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Abstract

Sex differences in rates of depression are thought to contribute to sex differences in

smoking initiation (SI) and number of cigarettes smoked per day (CPD). One hypothesis is

that women smoke as a strategy to cope with anxiety and depression, and have difficulty

quitting because of concomitant changes in hypothalamic–pituitary–adrenocortical (HPA)

axis function during nicotine withdrawal states. Despite evidence of biological ties, research

has not examined whether genetic factors that contribute to depression-smoking comorbid-

ity differ by sex. We utilized two statistical aggregation techniques—polygenic scores (PGSs)

and sequence kernel association testing—to assess the degree of pleiotropy between these

behaviors and moderation by sex in the Health and Retirement Study (N = 8,086). At the

genome-wide level, we observed associations between PGSs for depressive symptoms and

SI, and measured SI and depressive symptoms (all p < .01). At the gene level, we found evi-

dence of pleiotropy in FKBP5 for SI (p = .028), and sex-specific pleiotropy in females in

NR3C2 (p = .030) and CHRNA5 (p = .025) for SI and CPD, respectively. Results suggest bidi-

rectional associations between depression and smoking may be partially accounted for by

shared genetic factors, and genetic variation in genes related to HPA-axis functioning and

nicotine dependence may contribute to sex differences in SI and CPD.
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1 | INTRODUCTION

Nearly 36.5 million (15.1%) U.S. adults are current cigarette smokers

(Jamal et al., 2016). Tobacco use is the leading cause of preventable

morbidity and mortality; the health effects of smoking include many

types of cancer, respiratory diseases, cardiovascular disease, and

adverse reproductive outcomes (Centers for Disease Control and Pre-

vention [CDC], 2014).

Though 20th century sex-related demographic trends in smoking

prevalence have persisted, with men smoking more than women do,

this gap is narrowing. Shrinking rates in smoking prevalence by sex

have been consistent (CDC, 2002; Cheng & Kenkel, 2010; Hammond,

2009; Jamal et al., 2016; Peters, Huxley, & Woodward, 2014). Con-

vergence in smoking rates by sex appear to be especially pronounced

in teens (CDC, 2002), with some reports showing that girls are

smoking more than boys (Substance Abuse Mental Health Services

Administration [SAMHSA], 2007). Research from population based

studies and placebo-controlled nicotine replacement trials have also

found women evince more quit attempts and have higher rates of
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relapse than men (Hammond, 2009; Perkins, 2001; Perkins & Scott,

2008; Pogun & Yararbas, 2009; Reynoso, Susabda, & Cepeda-Benito,

2005), suggesting that biological factors, in addition to social norms,

may contribute to sex differences in smoking behavior.

1.1 | Sex differences in biopsychosocial predictors of
smoking

Increasingly, sex differences in nicotine dependence have been linked

to biopsychosocial predictors of smoking, including sex differences in

depression (Perkins, 2001; Torres & O'Dell, 2016) and hypothalamic–

pituitary–adrenocortical (HPA) axis functioning. Clinically, major depres-

sive disorder (MDD) is more prevalent in women than in men (Hankin &

Abramson, 2001; McLaughlin, Xuan, Subramanian, & Koenen, 2011), and

women with a history of smoking are at higher risk of past and current

MDD than men (Husky, Mazure, Paliwal, & McKee, 2008). Women also

report greater perceived risks from quitting smoking, including greater

negative affect—a key feature of MDD (McKee, O'Malley, Salovey,

Krishnan-Sarin, & Mazure, 2005). Moreover, though concurrent depres-

sion and cigarette consumption are comorbid across sex (John, Meyer,

Rumpf, & Hapke, 2004), longitudinal data suggests that only among

women are there bidirectional associations between smoking behavior

and depression over time (Bares, 2014).

One of the most well studied biological processes linked to depression

is functioning of theHPA-axis, with documented sex differences in how this

process unfolds. The HPA-axis forms one component of the physiological

stress response by coordinating the release of glucocorticoids (i.e., cortisol

in humans) from the adrenal gland (Gunnar&Quevedo, 2007). As the princi-

ple tobacco alkaloid (Benowitz, Hukkanen, & Jacob, 2009), nicotine stimu-

lates greater secretion of HPA-axis hormones (e.g., cortisol), processes that

are mediated by nicotine binding to nicotinic acetylcholinergic receptors

expressed widely in the central nervous system (Rohleder & Kirschbaum,

2006; Tweed,Hsia, Lutfy, & Friedman, 2012). Though themolecularmecha-

nisms of nicotine initiation and HPA-axis functioning may be similar across

males and females, females show relatively greater circulating stress-related

HPA-axis hormones during nicotine withdrawal (Hogle & Curtin, 2006).

Moreover, negative mood states such as anxiety and depression that

accompany such HPA-axis changes are also more prevalent during nicotine

withdrawal for females than males (Hogle & Curtin, 2006; Soyster, Anzai,

Fromont, & Prochaska, 2016). Together, this research suggests that com-

pared to males, females are more susceptible to smoking as a strategy

to cope with increased anxiety and depression, and have more diffi-

culty quitting because of concomitant changes in HPA-axis function

during withdrawal states (Torres & O'Dell, 2016), both of which may

contribute to sex differences in smoking behavior and cessation.

1.2 | Do pleiotropic effects underlie sex-differences
in smoking behavior?

Results from LD score regression analyses of genome-wide association

study (GWAS) studies have shown evidence of genetic correlation

between smoking initiation (SI), smoking intensity or cigarettes smoked

per day (CPD), and depressive symptoms, or evidence that the effects

of genetic variants for these traits are correlated (Bulik-Sullivan et al.,

2015; Zheng et al., 2017). Table 1 reports cross-trait LD score regres-

sion estimates of genetic correlation from LD Hub that were calculated

using the most recent GWAS summary statistics of depressive symp-

toms, SI, and CPD (Zheng et al., 2017). Depressive symptoms are posi-

tively correlated with both SI and CPD, but are statistically more

significant for SI (rg = 0.249; p = 9.96E−06) than CPD (rg = 0.253;

p = .005). In females, results from twin studies indicate a stronger

genetic basis for smoking behavior (Li, Cheng, Ma, & Swan, 2003), and

the presence of an underlying genetic basis for a common predisposition

to smoking and depression (Dierker, Avenevoli, Stolar, & Merikangas,

2002; Kendler et al., 1993).

The genetic correlation between depression and smoking behavior

observed from twin studies or LD score regression could arise through

multiple mechanisms, but the most common interpretation is that they

arise as a result of pleiotropy—i.e., that alleles affecting one trait on

average also affect a second trait. However, despite the strong biolog-

ical links in the literature between smoking, depression, and HPA-axis

function in females, few studies have examined the existence of sex-

specific pleiotropic effects between genetic variants for depression

and smoking. Pleiotropic effects between depression and smoking

could manifest as biological or mediated pleiotropy (Figure 1). Biologi-

cal pleiotropy occurs when a genetic variant or gene has a direct bio-

logical influence on more than one phenotypic trait, whereas

mediated pleiotropy occurs when one phenotype is itself causally

related to a second phenotype so that a variant or gene associated

with the first phenotype is indirectly associated with the second

(Solovieff, Cotsapas, Lee, Purcell, & Smoller, 2013). Both are consid-

ered real forms of pleiotropy; however, it is important to distinguish

between the two in order to accurately identify the etiological mecha-

nisms of the two phenotypes (Solovieff et al., 2013).

Genetic variation underlying HPA-axis functioning is a plausible can-

didate neurobiological system in which to examine pleiotropic effects

between smoking and depression (Rovaris, Mota, & Bau, 2016; Torres &

O'Dell, 2016). Hyperactivation of the HPA-axis response, associated with

depression and nicotine withdrawal, is thought to reflect inefficient feed-

back inhibition by endogenous cortisol (Pariante & Lightman, 2008).

Many genes contribute to the initiation and regulation of the HPA-axis

(Arnett, Muglia, Laryea, & Muglia, 2016), including NR3C1, NR3C2,

FKBP5, and CRHR1 (Figure 2). Though several studies have linked SNP-

level variation within these genes to depression (see reviews by Arnett

TABLE 1 LD score regression estimates of genetic correlation for
depressive symptoms and smoking behaviors

Phenotype 1 Phenotype 2 rg (SE) p-value

Depressive symptoms CPD 0.253 (0.09) .005

Depressive symptoms SI 0.249 (0.056) 9.96E−06

Depressive symptoms Former smoker −0.158 (0.096) .101

Note: LD score regression estimates were downloaded from LD Hub

(Zheng et al., 2017), retrieved from http://ldsc.broadinstitute.org/lookup/.

