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Abstract. To understand the variations of the O+ ions in the quiet-time plasma sheet between 

the regions of cold-dense plasma sheet (CDPS) and hot plasma sheet (HPS), we conduct three 

event studies. These studies investigate the O+ densities in the two regions and how they are 

correlated with the strength of two magnetospheric sources important to ion outflows: the soft 

electron flux and Poynting flux toward the ionosphere. The CDPS is characterized by two-

components ions (one hot component mixed with one cold component), while the HPS ions 

consist of only one single hot component. Comparing the O+ density between the CDPS and HPS 

of the same event, the average CDPS O+ density was higher by a factor of ~2-5. Compared to the 

HPS, the soft electron flux source within the CDPS was higher, consistent with the fact that the 

soft electron precipitation and O+ upward number fluxes observed in the ionosphere were also 

higher within the CDPS. In the plasma sheet, broadband ultra-low-frequency electric and 

magnetic field waves with the characteristics of kinetic Alfvén waves (KAW) were often more 

intense within the CDPS, providing a stronger Poynting flux source. In addition, electron 

resonant interaction with KAW results in acceleration along the magnetic fields, and thus may 

drive the observed soft electron precipitation. These correlations suggest that the higher soft 

electron precipitation and Poynting flux coming from the magnetospheric CDPS likely produce 

larger ionospheric O+ outflows back to the magnetosphere, thus resulting in the higher O+ density 

within the CDPS.  
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1. Introduction 

 H+ and O+ ions are the two main ion species in the Earth’s plasma sheet. H+ ions can 

originate from either the solar wind or the ionosphere, whereas ion outflow from the ionosphere 

is the sole source for the plasma sheet O+ ions. The plasma sheet O+ density is typically smaller 

than the H+ density by a factor of ~10 to over 1000. Previous studies of the O+ density variations 

(e.g., Lennartsson and Shelley, 1986; Daglis, 2006; Kistler et al., 2006; Mouikis et al., 2010; 

Keika et al., 2013; Chaston et al., 2014; 2015; Maggiolo and Kistler, 2014; Wang et al., 2016) 

found that statistically the average plasma sheet O+ density is higher during disturbed times, for 

example, during higher Kp and AE, or lower Dst, than during quiet times. For the quiet-time 

plasma sheet, the O+ density is higher when the solar EUV radiation is higher, for example, 

higher F10.7. However, these studies also pointed out that O+ densities still exhibit a large 

variation when limiting the ranges of these activity indices.  

The plasma sheet can be separated into two plasma regimes based on their ion spectral 

characteristics. Typically, the plasma sheet ions consist of one single component of a 

Maxwellian or kappa distribution (e.g., Christon et al., 1989) with the peak energy at several 

keV. Sometimes, this single component ion plasma sheet is mixed with a second component with 

a relatively lower peak energy at several hundreds of eV, resulting in a higher density and lower 

temperature. This two-component ion plasma sheet is referred to as either the mixed region 

(Fuselier et al., 1999) or the cold and dense plasma sheet (CDPS) (e.g., Baumjohann et al., 1989; 

Fujimoto et al., 1996; Terasawa et al., 1997; Wing and Newell, 1998; Stenuit et al., 2002; 
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Øieroset et al., 2005), and is suggested to result from an inward extension of the low-latitude 

boundary layer. In this paper, we adopt the term of CDPS for the plasma regime with two-

component ions, and refer to the plasma sheet regime with a single hot component as hot plasma 

sheet (HPS). The CDPS is observed most frequently near the flanks, and it extends farther 

inward during quiet times (e.g., Nishino et al., 2002; Wing and Newell, 2002; Hasegawa et al., 

2003; 2004; Wing et al., 2005; Wang et al., 2010). Different mechanisms have been investigated 

to explain such spatial distributions (e.g., Spence and Kivelson, 1993; Stepanova et al., 2009; 

Wang et al., 2010). Fuselier et al. (1999) investigated the ion compositions of the HPS and CDPS 

and showed that the CDPS H+ density is higher and that the H+ ions in the low-energy 

component of the CDPS are the solar wind origin. They showed that the average O+ densities in 

these two plasma regimes were roughly the same, but with large variations.  

The significant plasma sheet O+ density variability behind the statistical profiles reported in 

these previous studies remains to be understood. Such variability should be attributed to the 

many different factors involved in the complex processes in the ionosphere leading to ion 

outflow. Two of these factors have a connection to sources within the magnetosphere (e.g., 

Strangeway 2005; Lotko, 2007): (1) Soft electron (defined here as the electrons with energies ≤ 

~100 eV) precipitation that enhances ion upflow (or upwelling) in the topside ionosphere (above 

~500 km). (2) Poynting flux that provides the electromagnetic energy for wave-ion interaction 

that accelerates the upflowing ions to outflow ions. Based on previous studies, the strength of 

these two magnetospheric sources may be different between the CPDS and HPS. Wang et al. 
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(2007) showed that the electron temperature is several hundreds of eV in the HPS and is <~100 

eV in the CDPS. Thus, the CDPS is expected to provide stronger soft electron precipitation down 

to the ionosphere than does the HPS. On the other hand, as the waves driven by the 

magnetopause disturbances propagated inward from the magnetopause, they may couple more 

easily to shear Alfvén waves within the CDPS than the HPS because of its stronger spatial 

gradients of Alfvén speed (e.g, Chaston et al., 2005), thus providing stronger Poynting flux into 

the ionosphere. Thus, the expected higher strength for these two sources in the CDPS than HPS 

likely drive stronger O+ outflow back into the CDPS, if assuming other circumstantial conditions 

are the same.  

The objective of this paper is to revisit the O+ density variability in the HPS and CDPS and to 

investigate whether the strength of the above two magnetospheric sources for ion outflow are 

correlated with the density variability. Since the effect of these two sources, if there is any, was 

likely washed out in the previous statistical study that included events under wide ranges of 

geomagnetic activity and solar radiation, here we conduct event studies with a focus on quiet 

time events only and on comparing the HPS and CDPS observed within the same event. This 

way we should better limit the variations due to the dependence on the geomagnetic activity and 

solar radiation. In the plasma sheet, we investigate O+ density, soft electron flux, and Poynting 

flux observed by Magnetospheric Multiscale (MMS) spacecraft. In the topside ionosphere, we 

investigate the soft electron precipitation and O+ upflow number flux observed by Defense 

Metrological Satellite Program (DMSP). This paper is organized as follows. The MMS and 
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DMSP data are described in section 2. In section 3, we present three events and our analysis in 

details. Conclusions of our findings and discussion are given in section 4.  

