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Abstract1

Objective: The study examines the effects of disclosing different types of2

likelihood information on human operators’ trust in automation, their compliance and3

reliance behaviors, and the human-automation team performance.4

Background: To facilitate appropriate trust in and dependence on automation,5

explicitly conveying the likelihood of automation success has been proposed as one6

solution. Empirical studies have been conducted to investigate the potential benefits of7

disclosing likelihood information in the form of automation reliability, (un)certainty,8

and confidence. Yet, results from these studies are rather mixed.9

Method: We conducted a human-in-the-loop experiment with 60 participants10

using a simulated surveillance task. Each participant performed a compensatory11

tracking task and a threat detection task with the help of an imperfect automated12

threat detector. Three types of likelihood information were presented: overall likelihood13

information, predictive values, and hit and correct rejection rates. Participants’ trust in14

automation, compliance and reliance behaviors, and task performance were measured.15

Results: Human operators informed of the predictive values or the overall16

likelihood value, rather than the hit and correct rejection rates, relied on the decision17

aid more appropriately and obtained higher task scores.18

Conclusion: Not all likelihood information is equal in aiding human-automation19

team performance. Directly presenting the hit and correct rejection rates of an20

automated decision aid should be avoided.21

Application: The findings can be applied to the design of automated decision22

aids.23

Keywords: Human-robot interaction, trust in automation, likelihood alerts,24

Bayesian inference, base rate fallacy25
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1. INTRODUCTION1

Automated decision aids have been used in a wide array of domains, including2

military operations, medical diagnosis, transportation safety administration (TSA)3

among others. As automation becomes more capable in perception, planning, learning4

and action execution, it is expected to significantly enhance the human-automation5

team performance. However, issues arise when human agents place unjustified trust in6

and dependence on automation or when they do not display enough trust and7

dependence (Dixon, Wickens, & McCarley, 2007; Du et al., 2019; Lee & See, 2004;8

Parasuraman & Riley, 1997; Petersen, Robert, Yang, & Tilbury, 2019; Yang, Unhelkar,9

Li, & Shah, 2017).10

To facilitate appropriate trust in and dependence on automation, explicitly11

conveying the likelihood of automation success has been proposed as one solution.12

Empirical studies have investigated the potential benefits of disclosing likelihood13

information in the form of automation reliability, (un)certainty, and confidence. Among14

existing studies, few were based upon specific computational algorithms, for instance,15

the neural network used in a study by McGuirl and Sarter (2006). Not surprisingly, to16

model the performance of the automation, the majority of existing studies employed the17

signal detection theory (SDT) (Macmillan & Creelman, 2005; Tanner & Swets, 1954),18

based on which the likelihood information is calculated. Yet, results from these studies19

seem to be inconsistent. Some studies revealed that the likelihood information20

significantly helped human operators calibrate their trust, adjust their reliance and21

compliance behaviors, and enhance human-automation team performance (McGuirl &22

Sarter, 2006; Walliser, de Visser, & Shaw, 2016; Wang, Jamieson, & Hollands, 2009).23

Other studies, however, reported that human operators did not trust or depend on24

automated decision aids appropriately even when the likelihood information was25

disclosed (Bagheri & Jamieson, 2004; Fletcher, Bartlett, Cockshell, & McCarley, 2017).26

A close examination of existing literature suggests that studies employ different27

methods to calculate the likelihood information, which potentially contribute to the28

mixed results.29
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SDT models the relationship between signals and noise, as well as the1

automation’s ability to detect signals among noise. The state of the world is2

characterized by either “signal present” or “signal absent”, which may or may not be3

identified correctly by the automation. The combination of the state of the world and4

the automation’s detection results in four possible states: hit, miss, false alarm (FA)5

and correct rejection (CR).6

Figure 1 . Signal Detection Theory (SDT) and Calculations of Hit Rate, CR Rate,

Positive Predictive Value, Negative Predictive Value and Overall Success Likelihood

Based on the framework of SDT, the calculation of automation likelihood7

information can be broadly classified into three categories. The first category of8

likelihood information is the automation’s overall likelihood of success regardless of hits9

or CRs, calculated as Pr(Success | Response) = Hits + CRs
Hits + Misses + F As + CRs

. For example,10

Dzindolet, Pierce, Beck, and Dawe (2002) examined how revealing the number of errors11

an automated decision aid made affected the perceived performance of and reliance on12

the automated aid. In their study, participants viewed 200 slides of displaying pictures13

of a military terrain and indicated whether or not a solider in camouflage was in the14

slide with the help from either an automated decision aid or a human decision aid. After15
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200 trials, half of the participants were provided with the reliability of the decision aid1