Abbreviations: CPD, cigarettes per day; LD, linkage disequilibrium; rg,

genetic correlation; SE, standard error; SI, smoking initiation.
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et al., 2016; Gillespie, Phifer, Bradley, & Ressler, 2009), only a handful of

studies have examined associations with smoking behavior. For example,

Rogausch, Kochen, Meineke, and Hennig (2007) found that G allele

carriers at rs41423247 of NR3C1 were more likely to become smokers

and had significantly higher daily cigarette consumption than C homozy-

gotes. Other SNPs within NR3C2, FKBP5, and CRHR1 have also been

examined in relation to smoking outcomes (dos Santos et al., 2012;

Jensen et al., 2015; Koopmann et al., 2016; Rovaris et al., 2013; Tang

et al., 2015), with mixed results. Interestingly, a small GWAS of daily ciga-

rette use reported associations at SNPs within NR3C2, providing

additional evidence that genes underlying HPA-axis function may also

play a role in smoking behavior. Moreover, research suggests that

sex differences in corticotropin-releasing hormone signaling may

underlie greater female vulnerability for stress-related psychiatric

disorders (Bangasser et al., 2010). Thus, in the literature it is not

clear whether genetic variants in HPA-related genes influence

smoking via increased stress-related cortisol levels in individuals

(particularly females ) with depressive symptoms, or whether there

is an additional effect of these variants on smoking independent of

their effects on depression.

1.3 | Statistical approaches to testing pleiotropy with
molecular genetic data

More recently, studies have begun using GWAS findings to identify

pleiotropic effects at the genome-wide or gene-region level. At the

genome-wide level, genetic overlap can be assessed by testing

whether a polygenic score (PGS) for the first phenotype is significantly

associated with the second phenotype. A PGS applies weights from a

GWAS to genotype data to construct a weighted sum of genetic risk

for a phenotype. Using a PGS increases power to detect cross-

phenotype associations because it combines the cumulative effect sizes

of all genetic variants across the genome for an outcome into a single

scalar of genetic propensity (Dudbridge, 2013). Thus, PGSs can be eas-

ily incorporated into a multiple regression framework to simultaneously

test for biological or mediated pleiotropy and/or moderation by sex.

Past studies have used this approach to examine common genetic

effects that underlie schizophrenia and bipolar disorder (Purcell et al.,

2009), type 2 diabetes and hypertension (Lee, Yang, Goddard, Vis-

scher, & Wray, 2012), and MDD and risk of alcohol dependence

(Andersen et al., 2017). A downside to this approach is it does not

F IGURE 1 Biological and mediated pleiotropy. (a) Biological
pleiotropy: A variant or gene region affects depressive symptoms and
smoking behavior. (b) Mediated pleiotropy: A variant or gene region
affects depressive symptoms, which in turn affect smoking behavior.
As a result, an association is observed between the variant or gene
region and both phenotypes

F IGURE 2 Propagation of the hypothalamic–
pituitary–adrenocortical (HPA) axis. The CRH
receptor type 1 is encoded by CRHR1. NR3C1 and
NR3C2 encode GRs and MRs, respectively. FKBP5
is encoded by FKBP5. ACTH, adrenocorticotropic
hormone; CRH, corticotropin-releasing-hormone;
FKBP5, FK506-binding protein 51; GCs,
glucorticoids (i.e., cortisol in humans); GR,
glucocorticoid receptors; MRs, mineralocorticoid
receptors
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implicate a particular region of the genome and any related biological

processes that may be driving cross-phenotype associations.

One alternative to the polygenic approach is the use of sequence

kernel association testing (SKAT) or other region-based tests, which

use gene aggregation techniques to test for associations between

gene regions and a phenotype. SKAT improves upon the limited

power of single-marker association studies by testing for associations

between common and rare variants within a gene region, which

increases the power to detect true effects while also maintaining bio-

logical specificity (Wu et al., 2011). This approach requires a priori

knowledge of potential biologically relevant gene regions, which may

be challenging to determine in the context of cross-phenotype associa-

tions of complex polygenic traits. As a result, the use of both aggrega-

tion methods may be desirable; polygenic approaches are well powered

to identify the existence of pleiotropy between two phenotypes on a

global level, while regional methods can provide a more detailed map-

ping of specific genes that may be driving these associations.

1.4 | Current study

The current study utilized both polygenic and gene region aggregation

techniques to assess (a) the presence of biological or mediated pleiot-

ropy between genetic risk factors for depression or genes implicated

in HPA-axis functioning and smoking behavior, and (b) whether pleio-

tropic effects vary by sex. To accomplish these aims, we used data on

8,086 participants from the Health and Retirement Study (HRS)—a

large, population-representative study with detailed genetic and

sociodemographic data. To assess pleiotropy at the genome-wide

level, we first constructed a PGS using results from a recent GWAS of

depressive symptoms (Okbay et al., 2016) and tested associations

between the PGS and smoking behavior as well as moderation by sex.

Gene ontology analysis from the GWAS of depressive symptoms

implicated SNPs in genomic regions related to enrichment of the cen-

tral nervous system and the adrenal/pancreas (Okbay et al., 2016,

p. 628), both of which may capture stress-related HPA-axis function

in smokers. We used SKAT and interaction-SKAT (iSKAT) to examine

independent and sex-specific associations between smoking behavior

and gene regions that have been directly linked to HPA-axis function-

ing in both animal and human models, including NR3C1, NR3C2,

FKBP5, and CRHR1 (Figure 2).

Importantly, literature on the prospective associations between

smoking, depression, and anxiety in longitudinal studies has been incon-

sistent in terms of the direction of association (for a review, see

Fluharty, Taylor, Grabski, & Munafò, 2016). Since the HRS is a repre-

sentative sample of older adults, we could not assess whether the onset

of depression preceded tobacco use earlier in the life course. Therefore,

we also tested for pleiotropy in the reciprocal direction, or for signifi-

cant associations between genetic risk for smoking and a phenotype

for depressive symptoms. For these analyses we used PGSs con-

structed from a GWAS of SI and CPD (Furberg et al., 2010), and SKAT

and iSKAT analyses of the BDNF and CHRNA5 gene regions, which

have been implicated in previous studies of SI and nicotine dependence

(Furberg et al., 2010; Liu et al., 2010; Thorgeirsson et al., 2010).

2 | METHODS

2.1 | Study sample

The HRS is a nationally representative, longitudinal panel study of indi-

viduals over the age of 50 and their spouses (Juster & Suzman, 1995;

Sonnega et al., 2014) that is sponsored by the National Institute on Aging

(NIA U01AG009740) and conducted by the University of Michigan.

Launched in 1992, the HRS introduces a new cohort of participants

every 6 years and interviews around 20,000 participants every 2 years.

Genotype data on ~15,000 HRS participants was collected from a

random subset of the ~26,000 total participants that were selected to

participate in enhanced face-to-face interviews and saliva specimen col-

lection for DNA in 2006, 2008, and 2010. Since the HRS respondents

are from various ancestral backgrounds, and we used results from GWAS

of European ancestry (EA) to construct our PGS, we report results from

the HRS EA sample in the main text, because the PGS will not have the

same predictive power in non-European populations (Carlson et al., 2013;

Martin et al., 2017; see Section 2.2 for details on population assignment).

Restricting our analyses to one ancestral group is also important in that

SNPs within regions of interest may tag different causal variants if the

underlying linkage disequilibrium (LD) structure varies across ancestral

groups (Martin et al., 2017; Rosenberg et al., 2010). However, for com-

pleteness, we report corresponding methods and results from explor-

atory, cross-ancestry analyses in the HRS African ancestry (AA) sample in

Data S1 Supporting Information for this study (n = 1,984). We also

excluded participants born before 1930 due to documented mortality

selection, or increased survival among low risk smoking genotypes, in ear-

lier birth cohorts (Domingue et al., 2017), and spouses born after 1959,

since these individuals are not part of the core population-representative

HRS sample. Our final EA sample includes 8,086 respondents born

between 1930 and 1959.

2.2 | Genotyping and quality control

Genotyping was conducted by the Center for Inherited Disease Research

(CIDR) in 2011, 2012, and 2015 (RC2 AG0336495, RC4 AG039029). Full

quality control details can be found in the Quality Control Report (Quality

Control Report for Genotypic Data, 2013). Genotype data on over 15,000

HRS participants was obtained using the llumina HumanOmni2.5

BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1), which measures

~2.4 million SNPs. Genotyping quality control was performed by the

Genetics Coordinating Center at the University of Washington, Seattle,

WA. Individuals with missing call rates >2%, SNPs with call rates <98%,

HWE p-value <.0001, chromosomal anomalies, and first-degree relatives in

the HRS were removed. Imputation to 1000G Phase I v3 (released March

2012) was performed using SHAPEIT2 followed by IMPUTE2. The world-

wide reference panel of all 1,092 samples from the phase I integrated variant

set was used. These imputation analyses were performed and documented

by the Genetics Coordinating Center at the University of Washington, Seat-

tle, WA. All positions and names are aligned to build GRCh37/hg19.

