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ABSTRACT 

The remarkable progress in cancer immunotherapy in recent years has led to the heat of great 

development for therapeutic antibodies. Antibody numbering, which standardizes a residue 

index at each position of an antibody variable domain, is an important step in 

immunoinformatic analysis. It provides an equivalent index for the comparison of sequences 

or structures, which is particularly valuable for antibody modeling and engineering. However, 

due to the extremely high diversity of antibody sequences, antibody numbering tools cannot 

work in all cases. This article introduces a new antibody numbering tool named AbRSA, 

which integrates heuristic knowledge of region-specific features into sequence mapping to 

enhance the robustness. The benchmarks demonstrate that, AbRSA exhibits robust 

performance in numbering sequences with diverse lengths and patterns compared with the 

state-of-the-art tools. AbRSA offers a user-friendly interface for antibody numbering, 

complementarity-determining region (CDR) delimitation and 3D structure rendering. It is 

freely available at http://cao.labshare.cn/AbRSA/. 
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Abbreviations 

CDR: complementarity determining region 

FR: framework region 

HMM: Hidden Markov Model  

V gene: variable gene 

D gene: diversity gene 
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J gene: joining gene  
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Introduction  

Antibodies, or immunoglobulins, are extremely important proteins in the immune system that 

can identify and neutralize antigens due to their unique sequence composition of two 

identical pairs of heavy and light chains. Each pair contains a constant domain and a variable 

domain. The latter forms antigen-binding sites and determines binding specificity and affinity. 

The sequence of the variable domain is highly diverse, resulting from the rearrangement of a 

variable (V) gene, a diversity (D) gene and a joining (J) gene (or a J gene and a V gene). The 

variable domain can be further divided into two types of regions: 

complementarity-determining regions (CDRs) and framework regions (FRs). CDRs exhibit a 

direct relationship with antigen binding, while FRs provide support to the CDR conformation. 

The general 3D structure of all variable domains is very similar, folding into a group of 

beta strands linked by loops.1 Six of the loops at the top are the CDRs (CDR H1/2/3 in the 

heavy chain and CDR L1/2/3 in the light chain). Because of the regularity of the structure, it 

is highly beneficial to number each residue using a standard scheme for sequence 

comparisons and engineering, for example, to facilitate the description of critical residues and 

to delimit CDRs for humanization.2-12 Antibody numbering has become a fundamental 

technique used in immunoinformatic analyses. The first numbering scheme, known as the 

Kabat scheme, was introduced in 1970.13 In subsequent years, the Chothia scheme14-16 and its 

variants,17 such as the IMGT18 and AHo19 schemes, were introduced. These schemes are 
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similar but vary in the numbering of some insertion and deletion positions. The Kabat scheme 

is based on sequence patterns, while in the Chothia scheme, the definition is modified by 

incorporating structural information. IMGT and AHo unify the numbering of antibodies and 

T-cell receptors. 

Antibody numbering is generally achieved by mapping a query sequence onto known 

sequences that have been numbered in advance. The state-of-the-art software used for 

antibody numbering introduces complicated strategies. For example, AbNum17 built the 

profiles of six residues at the start and end of FRs as anchor regions. For a query sequence, 

AbNum searches for the anchor regions and aligns the other regions to known sequences, 

which finally determine the numbering. IgBlast and the germline knowledge-based approach 

are used to perform sequence alignment against pre-annotated databases of germline genes 

and map the numberings to the query sequence.20,21 Other software options, such as 

ANARCI,22 PyIgClassify,23 ProABC24 and DIGIT,25 pre-annotated a large set of antibody 

sequences, and made sequence alignment to build hidden Markov models (HMMs). Then 

query sequences were aligned to the HMMs and annotated by transferring the numbering of 

equivalent position from known sequence to the query. These software tools have 

successfully numbered lots of antibody sequences. However, antibody sequences are highly 

diverse. If the query sequence has no known anchor residues or similar patterns they cannot 

be numbered with these software. This has been observed in many benchmark tests, for 
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example, 1%~2% antibody sequences of Kabat databases cannot be numbered by AbNum.17 

