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Abstract. This study presents a statistical investigation of the force bal-

ance and structures in the flux ropes in Mercury’s magnetotail plasma sheet

by using the measurements of MErcury Surface,Space ENviroment,GEochemistry,and

Ranging (MESSENGER). 168 flux ropes was identified from the 14 hot sea-

sons of MESSENGER from 11 March 2011 to 30 April 2015, and 143 of them

show clear magnetic field enhancements with the core field being ≥ 20%

higher than the background magnetic field. The investigation on the force

balance of these 143 flux ropes shows that magnetic pressure gradient force

cannot be solely balanced by magnetic tension force, implying that thermal

plasma pressure gradient force cannot be neglected in the flux ropes. We em-

ploy a non-force-free model considering the contribution of thermal pressure

to resolve the physical properties of flux ropes in Mercury’s magnetotail. 28

flux ropes are obtained through the fitting to the non-force-free model. The

flux ropes are found to be consistent with the flattened structures, in which

the mean semi-major is ∼ 851 km and semi-minor is ∼ 333 km, both are sev-

eral times the local proton inertial length. The average core field is estimated

to be ∼ 57.5 nT and flux content is ∼ 0.019 MWb, much larger than the pre-

vious results obtained from force-free flux rope model. The importance of

thermal pressure gradient in the force-balance of the flux ropes and the flat-

tened structure indicate the flux ropes in Mercury’s magnetotail plasma sheet

are mostly in early stage of the evolution, and still contain enough plasma

to affect their magnetic structures.
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1. Introduction

Mercury is the innermost planet in the Solar System with an orbital period of only1

∼ 88 Earth solar days. The Mercury’s elliptical orbit about the sun has an aphelion of2

∼ 0.47 AU (Astronomical Unit, 1 AU = 1.496 × 108 km) and a perihelion of ∼ 0.313

AU. The proximity of Mercury’s orbit to the sun result in it experiencing interplanetary4

conditions much different from the other planets in the Solar System. For example, the5

solar wind is hotter, solar wind density is higher, and the interplanetary magnetic field6

(IMF) is much stronger at Mercury than those at Earth (∼ 1 AU) [e.g., Russell et al.,7

1988; Glassmeier , 1997; Slavin et al., 2007]. Observations from Mariner 10 and MErcury8

Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) [Solomon et al.,9

2001] have revealed that Mercury’s internal magnetic field is closely aligned (< 5◦) with10

the planet’s rotation axis, and has the same polarity as the Earth. However, the magnetic11

field near Mercury’s surface is only ∼ 1% of Earth’s surface field [e.g., Ness et al., 1976;12

Alexeev et al., 2010; Anderson et al., 2010, 2011]. Due to the higher solar wind pressure,13

weaker internal magnetic field, and stronger dayside magnetopause erosion [e.g., Slavin14

and Holzer , 1979], the subsolar standoff distance for Mercury’s magnetopause is only15

∼ 0.45 RM, where RM ∼ 2440 km is Mercury’s radius, above the surface of the planet16

[e.g., Winslow et al., 2013; Zhong et al., 2015]. As a result, Mercury itself occupies a17

much larger fraction of the magnetosphere than Earth, Saturn, and Jupiter [e.g., Jackman18

et al., 2014].19

Mercury’s magnetosphere experiences many processes and structures closely related20

with magnetic reconnection similar to the Earth’s magnetosphere, such as the flux transfer21
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events (FTEs) near the dayside magnetopause [e.g., Russell and Walker , 1985; Slavin22

et al., 2012a], flux ropes and travelling compression regions (TCRs) in the magnetotail23

[Slavin et al., 2009, 2012b; DiBraccio et al., 2015; Sun et al., 2016; Smith et al., 2017; Zhong24

et al., 2018], and dipolarizations [Sun et al., 2015a, b, 2017, 2018; Dewey et al., 2017].25

Flux ropes were proposed to be formed between the near and distant neutral lines during26

Earth’s magnetospheric substorm with magnetic loop profiles (or “O-lines”) in 1970s27

[Schindler , 1974; Hones , 1977]. The formation of magnetic loop topology inside flux ropes28

would require perfect anti-parallel magnetic field lines (180◦ separation angle)[Hughes and29

Sibeck , 1987; Zong et al., 1997, 2004]. However, because a dawn-dusk component in the30

magnetotail magnetic field is common, magnetic reconnection would generate the flux31

ropes with helical field line topology [e.g., Hughes and Sibeck , 1987; Slavin et al., 1989;32

Hesse and Birn, 1991; Moldwin and Hughes , 1991; Zong et al., 1997, 2004]. A statistical33

survey on the spatial distribution of flux ropes in Mercury’s magnetotail showed that34

flux ropes were more frequently observed on the dawnside plasma sheet than on the35

duskside [Sun et al., 2016], indicating that the dawnside plasma sheet is more dynamic36

than the duskside plasma sheet. This feature was confirmed by the subsequent studies37

on dipolarizations and particle energization, including proton and electron, in the near38

planet region of Mercury [Sun et al., 2017; Dewey et al., 2017; Smith et al., 2017; Poh39

et al., 2017a].40

The flux ropes could be fitted to a force-free flux rope model whose solution is Bessel41

functions, which give the diameter, core field intensity, and magnetic flux content for42

the structures [e.g., Lundquist , 1950; Burlaga, 1988; Lepping et al., 1996; Slavin et al.,43

2003]. The underlying assumptions of this force-free model include J being parallel to44
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B everywhere ( ~J × ~B = 0) and the flux rope being cylindrical in shape. There are also45

several flux rope models that consider the nature of non-force-free of flux ropes and the46

influence of gradients in plasma pressure. [e.g., Moldwin and Hughes , 1991; Kivelson47

and Khurana, 1995; Hidalgo et al., 2002]. In particular, Kivelson and Khurana [1995]48

developed models for flux ropes embedded in Harris current sheet, which contain solutions49

for both force-free and non-force-free flux ropes. Their models have been successfully50

applied in the flux ropes in the Earth’s plasma sheet observed during Galileo’s Earth51

flyby [Kivelson and Khurana, 1995]. In addition, Slavin et al. [2009] and Slavin et al.52

[2012a] analyzed FTE-type flux ropes at the Mercury’s magnetopause using force-free53

[Lundquist , 1950] and non-force-free [Hidalgo et al., 2002] models.54

By employing the force-free flux rope model first developed by Lundquist [1950], Di-55