Principal component (PC) analysis was performed on a selected

set of independent SNPs to identify population group outliers and to
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provide sample eigenvectors as covariates in the statistical model to

adjust for possible population stratification, and were provided by

the HRS. The EA sample included all respondents that had PC load-

ings within ±1 standard deviations (SDs) for eigenvectors one and

two in the PC analysis of all unrelated study subjects and who self-

identified as White on survey data. A second set of PCs was then

generated for the analytical EA sample to further account for any

population stratification within the EA sample. The EA genotype

sample has been defined by the HRS and is available on dbGaP

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id=phs000428.v2.p2).

2.3 | Measures

2.3.1 | Smoking phenotypes

We examined two elements of smoking behavior: SI and smoking inten-

sity. For SI, we used the classification of “ever smoker” from the CDC,

which defines a smoker as someone who reports smoking 100 cigarettes

or more in their lifetime (CDC, 2008). We assigned a value of “1” for SI if

a respondent reports ever being a smoker at baseline when they entered

the HRS or in subsequent waves of the HRS. For smoking intensity, we

used number of CPD. If a respondent currently smokes, the HRS asks

how many cigarettes they currently smoke per day on average. If the

respondent no longer smokes, they are asked how many cigarettes they

smoked per day when they were smoking the most. Past studies in other

longitudinal cohorts have found a high overall correlation between these

variables over time, supporting the idea of using either value as a general

assessment of CPD (Furberg et al., 2010).

2.3.2 | Depressive symptoms phenotype

We pooled all available waves of HRS data and used the mean score

respondents received on the Center for Epidemiological Studies-

Depression (CES-D) scale eight item short form (Radloff, 1977; Watson,

1988; Watson, Wiese, Vaidya, & Tellegen, 1999). Participants indicated if

they experienced each item much of the time during the past week using

(1 = yes, 0 = no). We summed negative indicators (depressed, activities

were an effort, sleep is restless, felt lonely, felt sad, and unmotivated) and

reverse-coded positive indicators (felt happy and enjoyed life) to con-

struct an overall score (range [0, 8]). Mean CES-D scores included up to

11 waves of data.

2.3.3 | Covariates

We included the first 10 PCs of the genetic data (see Section 2.2), edu-

cational attainment (1 = GED/HS degree or higher; 0 = no degree), age

(respondent mean across all waves), and birth cohort (indicator vari-

ables for 6-year time spans, or 1930–1935, 1936–1941, 1942–1947,

1948–1953, and 1954–1959). In models with CPD as the outcome, we

also controlled for current versus former smoker status. The association

between educational attainment and smoking behavior has been well-

documented (e.g., de Walque, 2010; Pampel, 2009; Pampel, Krueger, &

Denney, 2010), and evidence also suggests a strong association

between education and depressive symptoms (Adler et al., 1994; Lorant

et al., 2003). Smoking behavior and self-reported depressive symptoms

have also been shown to vary significantly by birth cohort (Jeuring

et al., 2018; Weinberger et al., 2018). As depressive symptoms tend to

increase with age, we controlled for the mean age of the respondent

across all HRS waves to ensure any differences we observed by

sex were not related to average age at reporting (Blazer, Burchett,

Service, & George, 1991).

2.4 | Polygenic scores

Linear PGSs for depressive symptoms were constructed using effect

sizes from the largest GWAS of depressive symptoms to date con-

ducted by the Social Science and Genetics Association Consortium

(SSGAC) on EA individuals. The SSGAC meta-analyzed publicly avail-

able results from a study performed by the Psychiatrics Genomics

Consortium (PGC; Ripke et al., 2013) with GWAS results from the ini-

tial release of UK Biobank genetic data (total N = 180,666; Okbay

et al., 2016). A replication analysis was performed using data from

23andMe (N = 368,890). Since the HRS was part of the original

GWAS meta-analysis discovery sample, weights were re-estimated by

the SSGAC to exclude the HRS. Due to privacy constraints, these

weights do not contain data from 23andMe.

Linear PGSs for SI and CPD were constructed using effect sizes from

a GWAS meta-analyses of EA individuals conducted by the Tobacco and

Genetics Consortium (TAG; Furberg et al., 2010). For SI and CPD, a total

of 74,053 participants were included in the discovery phase of the analy-

sis; in a follow up meta-analysis of the 15 most significant regions,

143,023 participants were included for SI and 73,853 for CPD.

Genotyped SNPs in the HRS genetic database were matched to

SNPs with reported results in the GWAS. In the HRS EA genetic data,

1,126,742 genotyped SNPs were available to construct the depressive

symptoms PGS, 710,288 SNPs were available to construct the SI PGS,

and 767,171 SNPs were available to construct the CPD PGS. To

increase the power of its predictive capacity, SNPs included in the

PGSs were not trimmed for LD and a p-value threshold or cut-off was

not imposed (Andersen et al., 2017; Stein et al., 2017; Ware, Schmitz,

Gard, & Faul, 2018). The PGSs were calculated as a weighted sum of

the number of disease-associated alleles (zero, one, or two) at each

SNP multiplied by the effect size for that SNP estimated from the

GWAS meta-analysis. All SNPs were coded to be associated with

increasing disease risk. To simplify interpretation, all PGSs were stan-

dardized to have a mean of zero and SD of one.

Importantly, to test if adjustments for LD affected our genome-

wide tests for pleiotropy, we also estimated results with a depressive

symptoms PGS constructed in the software LDpred (Vilhjálmsson

et al., 2015). LDpred uses a Bayesian method to calculate PGSs that

estimates posterior mean effect sizes from GWAS summary statistics

by assuming a prior for the genetic architecture and LD information

from a reference panel. We used the EA HRS sample as the reference

panel with an LD window of 180 and the fraction of SNPs with non-

zero effects assumed to be one.
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2.5 | Identification of HPA-axis and smoking gene
regions

We examined four genes that support the propagation of the HPA-

axis: NR3C1, NR3C2, FKBP5, and CRHR1 (see Data S1 Supporting

Information for gene information). Figure 2 depicts how the proteins

that each of these genes encode support the HPA-axis response, both

in terms of initiation and regulation (Gunnar & Quevedo, 2007;

Lupien, McEwen, Gunnar, & Heim, 2009). Though many genes sup-

port the HPA-axis response (Arnett et al., 2016), we chose genes that

have been robustly linked to function of the HPA-axis in animal and

human models and studied in humans with regards to stress-related

psychiatric disorders. Using gene knockout models in mice and human

studies of genetic variation, NR3C1, NR3C2, FKBP5, and CRHR1 have

each been linked to the production of glucorticoids (i.e., cortisol in

humans, corticosterone in mice; Arnett et al., 2016; Gillespie et al.,

2009; Grad & Picard, 2007; Laryea, Arnett, & Muglia, 2012; Schmidt

et al., 2003). In addition, genetic variation in these genes has been

repeatedly linked to individual variability in susceptibility for depres-

sion (Binder et al., 2004; Bradley et al., 2008; de Kloet et al., 2016; Liu

et al., 2006; Schatzberg et al., 2014; Velders et al., 2011).

For SI, we examined the gene encoding brain-derived neurotrophic

factor (BDNF). Identification of variants in BDNF have replicated in multiple

GWAS of SI (Furberg et al., 2010; Liu et al, 2019). BDNF regulates synaptic

plasticity and survival of cholinergic and dopaminergic neurons (Zhang &

Poo, 2001), and is thought to play a role in modulation of dopamine

reward circuits that promote continued use of nicotine after initial expo-

sure (Furberg et al., 2010). For smoking intensity, we examined the

CHRNA5 gene, which codes for the alpha-5 subunit of the nicotinic recep-

tors. CHRNA5, along with nicotinic receptor genes CHRNA3 and CHRNA4,

has been identified as a risk factor for heaviness of smoking (as defined by

CPD), and the development of lung cancer in GWAS (Furberg et al., 2010;

Liu et al., 2010; Thorgeirsson et al., 2010). We focused specifically on

CHRNA5 because it contains SNP rs16969968 (i.e., “Mr. Big”), which is

widely believed to be the causal variant underlying the GWAS signal in

the CHRNA5/CHRNA3/CHRNB4 regions. In particular, it is known to cause

an amino acid change in the alpha-5 subunit of the nicotinic receptors, and

experiments have found this change alters the responsiveness of the nico-

tinic receptors to nicotine (Bierut et al., 2008).

2.6 | Statistical analyses

2.6.1 | PGS analysis

To facilitate genome-wide identification of pleiotropic effects, we

estimated associations between PGSs and smoking phenotypes using

a linear regression model

Yi = β0 + β1 PGSi +PC
0
iβ2 + ϵi, ð1Þ

where Y is the SI or CPD status of individual i, and PCi is a vector that

includes the first 10 EA genetic PCs. To test for mediated pleiotropy

we ran the following additional regressions

CESDi = δ0 + δ1 PGSi +PC
0
iδ2 + εi , ð2Þ

Yi = θ0 + θ1 PGSi + θ2CESDi +PC
0
iθ3 +X

0
iθ4 + μi , ð3Þ

where CESDi is the CES-D score for individual i and X is a matrix of

covariates that we include in our fully specified model (sex, educa-

tional attainment, age, and birth cohort). For mediation to hold, there

must be (a) an association between the depressive symptoms PGS

and smoking phenotype (SI or CPD) in Equation (1); (b) an association

between the depressive symptoms PGS and the intermediate or medi-

ator phenotype (CES-D) in Equation (2); and (c) an association

between the smoking and CES-D phenotypes in Equation (3) (Baron &

Kenny, 1986). Additionally, if these conditions hold, then the associa-

tion between the depressive symptoms PGS and smoking phenotype

must be less in Equation (3) than Equation (1).

