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1 Web Appendix A

Main proofs to Theorems 1-3.

Proof of Theorem 1. Our estimator for β0
j by the one-time SPARE is

β̃j =
{

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
Y 1
}
j
. (A.1)

Here D1 = (X1, Y 1) with sample size bn/2c, for notational simplicity, we denote m = bn/2c
within this proof.

By (A3), with probability at least 1− o(m−c2−1), the selection S ⊃ S0,n. Since the two
halves of data D1 and D2 are mutually exclusive, (X1, Y 1) ⊥ S. Thus given S ⊃ S0,n and

X1, the OLS estimator β̃1 = (X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
Y 1 is unbiased,

E
(
β̃1
∣∣∣S,X1

)
=E

(
(X1

S∪j
T
X1
S∪j)

−1X1
S∪j

T
X1β0

∣∣∣S,X1
)

+ E
(

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
X1ε1

∣∣∣S,X1
)

=E
(

(X1
S∪j

T
X1
S∪j)

−1X1
S∪j

T
X1
S∪jβ

0
S∪j

∣∣∣S,X1
)

+ E
(
ε1
∣∣S,X1

)
=β0

S∪j.

(A.2)
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In addition, Var
(
β̃1
∣∣∣S,X1

)
= σ2Σ−1

S∪j/m, which is bounded by assumption (A1). Thus,

√
m(β̃1 − β0

S∪j)
∣∣∣S,X1 d−→ N(0, σ2Σ−1

S∪j). (A.3)

Furthermore, √
m(β̃j − β0

j )
∣∣∣S,X1 d−→ N(0, σ̃2

j ), (A.4)

where σ̃2
j = σ2

(
Σ−1
S∪j

)
jj

.

Next we show the uniform convergence of
√
m(β̃j−β0

j )/σ̃j with respect to j, S and X1.

From the partial regression formulation of β̃j, if S ⊃ S0,n,

β̃j − β0
j =

X1
j

T
(Im −H1

S\j)ε
1

X1
j

T
(Im −H1

S\j)X
1
j

=
m

X1
j

T
(Im −H1

S\j)X
1
j

X1
j

T
(Im −H1

S\j)ε
1

m
. (A.5)

By Lemma (1),

m

X1
j

T
(Im −H1

S\j)X
1
j

=
(

Σ̂−1
S∪j

)
jj
→
(

Σ−1
S∪j

)
jj
, (A.6)

and ∀j, S,

∣∣∣∣ m

X1
j
T

(Im−H1
S\j)X

1
j

∣∣∣∣ ≤ 2/cmin. Moreover, the second term of the right hand side in

(A.5) is the mean of i.i.d. x̃1
ijε

1
i ’s, where (x̃1

ij)i=1,..,m = X1
j (Im − H1

S\j). Since E|εi|3 ≤ ρ0

and X1
j (Im −H1

S\j) is the projection vector of X1
j ,

E|X1
j (Im −H1

S\j)|3∞ ≤ E|X1
j |3∞ ≤ ρ1. (A.7)

By the Berry-Esseen Theorem, ∀j, X and S ⊃ S0,n,

|Fn(x)− Φ(x)| ≤
(

2

cmin

)3
Cρ0ρ1

σ̃3
j

√
m
≤ 8c

3/2
maxCρ0ρ1

c3
minσ

3
√
m
, (A.8)

where Fn(x) is the CDF of
√
m(β̃j−β0

j )/σ̃j and Φ(x) is the CDF of standard normal. Thus
as m→∞, with probability at least 1− o(m−c2−1),

√
m(β̃j − β0

j )/σ̃j → N(0, 1). (A.9)
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Proof of Theorem 2. We first introduce the oracle SPARE estimators of β0
j ’s, i.e. the ones

we would compute if we knew the true active set S0,n,

β̂0
j =

{
(XS0,n∪j

TXS0,n∪j)
−1XS0,n∪j

TY
}
j

(A.10)

β̂bj,S0,n
=
{

(Xb
S0,n∪j

T
Xb
S0,n∪j)