2. Data 

For the events presented in this paper, we use MMS observations in the magnetosphere and 

DMSP measurements in the ionosphere. MMS is a four-spacecraft constellation (Tooley et al., 

2016). The spacecraft is at a low inclination orbit (28.5o) with the apogee of ~25 RE and the 

orbital period of ~3 days. Electrons and ions from 10 eV to 30 keV (sample per 4.5 s) are 

measured by Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS), 

respectively, of Fast Plasma Investigation (FPI) (Pollock et al., 2016). The H+ and O+ ions from 

1 eV to 40 keV (sample per 0.625 s) are measured by Hot Plasma Composition Analyzer 

(HPCA) (Young et al., 2016). The electric and magnetic fields are measured by FIELDS 

instrument (Torbert et al., 2016) with the magnetic fields (16 samples/s) measured by two flux-

gate magnetometers (AFG and DFG) and the electric fields (32 samples/s) measured by Axial 

and Spin-plane Double-Probe electric-field sensors (ADP and SDP), as well as high frequency 

(from ~8 to 8000 Hz) waves from Digital Signal Processor (DSP). 

The HPCA is a time-of-flight mass spectrometer that measures start-stop coincidences to 

determine the mass per charge of ions entering the instrument. The O+ fluxes measured by 

HPCA can be contaminated by accidental coincidence events when there are very high H+ fluxes 

in a high-density region, such as in the magnetosheath, LLBL, or, to a much lesser extent, the 

CDPS. To reduce these accidental coincidences, HPCA includes a radiofrequency (RF) on the 
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electrostatic analyzer that is designed to attenuate intense proton fluxes while transmitting 

heavier species. The RF applies electric fields with the amplitudes and frequencies tuned so that 

the faster protons see only a single wave cycle and are deflected, while the heavier and slower O+ 

ions experience many electric field oscillations which tend to cancel each other out, so there is 

only small deflection for the O+ ions. Different proton attenuation factors are applied on different 

MMS spacecraft and different energies. For example, for MMS-1 and MMS-2, the RF 

attenuation results in a proton reduction by a factor of 2 from ~250 eV to 1 keV and a lower 

reduction factor for protons from ~1 to 4 keV. For MMS-3 and MMS-4, the RF produces a factor 

of ~10 reduction from 250 eV and 1 keV and a lower reduction factor for protons from ~1 to 4 

keV. 

We use ion and electron precipitation fluxes, plasma drift flows, and O+ densities in the 

ionosphere measured by the DMSP F16 and F18 satellites. The DMSP satellites are in polar Sun-

synchronous circular orbits with high inclination (98°) at 840 km altitude and an orbital period of 

~101 min. Electron and ion precipitation fluxes from 30 eV to 30 keV (sample per 1 s) are 

measured by Special Sensor J (SSJ) (Meng and Kroehl, 1977; Hardy et al., 1984). The Special 

Sensor for Ions Electrons and Scintillation (SSIES) (Rich, 1994) Ion Drift Meter (IDM) (Heelis 

and Hanson, 1998) measures the drift flows (sample per 1 s) along the two cross-track, 

orthogonal directions: the horizontal flow, Vy, is positive looking to the left of the orbital plane 

(positive for sunward flows), and the vertical flow, Vz, is positive in the upward spacecraft zenith 

direction (positive for upward flows). The O+ density (sample per 1 s) is obtained by multiplying 
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the total density by the density ratio of O+ measured by the Retarding Potential Analyzer (RPA). 

The measured Vz is adjusted by using the baseline adjustment technique of Redmon et al., (2010). 

For the solar wind and IMF conditions, we use 1 min OMNI solar wind and IMF data (King and 

Papitashvili, 2005). The OMNI data have been time shifted to the Earth’s bow shock nose from 

the locations of the solar wind monitors. We also use IMF measured by ARTEMIS when it was 

in the solar wind.  

3. Observations 

In this section, we present the analysis of MMS and DMSP observations of the CDPS and 

HPS for three events. We select these three events because both the MMS and DMSP data had 

good and reliable quality. Events 1 and 2 were near the dusk flank and event 3 was deep within 

the central magnetotail at small |Y|.  

3.1. Event 1 

Figure 1 shows an event near the duskside flank from 00:30 to 02:30 UT on 14 September 

2017. During this event, ARTEMIS was in the solar wind at X ~8 and Y ~ –56 RE and the 

ARTEMIS IMF was in general consistent with the OMNI IMF. Since ARTEMIS was much 

closer to the Earth than the solar wind monitors, we show in Figure 1a the IMF measured by 

ARTEMIS P1 spacecraft. From ~23:10 UT of 13 September 2017 up to this interval, IMF was 

weakly northward. During this interval in Figure 1, IMF was mostly northward before 02:18 UT, 

except for a brief excursion to a weakly southward IMF from ~01:50 to 02:00 UT. The solar 

wind speeds varied from ~330 to 380 km/s. There was an increase in the solar wind density from 
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8 to 20 cm-3 and the solar wind dynamic pressure increased from ~1 to 3.5 nPa around 01:10 UT. 

F10.7 was 75. The geomagnetic condition was relatively quiet with Kp = 2, the highest AE ~80 

nT, and the lowest ASYM-H ~ –10 nT. MMS was on the outbound leg of its orbit, moving from 

(–3.7, 17, –1.5) to (–4.3, 18.3, –2.4) RE at the speed of 1.3 km/s. The spacecraft trajectory was 

approximately parallel to the model magnetopause predicted by Shue et al. (1997).  

Figure 1 shows that MMS was in the plasma sheet until ~02:18 UT and entered the 

magnetosheath afterward. The magnetosheath interval, as indicated by the green horizontal bar 

on the top of Figure 1, is identified by its high density of > 10 cm-3, low ion temperature of ~0.1 

keV, and strong tailward flow of ~300 km/s, as shown in Figures 1e, 1f, and 1g, respectively. 