To test if pleiotropic effects vary by gender we interacted sex

(1 = female; 0 = male) with the depressive symptoms PGS in our fully

specified model

Yi = γ0 + γ1PGSi + γ2CESD+ γ3PGSi ×Femalei +PC
0
iγ4 +X

0
iγ5 + σi: ð4Þ

If γ3 is significant even after adjusting for CES-D, this is evidence of

sex-specific biological pleiotropy. In additional specifications, we also

tested for sex-specific mediated pleiotropy by including a three-way

interaction between the depressive symptoms PGS, sex, and CES-D.

For ease of interpretation, we used a linear probability model (LPM) to

estimate results for the dichotomous SI phenotype, since marginal

effects or corresponding odds ratios for interaction terms in logit models

are difficult to interpret (Karaca-Mandic, Norton, & Dowd, 2012). Finally,

we also ran the same models in the reciprocal direction using PGSs for SI

or CPD as independent variables, SI or CPD phenotypes as mediators,

and the CES-D phenotype as the outcome. CPD models were analyzed

in the sample of current/former smokers and included an additional con-

trol for current/former smoker status. Regression analyses were carried

out using Stata 15 (StataCorp, 2017).

2.6.2 | SKAT analysis

We performed gene-region analysis (SKAT) on selected gene regions

for HPA-axis function (NR3C1, NR3C2, FKBP5, CRHR1) and smoking

behavior (BDNF and CHRNA5; Lee, 2013; Lee, Miropolsky, & Wu,

2013; Lee, Teslovich, Boehnke, & Lin, 2013; Wu et al., 2011). SKAT

aggregates genetic information across the region using a kernel func-

tion and uses a computationally efficient variance component test to

test for association. SKAT assumes the following genetic main effect

model for the SI phenotype:

logitP yi=1ð Þ= α0 +X0
iα1 +G

0
i α2, ð5Þ

where the phenotype is dichotomous (0 = never smoker, 1 = ever

smoker). Here, α0 is an intercept term, Xi is a matrix of nongenetic

covariates (first 10 EA genetic PCs, CES-D, age, educational
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attainment, and birth cohort), and Gi = (gi1, … , gip) is a matrix of geno-

types (0, 1, 2). The vector of regression coefficients for the covariates

is represented by α1, and α2 is a vector of regression coefficients for

the p observed genetic variants in the region. A primary assumption of

SKAT is that each α2j, j = 1, …, p, follows an arbitrary distribution with

mean zero and variance w2
j τ. The weights, wj, are specified based on

minor allele frequency (MAF). We weighted variants using the default

β(1, 25) weighting scheme to up-weight minor alleles. Testing H0 : τ = 0

is equivalent to testing H0 : α2 = 0. SKAT extends to the linear model

for CPD and CES-D, where the outcome is E(yi).

2.6.3 | iSKAT analysis

The iSKAT analysis is a gene or region based G × E interaction test

(Lin, Lee, Christiani, & Lin, 2013). Suppose n subjects are genotyped in

a region with p SNPs. For iSKAT, the interaction model for the SI phe-

notype is:

logitP yi=1ð Þ= α0 +X0
iα1 +G

0
i α2 + α3 Femalei +G×Female0iα4, ð6Þ

where all symbols are as described above with the addition of the

environmental factor (Femalei) and its effect estimate (α3), as well as a

vector of effect estimates for G × Femalei (α4), which is an n × p

matrix of G × E interactions in the region. This model assumes that

each of the α4j, j = 1, …, p, independently follows an arbitrary distribu-

tion with mean zero and common variance τ2. Testing H0: τ
2 = 0 is

equivalent to testing H0: α4 = 0, which tests whether at least one of

the interaction terms is nonzero. iSKAT is robust to the proportion of

causal variants in the region, the signs and magnitudes of the rare var-

iants, and also controls for main effects of the rare variants (Lin et al.,

2013). Both SKAT and iSKAT analyses were performed using R (Lee,

Miropolsky, & Wu, 2013).

3 | RESULTS

3.1 | Descriptive statistics

Our analytic sample consisted of 4,597 females and 3,489 males.

Descriptive statistics by sex are reported in Table 2. Males were 13%

more likely to smoke than females (p < .001), and smoked 6.62 more

CPD, consistent with population estimates for similar birth cohorts

(CDC, 2008). Women in the HRS sample had significantly higher aver-

age CES-D scores (1.38) than men (1.04; p < .001), consistent with U.S

population prevalence estimates for depression by gender (Kessler

et al., 1994). In keeping with national trends for white men and women

from these birth cohorts, 89% completed at least a GED/HS degree

(Escobedo & Peddicord, 1996).

Table 3a,b presents zero order correlations between all study

variables for the full sample and for males and females separately.

In the full sample, the depressive symptoms, SI, and CPD PGSs

were all significantly correlated with their intended phenotypes (all

p < .001). These correlations replicated in the sex-specific samples,

though some correlations (i.e., SI PGS and SI, SI PGS and current

smoker, depressive symptoms PGS and SI) were somewhat stronger

in females than males. In all three samples, the depressive symp-

toms PGS was not correlated with the CPD phenotype. Finally,

completion of a GED/high school degree, age, and birth cohort (not

shown) were correlated with smoking and CES-D, justifying their

inclusion as potential confounders in the analysis.

3.2 | PGS results

3.2.1 | Depressive symptoms PGS to smoking
phenotypes

Table 4 presents results from the multiple regression PGS analyses that

test for pleiotropic effects at the genome-wide level for the depressive

symptoms PGS and smoking phenotypes. Due to the null zero order corre-

lations between the depressive symptoms PGS and the CPD phenotype

reported in Table 3a,b,we focus on results for SI in themain text and report

results for CPD in the Appendix (Table A1). For all PGS analyses, we used a

Bonferroni adjusted alpha level of 0.006 (0.05/8 = 0.006). To see if

accounting for LD in PGS construction affected our estimates, analogous

results using a PGS for depressive symptoms constructed with LDpred are

presented in Table A2.

We found pleiotropic effects in both sexes, as evidenced by the

significant association between the depressive symptoms PGS

regression coefficient (β) and the SI phenotype in Model 1, Column

2 (p = .005). The coefficient was positive, suggesting that greater

genetic propensity for depressive symptoms was associated with

an increased risk of SI. However, following adjustment for the CES-

D phenotype, the depressive symptoms PGS coefficient was no

longer statistically significant after multiple comparison correction

(Model 2; p = .064). This, in combination with the highly significant

association between the depressive symptoms PGS and CES-D in

Model 1, Column 1 (p = 7.90E−21), is evidence of mediated

pleiotropy—i.e., the depressive symptoms PGS was associated with

both phenotypes when tested separately but appears to be more

directly related to the CES-D phenotype (Figure 3). We did not find

evidence of sex-specific biological pleiotropy from the regression

coefficient on the two-way interaction term in Model 5 (“DS PGS ×

Female”, p = .444), or sex-specific mediated pleiotropy from the

three-way interaction term coefficient in Model 6 (“DS PGS × CES-

D × Female”, p = .673). There was no evidence of biological, medi-

ated, or sex-specific mediated pleiotropy between the depressive

symptoms PGS and the CPD phenotype (Table A1). Accounting for

LD in PGS construction did not affect our results (Table A2).

3.2.2 | Smoking PGSs to depressive symptoms
phenotype

In Tables 5 and 6, we present results in the reciprocal direction that

tested for genome-wide pleiotropy between the SI and CPD PGSs and

the CES-D phenotype. Evidence of mediated pleiotropy was found for

both PGSs: the SI PGS was associated with CES-D (Table 5, Model
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1, Column 2; p = .002) and partially mediated by the SI phenotype

(Table 5, Model 2; p = .031; Figure 3); the CPD PGS was associated with

CES-D (Table 6, Model 1, Column 2; p = .034) and partially mediated by

the CPD phenotype (Table 6, Model 2; p = .046), though the results for

CPD were not as robust as those for SI and do not pass tests for multiple

comparisons. In both models, sex-specific mediated pleiotropy was not

observed.

Results from an exploratory cross-ancestry replication in the AA

sample are reported in Tables S3–S6 in Data S1 Supporting Informa-

tion. We caution that these results are not directly comparable with EA

results because the PGSs were constructed using results from an EA

GWAS. The depressive symptoms PGS was associated with CES-D in

the AA sample (Table S3, Model 1, Column 1; p = .005), but apart from

this, findings were null for the AA sample and the EA PGS results did

not replicate.