Braccio et al. [2015] and Smith et al. [2017] conducted statistical studies on the flux ropes56

in Mercury’s magnetotail. Because MESSENGER could not directly resolve the proton57

bulk flow velocity, both of them assumed a velocity of ∼ 465 km/s for the flux ropes,58

which was an average value of background Alfvén speed. The radius of flux rope was59

found to be ∼ 200 km comparable to the background ion inertial length. The flux content60

of flux rope was only ∼ 0.002 MWb on average, which was much smaller (by an order of61

magnitude) than the latterly reported average magnetic flux of dipolaring flux bundles62

(DFBs) following dipolarization fronts (∼ 0.06 MWb) [Dewey et al., 2018] and two orders63

of magnitude smaller than the magnetic flux loaded into Mercury’s magnetotail during64

the substorm growth phase (∼ 0.69 MWb) [Slavin et al., 2010; Imber and Slavin, 2017].65

However, the new MMS observations have shown that thermal pressure gradients are66

important in newly formed ion-scale flux ropes [Farrugia et al., 2016; Zhao et al., 2016].67
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Because the flux ropes at Mercury are ion-scale, and may have formed only recently, its68

force balance within the flux ropes in Mercury’s tail may also involve significant plasma69

pressure gradients. Since force-free model does not consider the contribution of thermal70

pressure, if the thermal pressure is significant, thus it may be important to apply a non-71

force-free model to the flux ropes in Mercury’s tail.72

Here, we investigate the force balance within these flux ropes at Mercury, Our results73

show that thermal plasma pressure gradients cannot be ignored inside most of the flux74

ropes. The physical properties of the flux ropes are determined by comparing the results75

of non-force-free and force-free modeling. This study finds that most of the ion-scale76

flux ropes observed in Mercury’s magnetotail by MESSENGER appear to have formed77

recently and still contain significant amounts of plasma, which might still be able to affect78

their magnetic structures.79

This paper arranges as follows. In Section 2, the instrumentation and data will be80

described. In Section 3, at first, we will show a flux rope case study. Secondly, we will81

statistically investigate the force balance of flux ropes, and then we will describe the82

non-force-free flux rope model employed in this research. Section 4 will provide detail83

statistical results for the structure of flux ropes in Mercury’s magnetotail. Discussion and84

Conclusions makeup the final two sections.85

2. Instrumentation and Data

This study employs magnetic field and plasma measurements from MESSENGER. The86

magnetometer (MAG) measures magnetic field vector in a time resolution of 20 samples87

per second [Anderson et al., 2007]. The position data of MESSENGER were provided88

by accompanying with the magnetic field data at the same time resolution. The Fast89
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Imaging Plasma Spectrometer (FIPS), which is one part of the Energetic Particle and90

Plasma Spectrometer (EPPS) [Andrews et al., 2007], measures ions with mass - amu91

over an energy range from ∼ 46 eV/e to 13.3 keV/e in every 10 seconds. However,92

MESSENGER’S thermal sun shade limits its field of view to ∼ 1.4π sr. FIPS also provides93

one minute proton moments, which were obtained by averaging the proton spectra over94

one minute intervals under the assumption of isotropic and subsonic of protons [Raines95

et al., 2011; Gershman et al., 2013].96

The magnetic field data is in the Mercury Solar Magnetospheric (MSM) coordinate97

system, in which the XMSM axis is sunward, ZMSM axis points northward, and YMSM98

axis completes the right-handed coordinate system. The center of MSM coordinate is99

∼ 0.196 RM northward offset from the Mercury’s solid center [Alexeev et al., 2010; An-100

derson et al., 2010, 2011]. Position data of MESSENGER in X− Y plane were aberrated101

according to an angle between the anti-sunward solar wind and the orbital motion of102

Mercury around the Sun. The solar wind velocity was set to be constantly −400 km/s103

and orbital velocity of Mercury was daily averaged. The aberrated coordinate is labeled104

as MSM′ (X′MSM, Y′MSM, Z′MSM). The position aberration will not affect ZMSM.105

MESSENGER entered the orbit around Mercury on 11 March 2011, and impacted106

the surface of Mercury on 30 April 2015. The MESSENGER orbits could be divided107

into ‘hot’ and ‘warm’ seasons according to the locations of the periapsides [Slavin et al.,108

2014]. Hot seasons correspond to the orbits for which periapsis was located on the dayside109

and the warm seasons with them on the nightside. During the hot seasons, MESSENGER110

normally crossed the Mercury’s magnetotail at a distance between∼ −1.8 RM and−3 RM,111

which was close to the mean near Mercury neutral line (NMNL) [Slavin et al., 2012b; Poh112
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et al., 2017b]. This study surveys all of the hot seasons for the presence of flux ropes.113

Table 1 shows the start and end times for the 14 hot seasons between 23 March 2011114

and 6 April 2015. The central plasma sheet was defined to by βp > 0.5 [Sun et al., 2016],115

where the βp is the ratio of proton thermal pressure to the magnetic pressure in the one116

minute data set, where the magnetic field data is averaged down to the same one minute117

intervals.118

3. Magnetotail Flux Rope Embedded in Current Sheet

3.1. A Case of Flux Rope

A large amplitude flux rope was observed by MESSENGER between 03:12:45 and119

03:12:55 UT on 17 May 2014 (Figure 1). The flux rope, marked by the shaded region,120

shows clearly bipolar signature in Bz which corresponds to peaks in By and Bt. At ∼121

03:12:49 UT, By rapidly increased from ∼ 30 nT to ∼ 94 nT in less than one second and122

decreased to ∼ 30 nT in the following second. Meanwhile, Bz exhibited a bipolar signature123

with an amplitude from peak to peak of ∼ 60 nT.124

The magnetic field variation of this flux rope was revealed in the application of Minimum125

variance analysis (MVA) [Sonnerup and Cahill , 1967; Sonnerup and Scheible, 1998; Zong126

et al., 2003]. The results show that the maximum eigenvalue is close to the intermediate127

eigenvalue (λmax/λint ∼ 2), and both of the maximum and intermediate eigenvalues are128

much larger than the minimum eigenvalue (λint/λmin ∼ 48), which are the typical results129

for the application of MVA on flux rope. Figures 1a and 1b show the hodograms of the130

magnetic field of the flux rope under local coordinate determined by MVA. One hodogram131

is in Bmax - Bint (Figure 1a), the other is in Bmax - Bmin (Figure 1b). It shows that the132
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magnetic field rotates over 180◦ in Bmax - Bint while shows a straight line in Bmax - Bmin,133

which further confirms the magnetic field variations of this flux rope.134

3.2. Selection Criteria for Flux Ropes

This study applies the criteria in Sun et al. [2016] to select flux ropes in the plasma135

sheet at Mercury. In brief summary of the criteria, i) the ∆Bt > 10 nT (Bt enhancement)136

and ∆Bz > 15 nT (Bz bipolar change), ii) clear By enhancement, iii) clear magnetic field137

rotation in the MVA hodograms, and iv) events should be located inside the plasma sheet138