9,560 in 1,936,119 VH sequences cannot be numbered by ANARCI.22 Although the error 

rates (2%~0.5%) are small, the absolute value of errors is large because the cardinality of 

antibody sequences is huge. Besides, the latest developed antibody technology obtained 

sequences not only in vivo as before but also in vitro, which further creates the divergence.26 

Therefore, no matter for high throughput analysis or individual inspection, it is valuable to 

develop more robust antibody numbering tools.  In this work, we introduce heuristic 

knowledge into sequence mapping and propose a new method, referred to as the Antibody 

Region-Specific Alignment (AbRSA), which improves robustness when numbering 

antibodies with diverse patterns accord to our benchmark tests. In order to serve as an 

easy-to-use tool, AbRSA offers a user-friendly interface that can identify whether a query 

sequence is an antibody heavy or light chain, how the sequence is numbered and which region 

is the CDR. AbRSA provides a new option for immunoinformatic analyses. 

 

Results 

The popular antibody numbering methods are mainly classified into sequence-alignment 

based or HMM based numbering. Both of them require a large collection of pre-annotated 

antibody sequences to build the library or model for sequence mapping. The dependence on 
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pre-annotated sequences achieves success in known patterns but fails in irregular ones. 

AbRSA belongs to the sequence-alignment based method. In order to enhance the robustness, 

it divides the sequences into segments, which allows the lower weights in more diverse 

regions, particularity CDRs, and higher weights in the conserved regions (see Materials and 

Methods). In this section, we will describe the results of AbRSA on the benchmark set and 

simulated set, and compared the results with three state-of-the-art tools. Also we will 

introduce its online usage to facilitate users which are not experts in programming.  
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Testing AbRSA on the benchmark set 

To assess the overall performance, AbRSA is applied to the benchmark set, which includes 

1816 pre-annotated antibody sequences collected from Protein Data Bank and has no overlaps 

with the training sequences (see Materials and Methods). The results show that AbRSA 

numbered all the sequences, while the AbRSA without region-specific deviation only 

numbered 83.6% sequences. By comparing the pre-annotated numbering with the results of 

the two programs, AbRSA shows identical numberings except one mismatch of a heavy chain 

(PDB code: 4I3R), while the AbRSA without region-specific deviation failed in 13.0% 

numbered sequences. This result indicates that the region-specific alignment is superior to the 

pure sequence-alignment method.  

For comparison, three state-of-the-art programs (AbNum, ANARCI and an integrated tool 

in proABC) are applied to the same benchmark set. AbNum employs a sequence-profile 

matching method, while ANARCI and proABC use HMMs for sequence numbering. 

proABC, AbNum and ANARCI were unable to number 22, 32, and 8 heavy chains and 8, 5 

and 0 light chains, respectively (see Table 1). By comparing the results with pre-annotated 

numberings, proABC and ANARCI show 16 and 4 mismatches, respectively. These results 

imply that it is a particularly difficult task to number every antibody sequence using program 

tools.  
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Detailed analysis shows that those unsuccessful numbering sequences exhibit two types of 

features in CDRs: pseudo-conserved patterns and unusual lengths. For example, the WGTE 

segment in CDR H3 appears similar to the conserved pattern WGXG (where X represents 

any type of amino acid), and the SGGG segment in CDR L3 is similar to conserved pattern 

FGXG in FR, which tend to mislead the pattern recognition (Fig. 1). Another types are the 

ultra-long CDR H3 (>25 residues) and the ultra-short CDR H1 (<4 residues), which are quite 

different from the regular patterns. These unusual sequences cannot be recognized if there is 

no additional information to guide the program. AbRSA classifies the sequence into regions 

and attempts to number them using the general pattern recognition in CDRs and the precise 

pattern recognition in FRs. This is the reason that AbRSA can number these sequences, even 

though their pseudo-conserved patterns and ultra-lengths of CDRs are not included in the 

consensus sequences or training sequence set. 

 

Testing robustness: increasing diversities of antibody sequences 

The benchmark test shows that AbRSA can number antibodies with unusual patterns. 

