r-/- hosts (Fig. 

2.8G, H).  

 

Figure 2.7 – Neutralization of GM-CSF in WT adoptive transfer recipients alters the cellular 
composition of CNS infiltrates.  
WT adoptive transfer recipients were treated with αGM-CSF or control Rat IgG from the day of 
transfer onward. Spinal cord infiltrates were analyzed at peak disease via flow cytometry. The 
numbers of total CD45hi cells, Granulocytes, Monocytes, Myeloid DCs, B cells, and donor T cells 
per mouse were determined. Data (mean ± SEM) is pooled from 2 experiments with 5-6 animals 
per group per experiment. * p<0.05 by T-test with Welch’s correction. 



30 
 

Figure 2.8 – The composition of CNS infiltrates is altered in Csf2r-/- mice with Th17-induced 
EAE. 
(A-F) CNS inflammatory cells were harvested from WT (closed squares) and Csf2r-/- (open 
diamonds) Th17 recipients at pre-clinical, onset, peak, and late time-points of EAE. The total 
number of (A) CD45hi, (B) Granulocytes, (C) Monocytes, (D) mDCs, (E) B Cells, and (F) donor 
T cells were determined by flow cytometric analysis. Data (± SEM) for the pre-clinical and onset 
time points were pooled from 2 experiments (n=3-4 and 5-7 per group, respectively), peak and late 
time points were pooled from 3 experiments (n=5-6 and n=3-4 per group, respectively). (G, H) 
CNS inflammatory cells were isolated at peak disease and cultured with PMA/ Ionomycin for 4-6 
hours (G), or overnight with MOG35-55. BFA was added at the initiation of culture (G), or during 
the last 4 hours of culture (H). The experiment was repeated twice with n=4-5 per group. * p<0.05, 
** p<0.01, and *** p<0.001. 
 
 To determine whether the relative paucity of granulocytes and mDCs in the CNS infiltrates 

of Csf2r-/- hosts is cell intrinsic, we constructed mixed bone marrow chimeric mice by 

reconstituting lethally irradiated CD45.1+ congenic WT mice with a combination of Csf2r-/- and 
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WT donor bone marrow cells and induced EAE by Th17 transfer. Consistent with our earlier 

results (Fig. 2.8B, D), a significantly higher percentage of the granulocytes and mDCs in CNS 

infiltrates at peak EAE were derived from WT versus Csf2r-/- bone marrow cells (Fig. 2.9A, B). In 

contrast, CNS monocytes/ macrophages were preferentially derived from Csf2r-/- hematopoietic 

cells (Fig. 2.9C). Splenic monocytes, mDCs, and granulocytes were evenly derived from WT and 

Csf2r-/- hematopoietic cells (data not shown). This suggests that GM-CSF directly promotes the 

accumulation of granulocytes and mDCs, but not monocytes/ macrophages, in the CNS of adoptive 

transfer recipients.  

Figure 2.9 – GM-CSF promotes the accumulation of granulocytes, mDCs, and monocytes in 
the CNS at peak EAE. 
(A-C) EAE was induced in WT:Csf2r-/- mixed bone marrow chimeras via adoptive transfer. CNS 
inflammatory cells were analyzed at peak EAE by flow cytometry. The numbers of WT or Csf2r-

/- granulocytes (A), mDCs (B), and monocytes/ macrophages (C), were quantified per mouse. *** 
p<0.001, and **** p<0.0001 as determined by paired, parametric, T-test. Data were combined 
from 3 independent experiments with 5-7 paired points per experiment. 
 

Loss of GM-CSF signaling alters the inflammatory milieu in the CNS of mice with EAE. 

The skewed cellular composition and properties of neuroinflammatory infiltrates in Csf2r-/- 

transfer recipients could be secondary to, as well as the cause of, an altered inflammatory milieu. 

Therefore, we measured the expression of a panel of cytokines, chemokines, and growth factors in 

spinal cord homogenates obtained from WT and Csf2r-/- transfer recipients at peak EAE, via multi-

variate bead-based immunoassays or ELISA (72). Expression of the B cell-attracting chemokine 

CXCL13 was elevated, while expression of the neutrophil mobilizing/ growth factor granulocyte-

colony stimulating factor (G-CSF) was reduced, in the Csf2r-/- homogenates compared with WT 
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homogenates (Fig. 2.10A). These results are consistent with the increased frequency of B cells and 

decreased frequency of granulocytes that we observed in the CNS of Csf2r-/- adoptive transfer 

recipients (Fig. 2.8). IL-1α was significantly elevated in WT spinal cord homogenates, while levels 

of macrophage-colony stimulating factor (M-CSF), CXCL9, and CCL5 were higher in Csf2r-/- 

homogenates (Fig. 2.10A). Levels of the other factors measured in our panel, including IFNγ, 

TNFα, IL-4, IL-10, CXCL1, CXCL2, and CCL2, were comparable in the homogenates from the 

two groups (data not shown). 

Figure 2.10 – CNS cytokine/ chemokine profiles differ between Csf2r-/- and WT mice with 
Th17-mediated EAE. 
(A) Spinal cord homogenates obtained from WT and Csf2r-/- adoptive transfer recipients at peak 
EAE were analyzed via Luminex based multiplex analysis (G-CSF, M-CSF, IL-1α, CXCL9, 
CCL5) or ELISA (CXCL13). Data (± SEM) shown were combined from 2 independent 
experiments (n=5 per group per experiment). (B) RNA was extracted from monocytes and mDCs 
sorted from the CNS of WT:Csf2r-/- mixed bone marrow chimeras at peak disease and subjected 
to nanostring analysis. Each symbol represents CNS inflammatory cells that were pooled from 4 
mice prior to sorting. Results were confirmed with independent samples by qPCR. * p<0.05, ** 
p<0.01, and *** p<0.001. 
 
 We next investigated expression of selected inflammatory factors on the transcript level in 

Csf2r-/- versus WT myeloid cells, that were flow sorted from the CNS of mixed bone marrow 

chimeric mice at peak EAE. Il1a mRNA levels were increased, while Cxcl9 and Ccl5 mRNA 

levels were decreased, in WT monocytes/ macrophages and mDCs compared with their Csf2r-/- 

counterparts (Fig. 2.10B), mirroring the pattern observed with the immunoassays. In contrast, M-
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CSF (Csf1) mRNA levels were relatively low in the Csf2r-/- myeloid cells. We were unable to 

detect mRNA encoding CXCL13 or G-CSF (Csf3) in monocytes/ macrophages or mDCs isolated 

from the CNS of the mixed bone marrow chimeric mice, irrespective of genotype, suggesting that 

these factors are produced by alternative cell subsets. Published studies, and our own unpublished 

data, have implicated microglia as the primary source of CXCL13 in the inflamed CNS (73).  

 B cell depletion does not rescue chronic EAE in Csf2r-/- transfer recipients, but granulocyte 

blockade ameliorates the course of EAE in WT recipients. Given the significant enrichment of B 

cells in CNS infiltrates of Csf2r-/- transfer recipients, we questioned whether those cells were 

suppressing chronic EAE, either by playing an active regulatory role or by outcompeting more 

competent myeloid cells as APCs. However, administration of an αCD20 antibody, which depletes 

CNS infiltrating B cells by greater than 90% (data not shown), had no impact on the disease course 

compared to control mIgG2a (Fig. 2.11A).  

We next questioned whether the increased number of neutrophils in the CNS of WT mice 

led to more severe CNS damage and chronic deficits. We previously showed that the prophylactic 

depletion of circulating neutrophils in adoptive transfer recipients, via administration of αCXCR2 

antisera during the preclinical phase, prevents blood-brain-barrier breakdown and the onset of EAE 

(74). Therefore, we delayed starting αCXCR2 treatment until 2 days following adoptive transfer 

of WT CD4+ encephalitogenic T cells to naïve WT recipients. Compared to mice treated with 

normal rabbit sera, those receiving αCXCR2 developed a less severe disease course marked by 

delayed onset, reduced peak severity, and a decrease in incidence from 90% to 40% (Fig. 2.11B 

and data not shown). When evaluating only those αCXCR2 treated adoptive transfer recipients 

that developed clinical EAE, we observed a clinical course reminiscent of that of Csf2r-/- transfer 

recipients, with a reduction in peak severity and a lower degree of chronic disability (Fig. 2.11C).  
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Figure 2.11 – B cell depletion does not exacerbate EAE in Csf2r-/- adoptive transfer recipients, 
but granulocyte blockade ameliorates chronic EAE in WT recipients. 
(A) Csf2r-/- Th17 recipients were treated with either B cell-depleting αCD20 antibodies (n=5) or 
control mIgG2a (n=5) from the day of T cell transfer onward. (B) WT Th17 adoptive transfer 
recipients were treated with either polyclonal rabbit α-mouse CXCR2 (n=10) or control normal 
rabbit serum (NRS; n=10) between days 2 and 14 post-transfer. (C) The clinical courses of those 
mice in (B) that developed neurological signs (9 mice treated with NRS and 4 treated with 
αCXCR2). Data (± SEM) are representative of 2 (A) or 3 (B and C) experiments with 5-10 mice 
per group, per experiment. * p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001. 
 
Discussion 

Consistent with published data from our own and independent laboratories (42, 45, 70, 71), 

the current study demonstrates that T effector cell priming is compromised in the absence of GM-

CSF. Specifically, we found that the expansion of MOG35-55-specific T cells was reduced in the 

dLNs of immunized Csf2-/- mice when compared with WT mice. Although the differences in the 

immune response between WT and knock-out mice were modest, they were highly reproducible 

and statistically significant. We speculate that impaired priming contributes to the resistance of 

Csf2-/- and Csf2r-/- mice to induction of EAE by active immunization. However, our data indicate 



35 
 

that GM-CSF also plays an independent role in augmenting CNS damage and sustaining 

neurological disability during the effector phase of disease. 

Other laboratories have reported that the clinical manifestation of EAE in otherwise 

immunocompetent C57BL/6 mice is dependent on GM-CSF expression during the effector phase 

(39, 44). In those studies, disease was induced either by active immunization with MOG35-55 

peptide in CFA or by transfer of 2D2 T cells that were primed and polarized in vitro. In contrast, 

we found that GM-CSF signaling is not required for the induction of neurological deficits in naïve 

C57BL/6 mice following the injection of polyclonal MOG35-55-specific Th1 or Th17 cells, nor does 

it influence the trajectory of the initial clinical course. Similarly, Pierson and Goverman recently 

reported that expression of GM-CSF is dispensable for the manifestation of conventional disease 

in an alternative model of adoptively transferred EAE in C3HeB/FeJ mice (71). Together, these 

observations indicate that the relative importance of GM-CSF signaling for the manifestation of 

EAE is model dependent. 

Although we could readily induce EAE in C57BL/6 Csf2r-/- adoptive transfer recipients, or 

in C57BL/6 WT recipients treated with αGM-CSF antibodies, the spatial distribution and cellular 

composition of CNS infiltrates were altered in those mice compared with their respective controls, 

and they were more likely to undergo remission. Inflammatory infiltrates in WT adoptive transfer 

recipients were neutrophil rich and extended into the parenchymal tissue, while infiltrates in Csf2r-

/- recipients were B cell rich and confined to the meningeal space and peripheral white matter of 

the spinal cord. These distinct spatial patterns were evident in individual mice matched for degree 

of clinical disability, including those with overt paraparesis, suggesting that the deficits that accrue 

during acute EAE are not dependent on deep parenchymal infiltration by inflammatory cells. 

Rather, it is likely that early neurological dysfunction is secondary to toxic and vasoactive factors 
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that are released by infiltrating immune cells and diffuse into the adjacent white matter to trigger 

edema and disrupt axonal transport and/ or signal transmission. The fact that mice deficient in 

GM-CSF receptor signaling undergo clinical remission suggests that those early events are, for the 

most part, reversible. The chronic deficits incurred by GM-CSF sufficient mice may reflect 

irreversible damage directly inflicted on axons and glial cells by pathogenic leukocytes via cell-

to-cell contact.  

The mechanism by which GM-CSF supports parenchymal invasion by immune cells 

remains to be elucidated. One possibility is that neutrophils (which constitute a significant 

percentage of the WT infiltrates) secrete proteases that digest the extracellular matrix. This 

hypothesis is consistent with our finding that blockade of neutrophil trafficking reduces disease 

incidence and induces remission in those WT transfer recipients that succumb to disease. The role 

of GM-CSF in EAE pathogenesis is likely multifocal. Hence, the milder clinical course of Csf2r-/- 

transfer recipients may also be attributable to the reduced frequency of donor T cells, and possibly 

of mDCs, in CNS infiltrates at peak EAE (Fig. 2.8). A relative paucity of autoreactive T cells in 

the CNS could result in a reduction in local chemoattractants and immunostimulatory molecules 

(produced by either the T cells themselves or bystander myeloid or glial cells) that enhance 

inflammatory infiltration of the deep white matter. Finally, lower IL-1α expression by mDCs and 

macrophages (Fig. 2.10B) may limit the extent of destructive inflammation. The mechanism of 

action of GM-CSF during EAE is further complicated by the possibility that it suppresses the 

expression of factors with potential neuroprotective or immunoregulatory properties, such as M-

CSF and CCL5 (Fig. 2.10) (75–77). 

The distinctive cellular composition of inflammatory infiltrates in Csf2r-/- versus WT 

transfer recipients was associated with differential expression of leukocyte mobilizing/ growth 
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factors. G-CSF was disproportionately elevated in spinal cord homogenates of WT mice, 

consistent with the predominance of neutrophils in their neuroinflammatory infiltrates (Figs 2.8B 

and 2.6A). We previously showed that G-CSF plays a critical role in EAE pathogenesis by driving 

mobilization and activation of neutrophils (78). Activated neutrophils can mediate blood-brain-

barrier breakdown during EAE and facilitate the mobilization of monocytes from the bone marrow 

into the circulation, from where they can be recruited to the CNS (74, 78). The hypothesis that 

GM-CSF drives tissue damage during EAE, at least in part, via the direct modulation of neutrophils 

is challenged by the observation that Csf2rflox/floxxLysM-cre conditional knock-out mice (in which 

neutrophils are devoid of GM-CSF receptor) remain susceptible to EAE (41). However, we have 

found that LysM-cre does not drive genetic recombination in a significant percent of CNS-

infiltrating neutrophils (unpublished data). Furthermore, the data in Fig. 2.9 indicate that, in 

addition to direct effects, GM-CSF could activate neutrophils indirectly by stimulating other CNS 

myeloid cells to produce G-CSF. 

The data presented in this paper illustrate the pleiotropic effects of GM-CSF during Th17 

mediated EAE, which collectively increase susceptibility to active immunization and exacerbate 

the clinical course following adoptive transfer. Our results suggest that GM-CSF is not required 

for the initial influx of leukocytes to the CNS or development of neurological deficits in our model, 

but facilitates deep intraparenchymal infiltration and mediates long-lasting damage to myelin and 

axons. We believe that this study is the first to implicate a specific role of GM-CSF in the 

establishment of chronic, as opposed to acute, neurological disability. Interestingly, a growing 

body of literature indicates that myeloid cell dysregulation is more prominent in chronic 

progressive that in relapsing-remitting forms of MS (31, 79–82). Our results support the position 

than GM-CSF may be a viable therapeutic target for the treatment of progressive MS. 
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CHAPTER 3 – GM-CSF Drives Chronic EAE via Activation of the CCR1/ CCL6 
Chemokine Pathway 

 
**Portions of this chapter are being prepared for publication 
Duncker PC, Munie AN, Wilkinson NM, Washnock-Schmid JM, Segal BM. GM-CSF drives 
chronic EAE via activation of the CCR1/ CCL6 chemokine pathway. 

Abstract 

Granulocyte-macrophage colony-stimulating factor (GM-CSF), a myeloid cell mobilizing 

and growth factor, has been implicated in the pathogenesis of autoimmune demyelinating disease. 

