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1 Web Appendix A

Main proofs to Theorems 1-3.

Proof of Theorem 1. Our estimator for BJQ by the one-time SPARE is
3, = L(Xh,, XE )X, Y Al
BJ ( SUj SU]) SuUj j : ( : )

Here D; = (X', Y'!) with sample size |n/2], for notational simplicity, we denote m = |n /2|
within this proof.

By (A3), with probability at least 1 — o(m™271), the selection S D Sj,,. Since the two
halves of data D; and D, are mutually exclusive, (X*,Y?) L S. Thus given S D So.n and

X', the OLS estimator 5! = (XéUjTXéUj)*lXéujTYl is unbiased,
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In addition, Var <ﬁ~1

S, X1> = UQZE&j/m, which is bounded by assumption (A1). Thus,

V(B! = B3| S, X1 % N(0,075g). (A.3)

Furthermore,

vm(B; = B0)[8, x' % N(0,52), (A4)
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where 0; =0 (Zsuj)jj.

Next we show the uniform convergence of v/m(3; — 37)/&; with respect to j, S and X'
From the partial regression formulation of Bj, it § 2 Son,
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By Lemma (1),
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and V7, S, ‘XlT T - < 2/cmin. Moreover, the second term of the right hand side in

j o Um=Hg\;)X;

(A.5) is the mean of ii.d. Zje}’s, where (Z};)i1,.m = X[ (Ln — H, ;). Since Ele;]> < po

and X[ (I, — Hg, ;) is the projection vector of X7,
BIX! (1, — B, < BIX!E. < pr (A7)

By the Berry-Esseen Theorem, Vj, X and S O S,
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where F(z) is the CDF of \/E(BJ _6?)/51' and ®(z) is the CDF of standard normal. Thus
as m — oo, with probability at least 1 — o(m=71),

V(B — 87)/5; = N(0,1). (A.9)
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Proof of Theorem 2. We first introduce the oracle SPARE estimators of B?’S, i.e. the ones
we would compute if we knew the true active set Sy,

B.;) = {(XSO,ntTXSO,nt)1XSO,ntTY}j (Al())
a T _ T
;SO,n = {(Xg()muj Xgoynuj) 1Xg‘07nuj Yb}j? (All)

which are estimations on the original data (X,Y) and the bootstrap half data D?, respec-
tively. Since ﬂjo is the least square corresponding to X; when regressing Y on Xg,  ;, we
have for each j

WO = Vn(B? — 8% /o; & N(0,1) as n — oo, (A.12)

where 032- = o2 (Egol Uj) that corresponds to subscript j. By Cauchy’s interlacing theorem
1 g

(Proposition 3), 0% /cmax < 07 < 07 /Cin, and thus it is bounded away from zero and infinity.

Now we consider the behavior of the selections S*’s from DY’s. For each b= 1,2, ..., B,
the subsample D} consists of m, > n/2 distinct observations from the original data that
are not drawn in the bootstrap half dataset D%. In other words, D} can be regarded as a
sample of my i.i.d. observations from the population distribution. In addition, since m,, is
independent of the observations, with a conditional argument on my, the following holds
for each b by (B3),

P(S* = Sy,)

:/P(Sb = Son|my = m)dP(m)

2/{1 — O(m*CQ’I)}dP(m) (A.13)

>1—o{(n/2)"*7"}
=1—o(n"=1).

Next, we decompose Bj into two parts:
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and equivalently

Vn(B; — 8))
V(Y — ) S (- B) (A15)

b: Sb;ﬁS() n

=77+ A;.

To show A; = 0,(1), we write
1B
=38 # SonVa (B - B, ) (A.16)
BiI

Ay = Bzéb, b = 1(S" # Son)Vn (B = B, . ). (A.17)
By Corollary (2),
E6, =P (S’ # So..)Evin (B? - A;SO»
(n_02_1205n61+%>
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—0 as n — oo.
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Similarly,
2
Varg, =P (S” # Sy, )En (517 ]SOn>

:O<n7CQ714an201+1> (A.19)

:O(n—62+201)

—0 as n — oo.
Thus &, = 0,(1) for all b € [B]. Furthermore, since EA; = E§, and VarA,; < Vard,, we

have A; = 0,(1).
Next we show the convergence of ZJQ. Notice that

B
1 & . .
290, = W0+ /n (E N B - 55?) Jo; = WO+ TP g, (A.20)
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By (A.12), we are only left to show 7% = 0,(1). Define t,; = \/ﬁ(  Som 60) then
T8 = /n( P ? S0 B?) =+ S°2 tns. Recall that ﬁA;SOn is the bootstrap statistic

of 4%, so its conditional mean is 39 and conditional variance is &2{()(50 X So,nu]')_l} -
' Ji
A2<ZSOIHUJ> /n = &3 /n, where 6° = ||(I — HSOn)Y||§/n (Freedman (1981)). Thus, condi-