However, its maximum performance for diverse sequences remains unknown. Hence, we 

employed a well-established antibody sequence simulation model AB33 to generate a huge 

simulated antibody set (187,200 heavy chains and 70,200 light chains) in order to expand the 

diversity of benchmark sequences (see Materials and Methods). Briefly, random mutations 
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are introduced in antibody sequences using a transition probability matrix to mimick somatic 

hypermutations. The number of mutation is gradually increased from 10 to 50 with a step of 5. 

The more mutations imply the larger diversity of the sequence. We applied AbRSA to this 

simulated set. When the number of mutations in heavy chains is less than 10, the success rate 

of numbering is 100%. As the number further increases, the success rates decrease from 

99.5%, 98.9%, 97.7%, 96.7%, 95.2%, 94.0% and 91.6% to 90.6% in the end, which changes 

half of the original antibody sequence [Fig. 2(A)]. Similarly, when the numbers of mutations 

in light chains are less than 30, the success rates keep 100%. As the number further increases, 

the success rate slightly decreased from 99.2%, 99%, 98.6% and 97.0% to 96.3% [Fig. 2(B)]. 

For comparison, we also applied ANARCI and AbNum to the simulated set (see Testing 

methods in Materials and Methods). In case of heavy chains, the success rates shows the 

similar trend to AbRSA when the number of mutation increases. However, ANARCI and 

AbNum accumulates more unsuccessful numberings, especially in the end, when introducing 

more mutations in a sequence, the success rate decreases to 82.7% and 60.7%, respectively, 

which is 8.1% and 30.0% less than AbRSA. In case of light chains, ANARCI and AbNum 

also accumulate more unsuccessful numberings than AbRSA. In the end, the success rate is 

90.2% and 74.5% while that of AbRSA is 96.3% [Fig. 2(A), 2(B)]. This result shows that 

AbRSA was rather robust to the simulated somatic hypermutations, due to the prior 

knowledge of the region-specific feature. 
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Testing specificity: distinguishing between antibodies and non-antibodies 

AbRSA shows highly robust performance for antibody sequence variations in the above test. 

Then, the question arises of whether AbRSA can distinguish between antibodies and 

non-antibodies, which is critical for application to unknown sequences. To answer this 

question, we compared the alignment results for both antibody and non-antibody sequences. 

The former are obtained from the benchmark data, which included 1,816 heavy or light 

chains. The latter are from the Swiss-Prot database,27 including 551,744 sequences, excluding 

those annotated as antibodies, V genes, immunoglobulins, or heavy or light chains. The 

alignment results are quantified based on the sequence identity between the query and 

consensus sequences. As CDRs exhibit diverse lengths, which may affect the results, we 

quantified the sequence identity in FRs, rather than the whole sequence.  

  The result is illustrated in Figure 3, which shows the frequency distribution of the sequence 

identities. There are two peaks in the figure. The black curve indicates non-antibodies, whose 

average sequence identity is approximately 38%, ranging from 0-66%. The gray curve 

indicates antibodies, whose average sequence identity is approximately 94%, ranging from 

74-100%. The non-overlapping curves demonstrate that AbRSA can clearly distinguish 

between antibody and non-antibody sequences. We checked the four non-antibodies 

exhibiting the highest sequence identity (≥65%) and found that they were 
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immunoglobulin-like proteins, but not real antibodies. For comparison, we also assessed the 

performance of ANARCI and AbNum using the non-antibody set (see Testing methods in 

Materials and Methods). The result shows that ANARCI identified all the sequences as 

non-antibody, while AbNum identified most non-antibodies except a viral T-cell receptor 

beta chain-like protein (UniProt ID: P11364) that was recognized as the light chain of 

antibody. 

 

Web service of AbRSA 

To make the best use of AbRSA, we set up a user-friendly web service. AbRSA is 

implemented in C++ and PHP. The AbRSA pipeline for computation is shown in Figure 4. 

