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Summary

Hereditary thrombocytopenias can be subclassified based on mode of inheritance

and platelet size. Here we report a family with autosomal dominant (AD) thrombo-

cytopenia with normal platelet size. Linkage analysis and whole exome sequencing

identified the R1026W substitution in ITGA2B as the causative defect. The same

mutation has been previously reported in 7 Japanese families/patients with AD

thrombocytopenia, but all of these patients had macrothrombocytopenia. This is

the first report of a family with AD thrombocytopenia with normal platelet size

resulting from mutation in ITGA2B. ITGA2B mutations should therefore be

included in the differential diagnosis of this latter disorder.

Keywords: hereditary thrombocytopenia, linkage analysis, whole exome

sequencing, ITGA2B, autosomal dominant thrombocytopenia.

Hereditary thrombocytopenias (HT) are a heterogeneous

group of bleeding disorders characterized by varying degrees of

thrombocytopenia and a wide spectrum of clinical manifesta-

tions. Recent advances in molecular genetics have improved

our understanding of the pathophysiology of these disorders.

HT can be subclassified based on the mode of inheritance as

well as platelet size (Balduini & Savoia, 2012). Here we report

a family with autosomal dominant (AD) thrombocytopenia

characterized by normal platelet size and absence of other phe-

notypic abnormalities. Linkage analysis and whole exome

sequencing identified the genetic defect as mutation in the

ITGA2B gene resulting in an R1026W substitution.

Methods

Sample collection and DNA preparation

A 4-generation family with 10 affected individuals (Fig 1A)

was studied. Following enrollment on a research protocol

approved by the University of Michigan Institutional Review
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Board, genomic DNA was prepared from the individuals

indicated in Fig 1A as described in the Data S1.

Microsatellite genotyping

Genotyping for a microsatellite located ~3 megabases (Mb) 50

of ANKRD26 (Chromosome 10:30 059 574–30 059 640) was

performed by polymerase chain reaction (PCR with primers

MS F1 and MS R1 (Table SI), as described in the Data S1.

Sanger sequencing

PCR and Sanger Sequencing were performed as described in

the Data S1. PCR primers are listed in Table SI.

Linkage analysis

DNA samples from the 13 individuals highlighted with a

green or blue arrow in Fig 1A were genotyped on the

Infinium HumanCoreExome v24.1 BeadChip (Illumina, San

Diego, CA), which yielded ~530K autosomal single nucleo-

tide polymorphisms (SNPs). After applying multiple filters

for quality control, parametric linkage analysis was per-

formed using an AD inheritance model on a range of marker

sets and parameters (See Data S1).

Whole-exome sequencing and analysis

Genomic DNA from family member III-4 (Fig 1A) was

sonicated and subjected to exome capture using a

NimbleGen SeqCap EZ Exome Enrichment Kit v3.0

(Roche, Madison, WI, USA) and to 100 base pair paired-

end sequencing on an Illumina HiSeq 2000 at the Univer-

sity of Michigan Sequencing Core (UMSC). This sample

was one of 733 samples sequenced at the UMSC for which

pooled variant calling was performed. The details of the

sequencing and downstream analysis are included in the

Data S1.

(A)

(C)

(B)

Fig 1. Family with autosomal dominant thrombocytopenia. (A) Affected individuals are indicated by filled symbols. Arrows indicate individuals

included in the linkage analysis, with green or blue arrows denoting collection of blood sample or buccal swab, respectively. The blue box indi-

cates the individual whose DNA was subjected to whole exome sequencing. The proband is indicated by an orange arrow. Genotyping for a

microsatellite, ~3 Mb upstream of ANKRD26 was performed on 9 family members (6 affected and 3 unaffected), ruling out ANKRD26 as the cau-

sative gene in this family. Each genotype is indicated by a different letter (a, b, c, d, e). Affected patients did not share a common microsatellite

genotype. (B) Peripheral blood smear from family member II-2 demonstrates thrombocytopenia with uniform, normal-sized platelets. Original

magnification 9500. (C) Bone marrow aspirate from family member III-4 demonstrates abundant (slightly increased in number) megakaryocytes,

5–10% of which were small with nuclear hypolobation with no other bone marrow abnormalities. Original magnification 9500. [Colour figure

can be viewed at wileyonlinelibrary.com].
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Imputation and haplotype analysis

In a previous report (Kunishima et al, 2011), the disease

haplotype at the ITGA2B locus was defined using a set of 11

SNPs. The disease haplotype was defined in this study to

determine if the ITGA2B mutation occurs on a different hap-

lotype in our family (see Data S1). The candidate risk allele

was also examined for segregation with the disease haplotype

(see Data S1).

Results and discussion

This family (Fig 1A) is of European ancestry and exhibits

AD thrombocytopenia with normal platelet size and appear-

ance on peripheral smear (Fig 1B and Table SII) and normal

mean platelet volume of 10�2 fl for the proband (normal

range 9–12�2 fl). Bone marrow evaluation of individual III-4

demonstrated a slightly increased number of megakaryocytes,

5–10% of which appeared small with nuclear hypolobation

(Fig 1C). The bone marrow was otherwise normal and meta-

phase cytogenetics revealed a normal karyotype.