−1Xb
S0,n∪j

T
Y b
}
j
, (A.11)

which are estimations on the original data (X, Y ) and the bootstrap half data Db
1, respec-

tively. Since β̂0
j is the least square corresponding to Xj when regressing Y on XS0,n∪j, we

have for each j

W 0
j =
√
n(β̂0

j − β0
j )/σj

d−→ N(0, 1) as n→∞, (A.12)

where σ2
j = σ2

(
Σ−1
S0,n∪j

)
jj

that corresponds to subscript j. By Cauchy’s interlacing theorem

(Proposition 3), σ2/cmax ≤ σ2
j ≤ σ2/cmin, and thus it is bounded away from zero and infinity.

Now we consider the behavior of the selections Sb’s from Db
2’s. For each b = 1, 2, ..., B,

the subsample Db
2 consists of mb ≥ n/2 distinct observations from the original data that

are not drawn in the bootstrap half dataset Db
1. In other words, Db

2 can be regarded as a
sample of mb i.i.d. observations from the population distribution. In addition, since mb is
independent of the observations, with a conditional argument on mb, the following holds
for each b by (B3),

P(Sb = S0,n)

=

∫
P(Sb = S0,n|mb = m)dP(m)

≥
∫ {

1− o(m−c2−1)
}

dP(m)

≥1− o{(n/2)−c2−1}
=1− o(n−c2−1).

(A.13)

Next, we decompose β̂j into two parts:

β̂j =
1

B

B∑
b=1

β̂bj

=
1

B

B∑
b=1

β̂bj,S0,n
+

1

B

∑
b:Sb 6=S0,n

(
β̂bj − β̂bj,S0,n

)
,

(A.14)
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and equivalently

√
n(β̂j − β0

j )

=
√
n
( 1

B

B∑
b=1

β̂bj,S0,n
− β0

j

)
+

√
n

B

∑
b:Sb 6=S0,n

(
β̂bj − β̂bj,S0,n

)
.
=Z0

j + ∆j.

(A.15)

To show ∆j = op(1), we write

∆j =
1

B

B∑
b=1

1(Sb 6= S0,n)
√
n
(
β̂bj − β̂bj,S0,n

)
; (A.16)

∆j =
1

B

B∑
b=1

δb; δb
.
= 1(Sb 6= S0,n)

√
n
(
β̂bj − β̂bj,S0,n

)
. (A.17)

By Corollary (2),

Eδb =P(Sb 6= S0,n)E
√
n
(
β̂bj − β̂bj,S0,n

)
=o
(
n−c2−12Cβn

c1+ 1
2

)
=o
(
n−c2+c1− 1

2

)
→0 as n→∞.

(A.18)

Similarly,

Varδb =P(Sb 6= S0,n)En
(
β̂bj − β̂bj,S0,n

)2

=o
(
n−c2−14C2

βn
2c1+1

)
=o(n−c2+2c1)

→0 as n→∞.

(A.19)

Thus δb = op(1) for all b ∈ [B]. Furthermore, since E∆j = Eδb and Var∆j ≤ Varδb, we
have ∆j = op(1).

Next, we show the convergence of Z0
j . Notice that

Z0
j /σj = W 0

j +
√
n
( 1

B

B∑
b=1

β̂bj,S0,n
− β̂0

j

)
/σj

.
= W 0

j + TBn /σj. (A.20)
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By (A.12), we are only left to show TBn = op(1). Define tn,b =
√
n
(
β̂bj,S0,n

− β̂0
j

)
, then

TBn =
√
n( 1

B

∑B
b=1 β̂

b
j,S0,n

− β̂0
j ) = 1

B

∑B
b=1 tn,b. Recall that β̂bj,S0,n

is the bootstrap statistic

of β̂0
j , so its conditional mean is β̂0

j and conditional variance is σ̂2
{

(XT
S0,n∪jXS0,n∪j)