The input could be either the protein sequence or structure. Multiple protein sequences are 

supported if the sequences are in FASTA format. The input will then be subjected to 

region-specific alignment with heavy- and light-chain consensus sequences (see supporting 

information). The program will judge whether the sequence is a heavy chain or light chain, or 

neither, by comparing sequence identities with consensus sequences. If the identities are 

lower than the cutoff (70%, minimum value from the training set), the query sequence will 

not be recognized as an antibody, and the program will loop back to search for more heavy or 

light chains in the query sequence in the case of fusion proteins, which may contain multiple 

antibody variable domains. After all possible heavy or light chains are found; the program 
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will output the numbering results and the location of FRs and CDRs in the sequences. If the 

input is a protein structure (PDB format file), the web server will extract protein sequences 

and subject to region-specific alignment with heavy- and light-chain consensus sequences as 

the above process. In addition, it uses an interactive molecular visualization JavaScript library, 

called 3Dmol.js,28 to render three-dimensional (3D) graphics in the web browser. It highlights 

the residues of CDRs according to the numbering results using different colors in the 3D 

graphics. As 3Dmol is hardware-accelerated, the 3D view can be rotated, translated, and 

re-sized by dragging and scrolling the mouse smoothly. This feature could help to determine 

the location and conformation of CDRs. 

 

Discussion  

Antibody sequence numbering is a well-established, but critical topic in the field of antibody 

research. AbRSA can complement existing methods by focusing on unusual antibody 

sequences. Traditionally, the performance of antibody numbering is related to the amount of 

sequences used for method training. Recently developed methods employing a larger training 

set can number more antibodies than earlier methods. However, these methods may not be 

applicable to unusual sequences. Integrating additional biological insights, beyond the 

sequences themselves, could solve the problem. In this report, we show that AbRSA is very 

robust to unusual antibodies whose patterns are not included in the training data, indicating 
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that the region-specific features contribute to antibody numbering. The current AbRSA tool 

supports a Kabat and Chothia numbering scheme. In the future, we will continuously improve 

our program and provide additional numbering schemes to the user. 

 
 

Materials and Methods 

Training set  

The training dataset consisted of antibody sequences downloaded from the UniProt 

database.29 Redundant sequences were eliminated using CD-HIT30 with a sequence identity 

cutoff of 85%. In total, 503 heavy and 475 light chains were collected. All sequences were 

numbered and double checked by using two well-established programs, AbNum and 

ANARCI. The sequences that could not be numbered by the programs were discarded. 

Benchmark set 

All the antibodies were collected from the Protein Data Bank.31 The redundant sequences 

were removed by CD-HIT. To avoid overlap of the benchmark and training datasets, the 

sequence whose identity was over 85% (the average identity for any pair of antibody 

sequences that we knew) were also removed. In total, 983 heavy and 833 light chains were 

obtained. The pre-annotated numbering was obtained using AbNum and ANARCI. 39 chains 

could not be numbered (no output) by both software, and 13 chains showed conflicting 

results. Those sequences were manually numbered using 3D structure alignments.32 
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Simulated set  

To expand the diversity of benchmark sequences, a well-established antibody sequence 

simulation model AB33 is used to generate the simulated set in two steps. Firstly, the 

benchmark set is clustered using a sequence similarity cutoff of 80% by CD-HIT. One 

representative sequence in each cluster was randomly selected as the starting sequence of 

simulation. The sequences that could not be numbered by AbNum and ANARCI are 

eliminated. In all, 208 heavy and 78 light chains were obtained. Secondly, random mutations 

are introduced in these sequences using the antibody-specific amino acid substitution model 

AB, which is guided by 20×20 matrix of replacement rates between amino acids. The number 

of mutations is gradually increased from 10 to 50 with a step of 5. Each of the steps is 

repeated 100 times which finally create 900×208=187,200 heavy chains and 900×78=70,200 

light chains. 

Antibody region-specific alignment method 

Antibody sequence diversity is mainly generated through two processes: somatic 

recombination and hypermutation.34,35 The former joins the alleles of V, D and J genes or 

those of only V and J genes randomly. The regions where the genes recombine are located in 

CDR H3 and CDR L3, resulting in the diverse lengths of these regions. The latter process 

consists of frequent random mutations, which often occur at CDRs. As a result, CDRs exhibit 
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frequent substitutions, insertions and deletions, while FRs generally show a small number of 

substitutions. The origin of diversity tells us the variability of antibody is region specific. 