It plays a critical role in experimental autoimmune encephalomyelitis, an animal model that 

simulates many of the clinical and pathological features of multiple sclerosis (MS). We recently 

showed that although GM-CSF receptor-deficient (Csf2r-/-) mice initially succumb to EAE 

following the adoptive transfer of encephalitogenic CD4+ T cells, they undergo clinical remission 

while their WT counterparts develop chronic deficits. We found that the cellular composition and 

spatial distribution of central nervous system (CNS) infiltrates differ between Csf2r-/- and WT 

adoptive transfer recipients at peak EAE. The most striking finding was a relative dearth of 

neutrophils in the CNS of Csf2r-/- adoptive transfer recipients, and that inflammatory cells do not 

penetrate deeply into the parenchyma compared with WT transfer recipients. However, the 

pathways underlying these differences remain to be elucidated. In this study, we show that protein 

levels of the chemokine CCL6 are relatively low in CNS homogenates obtained from Csf2r-/- 

adoptive transfer recipients compared with WT recipients at peak EAE. We further found that GM-

CSF receptor signaling into CNS-infiltrating monocytes, dendritic cells, and neutrophils directly 

drives production of CCR1 and its ligand, CCL6, by those cells. Our data support that a GM-CSF 
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dependent CCR1/ CCL6 pathway perpetuates the retention of CNS infiltrates in the later stages of 

EAE, resulting in permanent neurological deficits. In support of that hypothesis, treatment of WT 

adoptive transfer recipients with a small molecule CCR1 antagonist prevented clinical EAE when 

administered prophylactically and triggered clinical remission when administered starting at EAE 

onset. CCR1 antagonism led to alterations in CNS myeloid infiltrates that mimicked the effects of 

GM-CSF receptor deficiency. Our data indicate that GM-CSF drives chronic CNS damage and 

disability in EAE via activation of the CCR1/ CCL6 chemokine pathway, which supports 

prolonged infiltration of the CNS by pathogenic myeloid cells. 

 

Introduction 

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous 

system (CNS) believed to be initiated by CD4+ T cells expressing auto-reactive T cell receptors 

(TCRs) specific for CNS antigens (83). The specific antigen recognized by these TCRs are 

unknown. However, the efficacy of lymphocyte targeted DMTs in suppressing MS relapses 

supports a predominant role for those cells in lesion formation. Additionally, numerous studies in 

experimental autoimmune encephalomyelitis (EAE, an animal model of MS) demonstrate that 

myelin-reactive CD4+ Th1 or Th17 cells are capable of driving CNS autoimmune disease with 

clinical and pathological features reminiscent of MS (31, 84, 85). When transferred into 

unmanipulated syngeneic hosts, the T cells enter the CNS where they are reactivated by resident 

antigen presenting cells (APCs) that bear endogenous myelin peptides bound to MHCII molecules. 

The interaction between myelin-reactive Th1/ 17 cells and CNS APCs lead to an inflammatory 

cascade which drives brain and spinal cord damage, resulting in neurological disability. 
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A principal step in the neuroinflammatory cascade is the production of granulocyte-

macrophage colony-stimulating factor (GM-CSF) by reactivated CD4+ T cells (40, 42, 44, 71, 86). 

Within the hematopoietic compartment, GM-CSF receptor (GM-CSFR) is exclusively expressed 

by cells of the myeloid lineage, including monocytes, macrophages, dendritic cells (DCs), and 

granulocytes, and its ligation promotes survival, activation, and differentiation (87). The primary 

target, and mechanism of action, of GM-CSF during the development of EAE is heavily debated. 

Microglia, Ly6ChiCCR2+ monocytes, myeloid-derived DCs (mDCs), and neutrophils have each 

been suggested to be impacted by GM-CSF signaling during EAE in a manner that is requisite for 

disease induction and/ or maintenance (41, 49, 71, 86). Not only does GM-CSF enhance 

phagocytosis by myeloid cells (potentially of myelin), but it can promote recruitment of leukocytes 

by induction of chemokines, including CCL2 (88, 89). CCL6 and its cognate receptor CCR1 have 

been found to be upregulated by GM-CSF signaling, but their role on myeloid cells during the 

effector phase of EAE has largely been overlooked, unlike CCL2/ CCR2 which are considered 

essential for disease development (90–96).  

CCR1 is expressed by macrophages and microglia in active MS lesions (97). C57BL/6 

CCR1 deficient (Ccr1-/-) mice have a decreased incidence and severity of actively induced EAE 

compared with C57BL/6 WT mice (98). Blockade of CCR1 signaling using a small molecule 

antagonist reduced the clinical severity of EAE in rats (99). CCR1 can be ligated by a wide array 

of chemokines, however, CCL6 is specific for CCR1. High levels of CCL6 have been found in the 

CNS of mice with EAE (100–102). CCL6 is primarily a macrophage chemoattractant, although it 

has been shown to also attract B cells, CD4+ T cells, and eosinophils under specific conditions.  

The overall goal of the current study was to characterize the role of the CCR1/ CCL6 

chemokine pathway in adoptive transfer EAE, particularly as it pertains to the function of GM-
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CSF driven chronic disease. We found that GM-CSF signaling is critical for persistent CCL6 and 

CCR1 expression by myeloid cells in the CNS during later stages of EAE. CCR1 blockade starting 

immediately after T cell transfer resulted in complete resistance to EAE, while its administration 

following disease onset triggered clinical remission, mirroring the clinical course of GM-CSFR 

deficient adoptive transfer recipients. 

 

Methods and Materials 

Mice. Six- to eight-week-old CD45.1 congenic and WT C57BL/6 mice were obtained from Charles 

River Laboratories. Csf2r-/- mice (B6.129S1-Csf2rb1tm1Cgb/J) mice were obtained from L. Robb 

(The Walter and Eliza Hall Institute), Csf2-/- mice were obtained from D. McGavern (National 

Institutes of Health), mT/mG (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) mice were 

obtained from B. Moore (University of Michigan, Ann Arbor), and Ccr1-/- mice obtained from P. 

Murphy (National Institutes of Health) and bred in our facility. Mice were housed in micro-isolator 

cages under specific pathogen-free conditions. All animal studies were approved by the University 

Committee on Use and Care of Animals. 

 

Induction and scoring of EAE. Mice were immunized s.c. with 100 µg of the MOG35-55 peptide 

(MEVGWYRSP-FSRVVHLYRNGK; Biosynthesis) in CFA (Difco) at four sites over the flanks. 

For active immunization, mice were also administered 300 ng inactivated Bordetella pertussis 

toxin i.p. on days 0 and 2. For adoptive transfer EAE, inguinal, axial, and brachial dLNs were 

harvested from donor mice 10-14 days post-immunization, pooled, homogenized, and passed 

through a 70 µm strainer (Fisher Scientific). Cells were cultured under Th17-polarizing conditions: 

MOG35-55 [50 µg/ml], rmIL-23 [8 ng/ml], rmIL-1α [10 ng/ml], and αIFNγ [10 µg/ml]. Following 
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96 hours of culture, CD4+ T cells were purified by positive selection using L3T4 magnetic 

microbeads (Miltenyi Biotec). 3-6x106 CD4+ T cells were injected i.p. to naïve recipients. The 

recipient mice were observed daily for signs of EAE, and rated for degree of disability using a 5 

point scale, as previously described (68). 

 

Flow cytometry. For surface staining, cells were resuspended in PBS with 2% FBS and Fc Block 

(αCD16/32) [100 ng/ml] before 1:2 dilution with fluorochrome-conjugated Abs. For intracellular 

staining, cells were stimulated either; overnight with MOG35-55 before brefeldin A (BFA) [5 µg/ml] 

was added for 4-6 hours, or with PMA [50 ng/ml], ionomycin [2 µg/ml], and BFA [5 µg/ml] for 

4-6 hours. Cells were stained for surface markers, as above, fixed in 4% PFA, permeabilized with 

0.5% saponin, and incubated with fluorochrome-conjugated anti-cytokine mAbs. Flow gating 

began with comparison of SSC-A vs. FSC-A to exclude events outside the normal parameters of 

leukocytes followed by doublet exclusion comparing FSC-A vs. FSC-H. Dead cells were gated 

out using fixable viability dyes. Microglia were identified as CD45intCD11b+. CNS-infiltrating 

immune cells were identified as CD45hi. Data were collected with a FACSCanto II flow cytometer 

using FACSDiva software (v6.1.3 and v7.0, Becton Dickinson). A FACS Aria III cell sorter was 

used to purify immune cells from the CNS and spleen. Data were analyzed using FlowJo software 

(vX 10.0, Treestar). 

 

Antibodies and reagents. The following antibodies were obtained from BD Biosciences: 

Allophycocyanin-Cy7-(αIFNγ [XMG1.2], αLy6G [1A8]). The following antibodies were obtained 

from BioLegend Allophycocyanin-(αCCR1 [S15040E], αCD26 [H194-112], αCD88 [20/70], 

Biotin-(αCD88 [20/70]), FITC-(αCCR1 [S15040E], αCD26 [H194-112]), PE-(αCD88 [20/70]). 
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The following antibodies were obtained from ThermoFisher: Allophycocyanin-(αB220 [RA3-

6B2], αCD11c [N418]), eFluor 450-(αCD45 [30-F11], αCD45.1 [A20]), eFluor 506-Fixable 

Viability, eFluor 780-Fixable Viability, FITC-(αGM-CSF [MP1-22E9], αMHCII [M5/114.15.2]), 

PE-αCD4 [RM4-5], PE-Cy7-(αCD44 [IM7], αCD11b [M1/70], αCD4 [RM4-5]), and PerCP-

Cy5.5-(αIL-17A [eBio17B7], αCD11c [N418]). rmIL-23 and rmIL-1α were obtained from R&D 

Systems. αGM-CSF (22E9.11) and αCD16/32 (2.4G2) were produced in house via hybridoma. 

500μg of αGM-CSF or whole rat IgG (Sigma Aldrich) was administered i.p. every other day, 

beginning at time of immunization or T cell transfer, during blocking experiments. αIFNγ 

(XMG1.2) was obtained from Bio X Cell.  

 

Isolation of inflammatory cells from the CNS, spleen, and blood. Tissue was harvested following 

intracardiac perfusion with 1X PBS. CNS was separated into whole brain or spinal cord, 

homogenized in 1 ml 1X PBS containing a protease inhibitor (Roche), and pelleted at 800 x g for 

5-10 min. Supernatants were isolated and stored at -80°C. Pellets were resuspended in 3 ml 

collagenase A (1 mg/ml) and DNase I (1 mg/ml) in HBSS with calcium and magnesium and 

incubated in a 37°C water bath for 10 minutes. Samples were pelleted at 800 x g, resuspended in 

27% Percoll, and centrifuged for 10 minutes at 800 x g. The myelin/ debris layer and Percoll were 

removed, and the cell pellet used for flow cytometric staining. Splenic immune cells were isolated 

by homogenization through a 70 µm strainer (BD Falcon). RBCs were lysed using ACK lysis 

buffer (Quality Biologicals). Blood was isolated into microtainers with EDTA (Becton Dickinson). 

Following centrifugation, plasma was isolated and stored at -80°C. Cells were resuspended in 6 

ml 1X PBS with 2% FBS and underlayed with 3 ml pre-warmed Lympholyte-M (Cedarlane) 
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before centrifugation at 1750 x g for 20 min at room temperature. White blood cells were harvested 

from the interface, washed, and remaining RBCs were lysed using ACK lysis buffer. 

 

Transwell assays. Ly6G+ cells were purified by magnetic bead sorting (Miltenyi) as described by 

the manufacturer protocol. 3-µm-pore 65-mm-diamter transwells (Corning) were pre-coated with 

2.5 µg/ml fibrinogen. Purified neutrophils were resuspended in 0.5% BSA in PBS at a 

concentration of 1x106 cell/ml. 100 µl of cells (5x105 cells) were added to the top of the transwell. 

600 µl CCL6 (R&D Systems) or CXCL2 (R&D Systems) were added to the bottom of the well at 

concentrations of 1 µg/ml and 20 ng/ml, respectively. Cells were allowed to incubate at 37°C for 

2 hours before addition of 60 µl 0.5M EDTA to the bottom of the well. Cells were incubated for 

an additional 15 min at 4°C. The media in the bottom of the chamber was collected and analyzed 

for cell number by flow cytometry. 

 

In vivo administration of CCR1 antagonist. Animals were administered 600 µg J113863 (Tocris) 

daily as described for each experiment. J113863 was first suspended in 100% DMSO, then brought 

to 5% DMSO by addition of 1X PBS. 5% DMSO in PBS was used as a vehicle control in all 

experiments in which J113863 was used. 

 

Construction of mixed bone marrow chimeric mice. Mixed bone marrow chimeras were 

constructed by first ablating the endogenous hematopoietic cells of congenic (CD45.1) C57BL/6 

WT mice with a lethal dose of 1300 Rads, delivered in two 650 Rad doses separated by 3 hours. 

For experiments comparing CNS immune cell infiltrates at peak EAE, irradiated mice were 

reconstituted with mT/mG and Csf2r-/- bone marrow mixed at a 1:2 ratio, respectively, to obtain 
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an approximate 50:50 composition of circulating leukocytes following reconstitution. Animals 

were kept on Baytril water for 2 weeks and allowed to reconstitute for an additional 6 weeks before 

induction of EAE.  

 

qPCR. Cells were resuspended in either 300 µl RLT buffer or 1 ml Trizol (Life Technologies) 

before Qiagen RNeasy RNA purification. Purified RNA was converted into cDNA using the High 

Capacity cDNA Reverse Transcription Kit (Life Technologies). Relative RNA levels were 

quantified by SYBR Green qPCR performed on either a QuantStudio 3 or 6 (Applied Biosystems). 

 

Multiplex cytokine analysis and ELISA. CNS cytokine levels in homogenate supernatants were 

measured using Luminex multiplex bead-based analysis (Millipore) using a Bio-Plex 200 system 

following the manufacturer’s protocols. Data shown indicate levels within the linear portion of 

appropriate standard curves. CXCL13 Quantikine ELISA kit (R&D Systems) was used, according 

to manufacturer protocols, to determine the concentration of CXCL13 in CNS homogenate 

supernatants. Total protein was determined via Bradford assay (Thermo Scientific) and used to 

normalize analyte concentrations. 

 

Immunofluorescence. Following intracardiac perfusion with Tyrode’s and 4% paraformaldehyde 

(PFA), spinal columns were removed, post-fixed for 3 days in PFA, decalcified in 0.5 M EDTA 

for 4 days, cryoprotected in 30% sucrose, and embedded and frozen in OCT (Cellpath). 12 μm 

sections were blocked with Avidin B and biotin (Vector Labs) before staining with the following 

primary and secondary antibodies: goat αMBP (Santa Cruz Biotechnology), Alexa Fluor 488-

conjugated donkey αgoat IgG (Life Technologies), rat αCD45 (eBiosciences), Alexa Fluor 647-
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conjugated goat αrat (Life Technologies), mouse αSMI-32 (Covance), and Alexa Fluor 594 

conjugated goat αmouse IgG. DAPI (Life Technologies) was used to label nuclei. Images were 

acquired on a Nikon Eclipse Ti, CoolSnap EZ camera, and NIS Elements: Basic Research v3.10. 

Appropriate image processing, including image merging and black level and brightness 

adjustments, was performed in Photoshop CC 2017 and applied equally to all samples. 

 

Statistical analysis. Statistical analyses were performed using GraphPad Prism software (v6.05). 

Disease curves were compared by Two-way ANOVA and T-tests (day-by-day) without multiple 

comparisons. Immune parameters were compared using either unpaired two-tailed student’s T-test 

with Welch’s correction or two-way ANOVA with correction for multiple comparisons using 

Tukey’s post-hoc test. Leukocyte numbers and mRNA from mixed bone marrow chimera mice 

were analyzed via paired, parametric T-test. Outliers were identified by ROUT analysis and 

removed as necessary. A p-value < 0.05 (*) was considered significant, with p < 0.01 (**), p < 

0.001 (***), and p < 0.0001 (****). 

 

Results 

CCL6 is upregulated in the CNS during EAE; its expression during later stages of disease 

is GM-CSF dependent. We have previously shown GM-CSF receptor deficient (Csf2r-/-) and WT 

recipients of encephalitogenic T cells develop EAE with comparable incidence and peak clinical 

scores (Fig. 2.2C). However, unlike WT adoptive transfer recipients, the Csf2r-/- recipients 

undergo spontaneous remissions and, therefore, do not develop chronic neurological deficits (86). 

