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ABSTRACT 

The Rover Environmental Monitoring Station (REMS) instrument that is onboard NASA’s Mars Science 
Laboratory (MSL) Curiosity rover. REMS has been measuring surface pressure, air and ground brightness 
temperature, relative humidity, and UV irradiance since MSL’s landing in 2012. In Mars Year (MY) 34 
(2018) a global dust storm reached Gale Crater at Ls ~190°. REMS offers a unique opportunity to better 
understand the impact of a global dust storm on local environmental conditions, which complements 
previous observations by the Viking landers and Mars Exploration Rovers. All atmospheric variables 
measured by REMS are strongly affected albeit at different times. During the onset phase, the daily 
maximum UV radiation decreased by 90% between sols 2075 (opacity ~1) and 2085 (opacity ~8.5). The 
diurnal range in ground and air temperatures decreased by 35K and 56K, respectively, with also a diurnal-
average decrease of ~2K and 4K respectively. The maximum relative humidity, which occurs right before 
sunrise, decreased to below 5%, compared with pre-storm values of up to 29%, due to the warmer air 
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temperatures at night while the inferred water vapor abundance suggests an increase during the storm. 
Between sols 2085 and 2130, the typical nighttime stable inversion layer was absent near the surface as 
ground temperatures remained warmer than near-surface air temperatures. Finally, the frequency-domain 
behavior of the diurnal pressure cycle shows a strong increase in the strength of the semidiurnal and 
terdiurnal modes peaking after the local opacity maximum, also suggesting differences in the dust 
abundance inside and outside Gale. 
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1. INTRODUCTION 

The Martian dust cycle greatly impacts atmospheric and surface temperatures and hence the circulation, 

since the atmospheric dust abundance and distribution strongly affects the solar and thermal radiation 

absorbed and scattered in the atmosphere and hence also the radiation received at the surface (e.g. Leovy 

and Zurek, 1979; Madeleine et al, 2011; Hassler et al., 2014 and references therein). The role of dust in the 

modern climate and weather of Mars therefore also has major implications for the design and safety of 

future human missions. 

Local and regional dust storms are ubiquitous on Mars, particularly between areocentric solar longitudes 

(Ls) 180 - 360º (table 2 of Zurek & Martin, 1993; Fig. 2 in Wang & Richardson, 2015). Every few Mars 

years, however, regional storms grow and merge to become a global dust storm (GDS), which is generally 

defined as a storm whose associated dust haze expands to cover all longitudes over the majority of both 

hemispheres. Wind-driven dust lifting is a necessary mechanism for injecting dust into the Martian 

atmosphere during GDS onset (e.g. Ryan & Henry, 1979; Tillman, 1988; Newman et al., 2002b; Basu et al., 

2005; Kahre et al., 2006 and references therein), due to the very strong local-to-global scale positive 

feedbacks associated with this mechanism for lifting dust (Newman et al., 2002a). However, due to the 

rarity of such events, the evolution of the near-surface atmospheric thermal state and circulation during the 

onset, expansion/mature, and decay phases of a GDS have rarely been studied at the surface (e.g. Zurek, 

1982; Tillman, 1988). 

Although the Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) 

Curiosity rover (Gómez-Elvira et al., 2012; 2014) did not have a working wind sensor during the MY34 

GDS, it was able to measure surface pressure, air and ground brightness temperature, relative humidity, and 

UV irradiance in six spectral bands, for a total of between 9 and 15 hours per sol (including at least 5 

minutes of monitoring every hour) at a frequency of 1Hz (Gómez-Elvira et al., 2012; 2014). These 

atmospheric variables reveal how the atmospheric thermal balance and large-scale structure were affected, 
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and may also be compared to numerical model simulations to help understand how the atmospheric 

circulation and near-surface winds were likely impacted at each stage of the storm. 

The previous GDS occurred in 2007 and was observed by several spacecraft from orbit: Mars 

Reconnaissance Orbiter, Mars Odyssey and Mars Express (Smith, 2009; Wang and Richardson, 2015; 

Guzewich et al., 2017; Fedorova et al., 2018). However, only the Mars Exploration Rovers (MER) were at 

that moment on the surface, and although able to measure the evolving optical depth (Lemmon et al., 2015) 

they were not equipped with the sensors needed to study the dust storm’s impact on the near-surface 

environment. Only the Viking Lander 1 and 2 spacecraft in the 1970s measured some of the 

aforementioned variables from the surface during the two GDS that developed in MY12 (1977) at Ls~204º 

(Ryan and Henry, 1979) and at Ls~275º (Ryan and Sharman, 1981; Tillman, 1988; Zurek and Martin, 

1993). In May 2018, after 5 Mars years without a GDS, orbiters observed precursor storms that grew until 

becoming global in mid-June. The effects of this MY34 GDS reached Gale Crater in early June, when the 

atmospheric opacity increased by a factor of 8 in comparison to typical values for this season, reaching an 

optical depth of ~8.5 at 880 nm (Guzewich et al., 2019). MSL instruments were able to measure the onset, 

expansion/maturation, and decay phases of this storm in unprecedented detail, from inside a crater, 

including providing the first measurements of how relative humidity and ultraviolet irradiation in different 

spectral bands varied during the GDS. 

This manuscript is structured as follows: Section 2 briefly describes the REMS instrument. Section 3 

describes the Gale Crater atmospheric environment and presents the effects of the GDS on the crater 

meteorology from a diurnal-average perspective. Section 4 focuses on the diurnal cycles observed during 

the storm, and their comparison to the nominal cycles for the same season. Finally, Section 5 presents the 

paper’s conclusions. 