(βp > 0.5). Furthermore, this study has considered the plasma sheet durations under139

extreme solar wind conditions and includes plasma sheet crossings of 14 hot seasons.140

We obtained 168 flux ropes in the 977 plasma sheet crossings among the 14 hot seasons,141

in which 135 are moving planetward and the other 33 events are moving tailward. Spatial142

distributions of the 168 flux ropes are shown in Figure 2 as blue crosses. Red lines are143

the orbits of MESSENGER during the hot season from 5 November 2011 to 1 December144

2011, the first hot season in Table 1. The average magnetopause and bow shock locations145

of Mercury’s magnetosphere obtained from Winslow et al. [2013] are shown in blue and146

green lines, respectively. In statistical, the mean increment of Bt of the 168 flux ropes147

is ∼ 17 nT, and is ∼ 77% in relative amplitude (∆Bt/Bt). The distribution of flux148

ropes is skewed toward dawnside on the magnetotail, which is similar to the previous149

observations [Sun et al., 2016; Smith et al., 2017]. In this figure, 126 events were located150

on the dawnside (Y′MSM < 0), and 42 events were on the duskside (Y′MSM > 0). In the 977151

plasma sheet crossings, 461 orbits were on the dawnside and 416 were on the duskside152

according to the intersections of orbits and magnetic equatorial plane. There was ∼ 10%153

more orbits on the dawnside than on the duskside, however, this should not account for154
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three times difference between the numbers of flux ropes on the dawnside and on the155

duskside.156

3.3. Force Balance of the Flux Ropes

In this section, the force balance demonstrated by the magnetohydrostatic equation of157

the flux ropes in Mercury’s magnetotail is examined. This equation is an equilibrium158

between plasma thermal pressure gradient force (∇p) and Hall force ( ~J × ~B). The Hall159

force contains magnetic pressure gradient force (∇ B2

2µ0
) and magnetic tension force ( ~B ·160

∇ ~B/µ0). The magnetohydrostatic equation is an equalibrium between pressure gradient161

and magnetic tension, hereafter, we termed it as pressure-tension equilibrium equation.162

Along the normal direction (N , mostly along ZMSM) of the tail current sheet, the pressure-163

tension equilibrium equation could be written as:164

∂

∂N
(p+

B2

2µ0

) =
BT

µ0

∂BN

∂T
(1)

, where BN is the normal magnetic field component (close to Bz), BT is the tangential165

magnetic field component (close to Bx), p is the plasma thermal pressure. It is difficult to166

make a precise evaluation of this equation with only suitable magnetic field measurements,167

which is the case for MESSENGER observations. However, we can approximately estimate168

the force balance through the parameter differences between inside and outside of flux169

ropes on both sides of the equation [Paschmann et al., 1982]:170

∆(p+ B2

2µ0
)

∆N
=
BT

µ0

(BN+ −BN−)

∆T
(2)

. Here BN± are the positive and negative extreme values inside the flux rope during171

observation, and BT is taken as the total field adjacent to the flux rope (which is∼ 31.0 nT172
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for the case that shown in Figure 1). ∆T and ∆N denote the scale along the tangential173

and normal direction, respectively. Because the proton thermal pressure moment was one-174

minute time resolution, which was much longer than the duration of flux ropes (several175

seconds), only the magnetic pressure differences were considered on the lefthand side176

of the equation (2). In general, since the thermal pressure in the lobe was negligible177

compare to that in the plasma sheet, the lack of thermal pressure term would decrease178

the total pressure gradient on the lefthand side in this equation. ∆N is the scale along the179

normal direction. Since only magnetic pressure differences were considered, an additional180

constraint, which is ∆Bt/Bt ≥ 0.2, is applied to further select flux ropes with clear181

magnetic field enhancements. A total of 143 flux ropes was remained.182

The next step is to obtain the BLobe in equation (2), which is the lobe magnetic field183

magnitude adjacent to the flux rope. In the magnetotail, the lobe magnetic field magni-184

tude may be deduced from the pressure balance between lobe and plasma sheet. How-185

ever, since the time resolution of ion measurements was not high enough and there were186

no higher energy ion (> 13.3 keV) or low energy electron measurements, the estimation187

of lobe field through pressure balance was not an option for this study. Hence, we take188

another approach to estimate the lobe field magnitude adjacent to the flux ropes. In the189

studies of Slavin et al. [2012b] and Poh et al. [2017b], an exponential relationship between190

X′MSM and |BL| was revealed in Mercury’s tail:191

|BL(X)| = A · |X|−D + C (3)

, where |BL(X)| is the lobe field magnitude, X is the X′MSM, A is the scaling constant, D192

is the power law exponent, C is the asymptotic magnetic field. Figure 3a shows the fit of193
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the Bt for the first magnetotail crossings on 17 May 2014, which includes the flux rope in194

Figure 1 . The Bt was averaged over a bin of 0.1 RM, which was shown as the blue dots195

with standard deviations as the error bars. The fitted curve consists with the dots nicely196

except in the shaded region (−1.7RM < X′MSM < −2.0RM), which are the measurements197

in the plasma sheet. The BL obtained through the fitted curve at the location of flux rope198

was deemed to be the BT for the flux rope.199

After utilizing the above procedures, the distribution of magnetic pressure differences200

and tension forces for the 143 flux ropes is shown in Figure 3b. The x axis indicates201

the difference of maximum magnetic field pressure inside flux ropes (B2
core/2µ0) and the202

corresponding lobe pressure (B2
Lobe/2µ0) for each flux rope, which is magnetic pressure203

part on the lefthand side in equation (2). The y axis indicates the tension force of each204

flux rope, which corresponds to righthand side in equation (2). Each cross in the figure205

represents a flux rope case. If the flux ropes were force-free ( ~J× ~B = 0), the crosses should206

cluster around the dashed red line with slope of one, indicating that magnetic pressure207

differences and tension forces equal to each other. There is a small group of flux ropes208

that was close to the dashed red line, i.e., quasi-force-free. The percentage is ∼ 6% if one209

considered the the events with differences between x and y being smaller than 0.1 to be210

quasi-force-free, and the percentage is ∼ 13% if the differences are smaller than 0.25. The211

shaded region around the force-free line in Figure 3b indicates the differences of x and y212

being smaller than 0.25. However, most of the crosses were located on the left region of213

the dashed red line. Since the thermal pressure on the lefthand side of equation (2) was214

ignored, the horizontal shift of the crosses could suggest that the thermal pressure might215

play a role for the flux ropes.216
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The linear fit of the crosses shown as the dashed green line results in slope of 0.66217

and interception on x-axis of 1.02 nPa. From equation 2, the interception indicates that218

the average thermal pressure difference between the flux rope and outer boundary is219