2y

B (£ (XM, Y)) =0, Var(t,,|(X™, V™)) = 62 = 6> (iggnuj) . (A.21)
' Ji

We now argue that with probability going to 1, é?’s, j=1,2,..,p, are bounded. First,
P(6% < 20%) = 1 as n — oo. Then,

(2501nuj)” <M E5 ) = 1 A S (A.22)

whenever )\min(ismnuj) > 0. Assumption (B3) implies |S()n|/n < 7. By Lemma (4) from
Vershynin (2010) and Lemma (5), letting € = ¢yin/2 and t? = ¢2,,n/C for some constant C
only depending on the sub-Gaussian norm ||x;||y,, we have that with probability at least
1 —2exp(—c,mn/C)

l’l'llIl

/\min(isoynuj) Z /\min<ESoynt) - Cmin/2 Z )\mm(z) - Cmin/2 Z Cmin/27 (A23>

where the second inequality follows the interlacing property of the eigenvalues. Combining
(A.22) and (A.23), (igolnuj> < 2/cmin with probability going to 1 exponentially fast in
' Jj

n, and consequently 67 < 40%/cmin. Now define
Qn = {(X("),Y(")) = (Xiyyi)iZI,Z,..,n . A]2- < 402/Cmin7vj = 1, 2, ,p} (A24>

Since p = O(n™) for some v, > 1, P{(X™ Y™) ¢ Q,} — 1 as n — oo. Thus
V(XM Y™) € Q,, Var{t,,|(X™, Y} < 40%/cp,. Furthermore,
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Var{T?|(X™,y")} = ZVar{tnb| (X™ vyl < (A.25)



Thus, V6,( > 0, Ny, By > 0 such that Vn > Ny, B > By,
P(|IT7| > 6)
g/ P{|TF| > 5\(X<”>,Y<">)} dP(X™ Y™ + P {(XM y() ¢ Q,}
Qn

</ Var {TP|(X™,y™)}
<

dP(X™ Y™ + P {(X™ y™) ¢ Q,}

62 (A.26)
<L2/ dP(X™,Y™) 4 P {(X™,Y™) ¢ 0,)
_B052cmin 9] ’ 7 "
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Finally, combining this with (A.12), we have
Z][-)/aj:WjQ+Tf/aji>N(O,1) as B,n — oc. (A.27)
0

Proof of Theorem 3. Follow the previous proof, we replace the arguments in j with those
in S, The oracle estimators are

AO o T —1 T
Bsay = <<Xso,nu5<1) Ko ausm) ™ X, usm) Y)su)
5b - b T b —1 b T b
Bsw sy, = <(Xso,nus<1> Ksonusw) X, usw ¥ >s<1)' (A.29)

Notice that [SM| = p; = O(1), as n — o0, |Sp,, USW| = O(|Ss.n]) = o(n), so that the
above quantities are well-defined. Next

(A.28)

W = \/ﬁ{z(l)}fl(ﬁi&n — Bgw) i> N(0,I,,) as n— oo, (A.30)

where X1 = 52 (Egol,nusﬂ))S(l)' Similar to (A.15), we decompose /n(Bga) — Bom) into

three parts:
Vi(Bsm — Bea)
=70 4+ AV + A,
For the sake of space, we prefer not to write out these quantities, but it is straightforward

analog that Aél) = Agl) = 0,(1,,) and SO Z0 W = 0p(1,,) as well, which completes
the proof. n

(A.31)



2 Web Appendix B

Technical details on useful definitions, lemmas and related proofs.

Lemma 1. Assume X = (Xy,...,X,) = (27, ...,z )T where z;’s are i.i.d. copies of a sub-

Gaussian random vector in R? with covariance matrix ¥,.,, with

0 < Cmin < )\min(2> S )\max(z) S Cmax < OQ.

For any subset S C {1,2,..,p} with |S| <nn, 0 <n < 1, and Vj € S, with probability at
least 1 — 2exp(—é2—;n),

Cmin 1 T 1 + Cmin
S EX] (In - HS\j)Xj S Cmax + T

(B.1)

where ¢ = min(%, @uin) and Ck is the constant depends only on the sub-Gaussian norm
K = il

Corollary 2. Given model (1) and assumptions (A1,A2), consider the partial regression
estimator on (X,Y") given subset S. If |S| < nn, 0 < n < 1, then with probability at least
1-— Zexp(—g—;n),

A

B < Cgn, (B.2)
where C3 depends on cpin, Cmax, C3-

Proposition 3 (Cauchy interlacing theorem). Let A be a symmetric nxn matrix. The mxm
matrix B, where m < n, is called a compression of A if there exists an orthogonal projection
P onto a subspace of dimension m such that PTAP = B. The Cauchy interlacing theorem
states:
if the eigenvalues of A are A\ < ... < \,, and those of B are v; < ... < v,,, then for all
j<m+4+1,

)‘j < Vj < An—m-‘rj

Proposition 4 (Corollary 5.50 in Vershynin (2010)). Consider a n x ¢ matrix X whose rows
x;'s are L.i.d. samples from a sub-Gaussian distribution in R? with covariance matrix X,
and let € € (0,1),¢ > 1. Denote the sample covariance matrix as 3,, = X X/n Then with
probability at least 1 — 2 exp(—t%q) one has

If n>C(t/e)2q then |S,—3| <e. (B.3)

Here C' = Ck depends only on the sub-Gaussian norm K = ||x;||y, of a random vector
taken from this distribution.