(total number of errors) and the other half not. The participants then rated the decision2

aid’s performance and indicated whether to rely on the aid for the target detection task3

in 10 trials randomly chosen from the past 200 trials. Results showed that both types of4

decision aids were rated more favorably when its reliability was disclosed. More5

recently, Walliser et al. (2016) conducted a study where participants interacted with6

four unmanned aerial vehicles (UAVs) that utilized automated target recognition (ATR)7

systems to identify targets as enemy or friendly. Results showed that when participants8

were informed of the overall success likelihood information (“corrected identification9

rate” in the article), participants tended to apply a more appropriate strategy when10

interacting with the automation, resulting in better task performance.11

The second type of likelihood information is the predictive value, calculated as12

Hits
Hits + F As

or CRs
Misses + CRs

. The positive predictive value means the probability of13

having a true signal given an automation alert, Pr(Signal | Alert), and the negative14

predictive value the probability of not having a signal when the automation is silent,15

Pr(No signal | No alert). Along this line of research, Wang et al. (2009) examined the16

effects of presenting the positive predictive value on human operators’ belief, trust and17

dependence using a combat identification (CID) task. In the study, participants18

distinguished friend from foe with the aid from an imperfect CID. More specifically, due19

to its working mechanism, once the CID identified a soldier as friendly, it was always20

correct. However, when the CID identified a soldier as “unknown”, the solider could be21

“friendly”, “hostile” or “neutral”. Half of the participants were informed of the positive22

predictive value and the other half not. Results of their study revealed that disclosing23

the positive predictive value to users positively influenced trust and reliance. In a follow24

up study, Neyedli, Hollands, and Jamieson (2011) developed four visual displays for25

presenting predictive values in the CID task. Display type (pie, random mesh) and26

display proximity (integrated, separated) of likelihood information were manipulated in27

the experiment. The results revealed that participants relied on the automation more28

appropriately and had greater sensitivity with the integrated display and random mesh29
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display. Studies on likelihood alarms also shed light on the effects of disclosing the1

predictive values. Likelihood alarms, in contrary to traditional binary alarms, integrate2

both state information and likelihood information by dividing a state into two or more3

graded levels. For instance, “warning” and “caution” could both indicate the presence of4

a target, with “warning” indicating a higher probability. Although not explicitly stated,5

these studies manipulated the positive and negative predictive values to represent the6

varying likelihood of true positives and true negatives given the automation responses,7

showing that in general human operators demonstrated higher trust in and dependence8

on alerts with higher likelihood (Sorkin, Kantowitz, & Kantowitz, 1988; Wiczorek &9

Manzey, 2014; Yang et al., 2017). Despite the above-mentioned positive evidence,10

Fletcher et al. (2017) asked participants to view a series of simulated sonar returns and11

decide whether a target was present or not. However, the display of rings indicating the12

likelihood that a target was present, given a return signal, did not seem to improve the13

overall ability of participants to distinguish targets from noise.14

The third type of likelihood information is the hit rate and correct rejection rate,15

calculated as Hits
Hits + Misses

and CRs
F As + CRs

. Hit rate is the probability of automation16

issuing an alarm or an alert given a true signal, Pr(Alert | Signal), and CR rate is the17

probability of automation silence when there is no signal, Pr(No alert | No signal). It18

is important to distinguish the predictive values from the hit/CR rates. In fact, the19

positive/negative predictive values and the hit/CR rates are inverse conditional20

probabilities of each other. The two predictive values can be derived from the hit/CR21

rates using the Bayes Theorem (Please see the Present Study section for details).22

Utilizing the Multi-Attribute Task Battery (MAT; Comstock and Arnegard 1992),23

Bagheri and Jamieson (2004) examined the effect of providing operators with24

information about the context-related nature of automation reliability. Participants25

performed three tasks simultaneously: tracking, fuel management, and system26

monitoring. The monitoring task was automated and a gauge showing abnormal27

numbers would automatically reset its value. However, sometimes the automation28

would fail (miss) to correct the value and the human operator should intervene.29
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Automation reliability, essentially hit rate, (“Slightly under 100%” for high hit rate or1

“Slightly above 50%” for low hit rate) was disclosed to the participants. Comparing to a2

previous study where participants were unaware of the likelihood information, there3

seemed to be no evidence on any beneficial effects of disclosing hit rate on trust in4

automation or task performance.5

2. THE PRESENT STUDY6

The above-mentioned studies on likelihood information suggest that disclosing the7

overall likelihood information could increase preference and task performance. In8

addition, in general there is positive evidence supporting that presenting predictive9

values could help human operators calibrate their trust and adjust their dependence10

behaviors, leading to better performance. In contrast, revealing hit/CR rates does not11

seem to be beneficial. Despite the inconsistent results, there is little, if not no, research12

directly comparing the effects of revealing different types of likelihood information.13

In the present study, we aimed to investigate if and how different methods of14

calculating likelihood information affect operators’ trust in and dependence on15

automation, and task performance. We argue that the beneficial effects of disclosing the16

likelihood information are influenced by, at least, two factors. The first factor is17

information granularity – the extent to which the likelihood information represents18

probabilistic information specific to certain conditions. The overall success likelihood,19