This milder clinical course was associated with a decrease in the frequency of neutrophils in the 

CNS during the pre-clinical, onset, and peak phases of disease, as well as a reduction in myeloid-
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derived DCs and donor CD4+ T cells in the CNS at peak disease. To investigate the mechanism 

underlying these differences, we measured levels of an array of chemokines in the CNS of WT 

and Csf2r-/- recipients at serial time points during the course of EAE. Expression of the prototypic 

neutrophil chemokines, CXCL1 and CXCL2, and the monocyte chemokine, CCL2, were 

comparable in the CNS of WT and Csf2r-/- recipients during every stage of EAE (Fig. 3.1). CCL6 

levels were also similar between the groups at disease onset. However, while CNS CCL6 levels 

continued to rise in WT recipients from onset through peak EAE, they fell to near baseline levels 

in Csf2r-/- mice during the peak and late stages of disease (Fig. 3.1).  

Figure 3.1 – CNS CCL6 expression is significantly reduced in Csf2r-/- adoptive transfer 
recipients during later stages of EAE compared with their WT counterparts.  
EAE was induced in WT and Csf2r-/- mice by adoptive transfer of WT congenic Th17-polarized 
MOG-specific CD4+ T cells. Spinal cord homogenates were collected at onset, peak, and late time 
points and analyzed for chemokine levels by Luminex based multiplex (CXCL1, CXCL2, and 
CCL2) or ELISA (CCL6) and normalized to total protein as determined by Bradford protein 
quantification. *p>0.05 and ****p>0.0001. Statistical significance was determined by two-tailed 
student’s T-test.  

CCL6 and CCR1 are expressed by CNS-infiltrating myeloid cells during EAE; CCL6 

expression during later stages of disease is GM-CSF dependent. We next measured CCR1 and 

CCL6 expression by CNS-infiltrating cells during the course of EAE. Congenic (CD45.1+) 

encephalitogenic CD4+ T cells were adoptively transferred to CD45.2+ WT recipients which were 

euthanized at onset, peak, and late time points. Flow cytometric analysis of the spinal cord 

infiltrates showed that CCR1 and CCL6 were expressed in infiltrating myeloid cells, but not 

lymphocytes, throughout the disease course. (Fig. 3.2A). The frequency of CCR1 expressing 

neutrophils monocyte/ macrophages, and myeloid-derived DCs rose steadily throughout the 
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disease course, peaking at late disease (Fig. 3.2B). Similarly, the frequency of CCL6+ cells within 

each myeloid cell subset was below 20% at disease onset, but rose steadily throughout the disease 

course, peaking at peak disease in monocytes/ macrophages and myeloid-derived DCs, and at late 

disease in neutrophils (Fig. 3.2B). 

Figure 3.2 – CCR1 and CCL6 are detectable in CNS-infiltrating myeloid cells, expand 
throughout disease progression, and are GM-CSF dependent. 
EAE was induced by adoptive transfer of congenic WT encephalitogenic Th17 CD4+ T cells to 
either (A, B, C) WT or (C) Csf2r-/- recipients. (A, B) Animals were euthanized at onset, peak, and 
late time points to analyze CCR1 and CCL6 expression by infiltrating myeloid cells. (A) shows 
the frequency of CCR1+ and CCL6+ cells in all CNS-infiltrating (CD45hi) cells or in myeloid cells 
(CD45hiCD11b+). (B) Quantification of the frequency of CCR1 and CCL6 expressing cells within 
the identified cellular subsets. (C) Score matched WT and Csf2r-/- recipients were euthanized at 
peak EAE and CCR1 and CCL6 expression were determined as a frequency of all infiltrating cells, 
as well as the frequency of positive cells within each indicated myeloid cell subset. Error bars 
represent mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Significance was 
determined by (A, B) two-way ANOVA with Tukey’s post-hoc test or student’s T-test.  
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Interrogation of these same markers in the spleen and blood revealed dynamic changes in 

those compartments as well (Fig. 3.3). In contrast to the CNS, which showed a progressive 

accumulation of CCR1+ neutrophils, monocytes/ macrophages, and mDCs throughout the disease 

course, the frequency of CCR1+ neutrophils and monocytes/ macrophages declined in the spleen 

between onset and peak disease (Fig. 3.3A left). However, the frequencies of CCR1+ monocytes/ 

macrophages, mDCs, and DCs rose in the blood throughout disease, more reminiscent of pattern 

observed in the CNS (Fig. 3.3 left). CCL6 expression increased in neutrophils in both the spleen 

and CNS following clinical onset but was stable in the blood (Fig. 3.3A and B right). 

 
Figure 3.3 – CCR1 and CCL6 expression by circulating and splenic leukocytes evolves 
through the disease course.  
EAE was induced by adoptive transfer of congenic WT encephalitogenic Th17 CD4+ T cells to 
WT recipients. Animals were euthanized at onset, peak, and late time points to analyze CCR1 and 
CCL6 expression by hematopoietic cells in the (A) spleen and (B) blood. Quantification of the 
frequency of CCR1 and CCL6 expressing cells within the identified cellular subsets for each tissue 
is shown. Error bars represent mean ± SEM. *p<0.05, **p<0.01, ****p<0.0001. Significance was 
determined by two-way ANOVA with Tukey’s post-hoc test.  

In order to determine whether expression of CCR1 and/ or CCL6 by the CNS myeloid cells 

is GM-CSF dependent, we repeated the flow cytometric analysis comparing WT and Csf2r-/- 
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adoptive transfer mice at peak disease. The frequency of CCL6 expressing CD45hi CNS-

infiltrating cells was significantly lower in Csf2r-/- versus WT recipients. However, the distribution 

of myeloid subsets within the CCL6+ population was similar between the groups (Fig. 3.2C right). 

The percentage of CNS myeloid cells that were CCR1+ cells was significantly elevated in the 

absence of GM-CSF signaling, possibly reflecting decreased CCL6 driven internalization of the 

receptor (Fig. 3.2C left).  

Neutrophils isolated from the spleens of MOG/ CFA primed mice, or mice with adoptive 

transfer EAE, migrate toward CCL6. To determine if neutrophils would migrate in response to 

CCL6, and if this chemotaxis was activation dependent, spleen-derived neutrophils (Ly6G+) were 

magnetically sorted from WT naïve or MOG35-55-primed and analyzed in a transwell assay for 

chemotaxis towards CCL6, or CXCL2 as a positive control. In parallel experiments, neutrophils 

were derived from both the spleen and CNS of WT recipients of encephalitogenic CD4+ T cells at 

peak disease and tested under the same conditions. Splenic neutrophils from primed, but not naïve, 

animals migrated across the transwell in response to CCL6 (Fig. 3.4A). The migration of the 

primed neutrophils towards CCL6 was completely blocked by the selective CCR1 antagonist 

J113863 (Fig. 3.4B). Splenic neutrophils from both primed and naïve mice migrated in response 

to CXCL2, however, the former did so more efficiently (Fig. 3.4A). Splenic, but not CNS, 

neutrophils isolated from mice with adoptively transferred EAE responded to both CCL6 and 

CXCL2 (Fig. 3.4C). Based on these results, we hypothesize that activation of neutrophils within 

the inflamed CNS may lead to internalization of CCR1 and/ or CXCR2 secondary to binding by 

their respective ligands (which are expressed at high levels in that microenvironment), making 

them less responsive to those chemoattractants ex vivo. 
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Figure 3.4 – Neutrophils isolated from the spleens of MOG35-55 primed mice, or the CNS of 
mice with adoptively transferred EAE, exhibit enhanced chemotaxis towards CCL6. 
(A-C) Ly6G+ neutrophils were magnetically purified from the following tissues before being tested 
for CCL6 induced chemotaxis in a transwell assay. (A) Spleens of naïve and MOG35-55-primed 
WT mice. (B) Spleen of MOG35-55-primed which were then pretreated with the CCR1 antagonist 
J113863 at 1 and 10 µg/ml. (C) The spleen and CNS of mice WT mice at peak adoptive transfer 
EAE. *p<0.05, **p<0.01. Significance was determined by (A, B, C) student’s T-test or (D) two-
way ANOVA with Tukey’s post-hoc test. 

GM-CSF stimulates CCR1 and CCL6 expression by peripheral myeloid cells. Previous 

research has shown that GM-CSF stimulation can induce CCL6 expression by mouse bone marrow 

myeloid cells and CCR1 expression by human granulocytes (90, 91). To directly investigate the 

effects of GM-CSF signaling on CCR1 and CCL6 expression by mature murine myeloid cells, we 

cultured either Ly6G+, or unsorted, splenic cells isolated from naïve GM-CSF deficient (Csf2-/-) 

mice in the presence or absence or recombinant mouse GM-CSF (rmGM-CSF), for mRNA or 

protein analysis, respectively. Selected chemokines and their receptors were measured on the 

mRNA level at 4 hours via qPCR, and on the protein level at 6 and 24 hours by flow cytometry. 
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GM-CSF stimulation led to a robust upregulation of mRNA encoding CCL6, CCR1, CXCL2, and 

CXCR2 in both Ly6G+ cells at 6 hours. CCL2, CCR2, and CXCL1 were universally detected at 

low levels at baseline and were not altered in response to GM-CSF stimulation (Fig. 3.5A). On the 

protein level, Ly6G+ neutrophils, Ly6G-CD11bhiCD11c- monocytes/ macrophages, and Ly6G-

CD11bhiCD11cint myeloid-derived DCs were the major sources of both CCR1 and CCL6 among 

splenic cells. Very few Ly6G-CD11bintCD11chi or Ly6G-CD11b- CD11cint DCs, and essentially no 

Ly6G-CD11b-CD11c- lymphocytes, expressed either CCR1 or CCL6 (Fig 3.5D and 3.4E right, 

and data not shown). Within 6 hours of GM-CSF stimulation, CCR1 protein expression was 

elevated from baseline on neutrophils, monocytes/ macrophages, and CD11bhiCD11cint DC. (Fig. 

3.5D). CCR1 levels returned to baseline on all cell types by 24 hours (Fig. 3.5D right). Intracellular 

CCL6 protein expression was also enhanced in neutrophils, monocytes/ macrophages, and 

monocyte-derived DCs following a 6-hour culture with recombinant GM-CSF (Fig. 3.5E). In 

contrast to CCR1, CCL6 protein levels progressively rose in each of those GM-CSF stimulated 

subsets between 6 and 24 hours (Figs. 3.5D, E). 
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Figure 3.5 – GM-CSF stimulation drives CCL6 and CCR1 expression by splenic myeloid cell 
subsets.  
(A) Ly6G+ neutrophils were magnetically sorted from the spleen of MOG35-55-primed Csf2-/- mice 
and stimulated in vitro for 4 hours with rmGM-CSF, or control media, before purification of 
mRNA for qPCR analysis of gene expression changes. (B-E) Splenocytes were isolated from 
MOG35-55-primed Csf2-/- mice and stimulated in vitro with rmGM-CSF, or control media, for 6 or 
24 hours before analysis of CCR1 and CCL6 protein expression changes as determined by flow 
cytometry. (B) Shows isotype controls for CCL6 and CCR1 compared to 24-hour time points. (C) 
Shows gating used to identify neutrophils and subsets of myeloid cells for which (D) CCR1 and 
(E) CCL6 frequencies are quantified. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
Significance was determined by two-way ANOVA with Tukey’s post-hoc test or student’s T-test. 

Therapeutic treatment with CCR1 antagonist suppresses adoptive transfer EAE and 

curtails CNS-infiltration by monocytes and CNS-initiating cDCs. In order to determine whether 
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the development of chronic deficits in WT adoptive transfer recipients is dependent on CCR1, we 

compared the clinical courses of WT mice treated with a CCR1 small molecule antagonist versus 

vehicle beginning on the day following adoptive transfer of encephalitogenic T cells. CCR1 

antagonism prevented the development of clinical signs (Fig. 3.6A). Following treatment 

cessation, animals rapidly developed EAE to an equivalent incidence as vehicle-treated mice, 

although they experienced milder disease (Fig. 3.6A, B). We analyzed the composition of CNS 

infiltrating cells isolated from both groups on the day before expected clinical onset in the control 

group.  
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Figure 3.6 – Therapeutic treatment with a CCR1 antagonist blocked adoptive transfer EAE 
and was marked by a reduction in monocytes, macrophages, and CD26+ cDCs. 
EAE was induced in WT mice by adoptive transfer of congenic MOG35-55-primed CD4+ T cells. 
CCR1 antagonist, or vehicle control, was administered i.p. daily beginning the day after T cell 
transfer. (A, B) Animals were monitored daily for signs of disease. (C) Some animals were 
euthanized on day 6, before development of clinical symptoms, and changes in CNS infiltration 
were characterized by flow cytometry. (D) Changes in DC accumulation in the CNS were 
quantified by comparison of CD26 and CD88 expressing cells within the CD11c+MHCII+ 
population. *p<0.05. Statistical significance was determined by (C, D) student’s T-test. 
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We observed no difference in the total number of infiltrating CD45hi cells per CNS 

specimen. However, there was a reduction in the frequency of monocytes/ macrophages 

(CD45hiCD11b+Ly6G-CD11c-) and an increase in the frequency of B cells in CNS infiltrates from 

mice treated with the CCR1 antagonist (Fig. 3.6C). We previously reported that mice which 

develop EAE in the absence of GM-CSF signaling have a significant reduction in the number of 

infiltrating neutrophils, and an increase in infiltrating, B cells early in disease development (86). 

Although others have reported CCR1 expression by B cells, we have not observed Ccr1 mRNA 

or CCR1 protein expression by those cells (data not shown).  

We recently reported that CNS-infiltrating CD11c+MHCII+ DCs are a heterogeneous 

population that encompasses CD88+CD26- monocyte-derived DC (moDC) and CD88-CD26+ 

classical (cDCs) (103). We found that moDC isolated from the CNS of mice with EAE are 

inefficient APCs, while cDCs induce robust activation/ reactivation, proliferation, and 

differentiation of MOG35-55-specific T cells. Furthermore, depletion of CD26+ cDCs decreased the 

incidence of adoptively transferred EAE. Although prophylactic treatment with the CCR1 

antagonist did not alter the frequency of total CD45hiCD11b+/-CD11c+ DC in the CNS during the 

preclinical phase, it caused a selective depletion of CD26+ cDC, resulting in a decreased 

cDC:moDC ratio (Fig. 3.6D). 

Therapeutic CCR1 antagonism triggers clinical remission associated with a reduction in 

CNS-infiltrating neutrophils and B cells and restriction of infiltrates to the peripheral edges of the 

spinal cord. When WT recipients of encephalitogenic T cells were treated with a small molecule 

CCR1 antagonist on the day of clinical onset, they subsequently experienced clinical remission, 

while vehicle-treated mice developed chronic deficits (Fig. 3.67A, B). The former mimics the 

clinical course of Csf2r-/- adoptive transfer recipients (86). CCR1 antagonist induced clinical 
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remission was associated with a reduction in the total number of CD45hi CNS infiltrating cells and 

a reduction in the frequencies of neutrophils and B cells (Fig. 3.7C). We did not observe any effect 

on the frequencies of CD26+ cDCs or CD88+ moDCs (data not shown).  

Figure 3.7 – Therapeutic treatment with a CCR1 antagonist leads to clinical remission 
marked by a significant reduction in CNS-infiltrating immune cells. 
EAE was induced in WT mice by adoptive transfer of congenic MOG35-55-primed CD4+ T cells. 
CCR1 antagonist, or vehicle control, was administered i.p. daily beginning the second day after 
disease symptoms were observed. (A, B) Animals were monitored daily for signs of disease. (C) 
Some animals were euthanized at peak disease and changes in CNS infiltration were characterized 
by flow cytometry. **p<0.01, ***p<0.001. Statistical significance was determined by (C) 
student’s T-test. 

At peak EAE, we obtained spinal cords from adoptive transfer recipients in which vehicle 

or CCR1 antagonist had been administered therapeutically and performed histological analyses. 

Specimens from the active treatment cohort demonstrated less demyelination (Fig. 3.8). The vast 

majority of inflammatory cells were restricted to the meningeal space surrounding the spinal cord, 

similar to what was observed in EAE induced in the absence of GM-CSF signaling (86). In 

contrast, inflammatory infiltrates penetrated into the parenchyma of spinal cords from vehicle-

treated mice. 
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Figure 3.8 – Inflammatory infiltrates in CCR1 antagonist treated mice penetrate less deep 
in the spinal cord white matter and induce less demyelination compared to vehicle-treated 
mice. 
EAE was induced in WT mice by adoptive transfer of congenic MOG35-55-primed CD4+ T cells. 
CCR1 antagonist, or vehicle control, was administered i.p. daily, beginning the day after 
neurological deficits were observed. Score matched mice were euthanized at peak disease for 
immunohistochemical analyses of CNS-inflammation and demyelination. 