 

2. THE REMS INSTRUMENT 
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The REMS instrument (Gómez-Elvira et al., 2012) is a suite of six environmental sensors: pressure, air 

temperature, ground surface brightness temperature (hereafter referred to as ground temperature), relative 

humidity (RH), wind and ultraviolet (UV) radiation. REMS is composed of four units spread throughout the 

rover. Two units are located on booms attached to the rover’s Remote Sensing Mast, with wind and air 

temperature sensors on both booms, a relative humidity sensor on one boom, and a ground temperature 

sensor on the other. The UV sensor unit is placed on the rover deck. The pressure sensor is located inside 

the rover body and connected to the outside by a small tube, which has a high efficiency particulate air 

(HEPA) filter to minimize the accumulation of dust inside the sensor, the tube, and for planetary protection 

purposes. 

REMS measures for the first 5 minutes each Local Mean Standard Time hour by default (where an hour is 

defined as 1/24th of a Mars sol and a minute as 1/60th of an hour), plus typically 7 complete hours per sol, 

which are added according to a pre-defined cadence designed to e.g. monitor the time of peak insolation 

every sol, the sunrise period in many sols, and cover a complete diurnal cycle with 1 Hz measurements 

every 6 sols (Gómez-Elvira et al., 2014; Newman et al., 2017). During the GDS, however, this cadence was 

increased to cover a complete diurnal cycle every 3 sols, in order to better monitor the impact of the storm 

(Guzewich et al., 2019). All REMS sensors have been fully functional since landing, except for the Wind 

Sensor (WS) that was damaged during MSL’s landing and remained only partially functional until sol 1491 

(over the southern spring equinox in MY33), when its active board was damaged, possibly by saltating 

particles raised by the strong winds as the rover sat in the Bagnold Dune Field (Viúdez-Moreiras et al., 

2019a; 2019b). 
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Figure 1: Dust deposition on the UV sensor: comparison between MSL sols 2036 (pre-storm) and 2216 
(after the storm), taken by MAHLI. The images were taken at different times of sol, hence with different 
sun position, as evidenced by the different sun glint locations at the edges of the photodiodes. It can be seen 
in the zooms for both images of the same photodiode that the sensor is almost blocked by the dust, which 
highlights the deposition of dust over the rover due to the dust storm. 

 

The UV sensor is exposed to dust deposition that attenuates the photodiodes signal, hence UV signals must 

be corrected in order to obtain the absolute irradiance. The correction can be performed by cross-correlating 

the 1 Hz UV sensor observations with radiance measurements made by the Mastcam camera, which takes 

measurements far less frequently (Smith et al., 2017; Vicente-Retortillo et al., 2018). The net result of the 

GDS was to significantly enhance dust deposition on the REMS UV sensors, as was seen by comparing 

images taken by the Mars Hand Lens Imager (MAHLI) just prior to (MSL sol 2036) and just after (sol 

2216) the GDS (see Fig. 1). 

 

3. GALE CRATER ENVIRONMENT AND GENERAL EFFECTS OF THE GLOBAL DUST 

STORM 
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3.1 Phases of the GDS in Gale Crater 

The chronology of the 2018/MY34 GDS is shown in Table 1. For a global perspective of its origin, 

expansion/mature and decay phases, see e.g. Guzewich et al. (2019). Precursor dust storms originated in the 

northern hemisphere across Acidalia and Utopia Planitia at Ls ~180°, expanding and merging with others 

along the receding southern seasonal CO2 polar cap. Effects of the storm first reached Gale at Ls ~ 190° (sol 

2075), with Mastcam 880 nm opacity increasing from ~0.7 to ~1.5 by sol 2080. The steepest opacity 

increase occurred between Ls =192.5 and 195.5° (sols 2080-2085), when it reached a peak value of ~8.5. 

After this, opacity declined until it returned to climatological values at Ls ~245° (sol 2157).  Compared to 

previous reported GDSs 15-20 sol expansion is comparable but slower than the 1977A storm (Pollacj et al., 

1979; Zurek, 1982) and among the slowest decay at 85 sols from its peak, comparable to another early 

storm in MY25/2001 (Cantor, 2007; Wang & Richardson, 2015). 

Event Date Ls (deg) MSL Sol 

Precursor storms across Acidalia and Utopia Planitia May 2018 ~ 180 ~ 2060 
Expansion / Maturation phase (expansion and merging 
of regional storms) Early June ~ 180 - 190 2060 - 2075 

Storm reaches Gale (start of the onset phase at Gale) * Early June ~ 190 2075 
Period of largest increase at Gale Mid June ~ 192.5 - 195 2080 - 2084 
Peak at Gale Mid July ~ 195 2085 
Highly dusty phase at Gale Mid July ~ 195 - 203 2085 - 2100 
Decay phase ** Mid September ~ 203 - 250 2101 - ~2169 

*   Note that the onset phase at Gale is defined as the onset of changes observed inside Gale Crater, 
which occurs ~15 sols after onset of the GDS. 
** Decay phase based on the atmospheric variables measured by REMS. The local 880nm opacity, 
measured by Mastcam, showed a decrease starting 16 sols earlier at sol 2085. 

 
Table 1: Sequence of events related to the MY34/2018 global dust storm, focused on Gale crater. 

 

The atmospheric variables reacted at different times to the GDS; in particular, pressure appeared to react 

first to the GDS. However, air and ground temperatures, and pressure, differed the most from 

climatological values between sols ~2085 and 2100. For our investigation, we define this period as the 

“highly dusty phase”. Between sols 2101 and ~2169, these variables gradually returned to the normal 
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climatological conditions for this season, hence we define this as the “decay phase”. Note that the local 

opacity (as measured by Mastcam and the REMS UV sensors) in fact began to decrease at the start of the 

highly dusty phase as defined here, but we define the storm’s phases in Gale with respect to the local 

atmospheric response rather than dust loading. 