∼ 1.02 nPa. The slope of the dashed green line implies that the average ratio of ∆N220

and ∆T was ∼ 0.66, indicating that the the average scale of flux ropes along the X′MSM221

was ∼ 1.5 times that along Z′MSM, i.e., flux ropes were flattened in the X′MSM. If thermal222

pressure inside the flux rope was considered, there should be a horizontal shift in the223

distribution. All the events should distribute around a line with the similar slope as the224

green line but has the interception of 0.225

3.4. Models of Flux Rope Embedded in Current Sheet

The Models of flux rope embedded in current sheet applied in this study was developed226

by Kivelson and Khurana [1995], hereafter this model is referred to as KK95. This model227

was based on the periodic sheet pinch solution of the Ampère’s law [Schindler et al., 1973].228

A basic assumption of this model is that magnetic field and plasma thermal pressure show229

no gradient along the axial direction, which is approximately along the Y′MSM. The KK95230

model includes a force-free model and a non-force-free model. The solution of force-free231

flux rope in consideration of the existence of By can be written as232


Bx = (BL

χ
)
√

1 + ε2sinh( z
L

)

By = (BL
χ

)
√

1 + (χBy0

BL
)2

Bz = ε(BL
χ

)sin( x
L

)

(4)

where BL is the magnetic field strength in the lobe, L is the thickness of the tail current233

sheet, ε is the shape factor, By0 is the background By, and χ is234
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χ = εcos(
x

L
) +
√

1 + ε2cosh(
z

L
) (5)

In these equations, only ε is a free parameter, and it determines the shape of the periodic235

sheet pinch. The larger the value of ε, the closer the shapes of magnetic field lines are236

circular. The ε is obtained as a least squares fit result. However, when the thermal237

pressure gradient (∇p) cannot be ignored, force balance equations in X −Z plane should238

consider the contribution from thermal pressure gradient ( ~J × ~B = ∇p). In KK95 model,239

they consider the thermal pressure in the form of240

p(x, z) =
p0
χ2

(1− γε/χκ−2) (6)

where p0 is the thermal pressure in the center of tail current sheet, and γ and κ are241

parameters determining the spatial profile of the pressure. The self-consistent solution242

for a non-force-free flux rope, after consideration of the above thermal pressure profile is243

given by:244


Bx = (BL

χ
)
√

1 + ε2sinh( z
L

)

By = (BL
χ

)
√

(1− 2µ0p0
BL

2 ) + 2µ0p0γε
BL

2χκ−2 + (By0χ

BL
)2

Bz = ε(BL
χ

)sin( x
L

)

(7)

In comparison with the Lundqvist solution based force-free flux rope model which solves245

the Bessel function [e.g., Lundquist , 1950; Burlaga, 1988; Lepping et al., 1996; Slavin et al.,246

2003], the KK95 non-force-free model takes into account not only the thermal pressure247

contribution, but also the boundary conditions. In this model, the variation of thermal248

pressure influences the spatial distribution of By, but not Bx and Bz. When ε is close to249
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0, equations (6) and (7) degenerate to the Harris Current Sheet (HCS) solution [Harris ,250

1962]:251

{
Bx = BLtanh( z−z0

L
)

p = p0sech2( z−z0
L

)
(8)

Hence, when z is far away (>> L) from the center of flux rope, the magnetic field from252

the KK95 model is close to the values expected from the HCS model. Since the KK95253

model relies on the basic parameters of the magnetotail current sheet, the thickness of254

the current sheet (L) for instance, we have applied HCS model into the magnetic fields255

during the magnetotail crossing to obtain these parameters.256

Figure 4 shows the plasma sheet crossing of MESSENGER during which the flux rope in257

Figure 1 was observed. In Figure 4, MESSENGER travelled from the northern hemisphere258

(Bx > 0) to the southern hemisphere (Bx < 0) and crossed the plasma sheet. The flux259

rope was observed near the central part of the plasma sheet, which is indicated by the260

dashed red line. HCS fitting only employs magnetic field measurements in the southern261

hemisphere to mitigate the effects from dipole magnetic field, since the MESSENGER is262

closer to the planet in the northern hemisphere. The measured magnetic field has been263

transformed into the local coordinate system in the HCS fitting [Sun et al., 2017; Poh et al.,264

2017b; Rong et al., 2018]. Figure 4e shows the fitting result. The black line represents the265

measured magnetic field, and the red line is the HCS best fit. These two are coincident266

indicating a very good fit. The dashed blue line shows the thermal pressure distribution267

in this current sheet from the HCS fitting, and the blue dots are proton thermal pressure268

from one minute average moments of FIPS. The blue dots are much lower than the dashed269

blue line, which could be due to, i) the one minute moments averaged over the peak values270
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of thermal pressure in the central of the current sheet (especially when there were few271

data points inside the plasma sheet); ii) the contribution from heavy ions (mostly He++
272

for this current sheet crossing, as shown in Figure 4c, but for some crossings Na+ could be273

dominant) on the thermal pressure inside current sheet was ignored; iii) the contributions274

from protons with energy higher than ∼ 13.3 keV (above the upper limit of FIPS) and275

electrons were not measured. It needs to note that the contribution from electrons to276

thermal pressure in Mercury’s plasma sheet was calculated to be negligible compared277

with protons in the measurements from Mariner 10 [Ogilvie et al., 1977]. The HCS fitting278

indicates a current sheet with a half thickness of ∼ 0.06 RM, which was only one-third279

of the average thickness of ∼ 0.18 RM of Mercury’s tail current sheet [Poh et al., 2017b;280

Rong et al., 2018]. The lobe field (BL) was ∼ 73 nT much stronger than the averaged281

lobe field (∼ 50 nT) in X′MSM ∼ −2 RM [Poh et al., 2017b; Rong et al., 2018]. These two282

features suggest that this current sheet is under strong external driving. The magnetic283

field fluctuations in the current sheet confirm that this plasma sheet crossing was very284

active. The center (z0) of the current sheet was found to be located at Z′MSM = 0.13RM,285

which was close to the location of the flux rope marked by the shaded gray region (Figure286