3.3 | SKAT and iSKAT results

Pleiotropic effects at the gene-region level for the SI, CPD, and CES-

D phenotypes are reported in Tables 7 and 8. p-Values for the joint

effect of all SNPs within each HPA-axis gene region (NR3C1, NR3C2,

FKBP5, and CRHR1) on the SI phenotype are reported in the top half

of the table, and p-values for the joint effect of SNPs within gene

regions for smoking on the CES-D phenotype (BDNF and CHRNA5)

are reported in the bottom half of the table. A significant p-value indi-

cates that the joint variance of the SNP effect sizes within a gene

region is statistically different from zero (i.e., one or more SNPs within

the gene region have a statistically significant association with the

phenotype). Models 1–4 test the association between each gene

region with and without adjustments for covariates (SKAT), and

Model 5 adds a sex-specific gene region interaction to the fully

adjusted model (iSKAT).

3.3.1 | HPA-axis gene regions to smoking
phenotypes

SKAT and iSKAT tests for the four HPA-axis gene regions were con-

ducted using Bonferroni-adjusted alpha levels of 0.003 (0.05/20 = 0.003).

We observed some preliminary evidence of biological pleiotropy in males

and females in FKBP5, and evidence of sex-specific biological pleiotropy

in females in NR3C2 (Table 7). Pleiotropy was not observed in NR3C1

(Model 4, p = .955; Model 5, p = .321) or CRHR1 (Model 4, p = .809;

Model 5, p = .161). Within FKBP5, the joint variance of the SNP-set

(nSNP = 286) was significantly different from zero for the SI phenotype

(Model 1, p = .017), and the p-value remained significant at p < .05 after

controlling for CES-D (Model 2, p = .019), and after adjusting for covariates

(Model 4, p = .028). Thus, in contrast to the PGS results, we did not find

any evidence of mediated pleiotropy by the CES-D phenotype—i.e., the

TABLE 2 Descriptive statistics of
study variables for the full sample, males,
and females, European ancestry

All Males Females
Difference p-
value

N 8,086 3,489 4,597

Smoking initiation 4,657 (58) 2,284 (65) 2,373 (52) 4.91E−36

Cigarettes per day (CPD)a 24.21 (16.77) 27.58 (18.05) 20.96 (14.73) 5.81E−42

Current smoker 1,981 (24) 870 (25) 1,111 (24) 4.27E−01

Mean CES-D 1.23 (1.41) 1.04 (1.29) 1.38 (1.47) 3.93E−28

Depressive symptoms

PGS

0 (1.00) 0.01 (0.99) −0.01 (1.01) 4.03E−01

Smoking initiation PGS 0 (1.00) −0.01 (1.00) 0.01 (1.00) 3.06E−01

CPD PGSa 0 (1.00) −0.02 (0.99) 0.02 (1.01) 1.02E−01

Ageb 61.62 (6.20) 62.15 (5.92) 61.21 (6.37) 1.31E−11

Education

No degree 858 (11) 355 (10) 503 (11) 2.67E−01

GED or HS degree 4,547 (56) 1,818 (52) 2,729 (59) 6.87E−11

College degree 2,681 (33) 1,316 (38) 1,365 (30) 2.86E−14

Birth cohort

1930–1935 1,772 (22) 790 (23) 982 (21) 1.68E−01

1936–1941 2,173 (27) 989 (28) 1,184 (26) 9.25E−03

1942–1947 1,529 (19) 602 (17) 927 (20) 9.28E−04

1948–1953 1,631 (20) 732 (21) 899 (20) 1.14E−01

1954–1959 981 (12) 376 (11) 605 (13) 1.14E−03

Note: Data are in n (%) or mean (SD).
aCPD statistics are calculated for the sample of respondents who are current or former smokers.
bSample mean of respondents' mean age across their observations (all: N = 4,641; males: N = 2,275;

females: N = 2,366).

SCHMITZ ET AL. 455



association between FKBP5 and the SI phenotype was not significantly

attenuated after controlling for CES-D. These results suggest biological

pleiotropy, or one gene predicting several phenotypes. We did not

observe evidence of sex-specific pleiotropy in FKBP5 (Model 5, p = .545), a

finding that is consistentwith the genome-wide PGS analyses. Conversely,

in NR3C2, the interaction term in the iSKAT model for the SNP-set

(nSNP = 1,138) was significantly different from zero (Model 5; p = .030),

suggesting the presence of sex-specific biological pleiotropy. In keeping

with the PGS results, evidence of pleiotropy between HPA-axis related

genes and the CPDphenotypewas not observed (Table 8).

Overall, results are suggestive as they are not significant after

adjusting for multiple testing. Moreover, results from iSKAT do not

allow us to test the direction of the sex-specific interaction effect or

determine which variants within NR3C2 may be driving the interac-

tion. As a result, future studies in larger samples are needed to

determine whether SNPs in this region may have protective or delete-

rious effects on SI in males versus females.

3.3.2 | Smoking gene regions to depressive
symptoms phenotype

SKAT and iSKAT tests for the two smoking gene regions were conducted

using Bonferroni-adjusted alpha levels of 0.006 (0.05/8 = 0.006). We

found no evidence of biological or mediated pleiotropy between BDNF

or CHRNA5 and the CES-D phenotype in models that controlled for the

SI phenotype (Table 7). In models that adjusted for the CPD phenotype,

the iSKAT coefficient for the CHRNA5 SNP-set (nSNP = 107) was signifi-

cantly different from zero (Table 8, Model 5; p = .025), suggesting sex-

specific biological pleiotropy between CHRNA5 and the CES-D

TABLE 3 (a) Correlations between study variables; (b) correlations between study variables by sex

(a) European ancestry sample, N = 8,086

SI CPDa Current smoker Mean CES-D DS PGS SI PGS CPD PGS Mean age

GED/HS

degree

SI 1

CPDa NA 1

Current smoker 0.489*** −0.078*** 1

Mean CES-D 0.103*** 0.034** 0.193*** 1

DS PGS 0.023** −0.010 0.049*** 0.101*** 1

SI PGS 0.122*** −0.001 0.077*** 0.053*** 0.067*** 1

CPD PGS 0.026** 0.057*** 0.045*** 0.033*** −0.013 0.031*** 1

Mean age 0.027** 0.116*** −0.081*** −0.078*** 0.000 −0.008 0.023** 1

GED/HS degree −0.086*** −0.076*** −0.119*** −0.187*** −0.042*** −0.032*** −0.048*** −0.132*** 1

(b) European ancestry males (N = 3,489) and females (N = 4,597)

Females

SI CPDa

Current
smoker

Mean
CES-D DS PGS SI PGS CPD PGS Mean age

GED/HS
degree

Males SI 1 NA 0.547*** 0.141*** 0.030** 0.148*** 0.020 −0.016 −0.095***

CPDa NA 1 −0.015 0.078*** −0.002 0.017 0.062*** 0.035* −0.081***

Current

smoker

0.419*** −0.105*** 1 0.200*** 0.046*** 0.108*** 0.059*** −0.080*** −0.131***

Mean

CES-D

0.093*** 0.057*** 0.189*** 1 0.104*** 0.054*** 0.035** −0.056*** −0.215***

DS PGS 0.011 −0.017 0.052*** 0.101*** 1 0.076*** −0.003 0.005 −0.050***

SI PGS 0.092*** 0.003 0.036** 0.049*** 0.055*** 1 0.035** −0.002 −0.041***

CPD PGS 0.044*** 0.065*** 0.028* 0.021 −0.026 0.025 1 0.026* −0.071***

Mean age 0.064*** 0.158*** −0.085*** −0.092*** −0.009 −0.013 0.025 1 −0.129***

GED/HS

degree

−0.079*** −0.087*** −0.104*** −0.143*** −0.032* −0.019 −0.016 −0.139*** 1

Abbreviations: CES-D, Center for Epidemiological Studies-Depression 8 item scale; DS, depressive symptoms; GED, general education degree; HS, high

school degree; PGS, polygenic score; SI, smoking initiation.
aCPD column is calculated for the population of respondents who report ever smoking (all: N = 4,641; males: N = 2,275; females: N = 2,366).

*p < .10; **p < .05; ***p < .01.
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phenotype. However, results did not pass tests for multiple comparisons

and are therefore suggestive.

SKAT and iSKAT results for individuals of AA are reported in

Tables S7 and S8. Unlike the PGS analysis, results from gene region

analysis are more directly comparable across ancestral populations

because the level of inference is the gene region, which is defined

equivalently across all ancestral populations and (presumably) has the

same biological function. However, reduced sample size coupled with

shorter LD blocks, greater haplotype diversity, and genotyping chips

designed to tag European variants means we were likely underpow-

ered to detect effects in the HRS AA sample. In general, SKAT and

iSKAT findings were null in the AA sample, and EA findings for FKBP5

and NR3C2 did not replicate.

