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Abstract 

Background:  We sought to evaluate intra tumor heterogeneity in OCC and specifically 

determine the effect of physical separation and histologic differentiation within the same tumor.  

Methods: We performed whole exome sequencing on five biopsy sites – two from well-

differentiated, two from poorly-differentiated regions and one from normal parenchyma – from 

five primary OCC specimens.   

Results: We found high levels of intra tumor heterogeneity and, in four primary tumors, 

identified only 0-2 identical mutations in all sub-sites. We found that the heterogeneity inversely 

correlated with physical separation and that pairs of well-differentiated samples were more 

similar to each other than analogous poorly-differentiated specimens.  Only TP53 mutations, but 

not other purported “driver mutations” in HNSCC, were found in multiple biopsy sites. 
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Conclusion: These data highlight the challenges to characterization of the mutational landscape 

of OCC with single site biopsy and have implications for personalized medicine. 

 

 

 

 

 

 

Introduction 

Squamous cell carcinoma of the oral cavity (OCC) is a world-wide health problem with 

an incidence in males of 6.6/100,000 in the United States and 16.4/100,000 in India.1 Unlike 

Human papilloma virus (HPV)-associated oropharyngeal carcinomas,2 which have exceptionally 

good outcomes with current treatment modalities,3 survival for patients with advanced OCC 

remains poor.4 

Improved outcomes for patients afflicted with OCC will likely be predicated on a detailed 

understanding of the genetic changes that drive tumor proliferation/ survival and the correlation 

of these changes with routine histopathologic findings that are the backbone of current staging 
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systems. For instance, understanding the variability in mutations amongst select OCC sub-sites is 

an important consideration for molecular staging systems, such as the Mutant Allele Tumor 

Heterogeneity (MATH) score, which are poised for integration into clinical care. 5-7 In addition, 

insight into the mutational heterogeneity of OCC is critical to the development of personalized 

treatment strategies for patients afflicted with this disease.  For example, the NCI-MATCH trial 

relies upon whole exome and mRNA analysis of a single biopsy sample from a patient’s tumor to 

determine if that individual might be successfully treated with an approved drug. Similarly, 

based on the recent insight that responses to PD-1:PD-L1 axis blockade are not only dependent 

on a high mutational burden, 8, 9, 10, 11 but also, upon conservation of specific  mutations 

throughout the tumor, 12 understanding of mutational heterogeneity may provide a useful adjunct 

to prospective immunotherapy trials. Finally, knowledge of the distinct mutations that encode for 

putative neoantigens shared amongst all and/or the majority of tumor sub-sites is a prerequisite 

for the development of neoantigen specific cancer vaccines.13 

 Initial large collaborative whole exome sequencing efforts of squamous cell carcinomas 

of the head and neck (SCCHN) revealed extensive inter-tumor heterogeneity, with the involved 

genes generally conserved in less than 10% of specimens -- notable exceptions including TP53, 

CDKN2A, FAT1, NOTCH1, SYNE1, and MLL2.14, 15 Subsequent analysis of data in the Cancer 

Genome Atlas (TGCA) validated and extended these initial observations, confirming the 

transcription of these genes harboring mutations in 86% of cases. 16, 17  Unfortunately, with few 

exceptions, the published studies that define the somatic mutations in OCC and SCCHN do not 
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speak to the issues of intra-tumor heterogeneity nor do they correlate mutational burden with 

tumor grade. Given that other tumor types such as renal cell carcinoma and pancreatic cancer 

demonstrate profound intra tumor heterogeneity in both the primary tumor and regional lymph 

node metastasis, this information is likely critical to our understanding of disease pathogenesis.18-

22   

In this report, we utilized whole exome sequencing (WES) to explore the inter- and intra-

tumor mutational landscape of primary OCC. We describe the development and validation of a 

method that considers three parameters to assess the probability that a non-synonymous mutation 

in an OCC exon is valid -- (i) identification of a DNA sequence variant with two mutation caller 

systems, (ii) the extent of DNA sequence coverage for each variant, and (iii) the normalized 

allele frequency. Using this approach, we mapped the exomes of four unique sites -- two from 

well and two from poorly differentiated regions -- from five primary OCCs.  