When within the plasma sheet, MMS observed distinctly the HPS before 01:20 UT and the 

CDPS from 01:20 UT to 02:18 UT, as indicated by the blue and red horizontal bars on the top of 

Figure 1, respectively. The single-component feature of the HPS and the two-component feature 

of CDPS can be visually discernable in the ion energy spectrum in Figures 1c and 1i. The 

spectrum for two-component ions have either two peaks (like those seen before 01:55 UT) or one 

broad peak with a plateau (like those seen after 01:55 UT). As done in the previous studies (e.g., 

Wing and Newell, 1998; Wang et al., 2012), we can further confirm our visual determination by 

fitting the observed spectrum with either a single or two-component kappa distributions. We 

determine which fitting is better by comparing the linear correlation coefficients of the fitting. As 

shown in Figure 1i for the HPS at 00:50 UT (blue solar line) as an example, the single-

component feature is confirmed by that the observed spectrum can be well fitted (the linear 
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correlation coefficient of the fitting is 0.9) by a single component Kappa distribution (blue dotted 

line), f = N0 �
m

2πκE0
�

3
2� Γ(κ+1)

Γ(κ-1 2� )
�1+ E

κE0
�

-κ-1
, with 𝜅𝜅 = 30, N0 = 0.75 cm-3, and E0 = 1.5 keV. In 

comparison, as shown in Figure 1j, the observed CDPS spectrum at 01:42 UT (red solid curve) is 

well fitted (the linear correlation coefficient of the fitting is 0.98) by a two-component Kappa 

distribution (blue solid curves), f = fh + fc. The parameters for the hot component (blue dotted line) 

in the fitting are 𝜅𝜅h = 4, N0,h = 1 cm-3, and E0,h = 2.5 keV and for the cold component (red dotted 

line) are 𝜅𝜅c = 5, N0,c = 1.5 cm-3, and E0,c = 0.25 keV. Note that, after 01:55 UT, the two peaks 

became closer to each other so that the spectrum appeared to have a broad peak with a plateau, 

our fitting (not shown) confirms that the observed spectrum still consisted of two components. 

Note that this fitting determination may be less certain for some spectrum, but such situation was 

relatively infrequent compared to the majority in the three events presented in this study. 

Comparing the two-components CDPS ions in Figure 1i with the single-component HPS ions 

and with the single-component magnetosheath ions shows that the CDPS ions are a mixture of 

the hot HPS ions with the cold ions from the magnetosheath. Both the plasma and magnetic 

fields within the HPS interval were steady but were more disturbed within the CDPS interval. As 

shown in Figures 1b, 1e, and 1g, within the CDPS interval, there were several sporadic and 

transient appearance of the magnetosheath-like plasma, as indicated by the purple triangles on 

the top of Figure 1. The magnetosheath-like plasma had no hot keV plasma sheet ions. Its density 

was lower than that of the magnetosheath but higher than that of the CDPS and it had substantial 

tailward flow. This sporadic appearance of the magnetosheath-like plasma thus suggests that the 
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magnetopause surface was disturbed and thus the disturbance could provide an energy source for 

the waves inside the magnetosphere. As for electrons, Figure 1d shows the electron energy fluxes 

averaged over the parallel and anti-parallel angular ranges. Figures 1f, and 1j show that the 

electron thermal energy was ~500 eV in the HPS, but dropped to ~100 eV in the CDPS, thus the 

soft electron fluxes in the CDPS were substantially higher than those in the HPS. The soft 

electrons in the CDPS are counterstreaming, different from the one-direction feature of the 

magnetosheath soft electrons. Figure 1h shows the integrated soft electron energy fluxes 

(integrated over the range of 30 eV to 100 eV) within the angular range in the direction toward 

the ionosphere. We exclude the magnetosheath and the magnetosheath-like plasma intervals by 

using the criteria of plasma beta ≥ 1 and Vx ≥ –50 km/s and by requiring the energy fluxes of the 

10 keV ions to be higher than a given value (we use 106 eV/(cm2-s-sr-eV) for this event based on 

the average fluxes of the HPS). The soft electron fluxes within the CDPS were about an order of 

magnitude higher than those within the HPS.  

In this event, despite the fact that MMS did not observe the CDPS until 01:20 UT, the CDPS 

was already formed no later than 00:55 UT, as indicated by the DMSP observations shown later. 

This timing is reasonable since the IMF had been northward for more than 1 hr prior to the start 

of this event. Spatially, the region of the CDPS was near the magnetopause and the HPS was 

further inward. MMS was first in the HPS and then encountered the CDPS shortly after the 

increase of the solar wind dynamic pressure, suggesting that the region of the CDPS was pushed 

inward to the MMS location as the magnetosphere was compressed.  

This article is protected by copyright. All rights reserved.



Figures 2a and 2b show the RF-corrected energy fluxes of the H+ and O+ ions, respectively, 

from MMS-2 for event 1, and those from MMS-3 are shown in Figures 2c and 2d, respectively. 

The intervals of the HPS, CDPS, and magnetosheath are indicated by the blue, red, and green 

bars on the top of Figure 2, and the magnetosheath-like plasma is indicated by the purple 

triangles. As described in section 2, the H+ reduction factors produced by the RF correction are 

lower for MMS-2 than for MMS-3. Figures 2f, 2g, 2h compare the accumulated counts for the 

H+ (blue lines) and O+ ions (red lines) in the HPS, CDPS, and magnetosheath, respectively, 

measured by MMS-2 (top panels) and MMS-3 (bottom panels). The counts were accumulated 

within a 3-minute period centered at the times indicated by the vertical dotted lines in Figures 2a-

e. Spurious O+ counts are due to very large H+ counts so that the energy spectrum and peak 

energy of the spurious O+ ions would track those of the H+ ion. This similarity can be seen in the 

example of the spectrum shown in Figure 2h for the magnetosheath ions observed by MMS-2. 

Compared with MMS-2, the higher reduction factor in the H+ counts in MMS-3 results in fewer 

spurious O+ counts. This can be seen in Figure 1h for the MMS-3 that the O+ spectrum was no 

longer similar to the H+ spectrum because of the larger reduction. Thus, we can determine that 

the O+ counts are not reliable when there was a clear difference between the counts of MMS-2 

and MMS-3. For this event, the O+ ions within the magnetosheath were not reliable. Within the 

plasma sheet, the O+ counts at > ~2 keV were reliable, as indicated by the similar counts 

observed by MMS-2 and MMS-3. Within the HPS, the O+ counts at all energies were very low. 

