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Impact of Oxidation State on Reactivity and Selectivity 
Differences between NiIII and NiIV Alkyl Complexes 
Courtney C. Roberts,[a] Nicole M. Camasso,[a] Eric G. Bowes,[b] and Melanie S. Sanford*[a]

Abstract: This report describes a systematic comparison of factors 
impacting the relative rates and selectivities of C(sp3)–C and C(sp3)–
O bond-forming reactions at high valent Ni as a function of oxidation 
state. Two Ni complexes are compared: (1) a cationic octahedral NiIV 
complex ligated by tris(pyrazolyl)borate (Tp) and (2) a cationic 
octahedral NiIII complex ligated by tris(pyrazolyl)methane (Tpm). 
Several key features of reactivity/selectivity are revealed. First, 
C(sp3)–C(sp2) bond-forming reductive elimination occurs from both 
centers, but the NiIII complex reacts up to 300-fold faster than the NiIV, 
depending on the reaction conditions. The relative reactivity is 
proposed to derive from ligand dissociation kinetics, which vary as a 
function of oxidation state and the presence/absence of visible light. 
Second, upon the addition of acetate (AcO–), the NiIV complex 
exclusively undergoes C(sp3)–OAc bond formation, while the NiIII 
analogue forms the C(sp3)–C(sp2) coupled product selectively. This 
difference can be rationalized based on the electrophilicity of the 
respective M–C(sp3) bonds, and thus their relative reactivity towards 
outer-sphere SN2-type bond-forming reactions. 

Palladium- and nickel-catalyzed cross-coupling reactions 
have emerged as powerful methods for the formation of alkyl–
alkyl, alkyl–aryl, and alkyl–heteroatom bonds.1 A unifying feature 
of these transformations is the formation of a metal–alkyl 
intermediate that participates in the product-forming reductive 
elimination step of the catalytic cycle. Detailed studies of Pd–alkyl 
species have shown that their reactivity varies dramatically as a 
function of the oxidation state of the Pd center. For instance, while 
PdII–alkyls are typically nucleophilic at carbon, PdIV–alkyls serve 
as potent carbon-based electrophiles. 2  These factors lead to 
profound differences in relative rates and selectivities of reductive 
elimination reactions as a function of oxidation state.3 As such, 
Pd0/II and PdII/IV catalytic cycles often provide highly 
complementary types of products.3,4 

There are three oxidation states that are potentially relevant 
to the bond-forming step of Ni-catalyzed cross-coupling reactions: 
NiII, NiIII, and NiIV. While the reactivity of NiII–alkyl complexes has 
been studied extensively,1a detailed investigations of analogous 
NiIII– and NiIV–alkyls have been impeded by a lack of stable model 
complexes. However, recent work from our group5 and others6 
has shown that facial tridentate ligands are highly effective for 
supporting isolable NiIII and NiIV complexes. This opens up 
opportunities to systematically interrogate the impact of oxidation 
state on the reactivity of NiIII–alkyls compared to NiIV–alkyls. Such 
studies have the potential to unveil reactivity differences as a 

function of oxidation state that might ultimately be exploited in 
catalysis.  

A key challenge for these studies is to design a model 
system in which the oxidation state of Ni is the sole difference 
between the high valent Ni complexes. Previous reports have 
accessed NiIII and NiIV complexes that contain the same facial 
tridentate ligand (for instance, tris(pyrazoyl)borate (Tp)5 or 1,4,7-
trimethyl-1,4,7-triazacyclononane (Me3tacn)6). However, as 
exemplified for the Tp complexes in Figure 1, these species differ 
in their overall charge (neutral NiIII versus cationic NiIV) and 
coordination geometry (square pyramidal NiIII versus octahedral 
NiIV) as well as their oxidation state.5 These differences preclude 
the direct comparison of the influence of oxidation state on 
reductive elimination reactions.7 

 
Figure 1. Challenges with comparing the impact of Ni oxidation state on 
reactivity/selectivity in reductive elimination.  

This report describes the design of model complexes that 
enable a direct comparison of the rate/selectivity of reductive 
elimination as a function of Ni oxidation state. The first is an 
analogue of B wherein the anionic Tp ligand is replaced with the 
neutral facial tridentate ligand tris(pyrazoyl)methane (Tpm), 
Figure 2. Tpm imparts the same primary coordination 
environment as Tp, but the overall charge of the ligand is neutral.8 
Thus, it results in a cationic octahedral NiIII complex, 1-NiIII+. The 
second complex in this study is the previously reported cationic, 
octahedral TpNiIV adduct 2-NiIV+, Figure 2. We report herein that 
these complexes exhibit dramatically different reactivity towards 
both C(sp3)–C(sp2) and C(sp3)–oxygen coupling reactions and we 
provide a rationale for the observed effects.  