 

Materials and Methods 

Pathology:  Representative sections (2-3 mm in thickness; at least one section/cm of tumor) 

were obtained from five randomly selected patients who had undergone surgical resection of 

their OCC. Sections were fixed in 10% formaldehyde, processed, and embedded in paraffin 

blocks, from which 5 micrometer sections were cut and stained with Hematoxylin & Eosin 

(H&E). Selected areas were categorized as “well-differentiated” or “poorly-differentiated” by a 
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head and neck pathologist. We selected two areas of well-differentiated (e.g. W1 and W2) and 

two areas of poorly-differentiated carcinoma (e.g. P1 and P2), as well as one area of normal 

mucosa (N) from each primary tumor. These areas were circled on the H&E stained slides and 

the distances between all of these selected areas were recorded (Figure 1). 

For each of the selected areas, a tissue core (2.0 x 2.0 x 2.5 mm) was obtained with a 

metallic biopsy needle from the corresponding paraffin block and re-embedded in a new paraffin 

block.  A 5 µm thick section was cut from this new block in the vertical plane and 

embedded/sectioned in the horizontal plane. The resulting slides were stained with H&E and 

used to validate the assigned tumor differentiation category, and to determine the tumor purity 

throughout the core (i.e. % of tumor/core tissue, “biopsy of the biopsy”) (Figure 1 and 

supplemental table 1).  The remaining tissue, which represented most (i.e. >90%) of the 

punched-out core, was submitted for molecular studies. In addition to histologic evaluation, we 

employed the recently described informatics tool, Sequenza, as an additional means to evaluate 

tumor purity.23 

Fresh frozen and FFPE DNA extractions: Genomic DNA was extracted from FFPE sections 

and biopsy cores using Covaris truXTRAC FFPD DNA Kit (Covaris, Woburn, MA). In brief, 

FFPE sections less than 25 µm thick or biopsy cores smaller than 1.2 mm in diameter were 

loaded into Covaris microTUBEs, supplemented with buffer and processed in Covaris E210 

instrument to dissociate the paraffin and rehydrate the tissue.  Tissue was then lysed with 

Protease K overnight at 56oC followed by a 1-hr incubation at 80oC to reverse formaldehyde 
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crosslinks.  Genomic DNA was extracted through a spin column provided in the kit, and further 

purified with AMPure XT beads (Beckman Coulter Genomics, Danvers, MA).   

Library construction: Genomic DNA libraries were constructed for sequencing on the Illumina 

platform using the KAPA Library Preparation Kit (Kapa Biosystems, Wilmington, MA). First, 

DNA was fragmented with the Covaris E210. Then libraries were prepared using a modified 

version of manufacturer’s protocol. The DNA was purified between enzymatic reactions and the 

size selection of the library was performed with AMPure XT beads (Beckman Coulter 

Genomics, Danvers, MA). The PCR amplification step was performed with primers containing 

an index sequence seven nt in length. 

Exome capture & sequencing: Exome capture was performed using the Agilent SureSelect 

Human All Exon v4 kit according to manufacturer’s protocol. Multiplexed sequencing was 

performed on the Illumina HiSeq 4000 platform using 151bp paired-end runs. An average of 518 

million reads were generated for each sample. 

Data preprocessing & alignment: Illumina reads were aligned to human reference v37 with 

decoy sequences using BWA 24 version 0.7.12-r1039. Picard 25 tools (version 1.140) CleanSam, 

FixMateInformation, and MarkDuplicates were used to clean up any mapping artifacts and mark 

duplicate read pairs. Indel realignment and base quality recalibration were performed using 

GATK 26version 3.3-0. All the tumor and normal samples derived from the same patient were 

co-realigned.  The resulting alignments had an average on-target depth of 284 reads. The median 
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on-target depth was 260x with a range of 142x -- 479x. On average >99% of the targeted bases 

were covered at 30x or more with a range of 96% - 100% (Supplemental Table 2). 

Variant calling, annotation, and filtering: Somatic SNVs were called using Mutect27 version 

1.1.7 and VarScan28 version 2.4.1 to obtain a set of high confidence variants. Independent variant 

calling was done for each sample analyzed. MuTect applies several variant filters to detect any 

false positive SNVs generated due to mapping and sequencing errors. A variant was identified as 

a false positive if: 1. it was observed in the matched normal sample, 2. there was a proximal gap, 

3. a site exhibited poor mapping or strand bias, 4. alternate alleles were clustered at a consistent 

distance from the read ends, or 5. the site was tri allelic. The VarScan call set was also processed 

to obtain a high confidence set. Default allele frequency thresholds were applied to variants 

classified as somatic. If the variant allele frequency was >5% in tumor and <5% in normal, it was 

marked as high confidence. Furthermore, variants were filtered to identify false positives due to 

poor mapping, strand bias, read position bias, etc.  