3.2 Dust storm onset and highly dusty phases 

Fig. 2 overlays REMS measurements obtained for the four observed Martian years as a function of 

areocentric solar longitude, since landing at Ls ~150° in MY31 until Ls ~300° in MY34. The interannual 

comparison between seasonal periods shown here (between Ls = 120° and 300°) encompasses the onset 

(sols 2075-2084), highly dusty (sols 2085-2100) and decay phases of the GDS during MY34 as observed in 

Gale Crater, and comparison with previous years at the same Ls demonstrates the magnitude of the dust 

storm effects in the REMS measurements. Fig. 3 shows the evolution, over the details of the whole GDS 

period (sols 2060-2170) only for MY34, of (i) the daily mean, maximum and minimum pressure, air 

temperature, and ground temperature; (ii) relative humidity and water vapor abundance averaged over 

roughly the coldest period of each sol; and (iii) UV irradiance. A summary of the numerical values is 

presented in Tables 2 and 3. 

Among all measurements, the most dramatic effect was seen in the surface radiative environment (Fig. 2a 

and Fig. 3f), with ~95% measured attenuation in UV fluxes in the REMS UV-ABC channel, which ranges 

from 200 to 380 nm, between Ls ~190° and 195.5° (sols 2075-2085), as a result of the rise in the amount of 

suspended dust. Such a decrease is consistent with a relative reduction in the daily surface insolation from 

~75% to ~3.5% as compared to that at the top of the atmosphere (TOA), and with a reduction in the 

contribution of direct radiation to the total daily insolation at the surface from ~50% to less than 0.1% of its 

value at the TOA (Vicente-Retortillo et al., 2015). Note that UV fluxes have been normalized to values at 

the beginning of MSL mission in Fig. 2, and to values at sol 2070 in Fig. 3. The values have not been 

corrected for inaccuracies in the angular response of the UV sensors and dust deposition (Smith et al., 2016; 

Vicente-Retortillo et al., 2018). 
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The abrupt decrease in surface solar radiation between Ls ~190° and 195.5° only caused a moderate 

decrease in the daily mean surface (Fig. 2b and Fig. 3e) and air (Fig. 2c and Fig. 3b) temperatures. The 

diurnal-average air temperature was ~231 K prior to the dust storm but fell by only ~4K to ~227 K during 

the highly dusty phase (Table 2). The impact on the diurnal range of air temperatures was far more 

dramatic, however, with the diurnal range, Trng = Tmax-Tmin, decreasing from ~71K to ~36K (Trng~35K) 

between the start of the onset and highly dusty phases. This behavior was also observed in the 1977A,B 

GDSs (Ryan & Henry, 1979; Ryan & Sharmann, 1981; Tillman, 1985), both at Viking 1 (VL1) and Viking 

2 (VL2) landing sites (22.5ºN 48ºW and 48ºN 230ºW respectively). Also, this range is close to the 35 K 

reported by VL1 during the 1977A storm by Ryan & Henry (1979). Maximum temperatures decreased 

from ~276 K to ~249 K and minimum temperatures increased from ~202 K to ~209 K over the same period 

(Table 3), as atmospheric opacity increased rapidly. The physics behind this are discussed in detail in 

section 4.2. Similar to air temperature, the diurnal-average ground temperature decreased by only ~2K 

(from a pre-storm value of ~233 K) due to the GDS, but showed a far bigger change in the diurnal range, 

Tgrng = Tgmax-Tgmin, which decreased from ~94K to ~38K (Tgrng~56K) during the onset phase of the storm. 

The maximum ground temperature decreased from ~286 K to ~249 K while the minimum increased from 

~187 K to ~211 K. Also observed is a slight decrease in Tmax, and Tgmax, and an increase in Tmin and Tgmin, 

at the end of the highly dusty phase, which is consistent with the observed increase in MastCam opacity 

(see Section 4.2). 
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Figure 2: Interannual comparison of the intra-seasonal (Ls = 120 – 300º) evolution as a function of solar 
longitude (MY color-coded) of: (a) normalized values of the daily maximum UV flux measured by the 
ABC channel, (b) daily mean ground temperature, (c) daily-mean near-surface air temperature, (d) daily 
maximum RH (generally achieved between 04:00 and 06:00 LTST), (e) water vapor volume mixing ratio 
inferred at the same time as the RH shown in (d), and (f) daily mean atmospheric pressure. Vertical lines 
show the start times of the GDS onset (sol 2075), highly dusty (sol 2085) and decay (sol 2100) phases in 
Gale Crater, as well as the end of the decay phase (sol 2169), as defined in Table 1. 

 
The daily maximum RH measured by REMS, which typically occurs between 4:00 – 6:00 LTST when air 

temperature is the lowest (Martínez et al., 2016; Savijärvi et al., 2016; Savijärvi et al., 2019a) is shown in 

Fig. 2d and Fig. 3c. The daily maximum RH abruptly decreased from ~29% prior to the dust storm to less 

than 5% during the highly dusty phase (between Ls = 190° and 195°), returning to climatological values of 

~10% at Ls ~ 250° as the storm abated. As this measurement is highly influenced by the air temperature, it 

is better to look at the inferred water vapor volume mixing ratio (VMR) when considering how the actual 

A       B   

 

 

 

 
C      D  

 

 

 

 
E                   F 

This article is protected by copyright. All rights reserved.