4 | DISCUSSION

We used two statistical approaches to test for biological and mediated

pleiotropy between genetic risk factors for depressive symptoms and

smoking behavior. Using a polygenic approach, we found evidence of

mediated pleiotropy in both males and females. Results were significant

in both directions—i.e., the PGS for depressive symptoms was associ-

ated with increased risk of SI, and the PGS for SI was associated with a

higher CES-D score. Results from SKAT and iSKAT showed preliminary

evidence of biological pleiotropy for FKBP5 in the combined sample,

and sex-specific biological pleiotropy in NR3C2. In contrast to the PGS

results, we found no evidence of mediated pleiotropy, and no evidence

of pleiotropy in the reciprocal direction, or between smoking genes

(BDNF and CHRNA5) and CES-D in the full sample. Conversely, in the

sample of current or former smokers, CHRNA5 was associated with the

CPD phenotype, and there was preliminary evidence for sex-specific

pleiotropy between CHRNA5 and CES-D.

Together, these results suggest that bidirectional associations

between depressive symptoms and SI may be partially accounted for

by shared genetic factors, and that on average these pleiotropic

effects do not vary by sex on the genome-wide level. At finer levels of

observation, results for females suggest that genes related specifically

to HPA-axis functioning may contribute to SI, and following initiation,

genetic factors related to nicotine dependence may further contribute

to an increase in depressive symptoms. However, after Bonferroni

correction, the SKAT and iSKAT results we report for FKBP5 and

NR3C2 were not significant at p < .05. Thus, we caution these results

are suggestive, and further analyses in larger samples are needed to

confirm the associations we report. In addition, because the HRS is a

representative sample of older adults, we cannot discern when in the

life course the onset of depressive symptoms occurred and whether it

proceeded tobacco use (Fluharty et al., 2016). Therefore, longitudinal

analyses in younger cohorts, and/or different methodologies that can

draw stronger conclusions regarding causality, are needed to confirm

the direction of the association between genetic risk for depression

and smoking behavior.

4.1 | Sex-specific pleiotropy in NR3C2

Preliminary evidence of sex-specific pleiotropic effects within NR3C2

in the HRS is consistent with research that reports sex-differences in

basal levels of HPA-axis functioning among older adults with depres-

sion. NR3C2 encodes the mineralocorticoid receptor (MR), of which

cortisol has a higher affinity for and thus, in part, determines basal

HPA-axis functioning (De Kloet, Vreugdenhil, Oitzl, & Joels, 1998;

Gunnar & Quevedo, 2007). In a meta-analysis of 20 studies of adults

older than 60 years, significantly larger effect sizes for the association

between morning basal cortisol and depression were reported in

women compared to men (Murri et al., 2014). Moreover, though the

current sample was composed of older postmenopausal women, a

recent study in premenopausal women found that genetic variation

within the MR gene moderated the impact of progesterone and estra-

diol on markers of negative affect (i.e., anxiety, emotion recognition;

Hamstra et al., 2017). Thus, more research is needed to investigate

the interplay of genetic risk for HPA-axis function dysregulation, ovar-

ian hormones, and both depression and smoking behaviors among

women across the lifespan.

In addition to biological reasons why women may be at greater risk

for depression-related phenotypes and downstream compensatory

behaviors (e.g., smoking), some research suggests that women are more

likely to rate negative life events as stressful (Kessler & McLeod, 1984)

and to report more negative affect than men (Hankin & Abramson,

2001; Watson, Clark, & Tellegen, 1988). Given that other research has

challenged the assumption of reporting differences between men and

F IGURE 3 Mediated pleiotropy results from polygenic score
(PGS) analyses. Results are from Tables 4 and 5, Models 1 and 2. All
models adjust for 10 European ancestry genetic PCs. CES-D, Center
for Epidemiological Studies-Depression 8 item scale; PGS, polygenic
score; SI, smoking initiation

458 SCHMITZ ET AL.



T
A
B
L
E
5

B
io
lo
gi
ca
la
nd

m
ed

ia
te
d
pl
ei
o
tr
o
py

sm
o
ki
ng

in
it
ia
ti
o
n
po

ly
ge

ni
c
sc
o
re

re
gr
es
si
o
n
re
su
lt
s
fo
r
sm

o
ki
ng

in
it
ia
ti
o
n
an

d
C
E
S-
D
,E

ur
o
pe

an
an

ce
st
ry
,N

=
8
,0
8
6

Sm
o
ki
ng

in
it
ia
ti
o
n
(S
I)

D
ep

re
ss
iv
e
sy
m
pt
o
m
s
(C
E
S-
D
)

M
o
de

l1
M
o
de

l1
M
o
de

l2
M
o
de

l3
M
o
de

l4
M
o
d
el

5
M
o
d
el

6

O
ut
co

m
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

SI
P
G
S
(s
td
)

0
.0
6
0
*

2
.5
9
E
−
2
2

0
.0
5
5
*

.0
0
2

0
.0
3
8

.0
3
1

0
.0
3
3

.0
5
8

0
.0
2
7

.1
1
7

0
.0
2
2

.3
6
4

0
.0
2
6

.5
0
8

(0
.0
0
6
)

(0
.0
1
8
)

(0
.0
1
8
)

(0
.0
1
7
)

(0
.0
1
7
)

(0
.0
2
4
)

(0
.0
3
9
)

SI
0
.2
8
4
*

4
.6
3
E
−
1
9

0
.2
5
3
*

5
.9
6
E
−
1
6

0
.3
0
8
*

7
.4
9
E
−
2
3

0
.3
0
8
*

8
.4
8
E
−
2
3

0
.2
4
3
*

6
.4
1
E
−
0
7

(0
.0
3
2
)

(0
.0
3
1
)

(0
.0
3
1
)

(0
.0
3
1
)

(0
.0
4
9
)

F
em

al
e

0
.3
7
3
*

5
.8
8
E
−
3
3

0
.3
7
3
*

5
.9
1
E
−
3
3

0
.3
0
7
*

4
.1
5
E
−
1
0

(0
.0
3
1
)

(0
.0
3
1
)

(0
.0
4
9
)

SI
P
G
S
×
F
em

al
e

0
.0
0
8

.7
8
3

0
.0
0
6

.9
0
4

(0
.0
3
0
)

(0
.0
4
8
)

SI
P
G
S
×
SI

−
0
.0
0
1

.9
8
7

(0
.0
4
8
)

SI
×
F
em

al
e

0
.1
1
0

.0
8
2

(0
.0
6
3
)

SI
P
G
S
×
SI

×
F
em

al
e

−
0
.0
0
7

.9
0
9

(0
.0
6
2
)

A
ge

−
0
.0
1
0

.1
0
7

−
0
.0
0
1

.9
2
1

−
0
.0
0
1

.9
2
5

−
0
.0
0
1

.9
2
5

(0
.0
0
6
)

(0
.0
0
6
)

(0
.0
0
6
)

(0
.0
0
6
)

G
E
D
/H

S
de

gr
ee

−
0
.8
8
0
*

8
.4
2
E
−
6
8

−
0
.8
6
3
*

2
.0
6
E
−
6
6

−
0
.8
6
3
*

2
.1
8
E
−
6
6

−
0
.8
6
2
*

3
.2
9
E
−
6
6

(0
.0
5
0
)

(0
.0
5
0
)

(0
.0
5
0
)

(0
.0
5
0
)

R
2

.0
1
9

.0
0
5

.0
1
5

.0
5
9

.0
7
6

.0
7
6

.0
7
6

N
ot
e:
A
ll
m
o
de

ls
ad

ju
st

fo
r
1
0
E
ur
o
pe

an
an

ce
st
ry

P
C
s
an

d
bi
rt
h
co

h
o
rt
.B

o
nf
er
ro
ni
-a
dj
us
te
d
al
ph

a
le
ve

l:
*p

<
.0
0
6
.

A
bb

re
vi
at
io
ns
:C

E
S-
D
,C

en
te
r
fo
r
E
pi
de

m
io
lo
gi
ca
lS

tu
di
es
-D

ep
re
ss
io
n
8
it
em

sc
al
e;

G
E
D
,g
en

er
al
ed

uc
at
io
n
de

gr
ee

;H
S,

hi
gh

sc
ho

o
ld

eg
re
e;

P
G
S,

p
o
ly
ge

n
ic
sc
o
re
;S

E,
st
an

d
ar
d
er
ro
rs
;S

I,
sm

o
ki
n
g
in
it
ia
ti
o
n
.

M
1
:S

I/
C
E
S-
D

=
P
G
S
+
P
C
S.

M
2
:C

E
S-
D

=
P
G
S
+
SI

+
P
C
S.