Definition 1. The sub-Gaussian norm of a random variable V is defined as

IV, = suph 2BV (B.4)

then the sub-Gaussian norm of a random vector V in R? is defined as

Vil = sup [V, (5.5)

€SI~

Remark 1. Assume Vj = (v, 02, ...,v,) is a sub-Gaussian random vector in R?, and V; =
(v1,v9, ..., v,),7 < q is the sub-vector of V. By taking z = (z1,..,2,,0,..,0) € ST we
have [[Villy, < [[Volly,-

Corollary 5. For two n x n positive definite matrices ¥; and s, if ||£; — 3s|| <€, then

)\min(ZZ) Z )\min(zl) — € (B 6)
)‘max(22) S >\max<21) + €. ’
Proof. On one hand, Vn—vector X with || X |y =1,
€ >3 — Xs|
>|(E1 — X2) X2 (B.7)
>[|51 X |2 = [|X2X |2
then take X to be the eigenvector for Apnin(22), we have
)\min(ZQ) :HE]Q‘XVH2
>[[X1 X ]2 — € (B.8)
Z)\min(zl) — €.
On the other hand,
Amax(X2) =22
<||Zq]| + |22 — 4| (B.9)
<[[Z4 + €
:)\max(zl) + €
O



Proof of lemma (1). Note that
n

XJ (I — Hs\j) X

is the (j, 7)™ entry of igl, where Sg = (XTXg)/n is the sample covariance matrix corre-
sponds to subset S. Therefore

1/\ <— n < 1/\ '
Amax(ES) X] (In - HS\])XJ )\min(ES)

Refer to Corollary 5.50 in Vershynin (2010) and choose ¢ = min(3, “un). Then with

(B.10)

probability at least 1 — 2 exp(—g—;n),

ISs — S|l < e (B.11)
By Corollary (5) and Cauchy interlacing theorem,
/\min<§S) 2 )\min(ES) — & 2 )\min(z) — & Z Cmin/27 (B]-2>
and R
/\max(ES) S /\max(ES) +e€ S /\max(E) +¢€ S Cmax + (]- + Cmin)/2- (B13>
Thus, with high probability,
Cmin 1 T 1+ Cmin
5 < EXJ‘ (In — Hg\j)Xj < Cax + 5 (B.14)
]
Proof of Corollary (2). From Lemma (1), we can bound Bj as below:
s XJ - Hsy)Y
TXT(I - Hs\)X;
. n X‘;I‘(I - HS\j)XSO,nﬁgom
X (I = Hs\j)X; n (B.15)
_2 ¢ D keson Xj (I — He\j) Xl
o Cmin n
1 + Cmin
< “,
B Cmin “# (CmaX + 2 )n
Let Cg = CQL? (cmaX + m%), we complete the proof. O
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Web Table 1: Comparisons of SPARES and one-time SPARE based on 200 replications.
Bias (SE) is displayed in each cell. LSE refers to least square estimation as if Sy, were
known.

Index B;»J SPARES One-time SPARE LSE
199  1.00 0.03(0.16) -0.02(0.26) 0.03(0.16)
243 -1.00  -0.02(0.16) 0.03(0.26)  -0.02(0.16)
256 1.00 -0.002(0.16) -0.007(0.26) -0.002(0.16)
0’s  0.00 0.000(0.16) -0.001(0.26)

Web Figure 1: Performance of SPARES under simulation example 2.1. X-axis is the
variable index. Topleft: Average estimates and average Cls V.S. true signals. Topright:
Bias of SPARES estimates for each j, red dots are non-zero signals, dashed lines indicate
blocks of the predictors. Bottomleft: Coverage probability of 5% for each j w.r.t. 0.95
norminal level. Bottomright: Empirical probability of not rejecting Hy : 5;-) = 0.
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Performance of SPARES under simulation examples 2.2.

Web Figure 2
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Web Figure 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simulation
example 4. Left panels: Mean estimates from each method and the true signals. Right
panels: Coverage probabilities for each j € Sy, and 20 representatives of j & S ..
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Web Figure 4: Correlation among predictors: left panel - riboflavin data; right panel -
multiple myeloma data.
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Web Figure 5: Results of the riboflavin genomic data analysis.

Left panel: selection

frequency of each gene; Right panel: confidence intervals of the top five most significant

genes.
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Web Figure 6: Results of the Multiple Myeloma genomic data analysis. Left panel: selection
frequency of each gene; Right panel: confidence intervals of the top two most significant

genes.
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