11 
 
 

atmospheric water abundance changed. This may be calculated using contemporaneous REMS 

measurements of RH, air temperature, and atmospheric pressure, and is shown in Fig. 2e and Fig. 3d. Prior 

to the storm, between Ls = 170° and 190°, VMR values showed a decreasing trend (as in previous years; 

Harri et al.,  2014; Savijärvi et al., 2015; Martín-Torres et al., 2015; Martínez et al., 2017; McConnochie et 

al., 2018). We note that the significantly larger VMR (and slightly larger RH) values in MY 34 compared to 

all prior years started to occur at Ls ~ 60° (not shown), well before the dust storm reached Gale, which 

might be due to differences in the local circulation and properties of the terrain (thermal inertia and 

porosity, Savijärvi et al., 2019b) as the rover ascended Aeolis Mons.  

Even taking into account the interannual variability prior to the onset phase (Fig. 2), a strong increase in 

VMR was seen during the onset phase until sol 2085, from mean values of ~86 ppm (although with high 

variability in the range 70 - 95 ppm), to values exceeding 150 ppm. Between sols 2085 and 2090, however, 

the water abundance decreased again to ~107 ppmv, meaning that the water abundance peaked at the same 

time as the dust opacity over Gale. Although it could be the result of global effects, previous global dust 

storms observed from orbit suggest lower water abundances during a global dust storm (e.g. Fedorova et al. 

2018 and reference therein). The increase in the nighttime near-surface water abundance observed by MSL 

REMS could be the result of reduced water adsorption by the regolith at night, due to the warmer nighttime 

temperatures, resulting in an increase in the atmospheric water vapor (Viúdez-Moreiras et al., 2018), and is 

consistent with previous studies suggesting this process for exchanging water between the regolith and the 

atmosphere (e.g. Savijärvi et al., 2016, Martinez et al., 2017 and references therein). In addition, the 

disappearance of the typical inversion in the near-surface layer during the highly dusty phase and the first 

sols of the decay phase (see section 4.2), may also increase the water vapor mixing ratio by means of 

enhanced vertical mixing. Both processes acting together could drive the observed water abundance during 

the GDS. The impact of the GDS on daytime or diurnal averaged water abundance cannot be determined, 

due to the very low daytime relative humidity being smaller than the sensor uncertainties. Similarly, the 

low pre-dawn relative humidity values after sol 2085 result in more uncertain VMR values, therefore the 

This article is protected by copyright. All rights reserved.



12 
 
 

values of the reported VMRs during the highly dusty phase should be considered with a high error bar (e.g. 

Harri et al., 2014).  

 
Figure 3: Evolution of REMS variables (sols 2060-2170) for the period encompassing the onset (sols 2075-
2084), highly dusty (sols 2085-2100) and decay phases of the GDS. Daily mean, maximum, and minimum 
values are shown for pressure (A) and temperatures (B and E), while the relative humidity (C) and water 
mixing ratio (D) values correspond to values where the RH reaches its maximum (between 4:00-6:00 
LTST) and their uncertainty is lower. Finally, the daily maximum UV irradiance (F) is shown normalized 
to the value on sol 2070. A 20-sol mobile average is also shown for each variable for a better visualization. 
As in Fig.2, vertical lines show the start times of the GDS onset (sol 2075), highly dusty (sol 2085) and 
decay (sol 2100) phases in Gale Crater. 

 
 Nominal atmosphere Dusty atmosphere Differences 

Variable mean SEM mean SEM absolute relative 

Pressure (Pa) 750 1.14 784 1.48 34.6 5% 
Air Temperature (K) 231 0.158 227 0.110 -3.96 -2% 
Ground Temperature (K) 233 0.158 231 0.155 -2.15 -1% 
Relative Humidity (%) * 28.9 1.71 4.46 5.05·10-2 -24.4 -85% 
H2O mixing ratio (ppm) ** 86.2 3.70 107 1.86 21.3 25% 
UV irradiance ch-ABC (norm) 1.00 9.19·10-3 4.89·10-2 2.00·10-3 -0.951 -95% 
*     Measured between 04:00 and 06:00 LTST. 
**   Inferred from RH, temperature and pressure, and averaged between 04:00 and 06:00 LTST. 
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Table 2: Comparison of sets of 10 sols during the nominal (sols 2060-2070) and highly dusty (sols 2090-
2100) atmosphere periods in selected REMS variables. The mean and the Standard Error of the 
Measurements (SEM) are shown for each variable. 

 

Fig. 2f illustrates the interannual changes in daily mean atmospheric pressures measured by REMS. The 

lower mean pressures in MY34 compared to MYs 31-33 are due to the rover’s higher elevation on the 

slopes of Aeolis Mons after the rover began climbing more rapidly than before. Focusing on the period 

surrounding the GDS, however, the mean pressure varies according to the usual seasonal cycle due to the 

sublimation of the Martian polar caps and was barely affected by the storm. However, the diurnal pressure 

amplitude range, prng = pmax-pmin, within each sol varies during the storm, which was also observed during 

the 1977a,b dust storms (Ryan & Henry, 1979; Ryan & Sharmann, 1981). The diurnal range increased from 

~84 Pa prior to the storm to ~124 Pa on average during sols 2090 - 2100. This is due in part to the impact of 

the dust storm on thermal tides, and in part to the storm’s impact on mean air temperatures during the day 

and night, as described further in Section 4. 

 

 
Nominal atmosphere Dusty atmosphere 

Variable max min amplitude max min amplitude 

Pressure (Pa) 795 699 84.4 858 713 124 
Air Temperature (K) 276 202 70.7 249 209 36.3 
Ground Temperature (K) 286 187 93.6 254 211 38.0 

 
Table 3: As Table 2, but for diurnal maximum, minimum and mean amplitudes within the nominal (sols 
2060-2070) and highly dusty (sols 2090-2100) atmospheres. This table is focused on pressure, air and 
ground temperatures. 