4e).287

Since FIPS cannot resolve the background flow velocity for a single event due to the288

field of view limitation, we set the travelling speed of flux rope to be a free parameter to289

be determined by the best fit to the flux ropes, the Alfvén speed ( BL√
µ0npmp

) estimated from290

the BL, the lobe magnetic field, and np, proton density around flux ropes, was set as an291

upper limit. In the study of DiBraccio et al. [2015], they assumed a speed of 465 km/s for292

all of the flux ropes, which was obtained by averaging over the local Alfvén speeds for all293
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adjacent plasma sheets. In this fitting, we apply x = v(t−t0)cosθ and z = v(t−t0)sinθ+∆z294

by assuming that the flux rope passed the spacecraft at a constant speed, where θ was295

the polar angle of flux rope’s velocity in X− Z plane (−15◦ < θ < 15◦) given by the296

least squares fit, t0 was the inflection time of B′Z bipolar and ∆z was determined by297

MESSENGER’s position and the z0 resulted from the HCS modelling.298

The Alfvén speed ( BL√
µ0npmp

) for the flux rope in Figure 1 is determined to be∼ 910 km/s.299

Together with the parameters of current sheet, the fitting results of the flux rope were300

shown in Figures 1c to 1f as the dashed red lines. The similarity between observation301

and model fields indicates a good fitting. The fitting suggested that the flux rope had a302

travelling speed of ∼ 900 km/s, magnetic flux content of ∼ 0.010 MWb, semi-major axis303

(scale along X′MSM) of ∼ 600 km, ε of 0.56, γ of 0.2, κ of 5. The magnetic flux content304

of flux rope was obtained by integrating By in the cross section inside the outmost field305

line, i.e., Φ =
∫∫

Bydxdz. Figure 5 shows the two-dimensional distributions of By and p306

in the plane transverse to the axis of this flux rope from the KK95 model. MESSENGER307

crossed close to the center axis of this flux rope. The By in the center was around308

∼ 105 nT. The distribution of p showed enhancement in the outer part, while a local309

minimum in the central part of the flux rope. While, the thermal pressure inside the flux310

rope is significantly larger than the ambient thermal pressure. The results revealed that311

the scale of flux rope was around twice the the scale along the x-axis from DiBraccio et al.312

[2015] and Smith et al. [2017] whose force free model assumes a circular cross section. The313

core field and magnetic flux content were also much larger than the average values from314

their studies. To further evaluate the result from a single case study, a statistical analysis315

on the flux rope properties determined using the KK95 model is presented below.316
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4. Statistical Results on the Flux Ropes

The 168 flux ropes were processed with the similar way as the case in previous section.317

The first step was to obtain the parameters of cross-tail current sheet, which contained the318

flux ropes, as an input of KK95 model. We picked up the fitting of cross-tail current sheet319

satisfying the constraint same as that in Sun et al. [2017], which yielded 103 qualified320

events. Next the flux ropes were fit to the KK95 model. The free parameters, including ε,321

γ, κ, and traveling speeds, were set to be varying in different range values. The magnetic322

field curves obtained from the model were compared with the measured magnetic fields.323

A least squares of minimization of the differences (χ2) was employed to further select the324

events, which was similar to previous flux ropes studies [e.g., Slavin et al., 2003; DiBraccio325

et al., 2015]326

χ2 =

∑N
i=1

∑
j=x,y,z [(Bjo(i)−Bjm(i))/Bto(i)]

2

N
(9)

, where Bxo, Byo, Bzo, and Bto are the components and magnitude of the measured327

magnetic fields, and Bxm, Bym, and Bzm are the components from the KK95 model. N328

is the number of data points. The parameters of the model corresponding to the smallest329

χ2 were output. After obtaining the χ2 of the 103 flux ropes, a threshold of χ2 < 0.1 to330

further select the events results in 28 events. A different threshold of χ2 < 0.05 gives 20331

events. The statistical results of the 28 and 20 flux ropes were summarized in Figure 6.332

The distributions from the two threshold of χ2 < 0.1 (white bars) and χ2 < 0.05 (grey333

bars) are similar and result in similar values. In the next paragraph, we will discuss the334

results from χ2 < 0.1 (white bars).335
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The distribution of the largest thermal pressure differences along the major axes of the336

flux ropes (Z′MSM = 0) was shown in Figure 6a. The mean and median values of thermal337

pressure differences were ∼ 1.40 nPa and ∼ 1.13 nPa, respectively. The thermal pressure338

difference obtained through the model was larger than the average 1.02 nPa resulted339

in Figure 3b, which could due to the spacecraft usually not crossing the center of the340

flux ropes. The mean and median values of core field of flux ropes were ∼ 57.5 nT and341

∼ 63.3 nT (Figure 6b), which was much larger than the values of 41.0 nT and 22.4 nT342

in DiBraccio et al. [2015] and Smith et al. [2017], respectively. Because the force free343

model in those studies only considered the force balance between magnetic field pressure344

gradient force and magnetic tension force, the decrease of thermal pressure inside the flux345

rope (as shown in Figure 5b), which was considered in the non-force-free model of this346

study, should result in the increase of magnetic field pressure and the core field in the347

center of flux ropes. It is found that the mean and median flux content of flux ropes is348

∼ 0.019 MWb and ∼ 0.016 MWb, respectively ,which is around an order of magnitude349

higher than the ∼ 0.002 MWb obtained in previous results. To further investigate the350

reason of the difference, we have employed the force-free model to estimate the properties351

for the 20 flux ropes in Figure 6. Force free results can be found in the supplementary352

material as Figure S1. The statistical results from force-free model give a mean flux353

content of ∼ 0.012 MWb, which is ∼ 35% smaller than the value from non-force-free354

model. This indicates that the non-force-free model did output a relatively higher flux355

content for flux ropes. The mean core field is ∼ 60 nT from the force-free model, which is356

similar to the values (∼ 69.1 nT for χ2 < 0.05, ∼ 57.5 nT for χ2 < 0.1.) from non-force-357

free model. While the radius is ∼ 367 km from the force-free model, corresponding to a358
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cross-sectional area of ∼ 5.4× 105 km2. The mean cross-sectional area is ∼ 9.2× 105 km2
359

for the non-force-free flux rope model. Therefore, the higher magnetic flux resulted from360

the non-force-free model mainly arises from the relative larger cross-sectional area.361

Figure 6d shows that the semi-major of the flux ropes (along X′MSM) is ∼ 875 km, and362

Figure 6e shows that the semi-minor (along Z′MSM) is ∼ 356 km. On one hand, the scales363

are much larger than the scales in previous studies (454 km in DiBraccio et al. [2015] and364

262 km Smith et al. [2017]). On the other hand, semi-major is much larger than the semi-365

minor indicating that flux ropes are flattened along the X′MSM, which consists with the366

flatten conclusion reached by Figure 3b. Plasma sheet density in Mercury’s magnetotail367

plasma sheet is found to be ∼ 1 to 10 cm−3 [Gershman et al., 2014; Sun et al., 2018; Poh368

et al., 2018], corresponding to ion inertial length of 80 to 230 km. The scales of flux ropes369

resulted in KK95 model are several times the ion inertial length. In Figure 3b, the ratio370

between of average scale of flux rope along Z′MSM and X′MSM was estimated to be ∼ 0.66.371