Pr(Success | Automation response), is less fine-grained compared to the predictive20

values and the hit/CR rates, as it represents an aggregated probability regardless what21

the automation response is (alert or no alert). The second factor is information22

directness – the extent to which the likelihood information can be directly used to guide23

people’s behaviors without the need to estimate or integrate other information. The24

predictive values are the most direct in guiding people’s compliance and reliance25

behaviors. The positive predictive value, Pr(Signal | Alert) = x%, indicate that when26

the automation’s alert or alarm goes off, there is x% chance that there is a true signal.27

Probabilistically speaking, if the automation’s alarm goes off 100 times, there would be28
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x true alarms and 100− x false alarms. And an optimal decision maker should only1

check the x number of true alarms and save his or her time and resources when false2

alarms happen. The same logic applies to the negative predictive value. On the other3

hand, the hit/CR rates, Pr(Alert | Signal) and Pr(No alert | No signal), are less4

usable, because the human operator cannot directly use the probabilities to guide their5

behaviors. Instead, the hit/CR rates need to be integrated with the base rate in order6

to generate useful information in guiding behaviors. And this particular integration7

process, known as Bayesian inference, is very difficult (Kahneman, 2011). To better8

illustrate the idea of Bayesian inference, consider the following scenario:9

An airport security officer detects threats with the help of an nearly perfect10

decision aid. The alarm of the decision aid goes off if it recognizes a threat.11

The security officer could also manually check any luggage. The decision aid12

is correct 95 percent of the time. In other words, if there is a threat, the13

decision aid recognizes it with a 95 percent probability (Hit rate =14

Pr(Alarm | Threat) = 95%), and if there is no threat, the aid shows no15

threat with a 95 percent probability (CR rate =16

Pr(No alarm | No threat) = 95%). Suppose threats are rare in the airport,17

on average occurring only 1 percent of the time. If an alarm went off, should18

the officer panic and what would be the chance that there was actually a19

threat?20

In the example, the hit rate is 95%. However, it does not mean that when an21

alarm goes off, there is 95% chance that there would be a threat. To answer the22

question correctly, we need to apply the Bayes’ rule to calculate the positive predictive23

value, mathematically the inverse of the hit rate:24

Pr(Threat | Alarm) = P r(Alarm|T hreat)P r(T hreat)
P r(Alarm) =25

P r(Alarm|T hreat)P r(T hreat)
P r(Alarm|T hreat)P r(T hreat)+P r(Alarm|No threat)P r(No threat) = 95%×1%

95%×1%+5%×99% = 16%26

The probability of a true threat is only 16%! If we do not consider the payoff27

structure associated with the task (i.e. high cost if missing a threat), the result28
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indicates that probabilistically the officer only needs to manually check 16 luggage out1

of 100 alarms, and could invest his or her time on other tasks 84% of the time when2

alarms go off.3

Prior research shows that it is cognitively demanding to use the Bayes’ rule4

(Bar-Hillel, 1980; Cosmides & Tooby, 1996; Goodie & Fantino, 1996; Kahneman, 2011),5

because of several reasons. First, the base rate may not be readily available and an6

operator needs to estimate it. Second, when making a probabilistic judgment, an7

operator may neglect the base rate of Pr(Threat), that threats only occur 1% of the8

time (Kahneman, 2011). Third, a person might be confused about Pr(Alarm | Threat)9

and its inverse, Pr(Threat | Alarm), as both are related to the probability of an10

accurate threat identification (Bar-Hillel, 1980). Due to the difficulty in performing11

Bayesian inference, we speculate that the hit/CR rates are the least direct.12

The overall success likelihood, Pr(Success | Automation response), represents the13

probability of a true state (Hit or CR) given an automation response (Alert or No14

alert), and a higher probability means an operator should follow the automation more15

overall. The overall success likelihood alone only guides human operators’ behaviors at16

an aggregated level – if the automation overall success likelihood is 80%, when the17

automation issues 100 suggestions (regardless what the suggestion is), 80 suggestions18

are correct. Despite the lack of granularity, we speculate that the overall likelihood19

information is more direct than the hit/CR rate, as it can be easily used to guide20

overall human behaviors.21

Due to the influence of the two factors, we predicted that there would be22

significant differences in participants’ trust, dependence and dual-task performance23

when presented with different types of likelihood information. In particular, disclosing24

hit/CR rate would be the least beneficial in fostering proper trust and dependence, and25

would lead to the worst task performance. Revealing the predictive values, in contrast,26

would be the most beneficial.27
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3. METHOD1

This research complied with the American Psychological Association code of ethics2

and was approved by the Institutional Review Board at the University of Michigan.3

3.1 Participants4

A total of 25 male and 36 female university students (average age = 22.28 years,5

SD = 4.88) with normal or corrected-to-normal vision participated in the experiment.6