The resulting somatic variants were annotated for functional effect using Annovar29 

(version 2015-06-17). Annovar was also used to annotate the variants with allele frequencies in 

the 1000 Genomes Project, NHLBI-ESP 6500 exomes, CLINVAR, COSMIC, NCI60 and to 

calculate scores for prediction algorithms including, SIFT, PolyPhen, and MutationAssessor. The 

1000 Genomes Project alternate allele frequency threshold was set to 0.01 to filter out common 

variants. 
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To evaluate the purity of the normal samples, we calculated the allele frequency 

distribution of each sample. An average of 83% of variant AF were heterozygous 

(0.4<=AF<=0.6) or homozygous (AF>0.9), with a range of 77% - 86% (Supplemental Table 3, 

Supplemental Figure 1).   

Because FFPE data carries a risk of artefactual mutations due to cytosine deamination, 

we evaluated the prevalence of C->T and G->A mutations in each sample (Supplemental Figure 

2). Though a number of samples showed significant enrichment for these mutation types, after 

removing all C->T and G->A mutations from the final call set, the rate of overlap among the 

samples changed by less than 1% (Supplemental Figure 3, Supplemental Table 4).  

Somatic variant validation: All non-synonymous, stop loss and stop gain variants that were 

called with high confidence by both callers were used to pick a set of variants for validation. 

These were prioritized using MutationAssessor30  predictions and cross-referenced with genes 

known to be associated with cancers (specifically head and neck cancers) using COSMIC 31 and 

tumorportal.org32, and a final validation set was chosen. PCR primers for each variant were 

selected using a combination of Primer3 and manual primer design. Resulting PCRs were 

sequenced using barcoded, multiplexed runs on a PacBio RS II with P6-C4 chemistry. The 

resulting PacBio CCS reads were aligned to the human reference with BLASR and the 

alignments and consensus calls were manually inspected using IGV. 

Statistical Analysis: The Jaccard similarity coefficient J(A,B) was used for quantifying the co-

occurrence of SNVs in two samples from the same patient, A and B: 
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𝐽(𝐴,𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| =

|𝐴 ∩ 𝐵|
|𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 

For constructing dendrograms the Jaccard distance or Jaccard dissimilarity defined as 1-J(A,B) 

was used as the distance metric between samples. Dendrograms were produced using Wolfram 

Mathematica ver. 11.0.0.  A forest plot of the fraction of shared SNVs in individual samples was 

generated using the ‘meta’ library in the R software.33 Partial correlation was used to test the 

significance of the association between increasing Jaccard similarity and decreasing physical 

distance between samples with the effect of parent tumor removed.  Likewise, the uni-directional 

hypothesis that Jaccard similarity increases with decreasing physical distance between paired 

samples in individual tumors were tested using the non-parametric Spearman’s rank correlation 

coefficient, Rs. The corresponding P-value is for rejecting the hypothesis Rs=0. These analyses 

were conducted using IBM SPSS Statistics ver. 24.0.0. 

Study Approval: All studies were conducted under the auspices of a protocol approved by the 

Institutional Review Board, University of Maryland, Baltimore. As determined by the IRB the 

protocol did not require written informed consent.  
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Results 

Tumor Site and Stage 

 Four study participants had SCC of the oral tongue (Patients 5280, 1646, 6803, 7157), 

while one tumor originated in the lower gingiva (9464). Patient’s ages ranged from 49-89 years. 

Tumors were pathologically staged TNM classification as: T2N0, T1N2c, T3N2c, T2N0, and 

T1N0.  None of the patients had distant metastatic disease at time of resection.   

Validation of Somatic Mutations Correlates with both Allele Frequency and Sequence 

Coverage 

We analyzed our WES data using two widely employed caller systems, MuTect and 

VarScan, and only validated mutations called by both systems (Table 1).27, 28 We performed 190 

PCR reactions for overlapping SNVs and successfully validated 139 (73%).  The frequency of 

allele detection and sequence coverage directly correlated with successful validation (Table 1, 

Figure 2).  With sequence coverage greater than 500, the validation rate was 79% and for allele 

frequency greater than 0.5, the validation rate was 86%.  Combining both of these criteria 

resulted in a validation rate of 100%.  Lowering the coverage to >250 with allele frequency >0.5 

still produced a 92% validation rate. Collectively, these data define the likelihood that a mutation 

identified by our approach in silico is valid based on set parameters. 