1-NiIII+ and 2-NiIV+ were synthesized via oxidation of the 
appropriate NiII precursor with 1 or 2 equiv of AgBF4 (see SI for 
complete details).5 The complexes were characterized by 1H and 
13C NMR spectroscopy, cyclic voltammetry, EPR spectroscopy, 
and X-ray crystallography, and all the data are consistent with the 
structures shown in Figure 2. The X-ray crystal structures of these 
complexes are shown in Figure 3. Notably, X-ray quality crystals 
of 1-NiIII+ were obtained in the presence of pyridine; as such, a 
pyridine ligand (rather than an acetonitrile) is coordinated in the 
axial site. In the solid state, both 1-NiIII+ and 2-NiIV+ are 6-
coordinate octahedral structures.  
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Figure 2. Design of study to test impact of oxidation state on reactivity and 
selectivity of C–C and C–X coupling from high valent Ni 

 

Figure 3. ORTEP structures of 1-NiIII+ and 2-NiIV+, BF4 and solvent molecules 
omitted for clarity 

 We first focused on comparing the rates of inner-sphere 
C(sp3)–C(sp2) bond-forming reductive elimination from 1-NiIII+ and 
2-NiIV+. There are two opposing factors that could potentially 
dictate the relative reactivity of these two complexes. On one 
hand, NiIV complexes are generally considered to be higher 
energy intermediates than their NiIII analogues. This is reflected, 
for example, in the redox potentials associated with 1-NiIII+ (NiII/III 
E1/2~ –0.7 V) and 2-NiIV+ (NiII/III E1/2 ~ –1.2 V; NiIII/IV E1/2 ~ –0.1 V vs 
Ag/Ag+, see Supporting Information pg S34 as well as reference 
5b). Based on the Hammond postulate, the relative ground state 
energetics could lead to faster reductive elimination from 2-NiIV+ 
versus 1-NiIII+.9 On the other hand, the mechanism of C(sp3)–
C(sp2) coupling from octahedral metal centers often involves a 
pre-equilibrium ligand dissociation prior to C–C bond formation.10 
Odd-electron d7 complexes like 1-NiIII+ generally exhibit much 
faster rates of ligand dissociation than their even-electron d6 
counterparts. 11  This could thus result in faster C(sp3)–C(sp2) 
coupling from 1-NiIII+. Furthermore, if ligand dissociation kinetics 
were the determining factor, the presence/absence of light would 

be expected to have an impact on the relative rates of C–C 
coupling. 12  For example, a number of literature studies have 
shown that ligand dissociation (and hence C–C bond-forming 
reductive elimination) at d6 octahedral group 10 complexes can 
be accelerated by at least 10-fold upon exposure to ambient 
light.3b,13  

To experimentally compare the relative reactivity of 1-NiIII+ 
and 2-NiIV+, we first monitored the formation of benzocyclobutane 
3 from each complex at 25 ºC in CD3CN in the dark. As shown in 
Figure 4, 1-NiIII+ undergoes rapid C(sp3)–C(sp2) coupling, 
affording ~40% yield of 3 within just 20 min (and 87% yield after 
12 h). Under analogous conditions, 2-NiIV+ forms less than 1% 
yield of 3 (and <5% yield after 12 h). This represents a more than 
300-fold difference in the initial rate of reductive elimination from 
1-NiIII+ versus 2-NiIV+. These results suggest that ligand 
dissociation is likely a critical factor in the relative rates of this 
transformation and further experiments were conducted to test 
this hypothesis. 

 

Figure 4. Time study of the formation of 3 in the absence of light [Ni] = 0.0023 
M 
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Figure 5. Time study for the formation of 3 in the presence of light [Ni] = 0.0023 
M 

We next investigated the impact of ambient light on these 
reactions. As shown in Figure 5, in the time frame measured we 
could not detect a significant change in the initial rate of C–C 
reductive elimination from 1-NiIII+ upon exposure to ambient light, 
and a similar ~40% yield of 3 was observed after 20 min. After 12 
h, >95% yield to 3 was observed. In contrast, C–C coupling from 
the cationic octahedral complex 2-NiIV+ proved highly sensitive to 
ambient light. For example, approximately 15% yield of 3 was 
obtained after 20 min, compared to <3% in the dark. This 
represents a more than 25-fold acceleration of the light reaction. 
When the reaction was run for 12 h, 65% yield of 3 was obtained. 
In addition, the C–C coupling from 2-NiIV+ can be accelerated and 
then slowed multiple times by sequential exposure to and then 
removal from ambient light. Throughout this experiment, the 
observed rate during the light and dark periods is comparable to 
that seen when analogous reactions are conducted fully in the 
light or the dark.  

As discussed above, we hypothesize that ambient light 
accelerates C–C reductive elimination from 2-NiIV+ by promoting 
dissociation of a ligand (either MeCN or a pyrazole).13 To probe 
the lability of the acetonitrile ligand, we monitored the 1H NMR 
resonance associated with coordinated CH3CN (at 2.36 ppm) 
throughout the C–C coupling experiments in both the light and the 
dark. As shown in Figures S3 and S7, less than 5% exchange 
with the CD3CN solvent was observed over 3 h at 25 ºC in the 
light or the dark. This result suggests against a pathway involving 
pre-equilibrium light-promoted dissociation of acetonitrile. 14  In 
addition, exchanging the solvent for nitromethane (which has a 
similar dielectric constant to acetonitrile but should not serve as a 
ligand to Ni) had minimal impact on time course of C–C coupling 
(see p. S12 for details). Based on these experiments, we propose 
that the role of the light may be to promote dissociation of a 
pyrazole arm of the Tp ligand.15  