M
3
:C

E
S-
D

=
P
G
S
+
SI

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
4
:C

E
S-
D

=
P
G
S
+
SI

+
F
E
M
A
LE

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
5
:C

E
S-
D

=
P
G
S
+
SI

+
F
E
M
A
LE

+
F
E
M
A
LE

×
P
G
S
+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
6
:C

E
S-
D

=
P
G
S
+
SI

+
F
E
M
A
LE

+
F
E
M
A
LE

×
P
G
S
+
P
G
S
×
SI

+
C
E
S-
D

×
F
E
M
A
LE

+
P
G
S
×
SI

×
F
E
M
A
LE

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

SCHMITZ ET AL. 459



T
A
B
L
E
6

B
io
lo
gi
ca
la
nd

m
ed

ia
te
d
pl
ei
o
tr
o
py

ci
ga
re
tt
es

pe
r
da

y
(C
P
D
)p

o
ly
ge

ni
c
sc
o
re

re
gr
es
si
o
n
re
su
lt
s
fo
r
C
P
D

an
d
C
E
S-
D
,E

ur
o
pe

an
an

ce
st
ry
,N

=
4
,6
4
1

C
P
D

D
ep

re
ss
iv
e
sy
m
pt
o
m
s
(C
E
S-
D
)

M
o
de

l1
M
o
de

l1
M
o
de

l2
M
o
de

l3
M
o
de

l4
M
o
d
el

5
M
o
d
el

6

O
ut
co

m
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

B
et
a
(S
E)

p-
va

lu
e

C
P
D

P
G
S
(s
td
)

0
.9
2
0
*

4
.5
5
E
−
0
4

0
.0
5
0

0
.0
3
4

0
.0
4
7

.0
4
6

0
.0
2
8

.2
1
4

0
.0
2
0

.3
6
9

0
.0
3
6

.2
5
0

0
.0
1
1

.8
3
9

(0
.2
6
2
)

(0
.0
2
3
)

(0
.0
2
3
)

(0
.0
2
2
)

(0
.0
2
2
)

(0
.0
3
1
)

(0
.0
5
5
)

C
P
D

0
.0
0
3

.0
1
7

0
.0
0
5
*

5
.5
8
E
−
0
5

0
.0
0
8
*

2
.4
3
E
−
0
9

0
.0
0
8
*

2
.6
0
E
−
0
9

0
.0
0
7
*

7
.3
4
E
−
0
5

(0
.0
0
1
)

(0
.0
0
1
)

(0
.0
0
1
)

(0
.0
0
1
)

(0
.0
0
2
)

F
em

al
e

0
.4
3
0
*

1
.6
5
E
−
2
3

0
.4
3
0
*

1
.7
5
E
−
2
3

0
.3
7
0
*

6
.6
1
E
−
0
7

(0
.0
4
3
)

(0
.0
4
3
)

(0
.0
7
4
)

C
P
D

P
G
S
×
F
em

al
e

−
0
.0
3
0

.4
6
8

0
.0
3
1

.6
7
0

(0
.0
4
1
)

(0
.0
7
2
)

C
P
D

P
G
S
×
C
P
D

0
.0
0
1

.5
6
9

(0
.0
0
2
)

C
P
D

×
F
em

al
e

0
.0
0
3

.2
9
2

(0
.0
0
3
)

C
P
D

P
G
S
×
C
P
D

×
F
em

al
e

−
0
.0
0
3

.2
7
1

(0
.0
0
3
)

A
ge

0
.0
0
1

.9
4
4

0
.0
1
3

.1
5
4

0
.0
1
3

.1
5
5

0
.0
1
3

.1
4
2

(0
.0
0
9
)

(0
.0
0
9
)

(0
.0
0
9
)

(0
.0
0
9
)

C
ur
re
nt

sm
o
ke

r
0
.5
4
0
*

5
.1
9
E
−
3
5

0
.5
1
7
*

6
.1
5
E
−
3
3

0
.5
1
8
*

5
.2
2
E
−
3
3

0
.5
1
6
*

9
.3
9
E
−
3
3

(0
.0
4
3
)

(0
.0
4
3
)

(0
.0
4
3
)

(0
.0
4
3
)

G
E
D
/H

S
de

gr
ee

−
0
.8
3
3
*

1
.6
7
E
−
3
8

−
0
.8
0
6
*

6
.5
6
E
−
3
7

−
0
.8
0
8
*

5
.1
9
E
−
3
7

−
0
.8
0
8
*

6
.3
3
E
−
3
7

(0
.0
6
4
)

(0
.0
6
3
)

(0
.0
6
3
)

(0
.0
6
3
)

R
2

.0
0
6

.0
0
7

.0
0
9

.0
9
8

.1
1
8

.1
1
8

.1
1
8

N
ot
e.
A
ll
m
o
de

ls
ad

ju
st

fo
r
1
0
E
ur
o
pe

an
an

ce
st
ry

P
C
s
an

d
bi
rt
h
co

ho
rt
.S

am
pl
e
in
cl
ud

es
cu

rr
en

t
o
r
fo
rm

er
sm

o
ke

rs
o
nl
y.

B
o
nf
er
ro
ni
-a
dj
us
te
d
al
ph

a
le
ve

l:
*p

<
.0
0
6
.

A
bb

re
vi
at
io
ns
:C

P
D
,c
ig
ar
et
te
s
sm

o
ke

d
pe

r
da

y;
C
E
S-
D
,C

en
te
r
fo
r
E
pi
de

m
io
lo
gi
ca
lS

tu
di
es
-D

ep
re
ss
io
n
8
it
em

sc
al
e;

G
E
D
,g
en

er
al
ed

uc
at
io
n
de

gr
ee

;H
S,

h
ig
h
sc
h
o
o
ld

eg
re
e;

P
G
S,

p
o
ly
ge

n
ic
sc
o
re
;S

E,
st
an

d
ar
d

er
ro
rs
.

M
1
:C

P
D
/C

E
S-
D

=
P
G
S
+
P
C
S.

M
2
:C

E
S-
D

=
P
G
S
+
C
P
D

+
P
C
S.

M
3
:C

E
S-
D

=
P
G
S
+
C
P
D

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
4
:C

E
S-
D

=
P
G
S
+
C
P
D

+
F
E
M
A
LE

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
5
:C

E
S-
D

=
P
G
S
+
C
P
D

+
F
E
M
A
LE

+
F
E
M
A
LE

×
P
G
S
+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

M
6
:C

E
S-
D

=
P
G
S
+
C
P
D

+
F
E
M
A
LE

+
F
E
M
A
LE

×
P
G
S
+
P
G
S
×
SI

+
C
E
S-
D

×
F
E
M
A
LE

+
P
G
S
×
SI

×
F
E
M
A
LE

+
P
C
S
+
A
G
E
+
G
E
D
/H

S
+
C
O
H
O
R
T
.

460 SCHMITZ ET AL.



women (Kendler, Thornton, & Prescott, 2001; Martin, Neighbors, &

Griffith, 2013), more research is needed to understand the biological

and social factors that contribute to gender-based discrepancies in

psychopathology.

In contrast to previous research (e.g., Rogausch et al., 2007;

Tang et al., 2015), genetic variation within the NR3C1 and CRHR1

was not associated with smoking behavior independent of depres-

sive symptoms in the current sample. As neither of these studies

accounted for depressive symptoms in their analysis, it may be that

genetic variation within these two genes are associated with

smoking behavior insofar as nicotine use is comorbid with depres-

sion (Kessler et al., 1994; Torres & O'Dell, 2016). These results

highlight the relevance of considering pleiotropic effects within the

psychiatric literature, as comorbidity is extremely common (Kessler

et al., 1994).

Notably, we did not find evidence of pleiotropy between dep-

ression/HPA-axis related PGS/genes and CPD, suggesting genetic risk

factors for depression are more related to smoking onset and persistence

as opposed to smoking intensity. SI is thought to be a downstream con-

sequence of depression and negative affect (Kassel et al., 2003;

Torres & O'Dell, 2016), which may explain why genetic risk for depres-

sion and HPA-axis dysregulation was more strongly related to SI versus

CPD. Though further investigation is needed, evidence from behavioral

and molecular genetic studies suggest that genetic risk factors for SI

and CPD may be partially independent (Heath & Martin, 1993; Wang &

Li, 2010).