Although it has been implicitly incorporate in previous methods, region specific feature has 

not been taken full advantage yet. Hence we tried to strengthen the feature explicitly by using 

different alignment strategy in each region of the consensus sequence of antibody. Two 

consensus sequences (see supporting information) of heavy and light chains came from the 

antibody database abYsis,36 where the residue distribution in variable domains is analyzed. 

The two consensus sequences were numbered by the standard numbering scheme of Kabat 

and Chothia. The sequences were divided into four types of regions: (1) FRs; (2) CDRs; (3) 

insertion positions (IPs) following the definition of the numbering scheme, such as H82 and 

L95 in the Chothia scheme (see supporting information); and (4) conserved positions (CPs), 

where one or two amino acids show a frequency above 95%, such as cysteine at H22 and 

aspartic acid at L82 in the Chothia scheme (see supporting information). These four types 

allow region-dependent features to be incorporated into sequence mapping. 

  To number an antibody, we employed a modified Needleman-Wunsch dynamic 

programming algorithm37 to map the query sequence to the consensus sequence. The score at 

each position in the alignment is calculated as follows:  
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  (1) 

where 

                        (2) 

and 

                         (3) 

In the above equations, i is the residue index of the query sequence, and j is the residue index 

of the consensus sequence. The alignment score (max{Blosum62(i, j)}) is calculated by 

enumerating BLOSUM62 matrix for query residue and all possible residues at a given 

position of the consensus sequence. PCPs, PIPs, PFRs and PCDRs are the gap penalties at CPs, IPs, 

FRs and CDRs, respectively. SCPs is the weight of the match score at CPs. The total score is 

the summation of S(i,j) at each position. We explored the combination of SCPs, PIPs, PCPs, PFRs 

and PCDRs by iterating their values from 0 to 100 using the training set. 

  We found that the best numbering performance (100% identical to pre-annotated 

numbering) for the training data was achieved when PIPs=1, PCDRs=11, PFRs=26, PCPs=55 and 
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increases in a step-by-step manner from IPs, to CDRs, FRs and CPs. The scoring weight (SCPs) 

for residues located at CPs was five times greater than that of the other residues.  

Testing methods for ANARCI, AbNum and proABC 

The latest stand-alone version of ANARCI (v1.3) was used in this work. AbNum and 

proABC were tested on their web servers (http://bioinf.org.uk/abs/abnum/, 

http://circe.med.uniroma1.it/proABC/). As using the simulated set (187,200 and 70,200 

sequences) and non-antibody set (551,744 sequences), we used their subsets for testing. The 

subset of simulated set consists of randomly selected 10 out of 100 mutants in each group. It 

includes 187,200×10%=18,720 heavy chains and 70,200×10%=7,020 light chains. The 

success rates of antibody numbering using this subset are consistent with the results using 5% 

sequences. The subset of non-antibody data includes 7,459 sequences that are most similar to 

antibody consensus sequences (share over 45% identities) in the whole non-antibody set. We 

did not use proABC in comparison studies on the simulated set and non-antibody set for the 

reason of time consumption. 

Availability of data and materials 

The web tool, benchmark set and simulated set are freely available to the public at 

http://cao.labshare.cn/AbRSA/ . 

Acknowledgements 

18 
 

This article is protected by copyright. All rights reserved.

http://bioinf.org.uk/abs/abnum/
http://circe.med.uniroma1.it/proABC/
http://cao.labshare.cn/AbRSA/


The authors wish to thank Professor Yang Zhang and Chengxin Zhang in the University of 

Michigan, Professor Zhihua Zhang in Beijing Institute of Genomics, Professor Haiying Hang 

in Institute of Biophysics, Chinese Academy of Sciences for invaluable discussion. This work 

was supported by the National Natural Science Foundation of China under Grant (number 

31401130 and 81830108), the funding for prevention and control technology of African 

swine fever (2018NZ0151). 