Participants were compensated with $10 upon completion of the experiment. In7

addition, there was a chance to obtain an additional bonus of 1 to 5 dollars based on8

their performance.9

3.2 Apparatus and stimuli10

We used a simulated surveillance task in the experiment. In the experimental11

task, participants were asked to control the level of flight of a simulated swarm of12

drones, essentially a compensatory tracking task, and simultaneously detect potential13

threats in photo feeds from the drones (Figure 2). Participants were only able to access14

the display for either the tracking task or the detection task at any time and needed to15

toggle between the two displays. The simulated surveillance task was programmed16

using Java and the experiment was run on a 24 inch monitor.17

Tracking task. Each trial started on the tracking display and lasted 10 seconds.18

The tracking task was programmed based on the PEBL (The Psychology Experiment19

Building Language) compensatory tracker task20

(http://pebl.sourceforge.net/battery.html). Participants used a joystick to move a21

randomly-drifting green circle to a crosshair located at the center of the screen – i.e.22

minimize the distance between the green circle and the crosshair as shown in Figure 223

(a). When a trial started, the green circle started at the centre of the crosshair. The24

position of the circle is a function of its previous position, its velocity, and the actions of25

three forces. The first force is the user input. The second force is a buffeting force26

composed of six sine waves at different amplitudes, frequencies and phase angles. The27
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(a) Tracking task (b) Detection task

(c) Threat (d) No Threat

Figure 2 . Dual-task environment in the simulation testbed

third force simulates the force of gravity that causes the circle to slip on an unseen1

slippery surface. As a result of the buffeting force and the gravitational force, the circle2

drifts randomly. The performance of the tracking task is measured by two metrics: the3

Root Mean Square of the tracking errors (RMSE) and the tracking score ranging 0-10.4

The tracking error – the distance in pixels between the location of the circle and the5

crosshair, was measured at a frequency of 20Hz. The RMSE was calculated as6 √
1
n
Σn

i=1(Tracking Error)2, where n = 200. The tracking score was calculated using a7

10-bin histogram of the RMSE distribution based on a dataset collected in a prior study8

(Yang et al., 2017).9

Detection task. Besides the tracking task, every trial participants received a10

new set of four images from the simulated drones and were responsible for threat11

detection. The four images were static during every trial as shown in Figure 2(b). The12
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threat was a person as shown in Figure 2(c) and only one threat would present in one of1

the four images. There was no distractor in the four images and the participants did2

not determine if the person was a friend or a foe. The distribution of the threats across3

the four images followed a uniform distribution. Participants performed the detection4

task with the help of an imperfect automated threat detector. If the detector recognized5

a threat, the alert “Danger” went off immediately when a trial started in both visual6

and auditory modalities. The visual red alert was only shown on the tracking display7

(Figure 2(a)) and the auditory notification was a synthetic sound of “Danger”.8

Participants were expected to identify the presence of the threat by pressing the9

“Report” button on the joystick as accurately and quickly as possible. The participant10

could follow the decisions of the threat detector blindly, or check the images in person11

and make his or her own decisions. If the detector identified no threat, the alert was12

silent. Participants did not report the absence of threat, i.e., participants were expected13

to perform no action when there was no threat. The performance of the detection task14

is measured by detection time, detection accuracy and detection score (Please refer to15

the Scoring System section).16

Toggle between two displays. Every trial started on the tracking display.17

Participants were only able to access one display at a time, and needed to toggle18

between the displays of the tracking and the detection tasks using a “Switch” button on19

the joystick. There was a 0.5-second time delay every time they toggled between the20

displays, simulating the time for computer processing and loading the displays. The21

time stamp and the number of occurrences of participants pressing the “Switch” button22

were tracked automatically by the program.23

Scoring system. In the experimental task, participants performed the tracking24

task and the detection task simultaneously, and needed to make a trade-off decision on25

which task to perform at any time, i.e. if they decide to check the four images, they26

would probably earn more points in the detection task but fewer points in the tracking27

task, and vice versa. Therefore, a pay-off structure has to be determined to eliminate28

potential bias toward either the tracking or the detection task by ensuring that the29
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potential gain in one task is approximately equal to the opportunity cost in the other1

task. A pilot study was conducted to determine the payoff structure (Please refer to2

Appendix A for more details). As a result, every trial participants could obtain 0-103

points for the tracking task and 0-5 points for the detection task.4

Detection score =



0 Detection is wrong

5− 5× Detection T ime
10000 milliseconds

Detection is correct : Hit

5 Detection is correct : CR

5

3.3 Experimental Design6

The experiment adopted a 2 (automation reliability: low vs high) ×3 (likelihood7

information: overall success likelihood, predictive values, and hit/CR rates) mixed8

design with automation reliability as the within-subjects factor and likelihood9

information as the between-subjects factor.10

The reliability of the automated threat detector was configured based on SDT. In11

the present study, the criterion c was set at -0.25 and sensitivity d’ at 1.5 or 3, resulting12

in automation with low and high reliability (Table 1). Benching marking prior literature13

(McBride, Rogers, & Fisk, 2011; Wiczorek & Manzey, 2014; Yang et al., 2017), we set14

the base event rate at 30%. Based on the preset c, d’ and base rate, the number of15

occurrences of hits, misses, FAs and CRs were calculated and rounded to integers.16