Primary OCCs have Variable Mutational Burdens 
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In order to determine if the mutational burden of OCC was consistent throughout primary 

OCCs, we evaluated high impact SNVs -- defined as non-synonymous or stop mutations-- in 

four samples from each primary tumor (Table 2). We identified 635 SNVs, with each primary 

tumor having variable tumor wide and sub-site specific mutational burdens (range: 60-223/ 

patient tumor) (Figure 3A).  For example, in tumors 5280 and 1646, two of the sub-sites had high 

and two had low mutational burden indices.  In contrast, two tumors (9464 and 6803) displayed 

high mutational burdens with internal consistency. Finally, the mutational burden index was 

approximately equal in three of the four sub-sites from tumor 7157. These data demonstrate that 

OCCs have variable levels of intra and inter tumor mutational burdens that contributes to their 

overall genetic diversity.   

Primary OCCs have high Level of Intra Tumor Heterogeneity 

In general, these tumors had high levels of mutation and gene specific intra tumor 

heterogeneity. For example, in four primary tumors, we identified only 0-2 identical mutations in 

all sub-sites -- a finding that correlated with a 0.7% median SNV overlap per patient. For the 

three patients that did share at least one common SNV in all four sub sites, each SNV 

corresponded to one gene (supplemental table 5).  Interestingly, in two of these patients, we 

found a relatively high percentage of identical mutations, in three of the four sub-sites. Similarly, 

in tumor 9464, despite the discovery of 41 identical mutations found in all four sub-sites, 

individual regions showed high numbers of mutations that were either unique or shared by only 

one other area. (Figure 3B, supplemental table 5).   
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To quantify the mutational variability among samples from within a tumor, we computed 

dendrograms with the Jaccard Dissimilarity coefficient as the measure of mutational distance 

between pairs of samples (Figure 3C). The Jaccard Dissimilarity coefficient is the proportion of 

all somatic mutations present in one of the two samples in a pair that are present in both samples. 

These data demonstrate considerable tumor-to-tumor variation in the mutational relatedness 

among samples. As an example, tumor 1646 shows a relatively higher similarity within the 

poorly-differentiated and the well-differentiated samples than between well versus poorly-

differentiated samples. The independent sample Kruskal-Wallis test showed that in this small 

sample, the distribution of the Jaccard coefficient was not statistically significantly different 

among the tumors (P=0.19). 

Intratumor Heterogeneity is Partially Constrained by Physical Distance and the Degree of 

Histologic Differentiation 

Within each tumor, the relationship between the distance between samples and their 

mutational profiles was variable. However, combined analysis of four tumors (6803 was not 

included because P2 had no SNVs called by both calling systems) showed samples that were 

physically closer together shared more common SNVs (p=0.03).  Furthermore, well-

differentiated samples within each tumor had a higher percentage of shared SNVs (median 80% 

overlap) compared to poorly-differentiated specimens (Median overlap 1.3%) (p=0.06) (Table 

2). This trend was not explained by physical distance between samples as there was no difference 

in proximity between the well and poorly-differentiated samples (p = 0.1).   Importantly, as 
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highlighted in Figure 3C, in some tumors (5280 (W1 and P1), 9464 (P2 and W2/W1), and 7157 

(P1 and W2), well-differentiated samples shared more SNVs with poorly-differentiated samples, 

and in all of these cases tumor samples were of short distance from each other (each 3mm) 

(Supplemental table 6).  

The Majority of SNVs Identified are in Genes Not Typically Associated with SCCHN 

Previous WES studies have identified a group of mutated genes that are conserved in a 

relatively small number of SCCHN specimens.17, 34-36 Using the two-caller approach, we only 

found only one gene, TP53, which was mutated in more than one patient (Table 5). NOTCH1 

and 2, CASP8, and SYNE1 were detected in 2-4 of the primary tumor specimens but, generally, 

not by both callers.  Furthermore, unlike TP53 and CDKN2A, in which conserved tumor specific 

SNVs were identified by both calling systems in all 4 sub-sites throughout an individual tumor 

(patient 9464), when present, NOTCH1 and 2, CASP8, and SYNE1 were only found in 1-2 

primary tumor sub-sites, even when considering calls made by only one calling system. Finally, 

even with TP53, we did not identify any common SNVs between patients.    