−1
}
jj

=

σ̂2
(

Σ̂−1
S0,n∪j

)
jj
/n

.
= σ̂2

j/n, where σ̂2 = ‖(In −HS0,n)Y ‖2
2/n (Freedman (1981)). Thus, condi-

tional on the data, {tn,b}b=1,2,..,B are i.i.d. with

E
(
tn,b|(X(n), Y (n))

)
= 0, Var

(
tn,b|(X(n), Y (n))

)
= σ̂2

j = σ̂2
(

Σ̂−1
S0,n∪j

)
jj
. (A.21)

We now argue that with probability going to 1, σ̂2
j ’s, j = 1, 2, .., p, are bounded. First,

P(σ̂2 < 2σ2)→ 1 as n→∞. Then,(
Σ̂−1
S0,n∪j

)
jj
≤ λmax(Σ̂−1

S0,n∪j) = 1/λmin(Σ̂S0,n∪j), (A.22)

whenever λmin(Σ̂S0,n∪j) > 0. Assumption (B3) implies |S0,n|/n ≤ η. By Lemma (4) from
Vershynin (2010) and Lemma (5), letting ε = cmin/2 and t2 = c2

minη/C for some constant C
only depending on the sub-Gaussian norm ‖xi‖ψ2 , we have that with probability at least
1− 2 exp(−c2

minηn
γ0/C)

λmin(Σ̂S0,n∪j) ≥ λmin(ΣS0,n∪j)− cmin/2 ≥ λmin(Σ)− cmin/2 ≥ cmin/2, (A.23)

where the second inequality follows the interlacing property of the eigenvalues. Combining

(A.22) and (A.23),
(

Σ̂−1
S0,n∪j

)
jj
≤ 2/cmin with probability going to 1 exponentially fast in

n, and consequently σ̂2
j < 4σ2/cmin. Now define

Ωn = {(X(n), Y (n)) = (xi, yi)i=1,2,..,n : σ̂2
j < 4σ2/cmin,∀j = 1, 2, ..., p}. (A.24)

Since p = O(nγ1) for some γ1 > 1, P{(X(n), Y (n)) ∈ Ωn} → 1 as n → ∞. Thus
∀(X(n), Y (n)) ∈ Ωn, Var

{
tn,b|(X(n), Y (n))

}
≤ 4σ2/cmin. Furthermore,

Var
{
TBn |(X(n), Y (n))

}
=

1

B2

B∑
b=1

Var
{
tn,b|(X(n), Y (n))

}
≤ 4σ2

Bcmin

(A.25)
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Thus, ∀δ, ζ > 0, ∃N0, B0 > 0 such that ∀n > N0, B > B0,

P(|TBn | ≥ δ)

≤
∫

Ωn

P
{
|TBn | ≥ δ

∣∣(X(n), Y (n))
}

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤
∫

Ωn

Var
{
TBn |(X(n), Y (n))

}
δ2

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ 4σ2

B0δ2cmin

∫
Ωn

dP(X(n), Y (n)) + P
{

(X(n), Y (n)) /∈ Ωn

}
≤ζ/2 + ζ/2

≤ζ.

(A.26)

Finally, combining this with (A.12), we have

Z0
j /σj = W 0

j + TBn /σj
d−→ N(0, 1) as B, n→∞. (A.27)

Proof of Theorem 3. Follow the previous proof, we replace the arguments in j with those
in S(1). The oracle estimators are

β̂0
S(1) =

(
(XS0,n∪S(1)

TXS0,n∪S(1))−1XS0,n∪S(1)
TY
)
S(1)

(A.28)

β̂bS(1),S0,n
=
(

(Xb
S0,n∪S(1)

T
Xb
S0,n∪S(1))

−1Xb
S0,n∪S(1)

T
Y b
)
S(1)

. (A.29)

Notice that |S(1)| = p1 = O(1), as n → ∞, |S0,n ∪ S(1)| = O
(
|S0,n|

)
= o(n), so that the

above quantities are well-defined. Next

W (1) =
√
n{Σ(1)}−1(β̂0

S(1) − β0
S(1))

d−→ N(0, Ip1) as n→∞, (A.30)

where Σ(1) = σ2
(

Σ−1
S0,n∪S(1)

)
S(1)

. Similar to (A.15), we decompose
√
n(β̂S(1) − β0

S(1)) into

three parts: √
n(β̂S(1) − β0

S(1))
.
=Z(1) + ∆

(1)
0 + ∆

(1)
1 .