By comparison, there were more O+ ions within the CDPS, particularly above 2 keV. Figure 2e 
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shows the MMS-3 O+ computed from integrating over the energies > 2 keV (the red dots). For 

comparison, the densities integrated over all energies, that is, with the unreliable O+ ions 

included, are shown by the blue line. The HPS O+ densities were mostly less than 10-3 cm-3 with 

the highest density of 2·10-3 cm-3, while most of the CDPS O+ densities were greater than 10-3 

cm-3 with the highest density of ~10-2 cm-3. The averages of the HPS densities within the 00:30-

01:00 UT interval were NH
+ = 1.26 cm-3 and NO

+ = 5.6·10-4 cm-3 (NO
+/NH

+ = 4.4·10-4), and the 

averages of the CDPS densities within the 01:30-02:00 UT interval were NH
+ = 3.26 cm-3 and 

NO
+ = 2.7·10-3 cm-3 (NO

+/NH
+ = 8.3·10-4). Thus, in this quiet plasma sheet, O+ density within the 

region of the CDPS were about a factor of 5 higher than the HPS and the NO
+/NH

+ ratio a factor 

of ~2 higher. 

Figure 3 shows the observations of the DMSP F18 over the Northern Hemisphere during 

event 1. Figure 3a shows that F18 (red line) was at the afternoon MLTs moving dawnward 

toward higher latitudes. The footprint of the MMS spacecraft, as estimated by using the T96 

magnetic field model, was also at the afternoon quadrant. The ion and electron energy spectrum, 

as shown in Figures 3d and 3e, respectively, show that DMSP first observed the HPS ion and 

electron precipitation prior to 00:54:55 UT, and then the CDPS from ~00:54:55 to 00:56:20 UT, 

and afterward the polar-cap, with these three regions indicated by the blue, red, and green 

horizontal bars on the top of Figure 3d, respectively. The polar-cap is identified by the 

disappearance of ion precipitation and the existence of the electron polar rain. The distinct 

single-component feature of the HPS ions and the two-component feature for the CDPS ions can 
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be seen in Figure 3b, qualitatively consistent with their magnetospheric sources observed by 

MMS shown in Figure 1. Note that this DMSP observation of the CDPS was around 00:55 UT, 

indicating that the CDPS already existed prior to the MMS encounter of the CDPS at ~01:20 UT. 

Figure 3c shows that the soft electron precipitation was significantly stronger within the CDPS 

than within the HPS. Thus, the corresponding integrated soft electron energy fluxes (integrated 

over the range of 30 to 100 eV), as shown in Figure 3f, were higher (lower) than 109 eV/(cm2-s-

sr) in the CDPS (HPS). Figures 3g and 3h show the ionospheric O+ densities and the NO
+/N ratios, 

respectively. The high NO
+/N values indicate the O+ densities were reliable. Figures 3i and 3g 

shows ionospheric horizontal flows (Vy) and vertical flows (Vz), respectively, and the parameter 

of Vz·O+ shown in Figure 3k indicates the O+ fluxes along the vertical direction. Positive Vy is 

approximately directed toward the Sun, and positive Vz is directed upward. Figure 3g shows the 

horizontal flows were mainly sunward in the HPS and CDPS and anti-sunward within the polar 

cap. Figures 3g, 3i, and 3k show that the ionospheric O+ densities and upward flow speeds were 

substantially larger, thus stronger upflow O+ fluxes, within the CDPS than within the HPS. 

Therefore, the correlations are consistent with that the stronger O+ upflow seen at the ionospheric 

end of the CDPS was driven by the more abundant soft electrons coming from the 

magnetospheric CDPS, and that this stronger O+ upflow likely plays a role in the O+ 

enhancement observed in the magnetospheric CDPS. 

Figure 1b shows that the magnetic fields within the CDPS interval were more disturbed than 

the HPS interval. Figures 4a shows the perturbations of magnetic fields in the 2 perpendicular 
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directions, 𝛿𝛿B⊥x and 𝛿𝛿B⊥y, in the mean-field-aligned (MFA) coordinates. The ZMFA is pointed in 

the direction of the background magnetic field B0, which is defined in this study as the 5-min 

running averages of the magnetic fields. The YMFA (⊥y) direction is the cross product of the 

spacecraft’s position unit vector and ZMFA, so that it points azimuthally eastward (the positive 

YMFA is pointed eastward), and the XMFA (⊥x) direction completes the orthogonal right-hand 

system (so positive XMFA is pointed outward). The power spectrum of 𝛿𝛿B⊥y within the ULF 

frequency range is shown in Figure 4b. Broadband ULF magnetic field waves were enhanced 

within the CDPS, as compared to the HPS. Similarly, as shown in Figures 4c and 4e for electric 

field perturbations in the perpendicular and parallel directions, respectively, and Figure 4d for 

the power spectrum of 𝛿𝛿E⊥x fluctuations, broadband ULF electric field waves were also 

enhanced within the CDPS. Figure 4h compares the medium values of the power spectral density 

(PSD) of E⊥x and B⊥y within the CDPS interval, the PSD of E⊥x becomes increasingly dominant 

at frequencies higher than ~1 Hz, indicating the wave become more electrostatic (e.g., Chaston et 

al., 2013). As shown in Figure 4i the ratio of E⊥x/B⊥y/VA as a function of frequency, the wave 

became dispersive at frequencies higher than ~0.2 Hz. This dispersion was consistent with the 

dispersion of cold plasma kinetic Alfvén wave (KAW) for the KAW dispersion, E⊥x/B⊥y/VA =

�1+k⊥
2 ρi

2�
1/2

 where 𝜌𝜌i is the ion gyroradius (e.g., Chen and Hasegawa, 1974; Stasiewicz et al., 

2000; Johnson and Cheng, 2001; Chaston et al., 2005), as shown by the red line in Figure 4i. The 

values of VA = 200 km/s, B = 15 nT, and ion temperature = 5 keV used for the red line are similar 
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to the observed values. These broadband Alfvén waves thus can carry Poynting fluxes down to 

the ionosphere. Figure 4f shows the power spectrum of Poynting flux parallel to the magnetic 

field (S|| = 𝛿𝛿E×𝛿𝛿B), and Figure 4g shows the 1 min average of the S|| (excluding the intervals of 

the magnetosheath-like plasma) with the downward (toward the ionosphere) and upward |S||| 

shown in red and blue, respectively. The Poynting fluxes within the CDPS were up to two orders 

of magnitudes higher than within the HPS. Therefore, this stronger Poynting fluxes, together 

with the larger ionospheric O+ upflow observed by DMSP, may produce stronger ionospheric O+ 

outflow that accounted for the higher O+ density within the CDPS.  