Discussion 

 The research presented in this chapter expands understanding of the role of GM-CSF in the 

development of autoimmune demyelinating diseases, particularly as it pertains to the interplay of 

the adaptive and innate immune systems. We show that, in our model, CCL6 is expressed at high 

levels in the CNS throughout the course of EAE. This not only affirms previous findings, but also 

mechanistically links sustained CCL6 expression by myeloid cells in EAE with GM-CSF signaling 

(Figs. 3.1 and 3.2) (90, 91, 97). Longitudinal studies of WT and Csf2r-/- adoptive transfer recipients 

revealed that CCL6 expression in the CNS is GM-CSF independent at clinical onset. However, in 

the absence of GM-CSF signaling, CCL6 levels fall precipitously in the CNS later in the course, 

in association with clinical remission (Figs. 3.1 and 3.2). Collectively, our data show that CCL6 

expression is maintained and promoted by GM-CSF following disease onset. In contrast, CNS 

levels of CXCL2, CXCL1, and CCL2 were unaffected by GM-CSFR deficiency at any time point 
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following cell transfer (Fig. 3.1), despite our observation that GM-CSF stimulates the upregulation 

of CXCL2 mRNA expression in neutrophils in vitro (Fig. 3.5A). This paradox may be due to 

compensatory production of CXCL2 and CCL2 by alternative cell sources in the inflamed CNS 

that are not GM-CSF dependent. 

 Other laboratories have shown that GM-CSF signaling in human neutrophils can drive 

expression of CCR1 and that, under certain circumstances, neutrophils infiltrate peripheral tissues 

in response to a CCR1 chemokine gradient (91, 104, 105). Here we show that GM-CSF directly 

drives CCR1 expression by murine CD11bhiCD11c- monocytes/ macrophages, DCs, and 

neutrophils (Fig. 3.5B-D). Additionally, GM-CSF stimulation drove robust expression of CCL6 in 

neutrophils, monocytes/ macrophages, and CD11bhiCD11cint DCs (Fig. 3.5E). Neutrophils isolated 

from the periphery of mice actively immunized with MOG35-55 in CFA, or injected with 

encephalitogenic T cells, were highly responsive to CCL6 (Fig. 3.4A, B). In contrast, neutrophils 

isolated from the CNS of adoptive transfer recipients did not migrate toward CCL6 in transwell 

assays (Fig. 3.4). We speculate this to be a result of CCL6-mediated downregulation of CCR1 

within the CNS, as has been described in other experimental systems (106). 

 The experiments in Figures 3.6 and 3.7 indicate dual roles for CCR1 in CNS inflammatory 

demyelinating disease. Interestingly, in a model of antibody-mediated arthritis, it was shown that 

CCR1 and CXCR2 act in a non-redundant manner to drive different stages of joint inflammation 

(107). In this model, initial joint infiltration by pathogenic neutrophils occurred via a CCR1 

dependent pathway. Later in disease, joint-infiltrating neutrophils required CXCR2 to enter the 

synovium and induce damage. CXCR2 is crucial for the development of EAE, as Cxcr2-/-, or WT 

mice treated with a CXCR2 blocking antibody, are resistant to disease (33, 74, 78, 108). To date, 

no studies have interrogated the relative contributions of CXCR2 and CCR1 on CNS infiltration 
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by neutrophils in EAE, although our data suggest CXCR2 is required for early infiltration of the 

CNS by damage-inducing neutrophils while CCR1 mediates neutrophil infiltration following 

disease onset. 

 In this study, we show that the CCR1 chemokine pathway is employed early in EAE to 

promote the infiltration of inflammatory myeloid cells into the CNS (Fig. 3.6A-C). Most notably, 

we observed that defective CCR1 signaling led to a significant reduction in the ratio of CD88+ 

moDCs to CD26+ cDCs in CNS infiltrates (Fig. 3.6D). Considering that CD26+ cDCs are the most 

efficient CNS APCs for encephalitogenic T cell reactivation, their decline in mice treated 

prophylactically with CCR1 antagonists is a likely mechanism for the improvement of clinical 

EAE in these mice (103). However, our data suggest that CCL6/ CCR1 interactions play a distinct 

role later in the course. When we delayed the administration of CCR1 antagonists until mice 

developed clinical signs, we found that neutrophils were preferentially blocked from accumulating 

in the CNS, while the frequency of CNS DC subsets was unperturbed (Fig. 3.7C). Therapeutic 

treatment with CCR1 antagonists triggered clinical remissions, while control mice maintained a 

high level of neurological disability (Fig. 3.7A, B). WT adoptive transfer recipients treated 

therapeutically with CCR1 antagonists and untreated Csf2r-/- adoptive transfer recipients exhibit 

similar clinical and immunopathological changes when compared with their respective control 

groups (86). This suggests that one of the mechanisms by which GM-CSF promotes chronic EAE 

is to stimulate expression of CCL6 and CCR1 expression by CNS infiltrating myeloid cells beyond 

the time of clinical onset.  

 Flow cytometric analyses of CNS infiltrates does not address the spatial distribution of 

inflammatory cells within the spinal cord. Although there were no differences in the total number 

of CD45hi inflammatory cells in the CNS of WT and Csf2r-/- adoptive transfer recipients at peak 



61 
 

clinical EAE, infiltrates were largely confined to the meningeal space of the latter mice, while they 

penetrated into the white matter of the former mice (86). Here we found that in the spinal cord of 

mice treated therapeutically with the CCR1 antagonist, when compared to score matched control 

mice, immune cells were concentrated in the meningeal space, and penetrated less deeply into the 

parenchymal tissue. This was accompanied by a reduction in overall demyelination (Fig. 3.8). 

Considering these spatial differences, changes in the immune infiltrate, and the strong association 

with GM-CSF, we hypothesize that neutrophils initially enter the CNS meningeal space through 

CXCR2-mediated chemotaxis. Their subsequent migration from the meningeal space into the 

parenchymal white matter is mediated by GM-CSF dependent CCR1:CCL6 interactions. Further 

studies are underway to identify the spatial localization of CCL6 and CXCL2 within the inflamed 

spinal cord. 

The results of these experiments indicate dual roles for the CCR1 pathway in EAE. First, 

during the preclinical and onset phases of disease, CCL6 is upregulated in the CNS by a GM-CSF 

independent mechanism and promotes infiltration of monocytes and classical DCs, thereby 

increasing T cell:APC interactions and allowing the initiation of clinical symptoms. Following 

disease onset, CCL6 plays a critical role in promoting the accumulation of neutrophils in the CNS, 

thus driving persistent damage and chronic EAE. MS is a complex disease which may be driven 

by distinct pathways in different populations of people who are affected. The effectiveness of 

current disease modifying therapies (DMTs) varies depending on individual patient 

responsiveness. Each of the current DMTs functions by either blockade or depletion of potentially 

pathogenic lymphocytes. None specifically target myeloid cells. Differences in responsiveness to 

DMTs may be reflective of differences in the underlying pathogenic mechanisms in individuals. 

CNS-infiltrating myeloid cells are a major driver of pathogenesis in EAE and, ostensibly, MS. 
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Targeting the myeloid compartment could lead to novel therapeutics which may be effective in 

patients who have been unresponsive to lymphocyte targeting DMTs. Our data support further 

investigation of GM-CSF, CCR1, and myeloid cell activation/ trafficking as therapeutic targets in 

the treatment of MS.



63 
 

CHAPTER 4 – CNS-Resident Classical DCs Play a Critical Role in CNS Autoimmune 
Disease 

 
Giles DA*, Duncker PC*, Wilkinson NM, Washnock-Schmid JM, Segal BM. CNS-resident 
classical DCs play a critical role in CNS autoimmune disease. Accepted for publication September 
2018 at Journal of Clinical Investigation. 
 
*Co-first authors 

Abstract 

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating 

disease of the central nervous system (CNS), induced by the adoptive transfer of myelin-reactive 

CD4+ T cells into naïve syngeneic mice. It is widely used as a rodent model of multiple sclerosis 

(MS). EAE lesion development is initiated when transferred CD4+ T cells access the CNS and are 

reactivated by local antigen presenting cells (APCs) bearing endogenous myelin peptide/ MHC 

Class II complexes. The identity of the CNS-resident, lesion-initiating APC is widely debated. 

Here we demonstrate that classical dendritic cells (cDCs) normally reside in the meninges, brain, 

and spinal cord in the steady state. These cells are unique among candidate CNS APCs in their 

ability to stimulate naïve, as well as effector, myelin-specific T cells to proliferate and produce 

pro-inflammatory cytokines directly ex vivo. cDCs expanded in the meninges and CNS 

parenchyma in association with disease progression. Selective depletion of cDCs led to a decrease 

in the number of myelin-primed donor T cells in the CNS and reduced the incidence of clinical 

EAE by half. Based on our findings, we propose that cDCs, and the factors that regulate them, be 

further investigated as potential therapeutic targets in MS.  
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Introduction 

Experimental autoimmune encephalomyelitis (EAE), an autoimmune demyelinating 

disease of the central nervous system (CNS), is widely used as an animal model of multiple 

sclerosis (MS). EAE can be induced by the adoptive transfer of highly purified, myelin-reactive 

CD4+ T-helper (Th)1 or Th17 effector cells into otherwise unmanipulated, syngeneic hosts. Lesion 

formation in adoptively transferred EAE is triggered when myelin-specific CD4+ T cells access 

the naïve CNS and are reactivated by local antigen presenting cells (APCs) bearing endogenous 

myelin peptide/ MHC Class II (MHCII) complexes (109). The identity of the CNS-resident, lesion-

initiating APC is widely debated. By definition, the cell type in question must express MHCII and 

co-stimulatory molecules and possess the machinery necessary to process immunogenic peptides 

from larger myelin proteins. In order to mediate epitope spreading during clinical relapse and/ or 

progression, a candidate APC would also have to be capable of activating naïve CD4+ T cells 

specific for secondary myelin epitopes and of polarizing them toward encephalitogenic Th1 or 

Th17 lineages (110). 

Microglia have been posited as the critical resident APC of the CNS (111). It has become 

increasingly recognized that microglia are heterogeneous and that distinct subsets may play 

different roles during the evolution of disease (112). However, the ability of microglia, particularly 

when in a resting state, to efficiently activate T cells has been questioned by several laboratories 

(113, 114). Although astrocytes and cerebrovascular endothelium were reported to express MHCII 

in response to inflammatory stimuli (115, 116), they do not do so during homeostasis, nor do they 

express molecules necessary for antigenic processing and loading. Furthermore, experiments with 

reciprocal WT/ MHCII-/- bone marrow chimeric mice indicate that induction of EAE by adoptive 
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transfer requires MHCII expression on radiosensitive hematopoietic host cells, while expression 

on radioresistant non-hematopoietic host cells is dispensable (117).  

 Several subsets of bone marrow-derived MHCII+ cells normally populate the CNS, 

including perivascular, meningeal, and choroid plexus macrophages (118). In addition, MHCII+ 

cells with characteristics of dendritic cells (DCs), based on cell surface marker expression, 

morphology, and/ or ultrastructural characteristics, are normal constituents of the choroid plexus, 

meninges, and perivascular spaces in the uninjured CNS of both humans and rodents (117, 119–

125). These CNS-resident DCs are optimally positioned to interact with infiltrating T cells since 

the choroid plexus and meninges, as well as CNS parenchymal blood vessels, are important portals 

of leukocyte entry during EAE and MS (126–129). The lineage(s) and biological properties of 

putative CNS DCs have yet to be delineated. Genetically engineered mice in which MHCII 

expression is restricted to CD11c+ cells are susceptible to EAE, suggesting that DCs alone are 

sufficient to present antigen to encephalitogenic T cells in vivo and, thereby, promote their local 

expansion and effector functions (117). DCs are generally considered potent APCs, due to their 

ability to activate and polarize naïve T cells, which have an elevated threshold for T cell receptor 

(TCR) signaling compared to effector and/ or memory T cells. However, the potential role of DCs 

in EAE pathogenesis is complicated by the fact that DCs are heterogeneous with a range of 

functional phenotypes, and can even be tolerogenic under certain circumstances (130). It is also 

unclear whether CNS-resident CD11c-MHCII+ cells can independently activate encephalitogenic 

T cells in situ. Indeed, depletion of CD11c+ cells in transgenic mice that express diphtheria toxin 

receptor (DTR) under control of the CD11c promotor has been variably reported to ameliorate or 

exacerbate the clinical course of EAE, or to have no impact whatsoever (131, 132).  
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CD11c+MHCII+ DCs include monocyte-derived DCs (moDCs) and classical DCs (cDCs) 

subsets. A third DC subset, plasmacytoid DCs (pDCs), express low levels of CD11c and MHCII, 

limiting their ability to present antigen to CD4+ T cells. moDCs are not normally present in healthy 

parenchymal tissues but differentiate from infiltrating Ly6Chi monocytes in the setting of 

inflammation. We and others have previously shown that moDCs accumulate in the CNS during 

EAE and that their depletion or inactivation ameliorates clinical disability (41, 54, 93, 133). 

However, the fact that moDCs primarily emerge in the setting of active inflammation precludes 

their role in lesion initiation. Unlike moDCs, cDCs populate lymphoid, as well as some non-

lymphoid, tissues in the steady state. They are derived from a common DC precursor, called the 

pre-DC, in the bone marrow and expand in response to the hematopoietin FMS-like receptor 

tyrosine kinase 3 (FLT3) ligand. DCs that have been detected in the murine CNS under 

physiological conditions are FLT3 dependent, differentiate from transferred pre-DC, and express 

a transcriptome consistent with cDCs (134). FLT3 ligand antagonists suppress, while FLT3 ligand 

agonists exacerbate, clinical EAE, suggesting that cDCs can modulate disease severity (117, 135). 

However, the ability of CNS-resident cDCs to directly stimulate and polarize myelin-reactive T 

cells in vivo, and their relative importance in EAE pathogenesis by comparison to infiltrating 

moDCs or other APC subsets, has yet to be elucidated.  

Detailed in vivo studies of moDCs and cDCs have been undermined by a dearth of 

distinguishing cell surface markers. It was recently reported that CD88 (complement 5a receptor 

1; C5ar1) and CD26 (dipeptidyl peptidase; DPP4), an enzyme involved in peptide hydrolysis, are 

reciprocally expressed by moDCs and cDCs (62). The transcription factor ZBTB46 has also been 

identified as a singular marker of cDCs in mice and humans (64, 65). These molecules are not 

exclusive to DCs but are useful in delineating CD11c+ DC lineages. In the present study, we 
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employ the above markers to investigate the heterogeneity of DCs during EAE. We detect both 

moDCs and cDCs in the inflamed target organ but demonstrate that CNS cDCs are uniquely 

capable of processing immunogenic peptides from larger myelin fragments and activating myelin-

specific naïve, as well as effector, CD4+ T cells. We found that cDCs are present in the naïve CNS 

and that selective depletion of that subset reduces the incidence of EAE. Hence, cDCs play an 

important role in disease initiation. Collectively, our data suggest that cDCs, and the factors that 

regulate them, be investigated as potential therapeutic targets in patients with MS, particularly in 

those individuals who are not responsive to currently available DMTs. 

 

Methods and Materials 

Mice. C57BL/6 and B6.Ly5.1 mice were from Charles River Laboratories. Zbtb46-gfp, Zbtb46-

dtr, CD11c-dtr, and 2D2 TCR transgenic mice were from the Jackson Laboratory. Both male and 

female mice, age 6-12 weeks, were used in experiments. All mice were bred and maintained under 

specific pathogen-free conditions at the University of Michigan. 