 
 
3.3 Dust storm decay phase 

The pressure returned to the nominal diurnal cycle around sol 2170 (Fig. 3a), with slight differences in 

accordance with the seasonal evolution (Haberle et al, 2014; Guzewich et al., 2016). The daily pressure 

amplitude also decreased from the average amplitude within the highly dusty phase of ~124 Pa to ~103 Pa, 

close to its nominal values for this season. 
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The diurnal-average air temperature was apparently constant at ~227 K during the decay phase (Fig. 3). 

However, this is the result of two independent processes taking place at the same time. On the one hand, 

REMS data for previous years show the air temperature achieved its maximum values in Gale at Ls ~210 

deg (Martinez et al., 2017 and Fig. 2), just after the start of the decay phase when a warming trend is 

typical. On the other hand, the presence of dust produced a decrease in the diurnal-average near-surface 

temperature (a rapid decrease of ~4 K occurred during the onset phase), but this dust was slowly 

disappearing during the decay phase. Both competing processes acting simultaneously resulted in roughly 

constant air temperatures during the decay phase. A similar behavior is observed in the ground temperature. 

Over the decay phase, the diurnal range in both air and ground temperature that abruptly decreased during 

the onset phase was also gradually restored. 

The relative humidity also returned to nominal values (Fig. 3), which were ~8-10 % in previous years for 

this season (Fig. 2). However, the water vapor mixing ratio was also apparently reduced to ~60 ppm, lower 

than the values observed during the onset of the GDS (Table 2) and quite close to the levels observed 

during previous years for this season by REMS (Fig. 2), which significantly contrast to the higher values 

observed during the current Martian year. This suggests that the pre-storm increase in water vapor 

abundance in MY34 compared to prior years, which was previously ascribed to the rover’s higher position 

on the slopes of Aeolis Mons, may also have a seasonal component. Thus, changes in transport of water 

vapor into and out of Gale Crater in different seasons could be the responsible. In addition, differences in 

the nighttime temperatures between MY34 and previous years may play a role in the observed variability. It 

would also be possible that the dust deposited on surface during the fall out of the dust storm could 

contribute to a change in the properties of the near-surface terrain, becoming closer to similar years. 

Finally, all UV channels measured by REMS experienced a significant but slower increase in irradiance 

over the decay phase as a result of the decrease in the dust optical depth. Figure 3f shows irradiances 

normalized to those values on sol 2070, just prior to the onset phase, and demonstrates that the UV ABC-

channel increased its signal from <10% (during the highly dusty phase) to ~60% of the values measured 

prior to onset. These irradiances are in fact only slightly below typical values for this time of year (see Fig. 
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2), and given that Mastcam reported typical seasonal values by this point it is likely that the increase in dust 

deposition on the sensor photodiodes during the storm (Fig. 1) attenuated the UV signal in its aftermath, 

rather than higher-than-normal atmospheric dust loading continuing to exist. 

 

4. EFFECTS OF THE DUST STORM ON THE DIURNAL CYCLE 

This section presents the effect of the GDS on the diurnal cycles of meteorological variables observed by 

REMS. Fig. 4 shows the diurnal cycle for pressure, air and ground brightness temperature, relative 

humidity and the normalized irradiance of the UV-ABC channel, both before the GDS (sols 2060-2070) 

and during its highly dusty phase (sols 2085-2095). Fig. 5 complements Fig. 4 by showing the evolution of 

the ground-to-air temperature difference and the diurnal pressure modes over the pre- to post-storm period. 

4.1 Pressure diurnal cycle 

The nominal and highly dusty diurnal pressure cycles are shown in Fig. 4a. The main contributors are the 

global thermal tides. Tides are driven by the solar cycle and modulated by the presence of water ice clouds 

(Kleinböhl et al. 2013), topography, and surface albedo and thermal inertia, in addition to dust loading, 

which largely determines the amplitude of the thermal tide signature (Hess et al., 1977; Leovy and Zurek, 

1979; Zurek, 1980; Wilson and Hamilton, 1996). Atmospheric dust is directly connected to atmospheric 

heating, which produces expansion and motion of air masses, which in turn drives surface pressure 

changes. The tidal signature on Mars is typically dominated by the diurnal mode in relatively clear 

conditions and by the semidiurnal mode in highly dusty conditions (Hess et al., 1977; Leovy and Zurek, 

1979; Zurek, 1980; Wilson and Hamilton, 1996; Lewis and Barker, 2005; Rafkin et al. 2016, Guzewich et 

al. 2016). This is due to the longer vertical wavelength of the latter mode, which makes it more responsive 

to the more vertically-extended heating produced by increased atmospheric absorption of solar radiation (by 

dust particles) during a major dust storm (Leovy and Zurek, 1979, Zurek, 1980; Lewis and Baker, 2005). 

Before interpreting the daily pressure mode observed by MSL it should be highlighted that it is not possible 

to separate the signal of the migrating diurnal thermal tide from the non-migrating nearly resonant Kelvin 
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wave (Zurek., 1976; Zurek and Leovy, 1981; Guzewich et al., 2016), westward and eastward propagating 

respectively, resulting in a destructive interference. Also, in Gale crater, non-tidal contributions such as 

hydrostatic adjustment flows that are a result of day-night contrasts in solar heating and hence background 

atmospheric temperatures over regions of topography possibly amplify the diurnal amplitude (Richardson 

and Newman, 2018).  As the air column expands during a period of heating, the surface pressure decreases 

everywhere above some level along a slope, but increases everywhere below that level along the slope, in 

order to maintain an along-slope hydrostatic balance. This process, which involves transfer of air down the 

slope, reverses at night when the air columns contract and air must be transferred up the slope to again 

maintain the along-slope surface pressure distribution in hydrostatic balance.  