Waves of different modes can contribute to the plasma sheet precipitation, including 

whistler-mode chorus waves at L shells lower than ~8 and electrostatic electron cyclotron 

harmonic (ECH) waves at L higher than 8 (e.g., Roeder and Koons, 1989; Zhang et al., 2015), 

and KAW (e.g., Hasegawa and Mima, 1976, Wygant et al., 2002). Figures 5a and 5b show the 

magnetic and electric field wave powers near the electron gyro frequencies, and no ECH and 

whistler-mode chorus waves were observed during this event. Here we evaluate whether the 

enhanced KAWs within the CDPS shown in Figure 4 are sufficient to cause the soft electron 

precipitation. The broad spectrum of KAW is produced by the Doppler effect: the observed wave 

frequency is proportional to the plasma flow speed across the magnetic field. The KAW 

transverse (relative to the ambient magnetic field) wavelength can be rather small (down to the 

ion thermal gyroradius), and this means large wavenumber that finally results in large Doppler 

shift. Therefore, this effect allows us to estimate wave characteristics using the measured 
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spectrum. The KAW propagates at about the Alfven speed, and the wave frequency in the 

plasma reference frame is below the ion cyclotron frequency. Therefore, these waves cannot 

resonate with electrons through cyclotron resonances, whereas the Landau resonance, with 

v|| ≈ ω/k|| ≈ vA, is only achievable for electrons at very low energies (mevA
2/2 ~ 1–2 eV). However, 

these waves carry parallel electric fields as a result of the hot ion contribution to wave dispersion. 

The amplitude of the effective scalar potential for these parallel electric fields, Φ , can reach 

several hundreds of eV, and therefore the resonance width (proportional to eΦ in the energy 

space, e.g., Palmadesso (1972)) can be sufficiently large for the resonant interaction with 

electrons with a wide energy range (e.g., Damiano et al., 2015; Artemyev et al., 2015). To 

estimateΦ , which determines the range of resonant energies, we need to calculate E||/k|| that is 

about E⊥/k⊥for KAW (see more accurate dispersion relation in, e.g. Stasiewicz et al. (2000)). 

Taking into account that k⊥≈ ω/vflow for sufficiently small wavelengths (i.e., for k⊥ > 1/𝜌𝜌i, where

iρ  is the ion gyroradius), we estimate eΦ. As shown in Figure 5c, eΦ is mostly contributed by 

the low frequency part of the spectrum (corresponding to the most intense wave electric fields), 

which can reach ~200 eV, i.e., eΦ is comparable to the electron temperature (see Figure 1e) and 

almost the entire electron population can resonate with KAWs. When the resonance width (eΦ) 

is much larger than the resonant energy itself (~mevA
2 /2), the particle velocity change due to a 

single resonant interaction is controlled by the resonant width, which is about ∆v||~�eΦ/m𝑒 

(e.g., Karimabadi et al. (1990)). Taking into account that the Landau resonance conserves the 

magnetic moment, ~v⊥2 , we can estimate the pitch-angle change due to one resonant interaction 
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as ∆α~�△v||/v�sinα~�eΦ/Tesinα, where Te=mev2/2/kB is the electron temperature and kB is the 

Boltzmann constant. For electrons near the loss-cone, e.g., sinα ~ sinαLC , we get Δ𝛼/

𝛼LC~�eΦ/Te. Figure 5d shows that this ratio reaches one during intervals with intense KAW 

waves. Thus, even a single resonant interaction is sufficient to scatter electrons to the loss-cone, 

i.e., we deal with electron transport to the loss-cone in the way similar to the strong diffusion 

limit, where the loss-cone is always full. Such intense resonant interactions mean that the 

precipitating electron flux equals to the electron flux near the loss-cone for all resonant energies, 

i.e., for the entire electron distribution with energies < Te. Roughly speaking, intense KAWs 

expand the loss-cone to the size of α∆ and fill it with thermal electrons. Therefore, the CDPS soft 

electron precipitation observed by DMSP at low altitude can be correlated with the CDPS soft 

electrons observed by MMS through the enhanced KAWs within the CDPS.  

3.2. Event 2 

In event 1, the regions of the CDPS and HPS were well separated. But this was not always 

the case. In Figure 6 we investigate event 2 on 11 October 2017 observed by MMS-3, which was 

also near the duskside flank. Comparing with event 1, the appearance of the CDPS and HPS in 

event 2 was more sporadic, likely due to the magnetopause being more disturbed. The OMNI 

data showed that the IMF turned northward at ~01:50 UT and was mostly northward until ~03:50 

UT, except for a brief excursion to southward from ~02:15 to 02:27 UT. Within this event, the 

northward IMF remained around +5 nT from 02:27 to 03:15 UT. The solar wind densities varied 

between 10 and 15 cm-3 and the solar wind dynamic pressure varied between 2.8 and 4.2 nPa. 
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F10.7 was 75. Kp was 3 and the lowest SYM-H was –9 nT. AE decreased gradually from ~300 

nT at 02:00 UT to the lowest value of 50 nT at 03:30 UT and it then increased back to ~400 nT 

at 04:20 UT. MMS was on the inbound leg of its orbit, moving from (–5.9, 16.9, 0.9) to (–6.1, 

13.7, –0.8) RE at the speed of 1.5 km/s. Its trajectory was relatively perpendicular the model 

magnetopause. MMS encountered different plasma regions, as indicated by the bars of different 

colors on the top of Figure 6. MMS was in the magnetosheath prior to ~02:15 UT, and then 

encountered intermittently the CDPS and the magnetosheath-like plasma, likely a result of the 

magnetopause perturbations. MMS entered the magnetosphere at ~02:52 UT and observed 

intermittent appearance of the CDPS and HPS with intervals dominated by the CDPS or the HPS. 

The interval of 02:52 to 03:25 UT was dominated by the CDPS, the interval of 03:25 to 04:02 

UT was shared by both the CDPS and HPS, and then the interval afterward was dominated by 

the HPS. As shown in Figures 6b and 6j, the two components of the CDPS were well separated 

within the CDPS dominated interval but became less so in the latter two intervals with higher 

HPS dominance. Figure 6f shows that there were no bursty bulk flows within the HPS. In 

comparison with the HPS dominated interval, the magnetic fields within the CDPS dominated 

interval were more disturbed as shown in Figure 6a, the electron temperature was below 100 eV 

as shown in Figure 6e, and the integrated soft electron number fluxes were substantially higher 

by a factor of up to ~3 as shown in Figure 6g. Figure 6h shows that there were essentially no O+ 

ions below ~1 keV in both the CDPS and HPS, and the comparison between the H+ and O+ 

counts shown in Figure 6l indicates that the O+ fluxes above 1 keV were reliable. The O+ 
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densities integrated over the energies above 1 keV, as shown in Figure 6i, were clearly higher 

within the CDPS dominated interval than within the HPS dominated interval. The averages of 

the HPS densities within the 04:20-04:40 UT interval were NH
+ = 2.48 cm-3 and NO

+ = 0.016 cm-3 

(NO
+/NH

+ = 0.006), and the averages of the CDPS densities within the 03:05-03:25 UT interval 

were NH
+ = 3.49 cm-3 and NO

+ = 0.03 cm-3 (NO
+/NH

+ = 0.01). Both the O+ density and the 

NO
+/NH

+ ratio were about a factor of 2 higher in the CDPS than in the HPS. Comparing with 

event 1, the O+ density associated with the CDPS in event 2 was higher. This difference will be 

discussed in section 4. 