(A.31)

For the sake of space, we prefer not to write out these quantities, but it is straightforward

analog that ∆
(1)
0 = ∆

(1)
1 = op(1p1) and Σ(1)−1

Z(1)−W (1) = op(1p1) as well, which completes
the proof.
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2 Web Appendix B

Technical details on useful definitions, lemmas and related proofs.

Lemma 1. Assume X = (X1, ..., Xp) = (xT
1 , ..., x

T
n )T where xi’s are i.i.d. copies of a sub-

Gaussian random vector in Rp with covariance matrix Σp×p, with

0 < cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ cmax <∞.

For any subset S ⊂ {1, 2, .., p} with |S| ≤ ηn, 0 < η < 1, and ∀j ∈ S, with probability at

least 1− 2 exp(− ε2η
CK
n),

cmin

2
≤ 1

n
XT
j (In −HS\j)Xj ≤ cmax +

1 + cmin

2
(B.1)

where ε = min(1
2
, cmin

2
) and CK is the constant depends only on the sub-Gaussian norm

K = ‖xi‖ψ2 .

Corollary 2. Given model (1) and assumptions (A1,A2), consider the partial regression
estimator on (X, Y ) given subset S. If |S| ≤ ηn, 0 < η < 1, then with probability at least

1− 2 exp(− ε2η
CK
n),

β̂j ≤ Cβn
c1 , (B.2)

where Cβ depends on cmin, cmax, cβ.

Proposition 3 (Cauchy interlacing theorem). Let A be a symmetric n×n matrix. The m×m
matrix B, where m ≤ n, is called a compression of A if there exists an orthogonal projection
P onto a subspace of dimension m such that PTAP = B. The Cauchy interlacing theorem
states:
if the eigenvalues of A are λ1 ≤ ... ≤ λn, and those of B are ν1 ≤ ... ≤ νm, then for all
j < m+ 1,

λj ≤ νj ≤ λn−m+j

Proposition 4 (Corollary 5.50 in Vershynin (2010)). Consider a n× q matrix X whose rows
xi’s are i.i.d. samples from a sub-Gaussian distribution in Rq with covariance matrix Σ,
and let ε ∈ (0, 1), t ≥ 1. Denote the sample covariance matrix as Σ̂n = XTX/n Then with
probability at least 1− 2 exp(−t2q) one has

If n ≥ C(t/ε)2q then ‖Σ̂n − Σ‖ ≤ ε. (B.3)

Here C = CK depends only on the sub-Gaussian norm K = ‖xi‖ψ2 of a random vector
taken from this distribution.
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Definition 1. The sub-Gaussian norm of a random variable V is defined as

‖V ‖ψ2 = sup
k≥1

k−1/2(E|V |k)1/k (B.4)

then the sub-Gaussian norm of a random vector V in Rq is defined as

‖V ‖ψ2 = sup
x∈Sq−1

‖V Tx‖ψ2 (B.5)

Remark 1. Assume V0 = (v1, v2, ..., vq) is a sub-Gaussian random vector in Rq, and V1 =
(v1, v2, ..., vr), r < q is the sub-vector of V0. By taking x = (x1, .., xr, 0, .., 0) ∈ Sq−1, we
have ‖V1‖ψ2 ≤ ‖V0‖ψ2 .

Corollary 5. For two n× n positive definite matrices Σ1 and Σ2, if ‖Σ1 − Σ2‖ ≤ ε, then

λmin(Σ2) ≥ λmin(Σ1)− ε
λmax(Σ2) ≤ λmax(Σ1) + ε.

(B.6)

Proof. On one hand, ∀n−vector X with ‖X‖2 = 1,

ε ≥‖Σ1 − Σ2‖
≥‖(Σ1 − Σ2)X‖2

≥‖Σ1X‖2 − ‖Σ2X‖2

(B.7)

then take X to be the eigenvector for λmin(Σ2), we have

λmin(Σ2) =‖Σ2X‖2

≥‖Σ1X‖2 − ε
≥λmin(Σ1)− ε.