Fig. 4a shows a clear increase in the daily signal’s amplitude during the dust storm, with a far clearer two-

peak structure, due to the increase in the semidiurnal pressure mode. Fig. 5 shows the first three pressure 

modes (diurnal, semidiurnal and terdiurnal) for sols 2060-2170, encompassing the onset, highly dusty, and 

decay phases of the GDS in Gale Crater. The diurnal pressure amplitude first reacted ~4 sols before the 

arrival of dust to the crater (sol 2075) and showed considerable variability during the onset phase (~30 - 45 

Pa), including rapid increases and decreases of more than 10 Pa in a few sols. However, the diurnal 

pressure amplitude then steadily decreased over the highly dusty phase, to below pre-storm levels (~30 Pa), 

before recovering and increasing again during the decay phase of the storm, eventually stabilizing at ~45 Pa 

after another ~20 sols. By contrast, the semidiurnal pressure tide amplitude increased rapidly throughout the 

onset and highly dusty phases, exceeding the diurnal amplitude for half of the highly dusty phase and over 

half of the decay phase. The semidiurnal tide phase showed an increase before the arrival of dust to Gale 

Crater (sol 2075) and peaked roughly in sol 2080, recovering the nominal values well after the start of the 

decay phase, with an oscillatory behaviour around the general trend. The diurnal pressure phase, which 

generally ranged from 4 to 5 h during MY31 to MY33 (see Guzewich et al., 2016 for MY31-MY32), also 

reacted before sol 2075 and fell to values less than 2 h between sols 2075 and 2080, which was never 

previously observed over the entire mission, showing also a slow recovering trend.  
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Figure 4: Comparison between the nominal diurnal cycle (blue asterisks) just prior to storm onset (sols 
2060-2070) and the highly dusty diurnal cycle (red dots) within the highly dusty phase of the GDS (sols 
2085-2095). The values for very low RH (<3%) are considered unreliable and therefore are not shown (see 
text). Note that the UV radiance after noon in the nominal case is strongly affected by shadows in all sols; 
i.e., the direct component of the sunlight is fully or partially blocked by the rover’s remote sensing mast 
during the ~12:00-14:00 period.  

 

Given that the diurnal and semidiurnal tidal modes have different vertical wavelengths, the different times 

at which their amplitudes peaked is likely related to changes in the regional and global dust distribution as 

the storm evolved. The diurnal tide amplitude is more dependent on the local, regional and tropical dust 

abundance, while the semidiurnal mode depends to a greater extent on regional and globally-averaged dust 

abundance, due to the predominance of the gravest Hough mode in the migrating semidiurnal tide 

(Chapman and Lindzen, 1970; Guzewich et al., 2016). The transitory amplitude and phase disturbances in 

the diurnal pressure mode before sol 2075, and during the GDS, could be allocated to the enhancement of 

the non-migrating Kelvin wave, as a result of longitudinal asymmetries in the atmospheric dust content. A 

similar behaviour was found during the 1977B dust storm based on tidal analysis of Vikings data (Zurek 

and Leovy, 1981) and posterior General Circulation Model (GCM) simulations (Wilson and Hamilton, 

1996). Also, the deep decrease observed in the diurnal amplitude during the GDS could be partly due to a 

A     B                C
  

 

 

 
 
D     E                F 

This article is protected by copyright. All rights reserved.



18 
 
 

reduction of the non-tidal hydrostatic flow contribution. As discussed in Guzewich et al. (2019), the ~50% 

reduction in diurnal air temperature range during the GDS would reduce this non-tidal contribution by a 

similar amount, from a contribution of ~15 Pa before the storm to ~8 Pa during it. The evolution of the 

terdiurnal mode, negligible under nominal conditions and usually enhanced around the solstices when 

hemispheric thermal gradients are greater, contributed significantly to the daily amplitude of pressure in the 

highly dusty phase, and followed the same evolution as the semidiurnal mode. It could be the result of 

hemispheric differences in atmospheric dust content during the GDS. 

Overall, the pressure tides began to respond to the storm well before Mastcam opacity showed any 

significant increase. However, the peak in semi-diurnal and terdiurnal tide amplitudes - and the dip in 

diurnal tide amplitude - occurred about 20 sols after the peak in Mastcam opacity. Given that Mastcam 

optical depth measurements are local measurements inside Gale, and that the pressure tides respond to the 

larger-scale atmospheric dust abundance, the offsets in timing of the pressure tides response and Mastcam 

opacity suggests different dust abundances inside the crater versus the regional-to-global dust distribution. 

In fact, THEMIS observations (Smith, 2009) suggest that the optical depth peak for this storm in tropical 

latitudes was over Ls ~200º-205º (M. Smith, personal communication), corresponding to MSL sols ~2095-

2100, much later than the peak inside Gale Crater (sol 2085, corresponding to Ls ~195º). Similarly, from 

the Mars Climate Sounder (MCS) (McCleese et al., 2007, Kleinbohl et al., 2017; Kass et al., 2018), the 

peak of the dust abundance was at Ls ~201º in the southern tropics (D. Kass, personal communication).  

This is the same time as the peak for the entire tropics, however the value remained close to the maximum 

until Ls ~209º.  In the southern mid-latitudes, MCS data suggest that the dust column opacity peak was not 

reached until Ls ~209º (D. Kass, personal communication). This is in agreement with the peak in the 

amplitude of the semidiurnal mode at Gale, inferred from the REMS pressure data, at sol ~2105 (Ls ~205º). 

Orbiter data thus seem to confirm that opacities continue to rise in the general tropical atmosphere during 

the GDS even as they fall inside the crater. This is in contrast to the good correlation between tidal 

amplitudes and local optical depth measurements observed in nominal atmospheric conditions, which 

indicate that the atmospheric opacities at Gale Crater are normally largely representative of the global 
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average (Guzewich et al., 2016). Interpreting these results further, including the secondary effects of 

different dust vertical profiles and optical properties during the storm as well as the influence of non-

migrating tides in the observed pressure tides, would require dedicated modelling work. 