 Figure 7 shows two DMSP Northern Hemisphere passes over the dayside ionosphere by F-

18 (left panels) and F-16 (right panels) during event 2. Figure 7a shows that for both passes, 

DMSP was moving dawnward from lower latitudes toward higher latitudes. The footprints of the 

MMS spacecraft were within the afternoon quadrant. Figure 7b shows that during the F-18 pass, 

DMSP first observed the HPS, then the CDPS between ~02:03:00 to 02:04:10 UT, and afterward 

the polar cap, as indicated by the blue, red, and green horizontal bars on the top of Figure 7b, 

respectively. Figure 7d shows that the soft electron precipitation energy fluxes were the most 

intense within the CDPS, as compared to the other two regions. As shown in Figure 7e, 7h, and 

7i, compared with the HPS, the ionospheric O+ densities, upward flow speeds, and O+ upward 

number fluxes were substantially larger within the CDPS. During the F-16 pass, DMSP 

encountered the HPS, CDPS, and the open LLBL. The open LLBL is identified by the very high 

fluxes in both low-energy ions and electrons, and the corresponding anti-sunward flows suggest 
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that the magnetic field lines in the LLBL were open. The soft electron precipitation energy fluxes, 

the ionospheric O+ densities, upward flow speeds, and upward O+ fluxes within the CDPS were 

as strong as those within the open LLBL and were substantially larger than those within the HPS. 

The peak magnitudes of the upward O+ fluxes within the CDPS in event 2 were similar to those 

of event 1. 

Figures 8a to 8e show the magnetic and electric field perturbations and their power spectrum 

for event 2. The different intervals with different CDPS dominance identified above are indicated 

on the top of Figure 8, and the broadband ULF waves were more enhanced within both the 

CDPS dominated and HPS dominated intervals than the other two intervals, so do the resulting 

Poynting fluxes. The peak magnitudes of the Poynting fluxes within the CDPS in event 2 were 

similar to those in event 1. Figures 8h and 8i indicate that the broadband ULF waves were 

KAWs. The intense KAWs within the CDPS were sufficient to scatter the soft electrons into the 

loss cone. No ECH and whistler-mode chorus waves were observed during this event. In 

comparison, the Poynting fluxes within the HPS dominated interval were as strong as those 

within the CDPS dominated interval. This suggests that, for this event, the stronger soft electron 

precipitation from the CDPS might contribute more than do the Poynting fluxes to the more 

abundant O+ ions observed within the CDPS in the magnetosphere. In section 4, we will compare 

the above two duskside flank events. 

3.3. Event 3  

It has been reported that the CDPS can extend further inward from the flanks under 
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prolonged northward IMF conditions (e.g. Nishino et al., 2002). Here we investigate an event of 

the CDPS in the central plasma sheet and the associated O+ density variations on 4 August 2017. 

Figure 9 shows the observations by MMS-3 during the event at X ~ –22 and Y ~7 RE. The IMF 

was strongly northward for ~8 hr from ~23 UT on 3 August 2017 to ~07:00 UT on 4 August 

2017. MMS was within the plasma sheet from ~02:00 to 07:30 UT. During this interval, IMF Bz 

was strong at > +10 nT from ~02:00 to 06:00 UT and reached as high as +20 nT around 03:20 

UT. The solar wind density varied significantly between ~15 to 40 cm-3 prior to 05:10 UT and 

were < 20 cm-3 after 06:00 UT (there was a data gap in the OMNI data between 05:10 and 06:00 

UT), while the solar wind speeds gradually increased from ~400 to 460 km/s. The solar wind 

dynamic pressure varied strongly between ~4 to 14 nPa before 05:10 UT and was between 4 to 8 

nPa after 06:00 UT. F10.7 was 76. SYM-H varied within +10 and +50 nT and Kp increased from 

2 to 3. AE remained low with the highest AE of ~150 nT. MMS was near apogee moving from 

(–22.6, 9.7, 4.3) to (–22.0, 8.8, 2.7) RE at the speed of 0.34 km/s. As indicated on the top of 

Figure 9, MMS observed the CDPS prior to ~07:05 UT and the HPS afterward, before MMS 

encountered the plasma sheet boundary layer at ~07:30 UT then entered the lobe. The RF-

correction was not switched on for this event because normally the H+ fluxes in the tail are too 

low to cause significant contamination to the other ion species. The O+ counts in this event were 

very high and the O+ fluxes above ~200 eV were reliable, as shown in Figure 9l. As indicated by 

the O+ densities integrated over the energies above 200 eV shown in Figure 9i, the O+ densities 

were higher within the CDPS than with the HPS. The averages of the HPS densities within the 
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07:10-07:30 UT interval were NH
+ = 2.36 cm-3 and NO

+ = 0.013 cm-3 (NO
+/NH

+ = 6·10-3), and the 

averages of the CDPS densities within the 05:00-05:20 UT interval (around the maximum O+ 

density) were NH
+ = 3.55 cm-3 and NO

+ = 0.057 cm-3 (NO
+/NH

+ = 0.02). The CDPS NO
+/NH

+ in 

this event was higher than those in events 1 and 2. Compared with the HPS, the O+ density in the 

CDPS was a factor of up to ~4.4 higher and the NO
+/NH

+ ratio a factor of up to 3.2 higher. As 

shown in Figure 9g, the soft electron number fluxes within the CDPS were a factor of ~3 higher 

than those within the HPS. The electric and magnetic field ULF waves had the characteristics of 

KAWs. As shown in Figure 9b, the Poynting fluxes within the HPS were not lower than those 

within the CDPS. In fact, there were a few very strong Poynting flux spikes within the HPS that, 

as shown in Figure 9f, corresponded to strong plasma flows associated with the field-aligned 

flows of the plasma sheet boundary layer and perpendicular flows of bursty bulk flows. Within 

the CDPS interval, the Poynting fluxes and soft electron fluxes after 05:30 UT appeared to be 

relatively lower than those prior, and the O+ densities were also found to be lower. Comparing 

with events 1 and 2, peak soft electron fluxes within the CDPS in this event where higher but 

peak Poynting fluxes were lower. 