The model in this study gives a ratio of ∼ 0.41. One must note that the spacecraft did372

not always cross the center axis of the flux rope. Hence, the scale estimated from Figure373

3b might not be the real scale of the flux ropes, and this fact could be responsible to the374

difference between the two values. Figure 6f shows the distribution of travelling speeds of375

the flux ropes. As noted earlier, we have employed a different way than DiBraccio et al.376

[2015] in determining the travelling speeds of flux ropes. The mean and median speeds377

are ∼ 560 km/s and 535 km/s, respectively, which are slightly larger than 465 km/s in378

DiBraccio et al. [2015].379
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5. Discussions

The distribution of flux ropes is skewed toward dawnside on Mercury’s magnetotail as380

shown in Figure 2. This feature is similar to the previous observations [Sun et al., 2016;381

Smith et al., 2017; Poh et al., 2017a] and is different from the distributions in Earth’s382

magnetotail [e.g., Slavin et al., 2005; Imber et al., 2011]. In the Earth’s studies, flux ropes383

and TCRs were more frequently observed on the duskside than on the dawnside in the384

near Earth neutral line region [Slavin et al., 2003, 2005; Imber et al., 2011]. Slavin et al.385

[2005] further showed that the flux ropes and TCRs were larger on the duskside than on386

the dawnside. To investigate the scale of flux ropes in Mercury’s magnetotail, we have387

shown the distribution of the durations and amplitudes of the flux rope Bz bipolar in388

Figure 7. The durations and amplitudes were determined by Bz peak to peak of flux389

ropes. Figure 7a shows that the mean bipolar duration of flux ropes are longer on the390

duskside (∼ 1.2 s, 0.5RM to 1.5RM) than on the dawnside (∼ 0.8 s), which implies that391

the scale in X′MSM of flux ropes might be larger on the duskside (Y′MSM > 0.5 RM) than392

on the dawnside similar to the results at Earth. We have done a two sample t-test for the393

events on the duskside (Y′MSM > 0.5 RM) and dawnside (Y′MSM < −0.5 RM). The p-value394

is 0.029 which is smaller than 0.05 indicating the duration difference in these two regions is395

credible. However, in reaching this conclusion, it assumed that travelling speed of the flux396

ropes were similar. For the case of Mercury’s magnetotail, the magnetic field did not show397

much differences along the Y′MSM in the near neutral line region [Poh et al., 2017a], but398

the heavy ions, Na+, was preferentially observe on the duskside [Raines et al., 2013]. The399

average density of Na+ was ∼ 8% that of protons in Mercury’s plasma sheet [Gershman400

et al., 2014]. If we considered Na+ in the estimation of Alfvén speed, the speed would401
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be ∼ 40% lower on the duskside than on the dawnside, which could correspond to the402

duration difference of the Bz bipolar shown in Figure 7a. Therefore, the conclusion that403

the scales in X′MSM of the flux ropes was larger on the duskside than on the dawnside might404

be not real. Further studies with reliable plasma flow measurements will be desirable.405

Figure 7b shows the distribution of the amplitudes of Bz bipolar in the dawn-dusk406

direction. The amplitudes of Bz bipolar do not show clear dawn-dusk asymmetry. The407

amplitudes of Bz bipolar could represent the curvature radius of the flux rope magnetic408

field lines, and therefore, the scale of flux ropes in Z′MSM. This distribution indicates that409

the scales of flux ropes in Z′MSM do not show clear difference in the dawn-dusk direction.410

In Section 3.3, the distribution of pressure-tension balance of flux ropes in Figure 3b411

was interpreted that most of the flux ropes were not force free. The magnetic tension force412

could not be solely balanced by magnetic pressure gradient force, however, there were a413

small group of events (∼ 13%) which were located near the dashed red line with slope being414

one, i.e., quasi-force-free. It was suggested that flux ropes should evolve toward being415

force-free and reach the minimum-energy state, which is called the ‘Taylor state’, with416

cylindrical profile eventually [e.g., Taylor , 1986]. Therefore, the results from Figure 3b and417

Figure 6 showed that thermal pressure gradient in most of the flux ropes were significant418

suggesting that they have only recently formed and still contain enough plasma to affect419

their magnetic structure. In previous studies, a weak correlation between core field inside420

flux ropes and guide field By in the plasma sheet was revealed [Smith et al., 2017; Ding421

and Rong , 2018]. Our conclusion that flux ropes were recently formed suggested that422

the core field of the flux ropes could be skewed towards the reconnecting field from the423
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guide field as proposed in the simulations [e.g., Nakamura et al., 2016]. This factor might424

explain their poor correlation between core field of flux ropes and guide field.425

6. Conclusions

This study has investigated the features of flux ropes in Mercury’s magnetotail plasma426

sheet, including the force balance and flux rope structures. The spatial distribution of427

flux ropes shows clearly dawn-dusk asymmetry with more events being observed on the428

dawnside than on the duskside, which consists with the previous results [Sun et al., 2016].429

An investigation on the force balance of flux ropes reveals that the magnetic pressure430

gradient force cannot be solely balanced by magnetic tension force in most of the flux431

ropes, implying the importance of thermal pressure inside the flux ropes. By employing a432

non-force-free flux rope model, the thermal pressure differences, core field, scales, and flux433

contents were investigated. The mean value of the largest thermal pressure differences434

along X′MSM of the flux ropes was ∼ 1.40 nPa. The average core field was estimated to435

be ∼ 57.5 nT, and flux content was ∼ 0.019 MWb. The average core field corresponds436

to a similar value of pressure, i.e. ∼ 1.31 nPa, as the largest thermal pressure differences437

along X′MSM. The flux ropes had a flattened structure with scale in the X′MSM direction438

(∼ 851 km) being larger than in the Z′MSM (∼ 333 km). The scales of the flux ropes were439

several times the background proton inertial length. Besides, the average travelling speed440

of flux ropes was estimated to be ∼ 560 km/s.441

Compare with the results obtained from force-free model of flux ropes in Mercury’s442

magnetotail [DiBraccio et al., 2015; Smith et al., 2017], the core field and flux content443

in this study were much larger than the previous results, in which the core field was444

∼ 22 nT and flux content was ∼ 0.002 MWb. The scale of the flux rope in this study445
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was much larger than the previous value (∼ 262 km), but the average travelling speed446

was comparable (465 km/s) [DiBraccio et al., 2015]. The magnetic flux contained by a447

flux rope in previous study was an order of magnitude smaller than the the magnetic flux448

carried by a DFB [Dewey et al., 2018], while this study reveals that the flux content of a449

flux rope is about one third of the flux of a DFB. It needs to note that Fear et al. [2017]450

argued that the amount of flux reconnected in the formation of the flux ropes could be451

greater than the flux rope contents, which might be more directly comparable with the452