Discussion 

 

 Whole exome sequencing of four spatially separated primary tumor samples from each of 

five patients with OCC demonstrated significant inter and intra-tumor variability in both 

mutational burden indices and specific somatic SNVs. Interestingly, the physical distance 

between samples had a significant inverse correlation with their genetic similarity. Furthermore, 
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pairs of well-differentiated samples trended towards sharing greater numbers of conserved SNVs 

than their poorly differentiated analogues.   

There is limited information on the mutational burden and the mutational heterogeneity 

of OCC and SCCHN in general.  In the most comprehensive study to date, SNV heterogeneity of 

OCC was analyzed with a 202-gene “cancer gene” panel using 2-3 distinct samples from each 

primary tumor and 0-2 samples from one lymph node/patient.  The findings from this study 

indicate a high degree of intratumor concordance amongst the distinct areas sampled from the 

four patients with oral tongue cancer, with dramatically higher levels of heterogeneity in the one 

patient with a floor of mouth malignancy.37 The differences observed between this report and our 

study may be as a result of the small samples sizes examined and/or by the use of closed versus 

open data sets, respectively – the latter a supposition reinforced by our observation that the 

majority of SNVs found in our study occurred in genes not commonly associated with SCCHN.  

Taken in concert, these data suggest that while multiple sub-sites from individual OCCs share 

common mutations in the exomes of a defined group of cancer relevant genes, this overlap does 

not reflect the profound heterogeneity captured by WES. Similar to our study, for example, a 

high level of intratumor heterogeneity was identified using whole genome sequencing of an HPV 

positive oropharyngeal cancer patient.38 

Previous WES studies have shown that certain genes are preferentially targeted for 

mutations in SCCHN.17, 34-36 Based on these data, there is speculation that some of these genes 

e.g. TP53 and NOTCH1, are integral to the pathophysiology of these tumors in select patients. 
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We found that TP53 was mutated in a large number of tumor sub-sites in more than one patient.  

These findings are consistent with recent studies in non-small cell lung cancer, demonstrating 

that TP53 driver mutations are generally clonal.21  However, while NOTCH1 and 2, CASP8, and 

SYNE1 were detected in 2-4 of the primary tumor specimens, they were only identified in 1-2 

sub-sites, even when we liberalized our detection approach to the use of a single caller system.  

While the interpretation of these findings is debatable, they appear to suggest that these genes 

may not be required in OCC -- at least in certain tumor sub-sites -- and, unlike in squamous cell 

lung cancer, might have occurred later in the process of tumor progression.21, 39  

In addition to carefully characterizing the mutational heterogeneity of OCC, we asked 

whether the degree of overlap observed correlated with either the distance between samples 

and/or histologic differentiation.  As anticipated, the distance between samples was inversely 

correlated with the number of shared SNVs. The fact that these findings were not absolute 

suggests that OCCs may adhere to both linear as well as non-linear genetic models of 

progression.40-42  In the long term, it will be important to determine whether, like other tumors, 

the molecular pathways used for tumor growth and survival in these distinct regions, move 

towards concordance, as is observed in other tumors.43-45 

To our knowledge, this is the first evaluation of the effect of histologic differentiation on 

intra tumor genetic heterogeneity.  Well-differentiated areas within the same patient’s tumor 

trended towards sharing a higher percentage of common SNVs than poorly differentiated 

regions.  This effect was not explained by distance; as well-differentiated samples were not 
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significantly closer to each other than poorly differentiated samples.  Also, this observation does 

not appear to be related to the absolute number of SNVs identified, as both poor and well-

differentiated samples varied in mutational burden. While the small sample size of our study 

mandates that these data be interpreted with caution, they suggest that mutational heterogeneity 

might correlate with the degree of histologic differentiation in OCC.  Further studies will be 

required to validate or refute this finding.     

There are several limitations to our study.  First, because of the relatively small sample 

size, our observations will need to be validated in a larger patient cohort.  Second, while we 

developed and validated a “two caller” screening algorithm for mutant allele detection that may 

prove useful for estimating the frequency of “valid calls” in cases where concomitant RNA Seq 

is not planned, the requirement that both callers identify the same mutation, almost certainly 

decreased the sensitivity of SNV detection, and may have led to a higher false negative rate.  