 

Induction and assessment of EAE. For adoptive transfer, C57BL/6 mice were subcutaneously 

immunized over the flanks with 100 µg MOG35-55 (Biosynthesis) in complete Freund’s adjuvant 

(Difco). At 10-14 days post-immunization (p.i.), the draining lymph nodes (inguinal, brachial, and 

axillary) were collected and cultured for 96 hours in the presence of 50 µg/mL MOG35-55, 8 ng/ml 

IL-23 (R&D Systems), 10 ng/ml IL-1α (Peprotech), and 10 µg/mL anti-IFNγ (Clone XMG1.2, 

BioXcell). At the end of culture, CD4+ T cells were purified with CD4 positive selection magnetic 

beads (Miltenyi), and 3-5x106 CD4+ T cells were transferred intraperitoneally into naïve recipients. 

For active EAE, mice were immunized as above and injected with 300 ng of pertussis toxin (List 
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Biological) on days 0 and 2 p.i. EAE was assessed by a clinical score of disability: 1, limp tail; 2, 

hind-limb weakness; 3, partial hind-limb paralysis; 4, complete hind-limb paralysis; and 5, 

moribund state. 

 

Cell Isolation. Mice were anesthetized with isoflurane and perfused with PBS. Meninges were 

isolated by removing the calvarium, placing the calvarium in a dish with PBS, and stripping the 

meninges from the inner surface. The meninges tissue and loosely adherent cells released in the 

PBS were collected, pelleted, and incubated in a solution of HBSS with 1 mg/ml collagenase A 

(Roche) and 1 mg/ml DNase 1 (Sigma-Aldrich) for 20 minutes at 37°C. The meninges were then 

passed through a 70-µm mesh filter to remove debris and generate a single cell suspension. The 

brain was removed from the skull, and the spinal cord was flushed from the spinal column with 

PBS. The brain and spinal cord were homogenized with an 18G needle in the collagenase solution 

and incubated at 37°C for 20 minutes. Mononuclear cells were separated from myelin with a 27% 

Percoll solution (GE Healthcare). Spleens were isolated and passed through a 70-µm mesh filter 

to generate a single cell suspension. Red blood cells from the spleen were lysed by a brief 

incubation in ACK lysis buffer (Quality Biological) followed by a wash in PBS. 

 

Cytokine production by DC subsets. Mononuclear cells were isolated as above and cultured with 

Brefeldin A (BFA) (10 µg/mL) or BFA + LPS (1 µg/ml) for 4 hours. At the end of culture, cells 

were collected and stained for cytokines by intracellular flow cytometry.  

 

Ex vivo cultures. Mononuclear cells were isolated as above, and DC subsets, microglia, and B cells 

were FAC sorted from the CNS and spleen according to the indicated surface markers. For 
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purification of naïve CD4+ T cells, lymph nodes and spleen were collected from naïve 2D2 TCR 

transgenic mice. CD4+ T cells were enriched by positive selection with magnetic beads (Miltenyi), 

and naïve T cells were further purified by flow sorting for live CD4+CD44-CD62L+ T cells. For 

purification of effector T cells, mononuclear cells from the CNS were flow sorted for live 

CD45+CD11b-CD3+CD4+MHCII- T cells. T cells were labeled with CFSE according to the 

manufacturer’s instructions (ThermoFisher). APC and T cells were co-cultured for 96 hours at a 

ratio of 1:20 (typically 5,000 myeloid cells with 95,000 T cells) with media, myelin peptide 

(MOG35-55 peptide [Biosynthesis]), or myelin protein (MOG1-125 [Anaspec]). At the end of culture, 

cells were cultured with PMA (50 ng/ml), ionomycin (2 µg/ml), and BFA (10 µg/ml) for 4 hours 

to stimulate cytokine production. Cells were collected and stained for activation by surface 

markers and cytokine production by intracellular staining. 

 

Multiplex cytokine analysis. Cytokine levels were measured using Luminex multiplex bead-based 

analysis (Millipore) used the Bio-Plex 200 system (BD Biosciences) according to the 

manufacturer’s protocols. Total protein was measured via Bradford assay (ThermoFisher) and 

used to normalize analyte concentrations to total protein. 

 

Phagocytosis. Myelin was purified from the naïve mouse brain by ultracentrifugation as previously 

described (136). Purified myelin was conjugated to the pH-sensitive dye pHrodo Red, 

succinimidyl ester (ThermoFisher) per the manufacturer protocol. Mononuclear cells were isolated 

from the CNS at the peak of adoptive EAE and cultured overnight with the unlabeled or pHrodo-

labeled myelin (1 µg/200 µl). Cells were collected, washed, and stained for flow cytometry. 

Phagocytosis was determined by pHrodo Red fluorescence.  
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Flow cytometry. Cells were labeled with fixable viability dye (eFluor506, eBioscience), blocked 

with anti-CD16/32 (Clone 2.4G2, hybridoma), and stained with fluorescent antibodies. For 

intracellular staining of cytokines and enzymes, cells were fixed with 4% paraformaldehyde, 

permeabilized with 0.5% saponin, and stained with fluorescent antibodies. For intracellular 

staining of ZBTB46, cells were fixed and permeabilized with the Transcription Factor Buffer Set 

(BD Pharmingen). Data were acquired using a FACSCanto II flow cytometer or FACSAria III 

flow sorter (BD Biosciences) and analyzed with FlowJo software (Treestar). Cells were sorted 

with a FACSAria III flow sorter (BD Biosciences).  

 

Antibodies. The following antibodies were obtained from BD Biosciences: αH2M [2E5A], APC-

Cy7-(αIFNγ [XMG1.2], αLy6G [1A8]), Biotin-(αRat IgG1 [RG11/39.4]), FITC-(αCD40 [HM40-

3], αCD62L [MEL-14], αRat IgG1 [RG11/39.4]), PE-(αCD4 [GK1.5 and RM4-5], α ZBTB46 

[U4-1374]). The following antibodies were obtained from Biolegend: APC-(αCD26 [H194-112], 

αCD88 [20/70]), FITC-(αCD26 [H194-112]), Biotin-(αCD88 [20/70]), PE-(αCD88 [20/70], αPD-

L1 [10F.9G2]), PE-DAZZLE-(αCD11c [N418]). The following antibodies and reagents were 

obtained from ThermoFisher: APC-(αCD19 [MB19-1], αCD44 [IM7], αIL-23p19 [fc23cpg], 

Streptavidin), APC-Cy7/ APC-eF780-(αCD11b [M1/70], αCD45.2 [104], αMHCII 

[M5/114.15.2], Biotin-(αI-Ab [AF6-120.1]), BV510-(αCD45 [30F11], αCD45.1 [A20]), eF450-

(αCD4 [RM4-5]), eF700-(Streptavidin), FITC-(αCD45.2 [104], αCD317 [eBio927], αMHCII 

[M5/114.15.2], Streptavidin), PE-(αCD86 [GL1], αIL-10 [JES5-16E3], αGM-CSF [MP1-22E9]), 

PE-Cy7-(αCD11b [N418], Streptavidin), PE-eF610-(αiNOS [CXNFT]), PerCP-Cy5.5-(αCD11c 

[N418], αIL-12p40 [C17.8], αMHCII [M5/114.15.2]), PerCP-eF710-(αI-Ab [AF6-120.1]), V506 
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Fixable Viability Dye). The following antibodies were obtained from R&D Systems: αArg1 [sheep 

IgG], FITC-(αArg1 [sheep IgG]). Alexa-488-Donkey-αSheep was obtained from Life 

Technologies.  

 

Nanostring gene expression analysis and qPCR. Sorted cells were resuspended in RLT buffer, and 

cell lysates were directly analyzed for expression of 750 immune-related genes with the nCounter 

PanCancer Immune Panel (Nanostring Technologies). Data were processed using the nSolver 

Analysis Software by normalization to the geometric mean of positive controls and housekeeping 

genes. R was used to perform paired Student’s t-tests and calculate Benjamini & Hochberg’s false 

discovery rate (FDR), comparing the gene expression of the CD26+ and CD88+ populations. Cells 

used to confirm the Nanostring results via qPCR were resuspended in RLT buffer before Qiagen 

RNeasy RNA purification. Relative mRNA levels were quantified by SYBR Green qPCR 

performed on an iQ Thermocycler (Bio-Rad). 

 

Bone marrow chimeras. B6.Ly5.1 (CD45.1+) congenic hosts were lethally irradiated with 1300 

Rad split into two doses and reconstituted by tail vein injection of 4x106 CD45.2+ bone marrow 

cells from WT, CD11c-dtr, or Zbtb46-dtr donors. Mice were allowed to reconstitute for 6 weeks 

prior to use.  

 

DT Ablation. Diphtheria toxin (Sigma) was administered in two stages. Three daily doses of 1 

µg/20 g mouse (50 µg/kg) in 200 µl of PBS were given i.p. prior to the assessment of DC depletion 

or to the induction of EAE. Daily doses of 100 ng/20 g mouse (500 ng/kg) in 200 µl of PBS were 

given i.p. starting on the day of adoptive transfer and continued until the end of the experiment. 
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Histology. Spinal columns were harvested from mice perfused intracardially with 1X PBS and 4% 

PFA, post-fixed with 4% PFA, decalcified with 0.5 M EDTA, cryopreserved with sucrose, and 

embedded in OCT for cryosectioning. 12 µm sections were stained with the following primary 

antibodies; rat αMBP82-87 (Millipore) and biotinylated rat αMHCII (ThermoFisher). Avidin/biotin 

block (ThermoFisher) was used to prevent streptavidin binding to endogenous biotin. Normal goat 

serum (Sigma) was used to block non-specific binding of secondary goat α-rat IgG Alexa Fluor 

488 (ThermoFisher). Steptavidin-APC (ThermoFisher) was used to visualize bound biotinylated 

αMHCII. Confocal images were acquired using an Olympus IX83 with Fluoview 31 software. 

 

Statistics. Statistical analysis was performed in GraphPad Prism (v7) using paired or unpaired 2-

tailed Student’s t-test, or 1-way or 2-way ANOVA with correction for multiple comparisons with 

Tukey’s posthoc test, as indicated in the legends. Disease curves were compared by 2-way 

ANOVA. Outliers were identified by ROUT analysis and removed when indicated. A p-value < 

0.05 (*) was considered significant. p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). 

 

Results 

cDCs, as well as moDCs, are present in EAE infiltrates. In order to characterize APC 

subsets that accumulate in the CNS during EAE, we performed flow cytometric analysis on brain 

and spinal cord mononuclear cells isolated at the time of peak clinical severity. MHCII+ cells in 

the brain included CD45intCD11bint microglia, CD45hiCD11b+CD11c- monocytes/ macrophages, 

CD19+ B cells, and CD45hiCD11c+ DCs (Fig. 4.1A and data not shown). Spinal cord infiltrates 

had a similar cellular composition (data not shown). The CNS DC population was comprised of 
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both CD88-CD26+ cells, consistent with cDCs, and CD88+CD26- cells, consistent with moDCs 

(Fig. 4.1A, upper right panel). Microglia and macrophage/ monocytes expressed CD88 but not 

CD26 (Fig. 4.1A, lower panels). We also detected CD26+ pDCs; however, the majority of pDCs 

were MHCII- and constituted <5% of the MHCII+CD26+ population in the inflamed CNS (Fig. 

4.2). In order to confirm the lineages of the CD26+ versus CD88+ CNS DC subsets, we performed 

transcriptional profiling. The CD26+ DC cohort expressed high levels of genes identified by the 

Immunological Genome Project (ImmGen) (137) as core cDC transcripts, including Amica1, Ccr7, 

and Kit, while the CD88+ DC cohort expressed markers associated with monocyte-derived cells, 

including Slc11a1 (138), CD84 (139), and Bst1 (140) (Fig. 4.1B). CNS CD26+ DCs expressed 

elevated levels of Flt3 and Tlr3, while CD88+ DCs expressed high levels of Tlr4, which mirrors 

the expression of those stimulatory molecules by peripheral cDCs and moDCs, respectively (Fig. 

4.1B, right panel) (141). The designation of CNS CD11c+CD26+ cells as cDCs was corroborated 

by their selective expression of the transcription factor, ZBTB46, as demonstrated via intracellular 

staining and flow cytometry (Fig. 4.1C). Similarly, CD11c+CD26+, but not CD11c+CD88+, cells 

isolated from Zbtb46-gfp reporter mice at peak EAE were GFP+ (Fig. 4.1D). 
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Figure 4.1 – CD26+ZBTB46+ cDCs accumulate in the CNS during adoptively transferred 
EAE.  
EAE was induced by adoptive transfer of WT myelin-primed CD4+ Th17 cells into naïve 
syngeneic hosts. (A) Brain mononuclear cells were harvested at peak EAE and analyzed by flow 
cytometry. Dot plots are gated on the population indicated directly above each plot. The numbers 
indicate the percent of the gated population. The data are representative of 3 experiments. (B) 
MHCII+CD11c+ CD88+ or CD26+ cells were purified from the CNS (N=3 per group) by flow 
sorting, and gene expression was measured by Nanostring nCounter analysis. Genes with a false 
discovery rate (FDR) < 0.10 are identified in the heatmaps. The right panel shows Flt3, Tlr3, and 
Tlr4 mRNA levels in paired DC subsets from individual mice. P values were determined by paired, 
2-tailed Student’s t-test. **p<0.01. (C, D) Expression of ZBTB46 was measured in 
MHCII+CD11c+ CD26+ or CD88+ brain mononuclear cells, harvested at peak EAE, by flow 
cytometry. The open histograms reflect intracellular staining with anti-ZBTB46 antibodies (C) or 
GFP expression in cells from Zbtb46gfp/+ reporter mice (D). The shaded grey histograms reflect the 
(C) isotype or (D) non-reporter control. 
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Figure 4.2 – pDCs are present in the CNS during EAE but express low levels of MHCII.  
EAE was induced by adoptive transfer of WT myelin-primed Th17 cells into naïve syngeneic 
hosts. Mononuclear cells were isolated from the brain and spinal cord at peak clinical disease and 
analyzed by flow cytometry. (A) pDCs were identified by expression of PDCA1. Expression of 
MHCII and CD11c (middle panel) and CD88 and CD26 (right panel) was assessed gating on 
PDCA1+ cells. (B) Quantification of pDCs as a percentage of total CD11c+MHCII+ DCs or 
CD11c+MHCII+CD26+ DCs. The dot plots show representative results obtained with brain 
mononuclear cells. Gating is indicated above each plot. Error bars represented as mean ± SEM. 

CNS cDCs are highly efficient antigen presenting cells. We next compared the ability of 

CNS cDCs and moDCs to present antigen to myelin-specific CD4+ T cells ex vivo. MHCII+CD11c+ 

CD88+ moDCs and CD26+ cDCs were FAC sorted from the CNS at peak EAE and co-cultured 

with naïve CD4+ T cells that express a transgenic T cell receptor specific for the myelin 

oligodendrocyte glycoprotein (MOG)35-55 peptide (2D2 cells) (142). 2D2 cells underwent multiple 

rounds of proliferation, upregulated the activation marker CD44, and expressed intracellular IFNγ 
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and/ or GM-CSF upon co-culture with MOG35-55 peptide and CNS cDCs (Fig. 4.3A, B). In contrast, 

2D2 cells neither proliferated, upregulated CD44, nor expressed effector cytokines when co-

cultured with MOG35-55 and CNS moDCs. Similar results were obtained with cDCs and moDCs 

sorted from the spleens of the same mice (data not shown). 2D2 cells did not express FoxP3 under 

any of the culture conditions. In order to determine whether CNS cDCs could process 

immunogenic epitopes from larger myelin proteins, we repeated the APC assays using a longer 

fragment of MOG (MOG1-125) as antigen. CNS cDCs were able to process MOG protein and 

activate 2D2 cells, whereas their moDCs counterparts were incompetent (Fig. 4.3A, B). The 

superior APC properties of CNS cDCs over moDCs are not antigen-specific since only the former 

were able to activate OVA-specific TCR transgenic OT-II cells upon co-culture in the presence of 

either OVA peptide or whole ovalbumin protein (143) (data not shown).  
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Figure 4.3 – CNS cDCs stimulate naïve and effector myelin-specific T cells to proliferate and 
produce pro-inflammatory cytokines, while CNS moDCs are incompetent APCs. 
EAE was induced by active immunization with MOG35-55 peptide in CFA. CNS mononuclear cells 
were harvested at peak disease. CD26+ or CD88+ DC subsets (CD45+MHCII+CD11c+) were 
purified by FAC sorting and co-cultured with MOG-reactive T cells in the presence or absence of 
myelin peptide (MOG35-55) or myelin protein (MOG1-125). (A, B, D) The CNS DC subsets were 
co-cultured with CD44-CD62L+ CD4+ T cells that had been isolated from the spleens and lymph 
nodes of naïve 2D2 TCR transgenic mice. (A, B) T cell proliferation was measured by CFSE 
dilution. The percent of CD4+ T cells that underwent 1 or more division, or that expressed the 
activation marker CD44, is shown for each group. (B) Cytokine production was measured by 
intracellular flow cytometry. The percent of cytokine producers among total CD4+ T cells is 
shown. (D) Cytokine levels were measured in culture supernatants via a multiplex Luminex bead-
based assay. (C, E) CNS DC subsets were co-cultured with CD4+ T cells isolated from the CNS at 
the peak of EAE. (C) T cell proliferation was measured as in (A). (E) Cytokine levels were 
measured in culture supernatants via Luminex. (B-E) Each circle represents a data point generated 
with CNS DC subsets isolated from a single mouse. Connected circles indicate paired samples 
from the same mouse. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by paired, 2-tailed 
Student’s t-test. Data in A, B, and D, and in C and E, are from individual experiments, that are 
representative of 2-4 independent experiments with similar results. N=3-5 mice per group per 
experiment. 
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The majority of CD4+ T cells that infiltrate the CNS during EAE or MS are CD44hi effector 

cells. As a transgenic T cell line, 2D2 cells do not reflect the heterogeneity of encephalitogenic T 

cells that infiltrate the CNS during EAE, both in terms of TCR affinity and biological properties. 