DFB flux.453

The importance of thermal pressure gradient in the force-balance of the flux ropes and454

the flatten structure indicate that the flux ropes observed by MESSENGER in Mercury’s455

tail have only recently formed. The flux ropes still contained enough plasma to affect their456

magnetic structures as observed in PIC simulations of flux rope formation in thin current457

sheets [Chen et al., 2017]. The core field of the early stage flux rope could be influenced458

by the reconnecting magnetic field, which explained the weak correlation between core459

field of flux ropes and the guide field as shown in previous studies [Smith et al., 2017;460

Ding and Rong , 2018].461
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Hidalgo, M. A., C. Cid, A. F. Viñas, and J. Sequeiros (2002), A non-force-free approach540

to the topology of magnetic clouds in the solar wind, Journal of Geophysical Research:541

Space Physics, 107 (A1), SSH1–1–SSH 1–7, doi:10.1029/2001JA900100.542

Hones, E. W. (1977), Substorm processes in the magnetotail: Comments on ‘on hot543

tenuous plasmas, fireballs, and boundary layers in the earth’s magnetotail’ by l. a. frank,544

k. l. ackerson, and r. p. lepping, Journal of Geophysical Research, 82 (35), 5633–5640,545

doi:10.1029/JA082i035p05633.546

Hughes, W. J., and D. G. Sibeck (1987), On the 3-dimensional structure of plasmoids,547

Geophysical Research Letters, 14 (6), 636–639, doi:10.1029/GL014i006p00636.548

Imber, S. M., and J. A. Slavin (2017), Messenger observations of magnetotail loading and549

unloading: Implications for substorms at mercury, Journal of Geophysical Research:550

Space Physics, 122 (11), 11,402–11,412, doi:10.1002/2017JA024332.551

Imber, S. M., J. A. Slavin, H. U. Auster, and V. Angelopoulos (2011), A themis survey of552

flux ropes and traveling compression regions: Location of the near-earth reconnection553

site during solar minimum, Journal of Geophysical Research: Space Physics, 116 (A2),554

doi:10.1029/2010JA016026.555
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(2009), Messenger observations of magnetic reconnection in mercury’s magnetosphere,641

Science, 324 (5927), 606–610, doi:10.1126/science.1172011.642

Slavin, J. A., B. J. Anderson, D. N. Baker, M. Benna, S. A. Boardsen, G. Gloeckler,643

R. E. Gold, G. C. Ho, H. Korth, S. M. Krimigis, R. L. McNutt, L. R. Nittler, J. M.644

Raines, M. Sarantos, D. Schriver, S. C. Solomon, R. D. Starr, P. M. Trávńıček, and645
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alfvénic and compressional waves during mercury’s substorms, Geophysical Research685

Letters, 42 (15), 6189–6198, doi:10.1002/2015GL065452.686

Sun, W. J., S. Y. Fu, J. A. Slavin, J. M. Raines, Q. G. Zong, G. K. Poh, and T. H.687

Zurbuchen (2016), Spatial distribution of mercury’s flux ropes and reconnection fronts:688

Messenger observations, Journal of Geophysical Research: Space Physics, 121 (8), 7590–689

7607, doi:10.1002/2016JA022787.690

Sun, W. J., J. M. Raines, S. Y. Fu, J. A. Slavin, Y. Wei, G. K. Poh, Z. Y. Pu, Z. H.691

Yao, Q. G. Zong, and W. X. Wan (2017), Messenger observations of the energization692

and heating of protons in the near-mercury magnetotail, Geophysical Research Letters,693

44 (16), 8149–8158, doi:10.1002/2017GL074276.694

D R A F T May 23, 2019, 11:44pm D R A F T

This article is protected by copyright. All rights reserved.



X - 36 ZHAO ET AL.: MERCURY’S FLUX ROPE

Sun, W. J., J. A. Slavin, R. M. Dewey, J. M. Raines, S. Y. Fu, Y. Wei, T. Karlsson,695

G. K. Poh, X. Jia, D. J. Gershman, Q. G. Zong, W. X. Wan, Q. Q. Shi, Z. Y. Pu,696

and D. Zhao (2018), A comparative study of the proton properties of magnetospheric697

substorms at earth and mercury in the near magnetotail, Geophysical Research Letters,698

0 (0), doi:10.1029/2018GL079181.699

Taylor, J. B. (1986), Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys.,700

58, 741–763, doi:10.1103/RevModPhys.58.741.701

Winslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker,702

D. N. Baker, and S. C. Solomon (2013), Mercury’s magnetopause and bow shock from703

messenger magnetometer observations, Journal of Geophysical Research: Space Physics,704

118 (5), 2213–2227, doi:10.1002/jgra.50237.705

Zhao, C., C. T. Russell, R. J. Strangeway, S. M. Petrinec, W. R. Paterson, M. Zhou,706

B. J. Anderson, W. Baumjohann, K. R. Bromund, M. Chutter, D. Fischer, G. Le,707

R. Nakamura, F. Plaschke, J. A. Slavin, R. B. Torbert, and H. Y. Wei (2016), Force708

balance at the magnetopause determined with mms: Application to flux transfer events,709

Geophysical Research Letters, 43 (23), 11,941–11,947, doi:10.1002/2016GL071568.710

Zhong, J., W. X. Wan, J. A. Slavin, Y. Wei, R. L. Lin, L. H. Chai, J. M. Raines, Z. J. Rong,711

and X. H. Han (2015), Mercury’s three-dimensional asymmetric magnetopause, Journal712

of Geophysical Research: Space Physics, 120 (9), 7658–7671, doi:10.1002/2015JA021425.713

Zhong, J., Y. Wei, Z. Y. Pu, X. G. Wang, W. X. Wan, J. A. Slavin, X. Cao, J. M. Raines,714

H. Zhang, C. J. Xiao, A. M. Du, R. S. Wang, R. M. Dewey, L. H. Chai, Z. J. Rong, and715

Y. Li (2018), Messenger observations of rapid and impulsive magnetic reconnection in716

mercury’s magnetotail, The Astrophysical Journal Letters, 860 (2), L20.717

D R A F T May 23, 2019, 11:44pm D R A F T

This article is protected by copyright. All rights reserved.