However, as shown in supplemental figure 4 and 5 the use of one calling system only decreased 

the intratumor heterogeneity slightly or not at all when comparing all samples.  Additionally, as 

highlighted in table 3, in only one patient for one gene (TP53 in 5280 in P1 called by Mutect but 

not Varscan) was there a discrepancy where the mutation was not found in all samples as a result 

of using two calling system. We analyzed our validation data set, and found only 10 SNV 

positions where the validation PCRs detected the variant in a tumor sample where it was not 

predicted (i.e. the variant was present but missed by our algorithm). Of these, 4 were found by 

neither Mutect of VarScan, 1 was found by Mutect but not VarScan, and 5 were found by Mutect 
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but rejected as poor-quality or likely contamination. Therefore, we do not feel that the use of a 

two-caller screening algorithm significantly affected our results. 

A third limitation of our study, and all genomics studies comparing samples, is the 

variability in tumor purity between samples. In order to better understand this inherent 

variability, tumor purity was defined using both “2-dimensional” H & E staining and analysis 

with the recently developed informatics tool,  Sequenza.23 The fact that these methods had 

variable concordance highlights the fact that better analytic tools are required to evaluate tumor 

purity.  

Finally, to improve the functional relevance of our study, we only included non-

synonymous SNV mutations in our analysis. Because somatic insertion/deletion calling carries a 

higher error rate, we elected to focus on SNVs to provide a more accurate call set from which to 

conduct intra-tumor comparisons. The exclusion of synonymous mutations and 

Insertions/Deletions (INDELs) from our analysis reduced estimates of mutational burden, with 

the effects on mutational heterogeneity being less certain.  Finally, the observation in certain 

patients that large numbers of unique SNVs were found in only one of the four regions analyzed, 

suggests that our study likely under represents the mutational heterogeneity of OCC.   

Conclusion 

To the best of our knowledge, this is the first report to characterize the mutational burden 

and mutational heterogeneity of OCC using a whole exome sequencing approach.38,37 Our 
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findings indicate that OCCs have variable levels of mutational burden and high levels of 

intratumor heterogeneity -- heterogeneity that is inversely correlated with the physical distance 

between specimens and is less variable in well versus poorly-differentiated regions.  Our data 

also suggest, that some of the mutations e.g. NOTCH1, that were postulated to be drivers of 

tumorigenesis in select patients, may not be required in all tumor sub-sites.  Finally, from a 

therapeutic perspective, our data highlight the challenges of using a single site biopsy for 

“precision medicine.”  
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Tables 

Table 1.  Validation by Allele frequency and Coverage* 

Allele Freq All validation attempts PCR+ validation attempts 
>0.75   5/11 

(45%) 
  3/5   
(60%) 

  1/1   
(100%) 

  5/6   
(83%) 

  3/4 (75%)  1/1 (100%) 

0.5 -- 0.75 14/19 
(74%) 

 9/10 
(90%) 

 11/11 
(100%) 

14/18 
(78%) 

9/10 (90%) 11/11 
(100%) 

0.25 -- 0.5 17/38 
(45%) 

17/32 
(53%) 

14/25 (56%) 17/30 
(57%) 

17/26 
(65%) 

14/21 (67%) 

<0.25 11/36 
(31%) 

11/26 
(42%) 

16/24 (67%) 11/25 
(44%) 

11/18 
(61%) 

16/20 (80%) 

Coverage  0 -- 250 250-- 500 >500 0 -- 250 250 -- 500      > 500 
* “All validation attempts” refers to all validation attempts, including PCR failures. The “PCR+ 
validation attempts” set includes only those validation attempts where a PCR amplicon was 
obtained. 
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Table 2.  Comparison of overlap of SNV’s in tumor samples from all patients.b  

Patient Site 

Stageh 

W1 W2 Distance 
(mm)d 

Shared 
SNVse 

n(%) 

P1c P2 Distance 
(mm)d 

Shared 
SNVse 

n(%) 

Total 
Unique 

SNVsf 

Total Shared 
SNVsg     

n(%) 

 

5280 Tongue 

T2N0 

29 81 2.5 22(25) 15 59 0.5 1(1) 149 1(0.7) 