4.2 | Strengths and limitations

To our knowledge, this is the first study to use both PGSs and gene

region aggregation methods to test for pleiotropic effects. PGSs allow

us to estimate whether pleiotropy persists on a genome-wide level,

increasing our power to detect effects. However, this approach does

not elucidate the mechanisms of shared genetic liability for depression

and smoking. In addition, GWAS weights used to construct the PGS

for depressive symptoms did not condition on smoking behavior, and

may therefore capture genetic risk for depression as well as genetic

risk for endophenotypes like smoking that are associated with depres-

sive symptoms. This may in part explain why on a genome-wide level

we found strong evidence of mediated pleiotropy as opposed to bio-

logical pleiotropy. In addition, collapsing across all variants—some of

which may have weaker pleiotropic effects—introduces substantial

noise into the aggregated index, potentially attenuating evidence for

association. Using a PGS may also make it difficult to observe sex dif-

ferences in pleiotropy, since a genome-wide average might dilute sig-

nals at the gene level that are related to specific pathological

functions. Conversely, with the SKAT and iSKAT analyses, we were

able to pinpoint specific gene regions and associated biological

TABLE 7 Gene region marginal and joint effects p-values for smoking initiation and CES-D, sequence kernel association testing, European
ancestry (N = 8,086)

CES-D
Smoking initiation (SI)

Gene region p-value, SKAT Gene region p-value, SKAT G × E p-value, iSKAT

(optimal test rho)
Region location Model 1 Model 1 Model 2 Model 3 Model 4 Model 5

NR3C1 (nSNP = 211) 5q31.3 0.327 0.968 0.966 0.966 0.955 0.321 (1)

NR3C2 (nSNP = 1,147) 4q31.23 0.383 0.258 0.180 0.163 0.103 0.030 (0)

FKBP5 (nSNP = 286) 6p21.31 0.007 0.017 0.019 0.019 0.028 0.545 (0)

CRHR1 (nSNP = 1,185) 17q21.31 0.336 0.927 0.894 0.892 0.809 0.161 (0.2)

SI
Depressive symptoms (CES-D)

Gene region p-value, SKAT Gene region p-value, SKAT G × E p-value, iSKAT
(optimal test rho)

Region location Model 1 Model 1 Model 2 Model 3 Model 4 Model 5

CHRNA5 (nSNP = 107) 15q25.1 0.346 0.343 0.348 0.159 0.145 0.073 (0)

BDNF (nSNP = 152) 11p14.1 0.598 0.281 0.244 0.180 0.248 0.760 (0)

Note: We weighted variants using the default β(1, 25) weighting scheme to up-weight minor alleles. Optimal test rho: the value of rho to

maximize statistical power resulting in the best linear combination of SKAT and burden tests. Rho = 1 is equivalent to a burden test while

rho = 0 is equivalent to a SKAT test. Bonferroni-adjusted alpha level for SI results: *p < .003. Bonferroni-adjusted alpha level for CES-D

results: *p < .006.

Abbreviations: CES-D, Center for Epidemiological Studies-Depression 8 item scale; G × E, gene by environment; SKAT, sequence kernel association

testing; iSKAT, interaction SKAT.

M1: CES-D/SI = GENE + PCS.

M2: SI/CES-D = GENE + CES-D/SMOKE + PCS.

M3: SI/CES-D = GENE + CES-D/SMOKE + PCS + AGE + GED/HS + COHORT.

M4: SI/CES-D = GENE + FEMALE + CES-D/SMOKE + PCS + AGE + GED/HS + COHORT.

M5: SI/CES-D = GENE + FEMALE + FEMALE × GENE + CES-D/SMOKE + PCS + AGE + GED/HS + COHORT.
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processes that may contribute to sex differences in SI and CPD. This

approach requires a priori knowledge of potential candidate gene

regions and decisions on whether or not to weight certain (e.g., rare)

variants in the region. Both approaches were not able to detect epi-

static effects across genes, which may be particularly relevant in the

case of NR3C1 and NR3C2, since these receptors necessarily need

to act together to regulate different stages of the stress response

(Rovaris et al., 2016).

The use of a large, population representative cohort of individ-

uals from the same ancestral group is an advantage of this study in

that it both increases our power to detect pleiotropic effects while

also minimizing the presence of ascertainment bias. Ascertainment

bias can induce spurious cross-phenotype correlations in clinical

studies if, for example, patients suffering from depression and

smoking (or a third related phenotype) are more likely to seek treat-

ment than those suffering from only one condition (Smoller,

Lunetta, & Robins, 2000). However, population-based studies are

susceptible to biases in measurement error (Liao et al., 2014). CES-

D in particular may not adequately capture more proximal biologi-

cal processes involved in HPA-axis regulation, reducing our power

to detect effects. Studies with in-depth clinical and multi-informant

measures of psychopathology, HPA-axis functioning, and smoking

are needed to further refine the associations we observed. More-

over, because the HRS is a sample of older individuals, results may

be subject to mortality selection, which would bias the effects we

observe downwards if individuals who survived to older ages were

less likely to smoke and/or report symptoms of depression. To

reduce the potential of mortality selection, we limited our analyses

to individuals born after 1930.

Finally, a significant limitation of this study is that were limited to

conducting analyses in individuals of European decent. Although we

report findings for individuals of AA, we did not include these results in

the main text because comparable GWAS in other ancestral populations

are currently unavailable. Estimates from an EA GWAS are not necessar-

ily accurate or valid in other ancestral populations, and PGSs constructed

from EA GWAS summary statistics will not have the same predictive

power for individuals from other ancestral backgrounds (Carlson et al.,

2013; Martin et al., 2017). Thus, we caution that our EA PGS results can-

not be generalized to other ancestral populations. Although SKAT and

iSKAT results are more directly comparable across ancestral groups, the

relatively small sample size of AA individuals in the HRS in addition to

shorter LD blocks, greater haplotype diversity, and the use of genotyping

chips that were designed to tag European variants means that we were

likely underpowered to draw meaningful conclusions at the gene level.

4.3 | Conclusions

From a public health perspective, understanding the degree to which

genetic risk for depression contributes to sex differences in SI, main-

tenance, and relapse, has important implications for smoking cessation

TABLE 8 Gene region marginal and joint effects p-values for cigarettes per day and CES-D, sequence kernel association testing, European
ancestry (N = 4,641)

CES-D
Cigarettes smoked per day (CPD)

Gene region p-value, SKAT Gene region p-value, SKAT G × E p-value, iSKAT

(optimal test rho)
Region location Model 1 Model 1 Model 2 Model 3 Model 4 Model 5

NR3C1 (nSNP = 211) 5q31.3 0.838 0.106 0.068 0.085 0.154 0.500 (0)

NR3C2 (nSNP = 1,147) 4q31.23 0.209 0.466 0.453 0.452 0.709 0.305 (0)

FKBP5 (nSNP = 286) 6p21.31 0.029 0. 784 0.783 0.824 0.822 0.673 (0)

CRHR1 (nSNP = 1,185) 17q21.31 0.579 0. 607 0.725 0.689 0.689 0.765 (0)

CPD
Depressive symptoms (CES-D)

Gene region p-value, SKAT Gene region p-value, SKAT G × E p-value, iSKAT
(optimal test rho)

Region location Model 1 Model 1 Model 2 Model 3 Model 4 Model 5

CHRNA5 (nSNP = 107) 15q25.1 0.011 0.663 0.641 0.593 0.580 0.025 (0)

BDNF (nSNP = 152) 11p14.1 0.301 0.770 0.789 0.815 0.692 0.540 (0)

Note: We weighted variants using the default β(1, 25) weighting scheme to up-weight minor alleles. Optimal test rho: the value of rho to maximize

statistical power resulting in the best linear combination of SKAT and burden tests. Rho = 1 is equivalent to a burden test while rho = 0 is equivalent to a

SKAT test. Sample includes current or former smokers only. Bonferroni-adjusted alpha level for CPD results: *p < .003. Bonferroni-adjusted alpha level for

CES-D results: *p < .006.

Abbreviations: CES-D, Center for Epidemiological Studies-Depression 8 item scale; G × E, gene-by-environment; SKAT, sequence kernel association

testing; iSKAT, interaction SKAT.

M1: CES-D/CPD = GENE + PCS.

M2: CPD/CES-D = GENE + CES-D/CPD + PCS.

M3: CPD/CES-D = GENE + CES-D/CPD + PCS + AGE + CURRENT SMOKER + GED/HS + COHORT.

M4: CPD/CES-D = GENE + FEMALE + CES-D/CPD + PCS + AGE + CURRENT SMOKER + GED/HS + COHORT.

M5: CPD/CES-D = GENE + FEMALE + FEMALE × GENE + CES-D/CPD + PCS + AGE + CURRENT SMOKER + GED/HS + COHORT.
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therapy. In particular, while nicotine replacement therapy alone is the

most common treatment for smoking cessation (Burton, Gitchell, &

Shiffman, 2000), if genetic risk for depression plays a larger role in

female nicotine dependence, then tailored interventions for smoking

cessation that include nonpharmacological treatments may be neces-

sary (Reynoso et al., 2005). Our findings suggest that common genetic

factors contribute to comorbidity between depressive symptoms and

smoking behavior with some suggestive evidence of female-specific

pleiotropy in genes that have been linked to HPA-axis function and

smoking intensity. As a result, future GWAS studies of behavioral and

mental health phenotypes should consider reporting summary statistics

by sex, particularly if prevalence rates differ dramatically between

males and females. Overall, further research is needed to assess the

replicability of our findings and, more broadly, the degree to which sex-

specific dysregulation of the HPA-axis and depression-related genes

play a fundamental role in nicotine dependence.
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