To more accurately simulate the local T cell-APC interactions that occur during autoimmune 

demyelinating disease, we isolated CD4+ T cells from the CNS of mice at peak EAE and 

reconstituted them with purified DC subsets obtained from the same tissues. Notably, CNS cDCs 

spontaneously induced the proliferation of the CNS-infiltrating effector CD4+ T cells in the 

absence of exogenous antigen, ostensibly due to the presence of endogenous myelin peptide/ 

MHCII complexes on their cell surface (Fig. 4.3C). Proliferation of the effector T cells was 

enhanced by pulsing the CNS cDCs with MOG35-55. moDCs failed to induce a significant effector 

T cell response, even when the co-cultures were supplemented with MOG35-55 (Fig. 4.3C). Taken 

together, these data demonstrate that cDCs, but not moDCs, are proficient at activating both naïve 

and antigen-experienced myelin-specific T cells.  

We next measured a panel of selected cytokines in supernatants from the APC assays. Co-

culturing 2D2 cells with CNS cDCs, in the presence of either MOG35-55 or MOG1-125, resulted in 

the production of IL-2, IL-17A, IFNγ and GM-CSF (Fig. 4.3D). Similar results were obtained 

when CD4+ effector T cells, isolated from the inflamed CNS, were co-cultured with MOG35-55 and 

CNS cDCs (Fig. 4.3E). In contrast, we did not detect any cytokines in supernatants from co-

cultures of 2D2 cells and moDCs with MOG peptides (Fig. 4.3D). moDCs did elicit production of 

GM-CSF (but none of the other cytokines in the panel) when co-cultured with CNS-infiltrating 

effector T cells and MOG35-55 (Fig. 4.3E). The amount of GM-CSF produced was significantly 

lower than the amount elicited by CNS cDCs.  
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We performed APC assays with resident microglia, and splenic and CNS-infiltrating B 

cells, as a foil to the CNS DC subsets. B cells, isolated from either the CNS or spleen at peak EAE, 

induced 2D2 cell proliferation in response to exogenous MOG35-55 peptide (Fig. 4.4A). Conversely, 

they were inefficient at processing and presenting the larger MOG1-125 protein to the naïve myelin-

reactive T cells. CNS-infiltrating B cells induced the spontaneous proliferation of myelin-primed 

effector T cells, but this was not enhanced by the addition of exogenous antigen (Fig. 4.4B). 

MHCII+CD45intCD11bint microglia did not stimulate the proliferation of either naïve or effector T 

cells, even when cultured with MOG35-55 (Fig. 4.4C, D).  
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Figure 4.4 – B cells are able to present MOG35-55 peptide, but not MOG1-125 protein, to MOG-
reactive CD4+ T cells; microglia are incompetent as antigen presenting cells.  
EAE was induced by active immunization with MOG peptide, and immune cells were isolated 
from the CNS and spleen (SP) at peak disease. B cells (MHCII+CD45+CD11b-CD11c-CD19+) and 
microglia (MHCII+CD45intCD11bint) were FAC sorted and co-cultured with MOG-reactive T cells 
in the presence of myelin peptide (MOG35-55) or myelin protein (MOG1-125). B cells (A) or 
microglia (C) were co-cultured with CD44-CD62L+CD4+ T cells from naïve 2D2 TCR transgenic 
mice. B cells (B) or microglia (D) were co-cultured with CD4+ T cells isolated from the CNS of 
actively immunized WT mice at the peak of EAE. T cell proliferation was measured by CFSE 
dilution. Activation was measured as the percentage of CD44+ cells among total CD4+ T cells. 
Each circle represents a data point generated from a single mouse. Connected circles indicate 
paired samples from the same mouse. *p<0.05, **p<0.01 by paired, 2-tailed Student’s t-test. Data 
are representative of at least 2 experiments. N=3-5 mice per group. 
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cDCs express high levels of H2M molecules. We next investigated the mechanism 

underlying the disparate APC capacities of CNS cDCs versus moDCs. First, we measured the cell 

surface density of MHCII molecules on each subset via mean fluorescence intensity (MFI). This 

analysis revealed the presence of two populations within the CNS CD26+ cDC subset, that were 

distinguished by expression of either high (CD11cintMHCII++) or comparable (CD11hiMHCII+) 

levels of MHCII in comparison to their CD88+ counterparts (Fig. 4.5A). The CD26+MHCII++ 

subpopulation also expressed elevated levels of the co-stimulatory markers, CD40, CD80, and 

CD86 (Fig. 4.5B). In order to determine whether these disparities in MHCII and co-stimulatory 

molecule expression translated into functional differences, we performed APC assays with the 

CNS DC subsets side by side. There was no significant difference in the proliferation of 2D2 cells 

co-cultured with the CD26+MHCII+ versus CD26+MHCII++ cDC subpopulations. Both of the 

CD26+ cDC subpopulations promoted more 2D2 cell activation than CD88+ moDCs sorted from 

the same CNS mononuclear suspension (Fig. 4.6). We also measured expression of the inhibitory 

ligand, PDL1, and found that it was expressed on all three subsets. Blockade of PDL1 did not 

rescue myelin-specific T cell activation by CNS moDCs (data not shown). Based on these results, 

we concluded that heightened MHCII and/ or co-stimulatory molecule expression was not 

responsible for the superior antigen-presenting capacity of CNS cDCs.  



82 
 

Figure 4.5 – CNS moDCs are deficient in expression of H2M and have a distinct cytokine 
profile in comparison to CNS cDCs.  
EAE was induced by adoptive transfer of WT myelin-primed Th17 cells into naïve syngeneic 
hosts. (A, B) CNS mononuclear cells were isolated at peak clinical severity and subjected to flow 
cytometric analysis. The geometric mean fluorescence intensity (MFI) of MHCII (A) and 
costimulatory molecules (B) was measured on gated DC subsets. (C) H2M expression was 
assessed in CNS DC subsets by flow cytometry (left). The levels of transcripts encoding MHCII 
and H2M subunits were quantified in FAC sorted CD88+ and CD26+ CNS DCs via qPCR (right). 
(D) CNS mononuclear cells, isolated from individual mice with EAE, were cultured for 4hr with 
Brefeldin A (BFA), with or without LPS. Cytokine production was assessed by intracellular 
staining and flow cytometry. The data are shown as the percentage of cytokine-positive cells within 
the indicated DC population. Each symbol represents a data point generated from a single mouse. 
Connected symbols indicate paired samples from the same mouse. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. Statistical significance was determined using 1-way (D) or 2-way (A, 
B) ANOVA with Tukey’s post-hoc test or (C) paired 2-tailed Student’s t-test. N=3-5 mice per 
group or condition. All data are representative of at least 2 experiments. All error bars indicate 
mean ± SEM. 
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Figure 4.6 – MHCII+ and MHCII++ CNS cDCs demonstrate comparable efficacy as APCs 
when activating MOG-specific CD4+ T cells. 
EAE was induced by adoptive transfer of WT myelin-primed Th17 cells into naïve syngeneic 
hosts. CNS mononuclear cells were isolated at peak clinical severity and FAC sorted to isolate 
CD88+, CD26+MHCII+, and CD26+MHCII++, DC subsets. Each DC subset was co-cultured with 
MOG-reactive, CD44-CD62L+ CD4+ T cells that were isolated from pooled spleens and lymph 
nodes of naïve 2D2 TCR transgenic mice. T cell proliferation was measured by CFSE dilution. 
The percent of CD4+ T cells that expressed the activation marker CD44 or that underwent 1 or 
more division is shown for each group. **p<0.01 P values were determined using 1-way ANOVA 
with Tukey’s post-hoc test. N=3 mice. Data are representative of 3 experiments. Error bars indicate 
mean ± SEM.  
 

H2M (HLA-DM in humans) is a non-classical MHC molecule that facilitates antigen 

loading into the binding groove of MHCII. It functions by catalyzing the exchange of class II-

associated invariant chain peptide (CLIP, a space holding peptide that is inserted into the binding 

groove during the assembly of MHCII to stabilize its structure), and endosomal peptides (144). 

H2M-deficient mice are defective in the processing of native MOG for presentation to 

encephalitogenic T cells and are resistant to EAE, induced either by active immunization or 

adoptive transfer (145). Therefore, we questioned whether CNS moDCs are incompetent APCs 

due to reduced expression of H2M. We found that CNS cDCs expressed high levels of H2M 

protein (Fig. 4.5C, left panel). Conversely, we did not detect H2M protein in CNS moDCs. In 

addition, CNS cDCs expressed much higher levels of the transcripts encoding H2M subunits than 

CNS moDCs (Fig. 4.5C, right panel). Hence, insufficient processing and binding of immunogenic 

myelin peptides to MHCII may underlie the relative inability of CNS moDCs to activate 

encephalitogenic T cells. 
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cDCs and moDCs have distinct cytokine profiles. In order to further characterize the 

immunological properties of the CNS DC subsets, we measured intracellular expression of 

candidate polarizing factors. We observed distinctive cytokine profiles among the DC subsets, in 

that CD26+ cDCs expressed IL-12p40 following short-term incubation with Brefeldin A, while 

CD88+ moDCs expressed IL-23p19 and IL-10 (Fig. 4.5D). IL-12p40 is a subunit of both IL-12 

and IL-23. Production of IL-12p40 by CNS CD26+ cDCs is consistent with their induction of IFNγ 

in myelin-reactive T cells (Fig. 4.3B, D, and E). Measurement of IL-12p35, the second subunit of 

bioactive IL-12 heterodimer, was limited by available methods. IL-23 is a heterodimer of IL-12p40 

and IL-23p19 (146) and polarizes T cells toward IL-17 production and the Th17 phenotype (147). 

Although CNS CD88+ moDCs express IL-23p19, they would be unable to synthesize bioactive IL-

23 in the absence of IL-12p40. This might explain the failure of CNS moDCs to induce IL-17 

production upon co-culture with myelin-specific T cells (Fig. 4.3D, E). Instead, CD88+ moDCs 

production of IL-10 may exert a regulatory influence on the inflammatory process. Stimulation of 

the CNS DC subsets with LPS altered the level, but not the pattern, of cytokine production (Fig. 

4.5D).  

moDCs efficiently phagocytose myelin. Having established CNS-derived cDCs as superior 

APCs, we questioned the role of moDCs in neuroinflammatory disease. We recently reported that 

CD11b+CD11c+ DCs evolve during the course of EAE, and shift from a proinflammatory 

phenotype (denoted by expression of the enzyme, inducible nitric oxide synthase (iNOS)) at 

clinical onset, to a non-inflammatory or immunosuppressive state (denoted by expression of the 

alternative enzyme, arginase-1 (Arg1)), in anticipation of clinical remission/ stabilization (112). 

During this transition, some of the CNS DCs acquire an iNOS+Arg1+ intermediary phenotype. Our 

published study did not address the lineage of the CNS DC populations. Upon revisiting this issue, 
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we found that that iNOS and/ or Arg1 expression is restricted to moDCs throughout the disease 

course (Fig. 4.7A).  

 
Figure 4.7 – CNS moDCs express iNOS and Arg1 and efficiently phagocytose myelin.  
(A) EAE was induced by active immunization with myelin peptide, and CNS mononuclear cells 
were isolated at clinical onset (left panels) or peak disease (right panels). Expression of iNOS and 
ARG1 in CD88+ or CD26+ CNS DCs was assessed by intracellular flow cytometry. All of the dot 
plots are gated on MHCII+CD11c+ cells. Cells in the CD88 versus CD26 dot plots are color-coded 
based on patterns of iNOS and ARG1 expression. (B) EAE was induced by adoptive transfer of 
WT myelin-primed Th17 cells. Mononuclear cells were isolated from the CNS at the peak of EAE 
and cultured overnight with unlabeled or pHrodo-labeled purified myelin. Phagocytosis was 
measured as the percentage of pHrodo+ cells within gated CD26+ or CD88+ DC populations. Each 
symbol represents a data point generated from a single mouse. Connected symbols indicate paired 
samples from the same mouse. Data are representative of 2 experiments. *p<0.05 by paired, 2-
tailed Student’s t-test. N=3-5 mice per group or condition. 

Since the monocyte/ macrophage lineage is specialized in phagocytosis, we also compared 

the capacity of CNS moDCs and cDCs to internalize extracellular myelin. We isolated total CNS 

mononuclear cells from mice with EAE and cultured them overnight with purified myelin that had 

been obtained from a naïve mouse and labeled with the pH-sensitive dye, pHrodo. In a 

representative experiment, we detected myelin in the cytoplasm of approximately 55% of CD88+ 

moDCs compared with ~25% of cDCs (Fig. 4.7B). Similar results were obtained when FAC sorted 

moDCs and cDCs were cultured independently (data not shown). Myelin phagocytosis by both 

DC subsets was inhibited by the addition of cytochalasin D, demonstrating dependence on actin 
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polymerization (148) (data not shown). These data indicate that the inability of CNS moDCs to 

present antigen to myelin-specific T cells is not secondary to a defect in myelin phagocytosis. 

Moreover, our results suggest potential roles for CD88+ moDCs in modulation of the inflammatory 

milieu and clearance of myelin debris.  

cDCs are present in the naïve CNS and expand during autoimmune demyelinating disease. 

We hypothesized that resident cDCs are the primary APCs encountered by encephalitogenic T 

cells as they enter the uninflamed CNS and that cDCs drive T cell activation at the inception of 

neuroinflammation, and possibly during epitope spreading. In support of this theory, FLT3-

dependent, radiosensitive DCs were recently discovered in the meninges under steady-state 

conditions (124, 134, 149). Similarly, we detected MHCII+CD11c+CD26+ DCs in the naïve 

meninges and brain and, to a lesser extent, in the naïve spinal cord, by flow cytometric analysis 

(Fig. 4.8A). The CNS DC population in naïve C57BL/6 mice was predominantly CD88-CD26+ 

(Fig. 4.8A). CD26+, but not CD88+, CD11c+ DCs isolated from the CNS of unmanipulated Zbtb46-

gfp reporter mice expressed GFP (Fig. 4.8B). MHCII+CD11c+CD26+ cDCs isolated from 

uninflamed CNS tissues readily activated naïve, myelin-specific CD4+ T cells directly ex vivo and 

enhanced T cell survival during short-term culture (Fig. 4.8C).  
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Figure 4.8 – cDCs reside in the naïve CNS and expand during EAE. 
(A) Mononuclear cells were isolated from the naïve brain, meninges, and spinal cord, and analyzed 
by flow cytometry. The dot plots are gated on MHCII+CD45hiCD11c+ cells. (B) CNS mononuclear 
cells harvested from naive Zbtb46gfp/+ reporter mice or Zbtb46+/+ controls were analyzed for GFP 
expression, gating on MHCII+CD11c+ DC subsets. (C) MHCII+CD11c+CD26+ cDCs were isolated 
from the naïve CNS and co-cultured with naïve 2D2 transgenic T cells in the presence or absence 
of MOG peptide. 2D2 cells were also cultured in the absence of APCs as a negative control. 2D2 
proliferation was measured by CFSE dilution, and activation by upregulation of CD44 (left). The 
numbers in the histograms and dot plots represent the percent of 2D2 T cells that divided or 
expressed CD44, respectively. Live 2D2 cells were counted at the beginning and completion of 
culture (right). Connected symbols indicate paired samples from the same mouse. (D) Cells were 
isolated from the naïve CNS or from the CNS during the pre-clinical or peak stages of adoptively 
transferred EAE. CNS DC subsets were quantified by flow cytometry. Each symbol represents a 
data point generated from a single mouse. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
Statistical significance was determined using (C) paired, 2-tailed Student’s t-test or (D) 1-way 
ANOVA with Tukey’s post-hoc test. N=3-5 mice per group or condition. All data are 
representative of at least 2 experiments. Error bars indicate mean ± SEM. 