1646 Tongue 

T3N2c 

58 68 5 56(80) 5 12 11 0(0) 81 0(0) 

9464 Gingiva 

T1N2c 

128 126 2 122(92) 131 128 1 42(19) 223 41(18) 

6803 Tongue 

T2N0 

57 56 10 55(95) 48 0 7 0(0) 60 0(0) 

7157 Tongue 

T1N0 

5 78 15 2(2) 84 93 1 58(49) 122 2(1.6) 

bVariants are Non-synonymous exonic SNV's discovered by both calling systems 

c W = well differentiated sample.  P= Poorly differentiated sample. Numeric value represents the 
total number of SNVs in each sample. 

dDistance between samples (W1 to W2 or P1 to P2) 

e Found in both samples within a patients tumor (W1 and W2 or P1 and P2) 

f Total number of unique SNVs in all 4 samples for each patient. 

g Found in all 4 samples within a patient’s tumor. Each SNV corresponds to one gene.  

h Staging represents pathologic stage  
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Table 3. Mutations in commonly reported genes in SCCHN by patient and tumor samplea 

Mutated 
Geneb 

Patient 5280 Patient 1646 Patient 9464 Patient 6803 Patient 7157 

TP53 W1,W2,P2 
P1 (MuTect) 

W2,W1, P2 All samples None W1 (Mutect) 
 
W2, P1, P2 

NOTCH1 P2 (MuTect) P2 (VarScan)  
W2 

None None None 

NOTCH2 None W2 (MuTect) W2 
(VarScan) P2 
(VarScan)  

None None 

NOTCH3 None None None P1, W1, W2 None 
CDKN2A None P2 (MuTect) 

W1, W2 
All samples None None 

PIK3CA None None None None None 
FBXW7 W2 None None None None 
HRAS None P2 (VarScan) None None None 
NFE2L2 None None None None None 
FAT1 P2 (Varscan) None None None None 
CASP8 W1 (Mutect) P1 (MuTect) None P1 

(VarScan) 
W1 
(MuTect) 

FGFR3 None None None None None 
CEBPA None None None None W2 

(VarScan) 
FES P2 (Mutect) None None None None 
TGFBR2 None None None None None 
SYNE1 W2  W2 

(VarScan), P2 
P1 (Mutect) 
 

P2 (MuTect) 
W1 
(MuTect) 

None 

TP63 None W2, W1 None None None 
PTEN None P2 (VarScan) 

W1, W2 
None None None 

EGFR P2 None None None None 
aCommonly reported genes = as reported by TCGA data 

bMutation was called by both Mutect and Varscan unless specified 
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Figure Legends 

 

Figure 1. Approach for individual sample identification.   

A, B, D. We harvested two areas of poorly-differentiated tumor (P) and two areas of well-

differentiated tumor along with histologically normal tissue from the same site (N). For every 

core biopsy of tumor obtained, a 5-micron thick section was cut from this core (biopsy of the 

biopsy) and the resulting slides were stained with H&E to evaluate purity of differentiation in 

vertical direction of the sample. C. Distances between samples were mapped in two dimensions 

for statistical analysis. 

Figure 2. Mutation validation as a factor of coverage and allele frequency.  

Selected mutations were validated by PCR and PacBio sequencing from a range of coverages 

and allele frequencies. Tumor allele frequencies were normalized by expected tumor purity 

values. Validation attempts with strong, high-coverage support are labeled concordant or 

discordant. Those with low-coverage support are labeled inconclusive concordant or discordant. 

Figure 3.  OCC has high intra and inter tumoral heterogeneity.  

A.  Mutational burden index -- The percentage of mutations in a given sample/ total number of 

mutations for a given patient.   Blue Diamond -- Average mutational burden for each primary 

tumor.  W-well differentiated; P- poorly differentiated.  Table shows tumor purity by Sequenza 

sequence-based analysis vs pathology assessment B. Venn Diagrams showing the overlap of 

mutations in shared genes between individual sites. C. Dendrograms created using the Jaccard 
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dissimilarity coefficient between pairs of samples from within each tumor.  X-axis is the value of 

the Jaccard coefficient.  The Jaccard Dissimilarity coefficient is the measure of mutational 

distance between pairs of samples. The Jaccard Dissimilarity coefficient is the proportion of all 

somatic mutations present in one of the two samples in a pair that are present in both samples. 
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