(B.8)

On the other hand,
λmax(Σ2) =‖Σ2‖

≤‖Σ1‖+ ‖Σ2 − Σ1‖
≤‖Σ1‖+ ε

=λmax(Σ1) + ε

(B.9)
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Proof of lemma (1). Note that
n

XT
j (In −HS\j)Xj

is the (j, j)th entry of Σ̂−1
S , where Σ̂S = (XT

SXS)/n is the sample covariance matrix corre-
sponds to subset S. Therefore

1

λmax(Σ̂S)
≤ n

XT
j (In −HS\j)Xj

≤ 1

λmin(Σ̂S)
. (B.10)

Refer to Corollary 5.50 in Vershynin (2010) and choose ε = min(1
2
, cmin

2
). Then with

probability at least 1− 2 exp(− ε2η
CK
n),

‖Σ̂S − ΣS‖ ≤ ε. (B.11)

By Corollary (5) and Cauchy interlacing theorem,

λmin(Σ̂S) ≥ λmin(ΣS)− ε ≥ λmin(Σ)− ε ≥ cmin/2, (B.12)

and
λmax(Σ̂S) ≤ λmax(ΣS) + ε ≤ λmax(Σ) + ε ≤ cmax + (1 + cmin)/2. (B.13)

Thus, with high probability,

cmin

2
≤ 1

n
XT
j (In −HS\j)Xj ≤ cmax +

1 + cmin

2
(B.14)

Proof of Corollary (2). From Lemma (1), we can bound β̂j as below:

β̂j =
XT
j (I −HS\j)Y

XT
j (I −HS\j)Xj

=
n

XT
j (I −HS\j)Xj

XT
j (I −HS\j)XS0,nβ

0
S0,n

n

≤ 2

cmin

cβ
∑

k∈S0,n
|XT

j (I −HS\j)Xk|
n

≤ 2

cmin

cβ
(
cmax +

1 + cmin

2

)
nc1 .

(B.15)

Let Cβ =
2cβ
cmin

(
cmax + 1+cmin

2

)
, we complete the proof.
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Web Table 1: Comparisons of SPARES and one-time SPARE based on 200 replications.
Bias (SE) is displayed in each cell. LSE refers to least square estimation as if S0,n were
known.

Index β0
j SPARES One-time SPARE LSE

199 1.00 0.03(0.16) -0.02(0.26) 0.03(0.16)
243 -1.00 -0.02(0.16) 0.03(0.26) -0.02(0.16)
256 1.00 -0.002(0.16) -0.007(0.26) -0.002(0.16)
0’s 0.00 0.000(0.16) -0.001(0.26)

Web Figure 1: Performance of SPARES under simulation example 2.1. X-axis is the
variable index. Topleft: Average estimates and average CIs V.S. true signals. Topright:
Bias of SPARES estimates for each j, red dots are non-zero signals, dashed lines indicate
blocks of the predictors. Bottomleft: Coverage probability of β0 for each j w.r.t. 0.95
norminal level. Bottomright: Empirical probability of not rejecting H0 : β0

j = 0.
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Web Figure 2: Performance of SPARES under simulation examples 2.2.
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Web Figure 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simulation
example 4. Left panels: Mean estimates from each method and the true signals. Right
panels: Coverage probabilities for each j ∈ S0,n and 20 representatives of j /∈ S0,n.
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Web Figure 4: Correlation among predictors: left panel - riboflavin data; right panel -
multiple myeloma data.
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Web Figure 5: Results of the riboflavin genomic data analysis. Left panel: selection
frequency of each gene; Right panel: confidence intervals of the top five most significant
genes.

Web Figure 6: Results of the Multiple Myeloma genomic data analysis. Left panel: selection
frequency of each gene; Right panel: confidence intervals of the top two most significant
genes.

15


	Web Appendix A
	Web Appendix B