 

Time course studies revealed that cDCs and moDCs progressively expand from baseline 

through the onset and peak of EAE in every CNS compartment that we examined (Fig. 4.8D). 



88 
 

Although cDCs consistently accumulated in the brain and spinal cord in association with 

increasing neurological disability, their expansion was overshadowed by a dramatic rise in the 

frequency of moDCs. Consequently, moDCs were the predominant DC subset in the brain and 

spinal cord by peak disease. In contrast, the frequency of meningeal cDCs exceeded that of moDCs 

at both the pre-clinical and peak stages of EAE. We and others have found the choroid plexus and 

meninges to be the initial portal of entry of CNS-infiltrating T cells during EAE (unpublished data 

and 17, 19, 20). Meningeal inflammation is widespread in the early stage, as well as progressive 

forms, of MS, and is spatially associated with cortical pathology (122, 150). In a survey of 

postmortem brain and spinal cord tissues from 11 patients with MS, cells expressing mature DC 

markers were consistently detected in meningeal infiltrates and were often in close proximity to, 

or in contact with, proliferating lymphocytes (122). Therefore, the presence of cDCs in the 

meninges might facilitate the development of nascent demyelinating lesions in the subpial grey 

matter in addition to the white matter. 

cDCs are critical for initiation of experimental autoimmune encephalomyelitis. To 

definitively investigate the role of cDCs in EAE, we employed transgenic mice with diphtheria 

toxin receptor (DTR) expressed under control of the ZBTB46 promoter (Zbtb46-dtr mice) (64). 

ZBTB46 is expressed by endothelial cells as well as DCs (65). Consequently, we generated 

Zbtb46-dtrWT bone marrow chimeric mice to restrict diphtheria toxin (DT) to the cDC 

population. In parallel, we generated CD11c-dtrWT bone marrow chimeric mice, which target 

both cDCs and moDCs (151), as a positive control, and WTWT bone marrow chimeric mice as 

a negative control. We optimized the DT dosing strategy to deplete DCs in the CNS prior to disease 

induction and to maintain depletion through the clinical course. Following three doses of DT, 

CD26+ cDCs counts were reduced by over 50% in the brain, spinal cord, and meninges of both 
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sets of DTR bone marrow chimeras (Fig. 4.9A). As expected, CD88+ moDCs were also diminished 

in the brain and spinal cords of DT treated CD11c-dtr, but not Zbtb46-dtr, chimeras.  

Figure 4.9 – Depletion of cDCs in adoptive transfer recipients results in a decreased number 
of myelin primed donor T cells in the CNS and reduces the incidence of clinical EAE. 

Bone marrow chimeric mice were generated by reconstituting lethally irradiated CD45.1+ 
hosts with CD45.2+ WT, CD11c-dtr, or Zbtb46-dtr bone marrow cells. (A) Naïve chimeric mice 
in each group were treated with DT or PBS for 3 consecutive days. CNS cDC and moDC subsets 
were quantified by flow cytometric analysis. (B, C) Chimeric mice were treated with DT as in 
panel A, and EAE was induced by the adoptive transfer of WT myelin-primed Th17 cells. Daily 
DT injections were continued throughout the clinical course. (B) Mice were monitored on a daily 
basis and rated for degree of neurological disability by an examiner blinded to the identity of the 
experimental groups. Clinical scores and incidence are shown for each group. (C) Total number of 
donor (CD45.1+) CD4+ T cells were enumerated in DT treated adoptive transfer recipients 1-2 
days prior to expected clinical onset. Each symbol in A and C represents a data point generated 
from a single mouse. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Statistical significance was 
determined by (A) unpaired 2-tailed Student’s t-test, (B) 2-way ANOVA, or (C) 1-way ANOVA 
with Tukey’s post-hoc test. Data are combined from (A), or representative of (B, C), at least 2 
experiments with N=3-15 mice per group or condition. All error bars indicate mean ± SEM. 

All of the chimeric mice were treated with 3 daily doses of DT before injection with highly 

purified myelin-primed Th17 cells. Daily DT injections were continued through the experimental 
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time course. Global depletion of DCs completely prevented clinical EAE in CD11c-dtrWT bone 

marrow chimeras (Fig. 4.9B). Strikingly, selective depletion of cDCs in Zbtb46-dtrWT chimeras 

reduced the incidence of clinical EAE by half in comparison to the WTWT chimeras (40% 

versus 80%). Histological findings reflected the clinical scores in that there was no evidence of 

CNS parenchymal inflammation or tissue damage in spinal cord sections from Zbtb46-dtrWT 

mice that remained free of neurological deficits (Fig. 4.10). In fact, we did not detect any MHCII+ 

APCs in those sections. The susceptibility of some of the DT treated Zbtb46-dtrWT mice to 

EAE may reflect incomplete cDCs depletion, as a small number of CD11c+CD26+ cells persisted 

in the CNS of DT treated mice (Fig. 4.9A). DT treatment resulted in decreased numbers of donor 

CD4+ T cells in the brain, spinal cord, meninges, and the CNS draining cervical lymph nodes of 

Zbtb46-dtrWT, as well as CD11c-dtrWT, adoptive transfer recipients (Fig. 4.9C). 

Collectively, our data indicate that cDCs promote the accumulation/ expansion of myelin-reactive 

T cells in the CNS during the effector stage of EAE, thereby increasing susceptibility to clinical 

disability. The Zbtb46-dtrWT mice that did develop disease had a similar day of onset, 

maximum score, and degree of weight loss compared with symptomatic WTWT adoptive 

transfer recipients (Fig. 4.11 and data not shown). This suggests that cDCs play a pivotal role in 

the inception of the neuroinflammatory response, but that other APC subsets, such as infiltrating 

B cells, might be able to perpetuate disease activity thereafter. 
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Figure 4.10 – cDCs depleted Zbtb46-dtrWT adoptive transfer recipients with a clinical 
score of 0 show no signs of CNS inflammation or tissue damage on histological examination.  
Bone marrow chimeric mice were generated by reconstituting lethally irradiated CD45.1+ hosts 
with CD45.2+ WT or Zbtb46-dtr bone marrow cells. EAE was induced by the adoptive transfer of 
WT myelin-primed Th17 cells into fully reconstituted chimeric mice. DT was administered on a 
daily basis beginning 3 days prior to adoptive transfer. Mice in all groups were euthanized at the 
time of peak disease in the WTWT cohort. CNS samples were subjected to immunohistological 
analysis. Spinal cord sections from a representative WTWT mouse (top left panel, score 3) and 
a Zbtb46-dtrWT (top right panel, score 0) mouse are shown. The inset shows an inflammatory 
lesion in the WT spinal cord higher magnification of. Scale bars are 100 µm (top) and 50 µm 
(bottom). 

Figure 4.11 – DT treated Zbtb46-dtrWT adoptive transfer recipients that succumbed to 
EAE followed a similar clinical course to their WTWT counterparts. 
Bone marrow chimeric mice were generated by reconstituting lethally irradiated CD45.1+ hosts 
with CD45.2+ WT or Zbtb46-dtr bone marrow cells. EAE was induced by the adoptive transfer of 
WT myelin-primed Th17 cells into fully reconstituted chimeric mice. DT was administered daily, 
beginning 3 days prior to adoptive transfer. Mice were monitored on a daily basis and rated for 
degree of neurological disability by an examiner blinded to the identity of the experimental groups. 
Shown are average disease scores only for animals which developed neurological deficits; 
WTWT (13 of 15), and Zbtb46-dtrWT (6 of 15). 
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Discussion 

The current study adds to a growing body of literature that challenges the traditional 

portrayal of the uninjured CNS as an immune privileged site. Numerous laboratories have 

documented the presence of a network of MHCII+ innate immune cells, many of which have DC 

characteristics, in human, as well as rodent, brain and spinal cord under steady-state conditions 

(119, 123–125). These cells are concentrated in the meninges, choroid plexus, and perivascular 

space, regions that interface with the periphery, where they are optimally positioned to serve as 

sentinels and first responders to foreign threats. The possibility that the same leukocytes could be 

subverted to support autoimmune neuroinflammation is supported by the fact that DCs are 

enriched in perivascular infiltrates within MS white matter lesions as well as in the meninges 

overlying cortical lesions (121–123).  

Two recent studies suggested that a population of DCs normally present in the healthy 

mouse meninges and choroid plexus is of the cDCs lineage (124, 134). Parabiont experiments 

indicate that CNS-resident DCs originate from a pre-DC bone marrow precursor and have a half-

life of 5-7 days (134). However, the role of those cells in autoimmune demyelination was not 

addressed. The current study corroborates these earlier findings by demonstrating that the 

dominant DC population in the uninflamed CNS expresses markers and transcripts typical of cDCs 

(Figs. 4.1 and 4.8). Our data indicate that CD26+ZBTB46+ DCs are unique among CNS APC 

subsets in their ability to process immunogenic peptides from larger myelin fragments and activate 

myelin-specific naïve, as well as effector, CD4+ T cells to proliferate and produce pro-

inflammatory cytokines (Fig. 4.3). Most importantly, selective depletion of cDCs led to a reduction 

in the frequency of transferred myelin-primed CD4+ T cells in the meninges, brain, spinal cord, 

and cervical lymph nodes, and significantly lowered the incidence of clinical EAE (Fig. 4.9).  
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DT treatment of Zbtb46-dtrWT adoptive transfer recipients targets cDCs in the periphery 

as well as in the CNS. However, we believe that cDCs depletion in the CNS is most likely 

responsible for the results shown in Fig. 4.9B. This is supported by prior evidence that MOG-

specific donor T cells, analyzed via flow cytometry at serial time points following adoptive 

transfer, first upregulate activation markers and proliferate within the CNS, as opposed to 

peripheral lymphoid tissues, 1-2 days prior to expected clinical onset (unpublished data). Our 

current data demonstrate that cDCs support the expansion/ survival of encephalitogenic T cells 

within the CNS and play an important role in disease initiation (Fig. 4.9B, C). An analogous role 

of CNS DCs as APCs in the pathogenesis of human autoimmune demyelinating disease is 

suggested by the presence of myelin-laden cells expressing mature DC markers in close proximity 

to, or in contact with, proliferating lymphocytes within active MS lesions, as well as in the 

overlying meninges (123). The choroid plexus and meninges have been increasingly recognized 

as portals of entry for the infiltration of encephalitogenic T cells into the CNS (126–129). 

Furthermore, physical interactions between acutely activated myelin-reactive T cells and 

perivascular phagocytes have been directly visualized within the meningeal space at EAE onset 

using 2 photon microscopy (129, 152). We found that cDCs accumulate rapidly in the meninges 

during EAE (Fig. 4.8D). We are currently investigating whether activated encephalitogenic T cells 

drive the proliferation and maturation of CNS cDCs, possibly via production of FLT3 ligand and/ 

or GM-CSF (153). 

Deficiency in H2M impedes endocytic processing and the loading of MHCII molecules 

with native peptides (154). Hence, low H2M expression may be, in part, responsible for the 

inability of MOG1-125-pulsed CNS moDCs to activate MOG-reactive T cells (Fig. 4.3). In support 

of that hypothesis, it was previously shown that APCs isolated from H2M-deficient mice are 
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unable to process whole recombinant MOG protein into immunogenic epitopes (145, 155). We 

found that MOG35-55-pulsed CNS moDCs are also poor APCs. This observation is consistent with 

published studies that show APCs from H2M-deficient C57BL/6 mice to be impaired in the 

presentation of short peptides (including MOG35-55), as well as whole proteins, to CD4+ T cells 

(145, 154, 156). The inefficient presentation of exogenous peptides by H2M-deficient APCs may 

reflect the need for those peptides to displace high-affinity CLIP peptides, which are bound to cell 

surface MHCII at an elevated density in the absence of H2M (154). H2M-independent pathways 

undoubtedly also contribute to APC dysfunction of CNS moDCs. Based on the data in Fig. 4.7, 

moDCs production of immunosuppressive cytokines might represent one such pathway.  

The success of anti-CD20 B cell depleting monoclonal antibodies in suppressing MS lesion 

development and clinical exacerbations underscores the importance of B cells in MS pathogenesis 

(157). These reagents spare plasma cells, and therapeutic responsiveness does not correlate with a 

reduction in circulating or cerebrospinal fluid antibody levels, indicating an antibody-independent 

mechanism of action (158). A leading hypothesis is that B cell depletion ameliorates relapsing MS 

by limiting antigen presentation to encephalitogenic T cells. Meningeal B cell follicles have been 

discovered adjacent to large subcortical lesions in some patients with secondary progressive MS 

(159). CD3+ T cells are a regular component of the meningeal follicles, raising the possibility that 

B cells also serve as APCs in that context (160). Our data are consistent with a potential role of B 

cells as APCs in EAE. B cells isolated from the CNS during EAE were able to present exogenous 

MOG35-55 peptide to autoreactive T cells and stimulate their proliferation ex vivo (Fig. 4.4). 

However, in contrast to CNS cDCs, they were inefficient at processing larger MOG proteins for 

presentation of immunogenic epitopes. This may be explained by the different pathways employed 

by B cells to acquire peptide versus protein antigen. Protein antigen uptake by B cells is primarily 
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mediated through the B cell receptor (BCR) (161), such that larger myelin fragments might only 

be efficiently internalized by myelin-specific B cells. However, the frequency of myelin-specific 

B cells is highly variable in MS and appears to be low at early time points in EAE (162). In fact, 

we found that B cells, isolated from the CNS at EAE onset or peak, failed to phagocytose pHrodo-

labeled myelin ex vivo (data not shown). Based on these collective data, we speculate that 

infiltrating B cells can promulgate neuroinflammation in the setting of established autoimmune 

demyelinating disease, once myelin peptides are released into the CNS microenvironment via 

proteolysis. Conversely, the ability of CNS cDCs to process large myelin peptides/ proteins for 

presentation to naïve T cells may make them uniquely qualified to serve as APCs when antigen 

load is low. In support of that theory, encephalitogenic donor T cells are incapable of initiating 

neuroinflammation in naïve adoptive transfer recipients when polyclonal B cells are the sole APCs, 

unless the precursory frequency of MOG-specific B cells is artificially heightened (163). We have 

previously shown that CNS-infiltrating myeloid cells, including CD11c+ DCs, shift from a pro-

inflammatory phenotype during early EAE to an alternatively activated phenotype immediately 

prior to clinical remissions, which correlates with changes in APC function (112). In future studies, 

we plan to investigate how APCs evolve, on the cellular subset as well as the population level, 

across successive stages of EAE. 