TABLE 1: Corresponding hits, misses, false alarms and correct rejections

Reliability c d’ Alert Threat No threat

Low -0.25 1.5
Danger 13 11

Clear 2 24

Alert Threat No threat

High -0.25 3
Danger 14 4

Clear 1 31

Different likelihood information was calculated as follows.17
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Overall success likelihood = Hits + CRs
Hits + Misses + F As + CRs

= 74% or 90%1

Positive predictive value = Hits
Hits + F As

= 54% or 78%2

Negative predictive value = CRs
Misses + CRs

= 92% or 97%3

Hit rate = Hits
Hits + Misses

= 87% or 93%4

Correct rejection rate = CRs
F As + CRs

= 69% or 89%5

3.4 Measures6

Trust. We measured participants’ subjective rating of trust using a visual analog7

scale (Wiczorek & Manzey, 2014). The leftmost anchor of the the trust scale indicated,8

“I don’t trust the detector at all” and the rightmost anchor “I absolutely trust the9

detector”. The visual analog scale was then converted to a 0-100 scale. As part of the10

testbed design, in addition to trust ratings, participants needed to report their11

self-confidence in performing the task without the decision aid and perceived reliability12

of the decision aid. As the two measures were less relevant to this study, we did not13

report the data analysis results.14

Compliance and Reliance. We also assessed participants’ compliance and15

reliance behaviors. Compliance and reliance were operationally defined as the possibility16

of a participant blindly following the recommendation given by the automated threat17

detector without crosschecking the detection display. In particular, compliance was18

calculated as the possibility that a participant blindly reports a threat upon receiving a19

“Danger” alert without crosschecking the detection display, and reliance the possibility20

that the participant neither reports nor crosschecks when the detector is silent.21

Compliance = Pr(Report AND not crosschecking | Alert)22

Reliance = Pr(Not reporting AND not crosschecking | No alert)23

Performance. The performance of the detection task was measured by the24

detection accuracy and detection time, as well as the detection score. The performance25

of the tracking task was calculated using the RMSE and the tracking score. The26

combined performance of both task was calculated as the sum of the detection score27

and the tracking score.28
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3.5 Experimental procedure1

Upon arrival, participants provided informed consent and filled out a2

demographics form. Afterward, participants received practice on the tasks. The3

practice session consisted of a 30-trial block with the tracking task only and an 8-trial4

block of combined tasks, where participants experienced 2 hits, 2 misses, 2 false alarms5

and 2 correct rejections. Participants were informed that the automated threat detector6

used in the practice was just for illustration purpose. Afterward, they were randomly7

assigned to one of the three likelihood information conditions. A table similar to Figure8

1 was then shown to the participants. Based on the condition a participant was9

assigned to, the definition, the meaning and the calculation of a particular likelihood10

information were introduced to the participant. In order to ensure that participants11

understood the likelihood information, the participants were given an example with12

different number of hits, misses, FAs and CRs, and were asked to calculate the13

likelihood information themselves. If a participant had difficulty doing so, the verbal14

definitions were reiterated and shown again to the participant, with potential further15

clarification on specific terms, until the correct answer was reached by the participant.16

The experiment consisted of two 50-trial blocks with different automation17

reliability. The order of automation reliability was counterbalanced. Participants were18

verbally informed of the values of the likelihood information prior to the experiment. A19

text message showing the probability was also present throughout the experiment. Prior20

to the onset of each trial, there was a splash screen with a 3-second countdown timer.21

After every trial, participants were informed of the detection accuracy, the tracking22

score and the detection score they obtained in this trial and the accumulative scores23

they had obtained so far. After every 5 trials, participants indicated their trust.24

Participants were told that their subjective ratings should be based on all the trials25

they have completed so far, instead of just the previous 5 trials.26
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4. RESULTS1

Data from one participant were excluded from analysis as his tracking task2

performance was below three standard deviations from the mean. All hypotheses were3

tested using data from the remaining 60 participants. We used mixed design analysis of4

covariance (ANCOVA) to analyze the relationship between independent variables and5

dependent variables. Participants’ tracking task performance (last ten trials) in the6

practice session, was used as the covariate for analysis. The α level was set at .05 for all7

statistical tests. All post hoc comparisons utilized a Bonferroni α correction.8

TABLE 2: Mean and Standard Error of dependent variables in each condition

Low Reliability, c = −0.25, d′ = 1.5 High Reliability, c = −0.25, d′ = 3

Overall suc-

cess likelihood

Predictive val-

ues

Hit/CR rates Overall suc-

cess likelihood

Predictive

values

Hit/CR rates

Trust 53.15± 4.98 53.21± 3.70 58.82± 4.22 76.53± 2.79 71.60± 2.57 69.55± 4.92

Compliance (%) 31.67± 7.27 17.92± 6.24 33.13± 7.58 58.33± 9.30 47.78± 7.51 54.72± 9.03