Competing interests 

The authors declare that they have no competing interests. 

 

  

19 
 

This article is protected by copyright. All rights reserved.



References 
1. Krawczyk K, Kelm S, Kovaltsuk A, Galson JD, Kelly D, Truck J, Regep C, Leem J, 
Wong WK, Nowak J, Snowden J, Wright M, Starkie L, Scott-Tucker A, Shi J, Deane CM 
(2018) Structurally mapping antibody repertoires. Front Immunol 9:1698. 
 2. Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for 
therapy. Nature 332:323-327. 
 3. Verhoeyen ME, Saunders JA, Broderick EL, Eida SJ, Badley RA (1991) Reshaping 
human monoclonal antibodies for imaging and therapy. Dis Markers 9:197-203. 
 4. Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody 
structures. Bioinformatics 24:1953-1954. 
 5. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology 
modeling server. Nucleic Acids Res 37:W474-W479. 
 6. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. 
Protein Eng Des Sel 25:507-521. 
 7. Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, Overington JP, Hirayama K, 
Soga S, Tsunoyama K, Clark D, Lefranc MP, Ikeda K (2014) Antibody informatics for drug 
discovery. Biochim Biophys Acta 1844:2002-2015. 
 8. Olimpieri PP, Marcatili P, Tramontano A (2015) Tabhu: tools for antibody humanization. 
Bioinformatics 31:434-435. 
 9. Jarasch A, Skerra A (2017) Aligning, analyzing, and visualizing sequences for antibody 
engineering: Automated recognition of immunoglobulin variable region features. Proteins 
85:65-71. 
10. Clavero-Alvarez A, Di Mambro T, Perez-Gaviro S, Magnani M, Bruscolini P (2018) 
Humanization of antibodies using a statistical inference approach. Sci Rep 8:14820. 
11. Leem J, Georges G, Shi J, Deane CM (2018) Antibody side chain conformations are 
position-dependent. Proteins 86:383-392. 
12. Roy A, Nair S, Sen N, Soni N, Madhusudhan MS (2017) In silico methods for design of 
biological therapeutics. Methods 131:33-65. 
13. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence 
Jones proteins and myeloma light chains and their implications for antibody complementarity. 
J Exp Med 132:211-250. 
14. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical 
structures of immunoglobulins. J Mol Biol 273:927-948. 
15. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of 
immunoglobulins. J Mol Biol 196:901-917. 
16. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan 

20 
 

This article is protected by copyright. All rights reserved.



EA, Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ (1989) 
Conformations of immunoglobulin hypervariable regions. Nature 342:877-883. 
17. Abhinandan KR, Martin AC (2008) Analysis and improvements to Kabat and 
structurally correct numbering of antibody variable domains. Mol Immunol 45:3832-3839. 
18. Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, 
Thouvenin-Contet V, Lefranc G (2003) IMGT unique numbering for immunoglobulin and T 
cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 
27:55-77. 
19. Honegger A, Pluckthun A (2001) Yet another numbering scheme for immunoglobulin 
variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657-670. 
20. Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable 
domain sequence analysis tool. Nucleic Acids Res 41:W34-W40. 
21. Zhao S, Lu J (2010) A germline knowledge based computational approach for 
determining antibody complementarity determining regions. Mol Immunol 47:694-700. 
22. Dunbar J, Deane CM (2016) ANARCI: antigen receptor numbering and receptor 
classification. Bioinformatics 32:298-300. 
23. North B, Lehmann A, Dunbrack RJ (2011) A new clustering of antibody CDR loop 
conformations. J Mol Biol 406:228-256. 
24. Olimpieri PP, Chailyan A, Tramontano A, Marcatili P (2013) Prediction of site-specific 
interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics 
29:2285-2291. 
25. Chailyan A, Tramontano A, Marcatili P (2012) A database of immunoglobulins with 
integrated tools: DIGIT. Nucleic Acids Res 40:D1230-D1234. 
26. Sormanni P, Aprile FA, Vendruscolo M (2018) Third generation antibody discovery 
methods: in silico rational design. Chem Soc Rev 47:9137-9157. 
27. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000. Nucleic Acids Res 28:45-48. 
28. Rego N, Koes D (2015) 3Dmol.js: molecular visualization with WebGL. Bioinformatics 
31:1322-1324. 
29. Pundir S, Martin MJ, O'Donovan C (2017) UniProt protein knowledgebase. Methods 
Mol Biol 1558:41-55. 
30. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering 
and comparing biological sequences. Bioinformatics 26:680-682. 
31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 
Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235-242. 
32. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on 
the TM-score. Nucleic Acids Res 33:2302-2309. 