 

4.2. Air and ground temperature diurnal cycles 

As briefly described in Section 3, the GDS resulted in an overall decrease in the amplitude of the diurnal air 

and ground temperature cycles: overnight minimum temperatures increase and daytime maximum 

temperatures decrease, phenomena also observed in Ryan and Henry (1979) and modelled by Wilson and 

Richardson (2000) during the Vikings GDS(s). Both daily ranges followed closely the temporal evolution 

of the growth and decay in Mastcam opacity seen at Gale, unlike the pressure tides which seemed more 

responsive to the global evolution that predated the arrival of the dust at Gale. Maximum ground 

temperatures decreased, by about 35 K, only when the increase in local opacity (hence decrease in 

insolation) occurred over Gale during the growth phase of the GDS, while the minimum ground 

temperatures increased by some 20 K as a consequence of the more opaque and hence warmer atmospheric 

layers above the rover preventing more nighttime IR radiative cooling of the surface. Near-surface air 

temperatures responded similarly (though with a smaller amplitude), reflecting stronger than usual thermal 

radiative coupling between the surface and opaque atmosphere, while the reduction in insolation reaching 

the surface resulted in the mean ground and near-surface air temperatures decreasing by ~2 K and ~4 K 

respectively (Table 2). 

It is also interesting to note the change in sign of the surface-to-air temperature difference at the coldest and 

warmest times of sol (shown in Fig. 5). Prior to the storm, the surface cooled faster than the near-surface air 

after sunset, with upward longwave radiation from the surface exceeding downward longwave radiation 

from the atmosphere, and the surface became up to 10K colder at night (Fig. 4e) (Martinez et al. 2014). The 

sensible heat flux was also directed into the surface when the atmosphere was warmer at this time. Midway 

through the GDS onset phase, however, opacities became sufficiently high that the surface received far 
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more longwave radiation from the atmospheric layers above it at night than it was emitting itself, and the 

surface became warmer than the atmosphere again. This means that the usual ‘nocturnal inversion layer’ 

was absent near the surface between sols ~2085 and ~2130, and hence the nighttime near-surface 

atmosphere stability was significantly reduced for more than 40 sols. 

 
Figure 5: (top-left): Evolution of the diurnal pressure tide amplitude (blue circles), compared to the 
semidiurnal (green crosses) and the terdiurnal (red points) tide amplitudes; (bottom-left): as in the top-left, 
but for the diurnal pressure tide phases; (top-right): difference between minimum surface and air 
temperatures (i.e., the difference at night) at 1.5 m above the surface; (bottom-right): difference between 
maximum surface and air temperatures. Moving average values are also shown for a better visualization of 
the trend. Mastcam opacity is included in every plot (black lines) for comparative purposes. The first 
vertical line indicates the onset of GDS effects in Gale, the second indicates the start of the highly-dusty 
phase, and the third indicates the start of the decay phase, from the REMS variables perspective. 

 

During the daytime, the pre-storm surface became much warmer than the atmosphere, with little solar 

radiation being absorbed by the thin, transparent atmosphere and most going into heating the surface, which 

then heated the atmosphere above it (Fig. 5). However, when opacities increased during the GDS onset 

phase, the insolation reaching the surface was reduced and more was absorbed by the atmosphere. The 

surface remained warmer than the near-surface air during the day throughout the GDS, but the daytime 
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sensible heat flux was reduced due to the decrease in the thermal gradient between the ground and the air, 

resulting in no convective vortices exceeding 0.5 Pa or dust devils being detected by MSL between sols 

2083 and 2107 (Guzewich et al., 2019). 

4.3. Relative humidity and atmospheric water abundance diurnal cycles 

As noted in Section 3, the relative humidity also experienced great variability between nominal and highly 

dusty conditions, highly influenced by the air temperatures. This difference is also observed throughout the 

diurnal cycle. Note that Fig. 2 and Fig. 3 showed respectively the maximum and mean RH and VMR over 

only the 04:00-06:00 LTST timeslot, as this contains the highest RH measurements and when the inferred 

VMRs have the highest reliability. By contrast, Fig. 4c and 4d show every RH and inferred VMR over the 

whole sol. Results for very low RH (<3%) are considered unreliable and therefore are not shown, in 

accordance to Savijarvi et al. (2015). 

For the nominal diurnal cycle, this results in the loss of confidence in the measurements from ~8:00 until 

~20:00 LTST, but during the GDS - when higher nighttime temperatures produce lower RH values - 

measurements from ~20:00 to ~00:00 LTST are also unreliable. The nominal cycles showed very small RH 

during the daytime, slow growth after sunset, faster growth after midnight, maximum values of almost 40% 

just prior to sunrise (which occurs at ~6:00 LTST at this time of year), followed by a rapid drop (Savijarvi, 

2016). During the highly dusty phase, however, RH values remained below 5% throughout the diurnal 

cycle, although a small maximum still occurred at the same time as usual. Also, the evening period (19:00  

– 00:00  LTST), and particularly the first two hours (19:00 – 21:00 LTST) present RH values larger than 

expected for this diurnal timeslot (Savijarvi et al., 2016, 2019a), perhaps due to an unresolved sensor issue. 

We do not show the nominal values within the 19:00 – 21:00 LTST diurnal timeslot. Also, the 21:00– 

00:00 LTST diurnal timeslot should also be considered with care. There are no values within 19:00 – 00:00 

LTST for the highly dusty phase (RH<3%). 