We next examined the relative reactivity of 1-NiIII+ and 2-
NiIV+ towards carbon–heteroatom bond-forming processes. 
Acetate (AcO–) was selected as a representative heteroatom 
nucleophile based on the relative inertness of C–OAc bonds 
towards side reactions with low valent Ni products.1a Literature 
precedent suggests that C–heteroatom coupling at high valent 

group 10 metal centers typically proceeds selectively at M–C(sp3) 
[versus M–C(sp2)] centers via an outer-sphere SN2-type 
pathway.2,4, 15  The rates/selectivities of these processes are 
generally dictated by the electrophilicity of the M-bound carbon as 
well as the relative rates of competing inner-sphere reductive 
elimination processes.3 We note that NiIV complex 2-NiIV+ is 
expected to have a highly electrophilic Ni–C bond; furthermore 
inner-sphere C(sp3)–C(sp2) coupling is slow from this complex. 
Thus, we hypothesized that 2-NiIV+ was likely to undergo selective 
C(sp3)–OAc coupling. 

 

Scheme 1. (a) Selective outer-sphere C(sp3)–OAc reductive elimination from 2-
NiIV+ and (b) Selective inner-sphere C(sp3)–C(sp2) coupling from 1-NiIII+ 

Indeed, the treatment of 2-NiIV+ with 2 equiv of NMe4OAc at 
22 ºC in MeCN in the dark resulted in rapid conversion of the 
starting material and the formation of a new diamagnetic Tp-
ligated Ni complex within 10 min. The 1H NMR spectrum of this 
complex contains a pair of diastereotopic resonances at 4.59 and 
4.28 ppm, consistent with the formation of the NiII complex 4 
(Scheme 1a). However, complex 4 (which was formed in 60% 
yield, as determined by 1H NMR spectroscopic analysis of the 
crude reaction mixture) proved challenging to isolate cleanly. As 
such, it was treated with trifluoroacetic acid to protodemetallate 
the organic ligand(s). Subsequent analysis by 1H NMR 
spectroscopy and GCMS revealed the formation of 5 in 31% yield. 
Notably, no trace of either 3 (derived from C(sp3)–C(sp2) coupling) 
or 6 (derived from C(sp2)–OAc coupling) was detected.16 Notably, 
nearly identical yields and product selectivities were observed in 
the presence of ambient light. This is consistent with C(sp3)–OAc 
coupling from 2-NiIV+ proceeding by a different (likely outer-
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sphere) pathway that is much faster than benzocyclobutane 
formation.  

We next examined the reaction of 1-NiIII+ with 
tetramethylammonium acetate. As shown in Scheme 1b, the 
crude 1H NMR spectrum of this mixture showed the formation of 
benzocyclobutane 3 in 41% yield. The Ni-containing products 
were paramagnetic and thus could not be readily identified by 
NMR spectroscopy. As such, trifluoroacetic acid was added to 
protodemetallate any Ni σ-alkyl or σ-aryl nickel analogues of 5 or 
6. 1H NMR spectroscopic analysis of the resulting mixture showed 
no trace of either 5 or 6, the organic products of C(sp3)–OAc or 
C(sp2)–OAc coupling, respectively. These data demonstrate that 
C–C bond-forming reductive elimination outcompetes C–OAc 
coupling at this cationic octahedral NiIII complex. We attribute this 
difference in reactivity to the lower electronegativity of NiIII versus 
NiIV, which results in a less electrophilic Ni–C(sp3) bond and thus 
decreased reactivity in SN2-type pathways. 

In summary, these studies demonstrate that outer-sphere 
C(sp3)–OAc bond-formation is significantly faster than inner-
sphere C(sp3)–C(sp2) coupling at the NiIV complex 2-NiIV+. This is 
consistent with the mechanism of C(sp3)–heteroatom reductive 
elimination from other d6 group 10 metals, where SN2-type 
pathways have been proposed at PtIV, 17  PdIV, 18  and NiIV.5 
Furthermore, inner-sphere C(sp2)–OAc coupling is not 
competitive in this system, likely due to the low lability of the 
MeCN ligand, which precludes acetate coordination to the NiIV 
center. (An inner sphere mechanism has been proposed for the 
vast majority of carbon-carbon and C(sp2)-heteroatom coupling 

reactions at PtIV,19 PdIV,4 PdIII, 20 NiIV,21 and NiIII centers.3,22) In 
contrast, the NiIII analogue 1-NiIII+ reacts to selectively form C–C 
coupled product 3 in the presence or absence of the acetate 
nucleophile. These results demonstrate that the oxidation state of 
high valent Ni can play a key role in dictating both the mechanism 
and selectivity of the favored reductive elimination process in 
these systems. While this study focuses on model complexes, 
ongoing investigations in our lab are probing the generality of 
obtaining complementary bond-forming reactions by manipulating 
the oxidation state of high valent Ni intermediates. If these 
observations prove general, they are likely to find broader 
applications in catalysis.  
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