21 
 

This article is protected by copyright. All rights reserved.



33. Mirsky A, Kazandjian L, Anisimova M (2015) Antibody-specific model of amino acid 
substitution for immunological inferences from alignments of antibody sequences. Mol Biol 
Evol 32:806-819. 
34. Market E, Papavasiliou FN (2003) V(D)J recombination and the evolution of the 
adaptive immune system. PLOS Biol 1:e16. 
35. Diaz M, Casali P (2002) Somatic immunoglobulin hypermutation. Curr Opin Immunol 
14:235-240. 
36. Swindells MB, Porter CT, Couch M, Hurst J, Abhinandan KR, Nielsen JH, Macindoe G, 
Hetherington J, Martin AC (2017) abYsis: Integrated antibody sequence and 
structure-management, analysis, and prediction. J Mol Biol 429:356-364. 
  

22 
 

This article is protected by copyright. All rights reserved.



37. Needleman SB, Wunsch CD (1970) A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J Mol Biol 48:443-453. 
  

23 
 

This article is protected by copyright. All rights reserved.



Table 1.  Results of antibody numbering using the benchmark dataset. The values are 
numbers of failed cases using four software tools. The result was classified as “No output”, 
which means no light or heavy chain is detected by the tool, and “Mismatch”, which indicates 
the predicted CDRs and FRs are not correct, for heavy and light chains according to Kabat or 
Chothia schemes. 

Tool 

Heavy Chain (N=983)  Light Chain (N=833) 

Kabat Chothia  Kabat Chothia 

No output Mismatch No output Mismatch  No output Mismatch No output Mismatch 

proABC 22 12 -a -a  8 4 -a -a 

AbNum 32 0 32 1  5 0 5 0 

ANARCI 8 2 8 2  0 2 0 2 

AbRSA 0 1 0 1  0 0 0 0 

a Software does not support. 
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Figure legends 
 

Figure 1. Examples of pseudo-conserved patterns in CDR3. QueryH and QueryL are heavy- 
and light-chain sequences (PDB code: 4OCR, 3MLT), respectively. Their CDRs are colored 
in blue, and those of CDR3 are underlined. The sky-blue shaded letters “WGTE” and “SGGG” 
in CDR3 are pseudo-conserved patterns, which are similar to real conserved patterns (yellow 
shaded letters “WGQG” and “FGDG”). Pseudo-conserved patterns may mislead numbering 
tools. Please see the sequences as text in the supplementary file.  

 

Figure 2. Benchmark results on simulated set. It illustrates the success rate of simulated 
antibody numbering versus the number of mutations in the original antibodies. A: results for 
heavy chain. B: results for light chain. The black, blue and red lines indicate the results of 
ANARCI, AbNum and AbRSA respectively. 

 
Figure 3. Frequency distribution of the sequence identities of antibodies and non-antibodies. 
The red curve indicates the frequency of sequence identities between antibody queries and 
the consensus sequence. The black curve indicates the frequency of sequence identities 
between non-antibody queries and the consensus sequence. The two curves exhibit no 
overlap, which suggests the antibodies and non-antibodies show obvious differences in 
sequence identity. 

 
Figure 4. A: Pipeline of the AbRSA web service. B: The input of AbRSA. The sequences in 
the textbox are examples. C: The output numbering results of AbRSA using an antibody 
structure (PDB code: 3i75). D: The CDRs are highlighted in colors in the 3D viewer (input 
PDB code: 3i75). 
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