Reliance (%) 46.54± 6.67 83.85± 5.36 37.69± 9.07 79.69± 5.92 90.78± 5.01 59.84± 8.68

Detection time

(ms)

2518.90 ±

228.54

2623.29 ±

272.74

2275.49 ±

217.99

1655.10 ±

242.21

2002.61 ±

173.16

1736.20 ±

236.60

Detection accu-

racy (%)

84.10± 2.17 86.00± 1.68 85.10± 2.11 89.80± 0.93 91.30± 0.87 90.40± 0.72

Detection score 3.91± 0.10 4.03± 0.06 3.96± 0.08 4.27± 0.04 4.33± 0.04 4.30± 0.03

Tracking error 60.30± 3.28 58.37± 4.23 67.89± 3.70 47.10± 3.31 46.78± 4.04 55.20± 3.53

Tracking score 6.66± 0.27 6.95± 0.34 5.97± 0.32 7.87± 0.28 7.91± 0.32 7.08± 0.32

Total score 10.58± 0.24 10.97± 0.29 9.93± 0.27 12.15± 0.27 12.22± 0.32 11.38± 0.32

4.1 Subjective trust9

Trust. Participants had higher trust in the automated threat detector as10

automation reliability increased (F(1, 56) = 7.533, p = .008). However, the effect of11

likelihood information was non-significant.12

4.2 Compliance and Reliance13

Figure 3 shows the participants’ compliance and reliance behaviors.14
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Figure 3 . Compliance with and reliance on automated threat detector
*** Difference is significant at the 0.001 level; ** Difference is significant at the 0.01 level;

* Difference is significant at the 0.05 level (2-tailed).

Compliance. Higher automation reliability led to higher compliance rate on the1

automated threat detector (F(1, 56) = 7.196, p = .01). The effect of likelihood2

information was non-significant.3

Reliance. Automation reliability (F(1, 56) = 5.905, p = .018) and likelihood4

information (F(2, 56) = 10.752, p < .001) significantly affected reliance rate. Higher5

automation reliability led to higher reliance. Moreover, providing participants with6

predictive values led to higher reliance on the automated threat detector, compared to7

the overall success likelihood condition (p = .009) and the hit/CR rates condition (p <8

.001). There was also a significant two-way interaction between automation reliability9

and likelihood information (F(2, 56) = 4.807, p = .012). When automation reliability10

was low, participants relied on the automated threat detector the most when they were11

informed of the predictive values (predictive values > overall success likelihood: p <12

.001; predictive values > hit/CR rates: p < .001). As reliability increased, the reliance13

rate was significantly higher when participants were provided with predictive values14

relative to the hit/CR rates (p = .004).15

4.3 Performance16

Detection performance. As depicted in Figure 4, participants detected threats17

more accurately (F(1, 56) = 9.702, p = .003) and faster (F(1, 56) = 8.659, p = .005)18
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and gained higher scores (F(1, 56) = 14.633, p < .001) when automation reliability1

increased. However, the effect of likelihood information was not significant.2

Figure 4 . Detection task performance

Tracking performance. As shown in Figure 5, there were significant main3

effects of automation reliability (F(1, 56) = 4.37, p = .041) and likelihood information4

(F(2, 56) = 5.381, p = .007) on tracking score. Post hoc analysis indicated that when5

participants were presented with hit/CR rates, they had the lowest tracking score6

(hit/CR rates < predictive values: p = .038; hit/CR rates < overall success likelihood:7

p = .011).8

Additionally, there was a significant effect of likelihood information (F(2, 56) =9

4.311, p = .018) on RMSE. When participants were presented with hit/CR rates, they10

had the a higher RMSE (hit/CR rates > overall success likelihood: p = .019). The11

main effect of automation reliability on RMSE was not significant.12

Combined performance. The main effects of automation reliability (F(1, 56)13

= 10.744, p = .002) and likelihood information (F(2, 56) = 6.293, p = .003) were14

significant (Figure 6). Participants obtained higher combined scores as automation15

reliability increased. There was also a difference among the three types of likelihood16

information. Post hoc analysis revealed that participants informed of overall success17

likelihood or predictive values, instead of the hit/CR rates, had higher total scores18

(overall success likelihood > hit/CR rates: p = .008; predictive values > hit/CR rates:19

p = .014).20
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Figure 5 . Tracking task performance

Figure 6 . Total task performance

5. DISCUSSION1

In the present study, we predicted that there would be significant differences in2

participants’ trust, dependence and dual-task performance when presented with3

different types of likelihood information. In particular, disclosing hit/CR rate would be4

the least beneficial in fostering proper trust and compliance and reliance behaviors, and5

would lead to the worst task performance. Revealing the predictive values, in contrast,6

would be the most beneficial. We discuss how the results support our prediction.7