Figure 10 shows a DMSP F-18 Southern Hemisphere pass over the nightside ionosphere 

during event 3. DMSP was moving duskward at the pre-midnight MLTs toward lower latitudes 

around 23 MLT. The footprint of the MMS spacecraft was within the pre-midnight quadrant. As 

indicated on the top of Figure 10b, DMSP observed first the CDPS and the HPS, consistent with 

the MMS observations of the CDPS deep within the central magnetotail. In the tail, ECH and 
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whistler-mode chorus waves were not observed by MMS (not shown), but the amplitudes of the 

enhanced KAWs were found to be sufficient to explain the soft electron precipitation. Compared 

with the HPS at lower latitudes, the soft electron precipitation energy fluxes and the ionospheric 

O+ density within the CDPS were higher. There were several enhancements in the upward flow 

speeds within the CDPS, resulting in enhanced O+ upflow fluxes. The magnitudes of peak O+ 

upflow fluxes in this event were similar to those of events 1 and 2. 

4. Conclusion and Discussion 

We analyze three events observed by MMS in the magnetosphere and DMSP in the topside 

of the ionosphere to investigate the differences in the plasma sheet O+ densities between the 

CDPS and HPS during relatively quiet times, and how the differences correlate with the strength 

of two magnetospheric sources: the soft electron flux and Poynting flux toward the ionosphere. 

The three events include two events near the duskside flank and one deep within the central 

magnetotail. The CDPS is characterized by its two-component ions with one hot component 

mixed one cold component, while the HPS ions consist of only one single hot component. 

Comparing the CDPS with the HPS within the same event, we found that the O+ densities within 

the CDPS were a factor of ~2 to 5 higher. The CDPS electrons were colder than those in HPS so 

that the corresponding soft electron number fluxes were higher. In the ionosphere, the soft 

electron precipitation number fluxes, ion upward flow speeds, and the O+ upward number fluxes 

were substantially higher within the CDPS than within the HPS. In the plasma sheet, broadband 

ULF electric and magnetic field wave power were stronger within the CDPS, and the waves 
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showed the characteristics of kinetic Alfvén waves. As a result, field-aligned Poynting fluxes 

within the CDPS were higher. From these correlations, we reason that the more intense soft 

electron precipitation and Poynting fluxes coming from the magnetospheric CDPS likely 

produce stronger ionospheric O+ outflow and can thus plausibly explain the higher O+ densities 

within the CDPS.  

Our finding of the correlations of O+ density with the strength of the soft electron and 

Poynting flux sources within the same event partially explains the O+ variability shown in the 

previous statistical study of the CDPS and HPS (Fuselier et al., 1999). However, when 

comparing the CDPS observed in two different events, the difference in the O+ densities were not 

correlated with the difference in the strength of the two sources. For example, the CDPS O+ 

density in event 2 was about an order of magnitude higher than that of event 1. But the soft 

electron number fluxes were similar in these two events and the Poynting flux in event 2 was 

only about a factor of 2 higher. In fact, the HPS O+ density in event 2 was also an order of 

magnitude higher than the HPS in event 1. These differences indicate that the baselines for the 

O+ densities were different in these two events. We suggest that one possible factor for this 

baseline difference may be their different magnetospheric pre-conditions. The magnetosphere for 

event 1 had been quieter, as indicated by the fact that AE* (the maximum AE within the previous 

3 hr interval) was 40 nT for event 1 but was ~500 nT in event 2. This pre-condition difference 

can be seen in that the hot component in event 2 was hotter. Thus, it is likely that O+ density was 

greatly enhanced during the high AE period prior to event 2 and populated the plasma sheet. As 
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the IMF turned northward and convection flow became stagnant, this dense O+ population was 

not depleted quickly (e.g., Kistler et al., 2006) and thus may linger into the quiet interval of event 

2.   

Since statistically the occurrence of the CDPS is higher toward the flanks and the width of 

the CDPS is wider during quiet times than during disturbed times, our findings suggest that the 

CDPS may contribute to the statistical Y profile of O+ density from the ISEE data reported by 

Lennartsson and Shelley (1986), which showed that, for the low AE limit (< 200 nT), the O+ 

density is higher toward the flanks. Their results, however, showed that the densities decreased 

again outside |Y| = 10 RE. But this may be contributed by a fact that there were much fewer data 

points outside |Y| = 10 RE. In other previous statistical studies, Mouikis et al. (2010) established 

the O+ spatial distributions from 5 years of Cluster data. However, they only considered densities 

less than 2 cm–3 and therefore excluded most of the CDPS. Wang et al. (2016) used 12 years of 

Cluster data and did not impose an upper density threshold, and their results showed high O+ 

density regions outside |Y| = 15 RE closer to the dusk and dawn flanks However, their cross-tail 

profile was obtained by including all the data regardless the geomagnetic activity. Therefore, 

future statistical studies with more careful data selection criteria are needed to evaluate the 

contribution of the CDPS in the spatial distributions of O+ density.  

The statistical study of Dst (Lavraud et al., 2006) showed that the colder and denser plasma 

sheet built up during a northward IMF pre-storm period can lead to a stronger ring current, than 

does a less dense pre-storm southward IMF plasma sheet. Event and statistical studies showed 
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that the CDPS extends deeper from the flanks to smaller |Y| when the northward IMF is 

prolonged longer (Wing and Newell, 2002; Nishino et al., 2007; Wang et al., 2010). Our finding 

of the O+ ion enhancement associated with the CDPS in this study, including the one with the 