By contrast, the VMR had its maximum at some time during the day and decreased from at least 

21:00LTST onwards (at least in the nominal case), reaching its minimum value shortly after sunrise, while 
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RH was still very high. This is consistent with model analyses of the atmospheric water vapor abundance 

decreasing as the regolith cools and water is adsorbed into the soil (Savijarvi et al., 2016; 2019a, Steele et 

al., 2017), with this water then starting to desorb back into the atmosphere when the surface again heats up 

after sunrise. The overnight atmospheric water abundance during the dusty diurnal cycle seems to be higher 

than during the nominal cycle, in accordance with the results presented in Table 2. There is some sign that 

this trend may have reversed a few hours after sunrise - i.e., that there is less water vapor in the highly 

dusty phase - due to the surface temperature first becoming cooler compared to the nominal case, hence the 

rate of desorption presumably being slower. Unfortunately, while the trends are likely indicative of what is 

happening, the large uncertainty in the inferred values of water abundance prevents highly reliable values 

from being calculated for the mixing ratios. 

 

4.4. UV irradiance diurnal cycle 

The maximum values for the nominal and dusty diurnal cycles correspond to ~12:00 LTST, corresponding 

to the smallest solar zenith angles. As stated above, the apparent attenuation observed during the highly 

dusty phase was 95% (Table 2), although additional dust deposition on the photodiodes (Fig. 1) during the 

storm may also have slightly affected this value. Fig. 4f shows a diurnal cycle during the nominal and 

highly dusty phases, but it is important to note that the afternoon UV irradiance during the nominal phase 

was strongly affected by shadows, with the rover mast blocking direct solar radiation for the rover’s 

orientation on those sols. 

The effects of shadows seem to disappear during the GDS. This may be because, while most of the 

irradiance reaching the surface in the nominal cycle corresponds to the direct component, the strong 

attenuation during the highly dusty phase (τ > 8) implies an almost complete contribution by scattered 

sunlight. 

 

5. SUMMARY AND CONCLUSIONS 
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The MY34/2018 global dust storm (GDS) reached Gale in early June 2018 and significantly disturbed the 

atmospheric parameters measured by MSL REMS. Atmospheric dust increased the Mastcam 880 nm 

opacity over Gale Crater by more than 8 times in comparison to the typical values for this season, peaking 

on MSL sol 2085 and largely decaying steadily thereafter. The atmospheric variables reacted at different 

times to the GDS, with effects first noted in pressure data, particularly in the pressure diurnal tide. 

We define a period over which the REMS variables exhibited steady dust storm conditions that were 

abnormal from climatological conditions (“highly dusty phase”, sols 2085 - 2100) and another during 

which the variables gradually returned to the climatological conditions for this season (“decay phase” sols 

2101 - ~2169). 

REMS results show that the daily maximum of the UV radiation decreased by 90% over only 10 sols after 

the dust storm first reached Gale, as a result of the dust absorption and scattering in the UV band. Diurnal-

average air and ground temperatures decreased almost 4 K and 2 K due to the lower radiation reaching the 

surface. In addition, their diurnal cycles and maxima and minima experienced strong disturbances. The 

daytime cooling and the nighttime warming resulting from the GDS reduced the diurnal amplitude of near-

surface air temperature by 35K (from 71 to 36K) and of ground temperature by 56K (from 94 to 38K). 

During the highly dusty period, the ground temperature remained warmer than the near-surface air 

temperature during the nighttime, and therefore the typical nighttime inversion layer was absent near the 

surface, due to the greater coupling between the surface and atmosphere in the more opaque conditions. 

Consequently, the nighttime near-surface atmosphere stability was significantly reduced over a period of 

more than 40 sols, allowing enhanced convection during the nighttime. 

The pressure diurnal cycle showed an unusual frequency domain behavior, with enhanced semidiurnal and 

terdiurnal tidal amplitudes, and first an increase then a decrease in the diurnal tide, as a result of the 

different response of atmospheric thermal tidal modes to large-scale changes in the vertical and horizontal 

dust distribution. There was a delay between both the semidiurnal and terdiurnal peaks of the tidal modes 

observed by REMS (sol ~2105, Ls ~205º) and the peak in the dust optical depth observed by Mastcam (sol 

~2085, Ls ~195º), which suggest different dust abundance during the highly dusty phase inside and outside 
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Gale Crater. Orbital observations made by THEMIS suggest that the optical depth peak for this storm in 

tropical latitudes corresponds to MSL sol ~2095-2100. In addition, Mars Climate Sounder (MCS) data 

suggest that the dust column opacity peak is not reached in the southern mid-latitudes until Ls ~209º, which 

reinforces this hypothesis. 

The maximum of the relative humidity, which occurs right before sunrise, decreased drastically to below 

5%, compared with pre-storm mean values of 29%, due to the warmer air temperatures at night. The 

inferred values for water mixing ratio suggest an increase during the highly dusty phase, peaking at sol 

2085 (corresponding to the peak in local dust opacity), and also evolve accordingly to the minimum air and 

ground temperatures. REMS data suggest that an adsorption-desorption mechanism in the regolith is 

driving the diurnal cycle of the near-surface atmospheric water vapor abundance and that the GDS reduced 

its strength due to the decrease in the diurnal range of ground temperature. Also, the enhanced vertical 

mixing suggested to occur during the GDS’ nighttime, could be favoring the increase in nighttime water 

vapor abundances in the near-surface layer. However, the large uncertainties in the inferred mixing ratios 

mean that these results should be considered with care. 

The MSL REMS measurements are the most detailed within a GDS since Vikings in the 1970s and they are 

also the first measurements acquired in a region with significant topography that plays a strong role in the 

near-surface environment, which differs to those from Vikings on large plain landing sites. 
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