Trust in automation8

Our results indicate a non-significant difference on trust between the three types9

of likelihood information. The lack of significance might have been due to two reasons.10
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First, the sensitivity of a uni-dimensional trust scale might not be as high as that of a1

multi-dimensional scale. A uni-dimensional scale has the advantage of easy2

implementation. However, it might not be able to capture the different dimensions3

underlying the concept of trust compared to the multi-dimensional scales. Two widely4

used multi-dimensional scales (Jian, Bisantz, & Drury, 2000; Muir & Moray, 1996) have5

12 and 7 questions, respectively. Second, the reliability of the threat detector was6

consistent across the different types of likelihood information. Therefore, the judgment7

of trust might be largely based on the true performance of automated detector instead8

of the likelihood information presentation. Further research is needed to systematically9

examine potential differences between uni-dimensional and multi-dimensional trust10

scales.11

Compliance and Reliance behaviors12

We found a significant difference in reliance and a non-significant difference in13

compliance between the three types of likelihood information. Disclosing the predictive14

values led to higher and more appropriate reliance, compared to the overall success15

likelihood condition and the hit/CR rates condition. We argue that the predictive16

values can be considered as the gold standard of optimal behaviors. The negative17

predictive value, Pr(No signal | No alert) = x%, means that when the automation is18

silent, there is x% chance that a site is clear. Therefore, probablistically speaking, if the19

threat detector is silent for 100 cases, the human operator only need to check 100− x20

sites in person.21

In our study, the negative predictive value was 97% for the high reliability22

automation, and 92% for the low reliability automation. Therefore, a rational strategy23

for the human operator is to cross-check only a small number of sites, and to allocate24

more resource on the tracking task. When presented with negative predictive values,25

participants’ reliance rates were 90.8% and 83.8%, respectively (see Figure 3 and Table26

2), which were fairly close to the optional values of 97% and 92%. When informed of27

the overall likelihood, the observed reliance values were 79.7% and 46.5%, further away28
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from the optimal values; When presented with the hit/CR rates, the observed reliance1

values were 59.8% and 37.7%, furthest away from the optimal values. In the present2

study, the base rate was set to be 30%. In real life, bases rates of critical events are3

usually much lower (Parasuraman & Riley, 1997). With a lower base rate, most of the4

time the automated decision aid would be silent, and the benefit of presenting the5

predictive values would be further enhanced, as the predictive values promote proper6

reliance behaviors.7

We failed to find a significance in participant’s compliance behaviors. This lack of8

significance might have resulted from participants’ strategies between the detection and9

the tracking tasks. The positive predictive values were 78% for the high reliability10

automation and 54% for the low reliability automation. However, across all the11

likelihood conditions, the compliance rates were considerably lower than the optimal12

values (see Figure 3 and Table 2). This suggests that participants cross checked the13

detection display much more frequently than they should have done. This is further14

supported by our observation: participants mentioned that the tracking task was fairly15

boring and they preferred to cross-checking the detection display even if the strategy16

was not optimal. The unnecessary cross-checking behaviors allowed the participants to17

detect threats that the automated detector failed to recognize and contributed to a18

similar performance in the detection task.19

Performance20

Our results indicate a significant difference in tracking task and non-significant21

difference in detection task. The tracking performances in the predictive value condition22

and the overall likelihood condition were better than that in the hit/CR rate condition.23

Such results are attributable to participants’ reliance and compliance behaviors. When24

presented with hit/CR rates, participants’ reliance behaviors were the least optimal,25

which means they cross-checked much more frequently than they should have done.26

Every time a cross-checking was performed, participants could not access the tracking27

display, hurting the tracking performance. In addition, as mentioned before, the similar28
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compliance behaviors resulted in the similar performance in the detection task.1

The observed pattern on tracking and detection performance suggests that the2

automated threat detector was largely used as a tool for attention management in3

multitask environments, benefiting the continuous unaided task (i.e. the tracking task),4

rather than a tool directly benefiting the aided task (i.e. the detection task). The result5

support the findings of Wiczorek and Manzey (2014).6

In addition, we also observed a difference in the combined task performance.7

Disclosing predictive values and overall likelihood information led to higher combined8

performance than the hit/CR rates condition. We note the importance of obtaining an9

explicit pay-off structure with the same unit of measurement. Most of the prior10

literature did not report the combined task performance, largely because different tasks11

were measured in different units and a combined task performance score was impossible12

to obtain.13

At last, consistent with findings from previous studies, our results showed that as14

the automated threat detector became more reliable, participants’ trust in and15

dependence on the threat detector increased, and their dual task performance improved.16

(Neyedli et al., 2011; Walliser et al., 2016; Wang et al., 2009).17

6. CONCLUSION18

Although disclosing likelihood information has been proposed as a design solution19

to promote proper trust and dependence, and to enhance human-automation team20

performance, prior studies showed mixed results (Bagheri & Jamieson, 2004; Dzindolet21

et al., 2002; Fletcher et al., 2017; Walliser et al., 2016; Wang et al., 2009). The goal of22

this study was to experimentally examine the effects of presenting different types of23

likelihood information. Based on the framework of SDT, we categorized likelihood24

information calculated in prior literature into three types: overall success likelihood,25

predictive values, and hit/CR rates.26

The present study offered a framework to summarize existing literature pertaining27

to disclosing likelihood information. Our results showed that not all likelihood28
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information is equally useful. Simply presenting the hit/CR rates should be avoided.1