Given the lack of acute leukaemia history or phenotypic

abnormalities in this AD thrombocytopenia family with nor-

mal platelet size, ANKRD26-related thrombocytopenia, also

known as thrombocytopenia 2, was suspected. Thrombocy-

topenia 2 results from mutations in the 50UTR of ANKRD26

leading to loss of transcription factor binding (Pippucci et al,

2011; Bluteau et al, 2014). The 50UTR of ANKRD26 was San-

ger sequenced in family members II-2 and III-4, and no muta-

tion was identified. To rule out a disease-causing mutation in

ANKRD26 outside of the 50UTR, genotyping for a microsatel-

lite, ~3 Mb upstream of the gene was performed in 9 family

members (6 affected and 3 unaffected) (Fig 1A), excluding the

ANKRD26 locus as the cause of thrombocytopenia in this fam-

ily [logarithm of the odds (LOD) score minus 15�6].
To map the disease-causing gene, we performed linkage

analyses on 9 affected and 4 unaffected family members (de-

tails described in Methods). All parameter combinations and

marker sets highlighted two consensus linkage regions:

Chr17:37 222 473–48 110 703 (LOD score 3�31) and

Chr13:50 246 074–78 461 133 (LOD score 2�62).
Whole exome sequencing was performed on genomic

DNA obtained from family member III-4, with an average

coverage of 45�969 (95�95% of the target sequence covered

at least 109). Non-synonymous, nonsense, splice-site, stop-

loss and frameshift variants within the identified linkage

peaks were subjected to a variety of filters (see Methods and

Fig 2A). Three variants (one in each of AOC3, CDC27 and

ITGA2B) passed all filters (Fig 2B). AOC3 is not expressed in

platelets (Rowley et al, 2011), and the CDC27 variant was

predicted to be benign/tolerated (Fig 2B). Therefore, the

leading candidate variant was a G to A substitution in

ITGA2B, resulting in an Arginine (R) to Tryptophan (W)

substitution at amino acid 1026 (p.R1026W). This variant

was predicted to be damaging and has been reported

previously in AD macro-thrombocytopenia (Kunishima et al,

2011; Kashiwagi et al, 2013), further supporting its identifica-

tion as the causative mutation in this family. Sanger sequenc-

ing showed that the ITGA2B variant was present in

heterozygous form in all affected family members and was

absent in all unaffected family members.

Homozygous or compound heterozygous loss of function

mutations in ITGA2B result in Glanzmann thrombasthenia, a

bleeding disorder characterized by normal platelet count but

abnormal platelet function (Nurden et al, 2011). In contrast,

the ITGA2B R1026W mutation (referred to as R995W in

some reports) is thought to result in constitutive activation

of the aIIbb3 receptor (Kunishima et al, 2011) and has been

previously reported in 7 Japanese families with AD thrombo-

cytopenia (Kunishima et al, 2011; Kashiwagi et al, 2013).

The common geographic origin of these latter families sug-

gested the possibility of a single founder allele, although a

mutation in another gene tightly linked to ITGA2B could not

be excluded. There are many examples where the true causa-

tive mutation is in linkage disequilibrium with many other

variants, some of which reside at a distance or even in

another gene. For example, before ANKRD26 was identified

as the causative gene for thrombocytopenia 2, the disease

was initially attributed to mutations in one of two nearby

genes, ACBD5 or MASTL (Pippucci et al, 2011.).

The identical disease-associated ITGA2B haplotype was

previously reported for 4 of the Japanese families (Kunishima

et al, 2011). We determined the ITGA2B haplotype in our

Caucasian family, confirmed that it segregates with the dis-

ease (Fig 2C), and demonstrated that the ITGA2B R1026W

mutation arose on a different haplotype compared to the

previous reports, strongly supporting at least 2 independent

origins for this same point mutation. This R to W substitu-

tion represents a C to T transition at a CpG site, a known

hot spot for human mutations (Rahbari et al, 2016). Taken

together, these results suggest that R1026W confers a unique

gain of function, consistent with a previous report (Kun-

ishima et al, 2011).

In contrast to our family (European ancestry), all previ-

ously reported families (Japanese ancestry) with HT due to

the ITGA2B R1026W substitution exhibit macrothrombocy-

topenia (thrombocytopenia with large platelet size) (Kun-

ishima et al, 2011; Kashiwagi et al, 2013). The lack of

macrothrombocytopenia in our family could be the result of

a modifier gene(s) difference in these disparate genetic back-

grounds. Strain differences in mice have been demonstrated

to contribute to variations in platelet size in Gray Platelet

Syndrome (Tomberg et al, 2016), analogous to this observa-

tion in humans.

A different substitution at the same position of ITGA2B

(R1026Q, previously designated R995Q) was reported to

result in thrombocytopenia with an mean platelet volume of

10�3 lm3 (control range of 8�6 � 1lm3) in one patient

(Hardisty et al, 1992; Peyruchaud et al, 1998). Point muta-

tions in ITGB3 have also been reported to result in an
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(A)
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(C)

Fig 2. Sequence analysis. (A) Sequence analysis pipeline. (B) Three variants passed all the applied filters. RPKM refers to reads per kilobase of

transcript per million mapped reads and indicates the expression level of the genes in human platelets (Rowley et al, 2011). Multiple tools (SIFT,

Polyphen2, and CONDEL) were utilized to predict the pathogenicity of the variants. (C) The ITGA2B haplotype segregates with the disease. [Col-

our figure can be viewed at wileyonlinelibrary.com].
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identical phenotype (Ghevaert et al, 2008; Gresele et al,

2009). All of these mutations cluster on both sides of the

transmembrane domains of aIIbb3 (Rao & Coller, 2014).

Recently, rare variants in GP1BB were also found to be asso-

ciated with AD macrothrombocytopenia (Sivapalaratnam

et al, 2017).

To our knowledge, this is the first report of a family with

AD thrombocytopenia with normal platelet size, resulting

from a mutation in ITGA2B. Mutations in ITGA2B should

therefore be included in the differential diagnosis of patients

with this disorder.
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