Despite the significant advances that have been made in MS therapeutics over the past 15 

years, none of the medications approved for the management of MS, including anti-CD20 

monoclonal antibodies, are cures, and none are effective in all patients. Up to the present, 

pharmaceutical development has focused on lymphocytes, and myeloid cells have largely been 

ignored. We and others have shown that the pathological mechanisms that drive CNS injury in MS 

are diverse and that the relative contribution of specific cytokine pathways and immune effector 
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cell subsets can vary from one patient to another (31, 85). Such differences may translate into 

different patterns of therapeutic responsiveness to individual DMTs. For example, B cell targeting 

approaches may be particularly effective in MS patients who harbor a high frequency of anti-

myelin antibody expressors in their B cell repertoire, which would favor the uptake and 

presentation of myelin antigens by B cells (164). Conversely, cDCs modulating agents might be 

effective in individuals who are early in the disease course, when there is a lower lesion burden 

and less myelin breakdown, thereby limiting the accessibility of immunogenic peptides to B cells 

and lending a competitive advantage to CNS-resident cDCs as APCs. We would argue that 

inactivation of cDCs in some individuals with MS might abort the escalation of neuroinflammation 

and have long-lasting benefits. Furthermore, the discovery of myelin-laden DCs in MS lesions in 

chronic progressive, as well as recently diagnosed, patients raises the possibility that cDCs 

targeting might be therapeutically beneficial over a broad range of MS clinical subsets and disease 

stages (123, 150, 159).
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CHAPTER 5 – Discussion 

Since the initial observation that GM-CSF-deficient animals are protected from 

autoimmune demyelination (45), numerous laboratories have attempted to elucidate the 

mechanism of action of GM-CSF in the pathogenesis of EAE (36, 39, 44, 49, 165, 166). Since 

GM-CSF drives macrophage, DC, and granulocyte development, it had been speculated that GM-

CSF-deficient mice would have a dearth of mature monocytes and granulocytes, as well as tissue-

resident DCs. Surprisingly, those mice display only minor aberrations in myeloid cell populations, 

the most notable being a lack of alveolar macrophages and certain DC subsets (47, 167). Our 

laboratory previously showed that GM-CSF-deficient mice lack subsets of dermal DCs which 

normally facilitate the activation, polarization, and expansion of encephalitogenic CD4+ T cells 

following immunization with myelin antigens (42). As discussed in Chapter 2, it is likely that GM-

CSF promotes T cell priming via additional pathways, since treatment of WT mice with an anti-

GM-CSF neutralizing antibody beginning at the time of immunization also reduces the frequency 

of myelin-reactive T cells.  

 GM-CSF appears to be even more critical during the effector phase of EAE. Several groups 

showed that myelin-reactive GM-CSF-deficient T cells could be polarized in vitro, but fail to 

induce EAE in naïve adoptive transfer recipients (39, 44). It was hypothesized that GM-CSF, 

secreted by infiltrating myelin-reactive T cells, directly stimulates myeloid cells within the CNS 

to produce IL-23. IL-23 then induces the T cells to produce more GM-CSF, thereby creating a pro-

inflammatory feed-forward loop (38). Microglia, which express GM-CSFR, were initially posited 

as the CNS-resident APC population required for reactivation of CNS-infiltrating T cells. 
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However, their expression of GM-CSFR is not required for EAE (41, 49). The cellular target of 

GM-CSF during EAE has been a subject of heated debate. 

In the work presented above, we interrogated the role of GM-CSF during the induction and 

maintenance of CNS autoimmunity in detail. We found that, contrary to contemporary dogma, 

GM-CSF is not required for the initiation of clinical deficits but is necessary for the development 

of chronic disability. We identified a previously unappreciated role of GM-CSF in activating the 

CCR1 chemokine pathway. Our data show that, during and after the peak of clinical EAE, GM-

CSF induces infiltrating monocytes/ macrophages, neutrophils and monocyte-derived DC to 

produce CCR1 chemokines that support the persistent infiltration of pathogenic myeloid cell 

populations, particularly neutrophils, into the CNS. The fact that GM-CSF deficiency, or 

neutralization, does not abrogate EAE initiation suggests the presence of a GM-CSF independent 

population of CNS-resident APCs. In parallel studies, we identify such a CNS APC population, 

composed of CD26+CD88- classical DCs. Collectively, the results of these studies illustrate the 

evolving role of leukocyte subsets and cytokine/ chemokine pathways during the course of EAE 

and provide insight into several novel therapeutic targets that may be prominent during distinct 

stages of MS. 

 

Downstream Functions of GM-CSF in CNS Inflammation 

 GM-CSF signaling into myeloid cells drives a pro-inflammatory signature which serves to 

orchestrate immune responses (168, 169). Although often overlooked, some of these effector 

functions include the regulation of chemokine production which modulates leukocyte infiltration 

into inflamed tissue. Roberg et al. showed that GM-CSF stimulates the production of CCL3, a 

CCR1-binding chemokine, by human neutrophils (170). It was later shown that GM-CSF also 
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induces CCR1 expression by human neutrophils in vitro (91). Immunopathological analysis 

demonstrated the presence of CCR1+ macrophages and CCL3 in MS lesions, but not in normal 

appearing white matter (97). Experiments with WT:Csfr2-/- mixed bone marrow chimeric mice 

showed that GM-CSF signaling into CNS monocytes directly modulates their expression of 

numerous chemokines, particularly the CCR4 ligands CCL17 and CCL22 and the CCR1 ligands 

CCL6 and CCL9 (41). We corroborate these findings in Chapter 3.  

Prior to the current thesis, the specific role of the CCR1 chemokine pathway in EAE 

pathogenesis had yet to be elucidated. In fact, we found that its mechanism of action shifts during 

EAE progression. Hence, CCR1 antagonists primarily blocked monocyte accumulation in the CNS 

when administered early, and neutrophil accumulation when administered following clinical 

disease onset. In addition, we observed a reduction in the frequency of classical DC in the CNS of 

mice treated prophylactically with CCR1 antagonists. Interestingly, the importance of GM-CSF 

signaling in driving CNS expression of CCR1 ligands also varied during the evolution of EAE. 

CNS levels of CCL6 were similar between WT and Csf2r-/- adoptive transfer recipients at disease 

onset. However, while CNS CCL6 levels continued to rise in WT recipients from onset through 

peak EAE, they fell in Csf2r-/- mice during the peak and late stages of disease (Fig. 1). The critical 

CNS targets of GM-CSF signaling and cellular sources of CCR1 ligands at peak EAE included 

monocytes/ macrophages, mDCs, and neutrophils. Based on our histopathological studies, CCR1 

interactions appear to be particularly critical for drawing myeloid cells from the meningeal space, 

which is the first site they occupy, deep into the white matter parenchyma. Whereas meningeal 

inflammation appears sufficient to induce the early development of clinical signs (ostensibly due 

to diffusion of soluble factors into the parenchyma that disrupts axonal transport), chronic 

disability and demyelination in EAE correlate strongly with leukocyte invasion into the white 
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matter parenchyma. The disruption of the glial limitans and breakdown of the basement membrane 

that deeper CNS penetration entails may be largely dependent on neutrophils. Taken together, 

these observations explain why GM-CSF signaling is required for long-term, but not immediate, 

neurological disability in adoptive transfer recipients. We previously reported that the CXCR2 

chemokine pathway is critical for early neutrophil accumulation in the CNS and for the initiation 

of clinical EAE in both the adoptive transfer recipients of encephalitogenic T cells and in actively 

immunized mice (33, 74, 78). Consequently, the relative importance of specific chemokine 

pathways shifts from one stage of EAE to another. Similarly, in a mouse model of arthritis, 

neutrophils initially infiltrate the inflamed joint via CCR1-mediated chemotaxis but employ a 

CXCR2-dependent pathway later in disease evolution (107, 171).  

 

Dendritic Cells in the Naïve and Inflamed CNS 

MHCII+ myeloid cells are required for the initiation and progression of EAE; however, the 

specific identity of the critical APC population, and its spatiotemporal kinetics, are debated. 

Although microglia were initially hypothesized to be the CNS-resident APC population which 

reactivates encephalitogenic T cells, this has since been disproven (41, 172). Several reports have 

concluded that CCR2+Ly6Chi circulating monocytes, activated by GM-CSF, are required for the 

induction of EAE (41, 54, 95, 96, 133, 173). However, those studies do not distinguish between 

the role of monocytes as APC versus other functions. Our findings that Csf2r-/- mice are susceptible 

to EAE induced by the adoptive transfer of WT encephalitogenic T cells suggests the presence of 

a GM-CSF-independent APC population within the naïve CNS which is capable of reactivating 

myelin-specific T cells and driving EAE induction. 

 Recent studies indicate that the meninges and perivascular spaces are the sites where 

myelin-specific T cells are first reactivated within the CNS to drive autoimmune CNS disease 



101 
 

(174). Although the CNS parenchyma was long considered to be “immune-privileged”, it is now 

appreciated that such a characterization does not extend to the barriers that serve as an interface 

between CNS tissue and the periphery. Both the meninges and perivascular spaces are 

constitutively populated by tissue-resident macrophages and DCs (61). Those cells act as sentinels, 

optimally positioned to respond to pathogens and prevent their invasion into the CNS proper (134). 

Our research has revealed meningeal DCs to be the initiating APCs that drive CNS autoimmune 

responses. 

A lack of markers which could distinguish between DC subsets during homeostasis and 

inflammation has obfuscated understanding their relative functions in vivo. Recently, it was 

discovered that the reciprocal markers CD88 and CD26/ Zbtb46 could distinguish DC lineages 

derived from a monocyte or DC progenitor, respectively (62). GM-CSF primarily drives the 

development of CD88+ moDCs while FLT3L drives the development of CD26+, ZBTB46-

dependent, cDCs. The relative contribution of these DC subsets in EAE was previously 

unexplored. We found that DCs within the naïve meninges primarily fall within the cDC subset. 

Via subset specific depletion we demonstrated the importance of cDCs for clinical EAE onset. The 

role of GM-CSF dependent mDCs becomes prominent during the later stages when they act as a 

source of CCR1 chemokines which mold the cellular composition of CNS myeloid cells and foster 

their penetration into the white matter in association with demyelination.  

 

Shifting Myeloid Cell and APC Populations in the Progression of EAE 

 It has been held that CNS-inflammation in EAE follows a well-orchestrated pattern of 

cellular infiltration and activation. Surveilling myelin-reactive T cells enter the CNS and are 

reactivated by APCs. Production of pro-inflammatory mediators, such as GM-CSF, and 
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chemokines, like CXCL2 and CCL2, induce monocyte and neutrophil mobilization and entry into 

the CNS. T cell-derived GM-CSF acts on monocytes to induce monocyte differentiation into 

moDCs. These moDCs present myelin peptides to myelin-reactive T cells and produce IL-23 

which drives more production of GM-CSF, propagating the cycle of CNS inflammation. Although 

the cellular composition kinetics have been broadly described, careful interrogation and 

characterization of early vs late myeloid cells has not been performed. 

Our lab recently published a study exploring the plasticity and kinetics of macrophage and 

dendritic cell populations during the progression of EAE (112). By using the “pro-” or “anti-

inflammatory” markers, iNOS and Arginase (Arg1), respectively, we showed that not only do the 

overall cellular populations shift, but the phenotype of individual cells changes in situ. Although 

we have yet to prove functional differences between iNOS+ and Arg1+ myeloid cells in our model, 

the observation that the same cell can be iNOS+Arg1- early in disease and iNOS-Arg1+ later in 

disease suggests that a single cell may carry out distinct, and opposing, effector functions at 

different timepoints in EAE.  

Our findings in Chapter 2 support previous data which suggests that GM-CSF promotes 

the differentiation of monocytes into moDCs in situ. However, we also showed that GM-CSF 

signaling has much broader effects. By controlling the expression of CCL6 and CCR1 by myeloid 

cells, GM-CSF regulates which cells enter the CNS, and when they do. Our data support the idea 

that a subset of early infiltrating/ accumulating monocytes and cDCs enter the CNS using CCR1, 

while later monocytes and cDCs employ alternative chemokine receptors. Conversely, early 

neutrophils enter the CNS independent of CCR1 while a subset of neutrophils requires CCR1 

mediated chemotaxis to enter the CNS following disease onset. Isolation and transcriptional 

profiling of CCR1+ and CCR1- monocytes and cDCs early in disease, and CCR1+ and CCR1- 
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neutrophils later in disease, will provide valuable insight into the heterogeneity of these 

populations and may shed light on the pathogenic subsets of each of these cell populations. 

Beyond the GM-CSF pathway, we have also provided evidence that the dominant APC 

populations in EAE are dynamic. In the naïve CNS, CD26+ cDCs are the dominant MHCII+ APC 

population. Following induction of EAE, microglia upregulate MHCII and MHCII+ moDCs and 

B cells accumulate in the inflamed CNS. Initially, a CNS-infiltrating T cell is most likely to 

encounter a cDC, which is a highly effective APC. By disease onset, a T cell in the CNS has a 

greater chance of interacting with an infiltrating B cell, or resident microglial cell, which also could 

present myelin antigens that are released as a consequence of demyelination and thereby perpetuate 

neuroinflammation. moDCs are more efficient phagocytes than cDCs but produce more anti-

inflammatory IL-10. IL-10 inhibits T cell, and myeloid cell, proliferation and activation, and may 

induce T cell anergy (175). The emergence of moDCs as a dominant phagocyte and MHCII+ cell 

following disease onset, might lead to a dampened immune response and facilitate debris 

clearance, paving the way for remission.  

Monocytes and neutrophils are likely the primary phagocytes in EAE and MS. 

Consequently, they are also the primary drivers of persistent CNS damage. Although IL-10 

producing moDCs may curtail T cell activation and expansion in the CNS, they also likely cause 

damage by phagocytosing healthy myelin, in addition to damaged myelin. Our data suggest that 

in the absence of GM-CSF signaling, there is a reduction in the number of moDCs which 

accumulate in the CNS by peak disease. GM-CSF is also known to enhance phagocytosis by 

monocytes and neutrophils, and thus may promote chronic damage if this leads to the engulfment 

of healthy myelin directly off of axons (176, 177). Unfortunately, if used therapeutically in patients 

with MS, GM-CSF blockade may leave patients immunocompromised and unable to mount 



104 
 

effective CD4+ T cell responses to infections. Luckily, our data suggest that CCR1 may mark a 

more restricted pathogenic subset of myeloid cells which are selectively targetable in disease. This 

pathway is under active investigation in our laboratory and should provide further insight, and 

therapeutic targets, for the treatment of MS. 

  

Translating Research Studies to Clinical Treatment 

 MS is a complex disease of unknown etiology. There is no known initiating antigen, and 

genetic and environmental risk factors vary widely between individuals. The clinical manifestation 

of MS is also heterogeneous. EAE is induced in genetically susceptible inbred strains of mice with 

defined antigens and can be reproducibly impacted by changing the environment. EAE follows a 

stereotypic clinical course. Despite these important distinctions, EAE has proven to be a valuable 

tool in studying MS pathogenesis and treatment. MS is a lifelong condition that evolves over 

decades. Practical, and ethical, challenges make clinical trials in MS time consuming, labor 

intensive, and very costly.  

 Despite a relatively high degree of genetic homology, and the conservation of 

immunological pathways between mice and humans, there are substantial differences in 

transcriptional regulation, chromatin state, and chromatin structure which influence gene 

expression (178). Ultimately, humans and mice will respond to some stimuli similarly and others 

differently. Experiments in mouse models of MS allow for much more rapid validation or rejection 

or potential therapeutics but has significant downsides. Treatments which may be effective in MS 

may not be effective in EAE, and vice versa. There is no way to assess the number of drugs which 

would be effective in treating MS but were excluded in experimental conditions. Similarly, it is 
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impossible to quantify the time, money, and patient-dissatisfaction which have gone into testing 

drugs which were effective in animal models but ultimately ineffective in people with MS.  

 GM-CSF, the CCR1 chemokine pathway, neutrophils, and DCs are all clinically targeted 

in a number of immunological disorders. Anti-GM-CSF blocking antibodies have concluded phase 

1b trials in MS and were found to be safe (179). Assessment of its efficacy will have to await larger 

trials. Antagonists highly selective for human CCR1 are being tested in rheumatoid arthritis, 

COPD, and MS (180). Numerous drugs directly targeting neutrophil migration are being tested in 

phase 2 trials for COPD, asthma, and bronchiectasis (181). Dendritic cells are being targeted to 

better fight cancer and also produce more effective vaccines (182, 183). While the results of those 

clinical trials, and approval of these drugs as therapies, are likely several years away, without 

animal models they would have never been developed. 

 

Conclusions 

 The data presented above aim to further the understanding of the function GM-CSF 

production by encephalitogenic CD4+ T cells in the induction and evolution of CNS autoimmunity. 

To this end, we studied the effects of GM-CSF on myeloid cell maturation in, and recruitment to, 

the inflamed CNS. It is our hope that this work will encourage further investigation of GM-CSF, 

the CCR1 chemokine network, neutrophils, and classical DCs as therapeutic targets in MS. 
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