Our findings can be applied to a wide array of domains such as urban search and rescue2

(USAR), medical diagnosis and TSA, where the hit/CR rates are often readily available3

but not the predictive values and overall likelihood information. Hit/CR rates, also4

known as sensitivity and specificity (Altman & Bland, 1994), are referred to as the5

diagnostic information (Please note that the sensitivity as hit rate is different from the6

sensitivity d′ in SDT). Often, the diagnostic information is more accessible to people.7

For instance, physicians are often provided with the diagnostic information when a new8

test is introduced: The HIV test is 99% accurate – if a patient is infected by HIV, there9

is 99% chance the test will show a positive result; if a patient is healthy, there is 99%10

chance the test will show a negative result.11

Efforts should be made to clarify the meanings of different types of likelihood12

information when an automated decision aid is introduced. Prior research indicates that13

people could be confused about predictive values and hit/CR rates (Bar-Hillel, 1980).14

In real life, bases rates of critical events are usually very low (Parasuraman & Riley,15

1997). With a lower base rate, for instance, 1% in the airport security officer example,16

the discrepancies between the predictive values and the hit/CR rates would be even17

larger. Mis-attributing hit/CR rates as predictive values would lead to more18

detrimental outcomes.19

The findings should be viewed in light of the following limitations. First,20

consistent with prior research, we did not provide participants with the base rate and21

they had to estimate it by themselves. Future study can present base rate to22

participants and examine whether people can utilize hit/CR rates more appropriately.23

Base rate can also be manipulated in further research to examine the effects of24

likelihood information when base rate is extremely low. Second, we used probabilities25

instead of natural frequencies to present likelihood information. Previous studies have26

shown that reasoning with natural frequencies results in more accurate inference27

(Gigerenzer & Hoffrage, 1995; Hoffrage, Hafenbrädl, & Bouquet, 2015; Mandel, 2014).28

A future study could compare the differences of presenting probabilities and natural29
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frequencies. Third, the criterion c in this study was set to be liberal, which led to more1

false alarms than misses. Future studies should examine the effects of likelihood2

information with different d′ and c.3
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Keypoints1

• We proposed a framework to summarize existing literature pertaining to2

disclosing likelihood information and classified the calculation of likelihood3

information into three categories: overall likelihood value, predictive values, and4

hit and correct rejection (CR) rates.5

• Human operators informed of the overall likelihood value or the predictive values,6

rather than the hit and correct rejection (CR) rates, relied on the decision aid7

more appropriately.8

• Human operators informed of the overall likelihood value or the predictive values,9

rather than the hit and correct rejection (CR) rates, performed better on the10

tracking task and obtained higher combined task scores.11

• As automation reliability increased, trust, compliance, reliance and performance12

increased accordingly.13
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Appendix A: Pilot study1

We conducted a pilot study to create a scoring system for the experiment. In the2

experimental task, participants performed the tracking task and the detection task3

simultaneously. Participants were required to make a trade-off decision on which task to4

perform at any time, i.e. if they decided to check the four images, they would probably5

earn more points in the detection task but fewer points in the tracking task, and vice6

versa.7

Therefore, a pay-off structure has to be determined to eliminate potential bias8

toward either the tracking or the detection task by ensuring that the potential gain in9

one task is approximately equal to the opportunity cost in the other task. In order to10

determine the parameters of the scoring system, first we set the tracking task score on a11

scale from 0 to 10, based on the distance of the green circle from the center of the12

crosshair. Next, we defined the detection task score as a function of the detection13

accuracy and time, i.e. a+ b× T ime
10000 milliseconds

. To determine a and b, a total of 1014

participants between the age of 19 and 23 participated in the pilot study. They15

performed a tracking task only block and a combined task block, each with 50 trials,16

with a 5-minute break in between. In the combined task block, participants performed17

both tasks and were instructed that two tasks were equally important. They could18

optimize their performance by minimizing the distance between the green circle and the19

center of the display, and by detecting the threats as accurately and as quickly as20

possible. The block order was counterbalanced. One participant’s data was removed21

from data analysis due to his significantly poor performance on the tracking task. The22

results showed that when doing both tasks concurrently, participants lost on average a23

score of 3.7 points on their tracking tasks (Tracking task only block: M = 8.8, SD =24

1.2; Combined task block: M = 5.1, SD = 1.1). We then varied a and b to make sure25

they would gain approximately 3.7 points with a similar SD from the detection task. As26

a result, 5− 5× Detection T ime
10000 milliseconds

was set to be the scoring scheme of the detection task.27

In each combined task trial, it is possible to obtain a maximum score of 15 points, 1028

points from the tracking task and 5 points from the detection task.29