CDPS deep within the central plasma sheet, thus suggests such O+ ion increase during the quiet 

time before a storm may be important to the development of the storm-time ring current.  
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Figure 1. Event 1 on 14 September 2017. (a) IMF from ARTEMIS. The MMS-3 observations of 
(b) magnetic fields, (c) ion energy fluxes, (d) electron energy fluxes, (e) ion and electron number 
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densities, (f) ion and electron temperatures, (g) ion bulk flow in the XGSM direction, (h) electron 
number fluxes integrated from 30 to 100 eV. Energy spectrum of (i) ion and (k) electron energy 
fluxes at three different times indicated by the vertical dotted lines in Figures 1a to 1h. The blue 
dotted line in (i) is the fit to the HPS. (j) Observed and fit ion energy fluxes at 01:42 UT. 
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Figure 2. Event 1 on 14 September 2017. (a) H+ and (b) O+ energy fluxes observed by MMS-2. 
(c) H+ and (d) O+ energy fluxes observed by MMS-3. (e) the O+ densities integrated over all 
energies (blue line) and over the energies > 2 keV (red dots) observed by MMS-3. (f)-(h) The 
accumulated H+ (blue curves) and O+ (red curves) counts observed by MMS-2 (top) and MMS-3 
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(bottom) within the 3-min intervals (indicated on the top of each plot) at the three different times 
indicated by the vertical dotted lines in Figures 2a-2e. 
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Figure 3. DMSP F-18 observations from 00:54 to 00:57 UT on 14 September 2017 for event 1. 
(a) The red line indicates the DMSP trajectory (the red and blue triangles indicate the location 
corresponding to the two different times indicated by the vertical dotted lines in Figures 3d-3k.). 
The green star indicates the footprint of the MMS spacecraft. Energy spectrum of (b) ion and (c) 
electron energy fluxes at the two different times. Temporal profiles of (d) ion and (e) electron 
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energy fluxes, (f) electron number fluxes integrated over 30 to 100 eV, (g) the O+ densities, (h) 
O+/ion density ratios, (i) sunward flows, (j) upward flows, and (k) the O+ upward fluxes. 
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Figure 4. Event 1 on 14 September 2017. The MMS-3 observations of (a) magnetic field 
perturbations in the two perpendicular directions, 𝛿𝛿B⊥x and 𝛿𝛿B⊥y, (b) power spectrum of 𝛿𝛿B⊥y, 
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(c) electric field perturbations in the two perpendicular directions, 𝛿𝛿E⊥x and 𝛿𝛿E⊥y, (d) power 
spectrum of 𝛿𝛿E⊥x, (e) electric field perturbations in the parallel direction, (f) power spectrum of 
parallel Poynting flux, and (g) the downward (red) and upward (blue) Poynting flux within the 
CDPS. Medium values of (h) PSD of 𝛿𝛿E⊥x and 𝛿𝛿B⊥y and (i) ratio of 𝛿𝛿E⊥x/𝛿𝛿B⊥y/VA within 01:30-
02:00 UT. The red line in (i) is the KAW dispersion. 
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Figure 5. Event 1 on 14 September 2017. The MMS-3 observations of power spectrum of (a) 𝛿𝛿B 
and (b) 𝛿𝛿E. The yellow curves indicate the electron gyro frequencies. Computed power spectrum 
of (c) eΦ and (d) eΦ/Te. The black line in (d) indicates eΦ/Te = 1. 
  

This article is protected by copyright. All rights reserved.



 
Figure 6. Event 2 on 11 October 2017. The MMS-3 observations of (a) magnetic fields, (b) ion 
and (c) electron energy fluxes, (d) ion and electron number densities, (e) ion and electron 
temperatures, (f) ion bulk flows in the XGSM direction, (g) electron number fluxes integrated from 
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30 to 100 eV, (h) O+ energy fluxes, and (i) the O+ densities integrated over energies above 1 keV. 
Energy spectrum of (j) ion and (k) electron energy fluxes at three different times indicated by the 
vertical dotted lines in Figures 6a to 6i. (l) The accumulated H+ (blue curves) and O+ (red curves) 
counts within the 2-min interval indicated on the top of the plot. 
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Figure 7. DMSP observations during event 2 on 11 October 2017 from 02:02 to 02:02 UT 
observed by F-18 and from 03:13 to 03:17 UT observed by F-16. (a) The red line indicates the 

This article is protected by copyright. All rights reserved.



DMSP trajectory (the red triangle indicates the location corresponding to the time indicated by 
the vertical dotted lines in Figures 7b-7i.). The green star indicates the footprint of the MMS 
spacecraft. Temporal profiles of (b) ion and (c) electron energy fluxes, (d) electron number 
fluxes integrated over 30 to 100 eV, (e) the O+ densities, (f) O+/ion density ratios, (g) sunward 
flows, (h) upward flows, and (i) the O+ upward fluxes. 
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Figure 8. Event 2 on 11 October 2017. The MMS-3 observations of (a) magnetic field 
perturbations in the two perpendicular directions, 𝛿𝛿B⊥x and 𝛿𝛿B⊥y, (b) power spectrum of 𝛿𝛿B⊥y, 
(c) electric field perturbations in the two perpendicular directions, 𝛿𝛿E⊥x and 𝛿𝛿E⊥y, (d) power 
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spectrum of 𝛿𝛿E⊥x, (e) electric field perturbations in the parallel direction, (f) power spectrum of 
parallel Poynting flux, and (g) the downward (red) and upward (blue) Poynting flux within the 
CDPS. Medium values of (h) PSD of 𝛿𝛿E⊥x and 𝛿𝛿B⊥y and (i) ratio of 𝛿𝛿E⊥x/𝛿𝛿B⊥y/VA within 03:00-
03:20 UT. The red line in (i) is the KAW dispersion. 
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Figure 9. Event 3 on 04 August 2017. The MMS-3 observations of (a) magnetic fields, (b) the 
downward (red) and upward (blue) Poynting flux within the CDPS, (c) ion and (d) electron 
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energy fluxes, (e) ion and electron number densities, (f) ion bulk flows in the XGSM direction, (g) 
electron number fluxes integrated from 30 to 100 eV, (h) O+ energy fluxes, and (i) the O+ 
densities integrated over energies above 1 keV. Energy spectrum of (j) ion and (k) electron 
energy fluxes at three different times indicated by the vertical dotted lines in Figures 10a to 10i. 
(l) The accumulated H+ (blue curves) and O+ (red curves) counts within the 2-min interval 
indicated on the top of the plot. 
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Figure 10. DMSP F-18 observations from 05:22:30 to 05:25:30 UT on 04 August 2017 for event 
3. (a) The red line indicates the DMSP trajectory (the red and blue triangles indicate the location 
corresponding to the two different times indicated by the vertical dotted lines in Figures 10d-
10k.). The green star indicates the footprint of the MMS spacecraft. Energy spectrum of (b) ion 
and (c) electron energy fluxes at the two different times. Temporal profiles of (d) ion and (e) 
electron energy fluxes, (f) electron number fluxes integrated over 30 to 100 eV, (g) the O+ 
densities, (h) O+/ion density ratios, (i) sunward flows, (j) upward flows, and (k) the O+ upward 
fluxes. 
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CDPS HPS
2017-08-04, MMS-3 (X ~ –22, Y ~7 RE) 
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