ZHAO ET AL.: MERCURY’S FLUX ROPE X - 37

Zong, Q.-G., B. Wilken, G. D. Reeves, I. A. Daglis, T. Doke, T. Iyemori, S. Livi,718

K. Maezawa, T. Mukai, S. Kokubun, Z.-Y. Pu, S. Ullaland, J. Woch, R. Lepping,719

and T. Yamamoto (1997), Geotail observations of energetic ion species and magnetic720

field in plasmoid-like structures in the course of an isolated substorm event, Journal of721

Geophysical Research: Space Physics, 102 (A6), 11,409–11,428, doi:10.1029/97JA00076.722

Zong, Q.-G., T. Fritz, H. Spence, M. Dunlop, Z. Pu, A. Korth, P. Daly, A. Balogh, and723

H. Reme (2003), Bursty energetic electrons confined in flux ropes in the cusp region,724

Planetary and Space Science, 51 (12), 821 – 830, doi:https://doi.org/10.1016/S0032-725

0633(03)00116-8, key Problems in Space Physics: Thin Magnetospheric Boundaries.726

Zong, Q.-G., T. A. Fritz, Z. Y. Pu, S. Y. Fu, D. N. Baker, H. Zhang, A. T. Lui, I. Vogiatzis,727

K.-H. Glassmeier, A. Korth, P. W. Daly, A. Balogh, and H. Reme (2004), Cluster728

observations of earthward flowing plasmoid in the tail, Geophysical Research Letters,729

31 (18), doi:10.1029/2004GL020692.730

D R A F T May 23, 2019, 11:44pm D R A F T

This article is protected by copyright. All rights reserved.



X - 38 ZHAO ET AL.: MERCURY’S FLUX ROPE

Table 1: The start and end times of the MESSENGER hot seasons

# year start doya end doy
1 2011 309 335
2 2012 33 58
3 2012 122 144
4 2012 210 232
5 2012 297 318
6 2013 64 79
7 2013 146 163
8 2013 231 254
9 2013 318 342
10 2014 43 65
11 2014 132 151
12 2014 218 238
13 2014 305 328
14 2015 27 52

a doy, day of the year

D R A F T May 23, 2019, 11:44pm D R A F T

This article is protected by copyright. All rights reserved.



ZHAO ET AL.: MERCURY’S FLUX ROPE X - 39

50 0 50
Bint(nT)

50

0

50

B
m

ax
(n

T
)

(a)

50 0 50
Bmin(nT)

50

0

50

B
m

ax
(n

T
)

(b)

30

0

30

B
′ X
(n

T
) (c)nmin = [0. 89, 0. 06, − 0. 46]

20

50

80

B
′ Y
(n

T
) (d)nint = [− 0. 15, 0. 98, − 0. 16]

30

0

30

B
′ Z
(n

T
) (e)nmax = [0. 43, 0. 21, 0. 87]

-5 s -4 s -3 s -2 s -1 s ∆t +1 s +2 s +3 s +4 s +5 s
0

50

100

B
t(

n
T
) Core Field:93.7nT

Ambient Field:31.0nT

(f)

UT : 03 : 12 : 50. 83 
 X′ : − 1. 85RM Y′ : − 0. 56RM Z′ : 0. 16RM

Flux Rope-2014-05-17

Figure 1: A flux rope case in Mercury’s magnetotail at ∼ 03:12:50.83 UT, 17 May 2014. MVA
magnetic field hodograms of the flux rope are shown in the planes of Bmax - Bint (a) and Bmax -
Bmin (b), respectively. (c) magnetic field x component, Bx, (d) By, (e) Bz, (f) Bt. Dashed red

curves in the shaded region from (c) to (f) are the magnetic field from the fitting of KK95
model.
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Figure 2: Spatial distributions of the 168 flux ropes in X′MSM − Y′MSM (a) and X′MSM − Z′MSM (b)
planes, respectively. Blue crosses represent the flux ropes. MESSENGER orbits in the hot

season from 2011-309 to 2011-335 are shown as red lines. The blue and green lines indicate the
average locations of magnetopause and bow shock of Mercury’s magnetosphere from [Winslow

et al., 2013].
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Figure 3: (a) Power Law fitting of the magnetic field intensity (Bt) along the tail distance
(X′MSM) for the first magnetotail passes on 17 May 2014. The red line indicates the magnitude
of the dipole magnetic field of Mercury. The blue dots with error bars represent the intensities
of the measured magnetic field, which are averaged over each 0.1 RM bin (error bars here are
the standard deviation). The dashed green line shows the power law fitting of the blue dots

with the parameters A = 144.8 nT, D = 3.7 and C = 55.5 nT. (b) The distribution of magnetic
pressure differences and magnetic tension force for the 143 flux ropes. Each cross indicates an

event. The dashed red line has a slope of one. The dashed green line is the linear fit of the data
points. The shaded region corresponding to the quasi-force-free criterion.
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Figure 4: Plasma and magnetic field measurements from MESSENGER between 03:08 to 03:18
UT on 17 May 2014. (a) energy spectrum for proton differential particle flux, (b) plasma β

from one minute average proton moments, (c) heavy ion counts of four composition types, He+

(cross), He++ (dots), O+ group, m/q = 14–20, (circle), and Na+ group, m/q = 20− 30,
(diamond), (d) magnetic field components, Bx (red), By (green), Bz (blue), Bt (black), (e) B′x

measurements in local coordinate (black) and the fitting from Harris current sheet model (red),
thermal pressure from Harris current sheet fitting (dashed blue line), thermal pressure from one

minute proton moments (blue dots).
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Figure 5: The core field, By, (a) and thermal pressure, p, (b) distributions from the KK95
model for the flux rope in Figure 1. The dashed red line represents the trajectory of the

spacecraft. Solid white line marks the boundary of the flux rope. Dashed white line and cross
indicates the contour of peak (p = 2.98nPa) and the central dip (p = 2.75nPa) of thermal

pressure in the flux rope. Black lines with values are the contour of By and p.
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Figure 6: Statistical properties of the flux ropes resulted from the KK95 model. (a) The largest
thermal pressure (p) difference along the major axes, (b) the core field in the center of flux

rope, (c) magnetic flux content, (d) semi-major axes (scale in X′MSM), (e) semi-minor axes (scale
in Z′MSM), (f) The traveling speeds. The grey and white bars represent the distributions of

event with χ2 < 0.1 and χ2 < 0.05, respectively. In each figure, µ represent the mean values. M
represent the median values.
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Figure 7: The distributions of the duration and amplitudes of flux ropes along Y′MSM. (a) the
duration were obtained from peak to peak of Bz. (b) the amplitude of Bz from peak to peak.
Errorbars represent the standard error of the mean in each bin. Number of off-axis events is
marked on the top right corner.Another version of this Figure with a wider range in Y-axis is

attached in supplementary material as Figure S2.
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