Web-based Supplementary Materials for "Drawing inferences for High-dimensional Linear Models: A Selection-assisted Partial Regression and Smoothing Approach" by

Zhe Fei^{1}, Ji Zhu ${ }^{2}$, Moulinath Banerjee ${ }^{2}$, and $\mathrm{Yi} \mathrm{Li}^{1}$

${ }^{1}$ Department of Biostatistics, University of Michigan, Ann Arbor
${ }^{2}$ Department of Statistics, University of Michigan, Ann Arbor

1 Web Appendix A

Main proofs to Theorems 1-3.
Proof of Theorem 1. Our estimator for β_{j}^{0} by the one-time SPARE is

$$
\begin{equation*}
\tilde{\beta}_{j}=\left\{\left(X_{S \cup j}^{1}{ }^{\mathrm{T}} X_{S \cup j}^{1}\right)^{-1} X_{S \cup j}^{1}{ }^{\mathrm{T}} Y^{1}\right\}_{j} . \tag{A.1}
\end{equation*}
$$

Here $D_{1}=\left(X^{1}, Y^{1}\right)$ with sample size $\lfloor n / 2\rfloor$, for notational simplicity, we denote $m=\lfloor n / 2\rfloor$ within this proof.

By (A3), with probability at least $1-o\left(m^{-c_{2}-1}\right)$, the selection $S \supset S_{0, n}$. Since the two halves of data D_{1} and D_{2} are mutually exclusive, $\left(X^{1}, Y^{1}\right) \perp S$. Thus given $S \supset S_{0, n}$ and X^{1}, the OLS estimator $\tilde{\beta}^{1}=\left(X_{S \cup j}^{1}{ }^{T} X_{S \cup j}^{1}\right)^{-1} X_{S \cup j}^{1}{ }^{T} Y^{1}$ is unbiased,

$$
\begin{align*}
& \mathbf{E}\left(\tilde{\beta}^{1} \mid S, X^{1}\right) \\
= & \mathbf{E}\left(\left(X_{S \cup j}^{1} X_{S \cup j}^{1}\right)^{-1} X_{S \cup j}^{1}{ }^{T} X^{1} \beta^{0} \mid S, X^{1}\right)+\mathbf{E}\left(\left(X_{S \cup j}^{1}{ }^{T} X_{S \cup j}^{1}\right)^{-1} X_{S \cup j}^{1}{ }^{T} X^{1} \varepsilon^{1} \mid S, X^{1}\right) \tag{A.2}\\
= & \mathbf{E}\left(\left(X_{S \cup j}^{1} X_{S \cup j}^{1}\right)^{-1} X_{S \cup j}^{1}{ }^{T} X_{S \cup j}^{1} \beta_{S \cup j}^{0} \mid S, X^{1}\right)+\mathbf{E}\left(\varepsilon^{1} \mid S, X^{1}\right) \\
= & \beta_{S \cup j}^{0} .
\end{align*}
$$

In addition, $\operatorname{Var}\left(\tilde{\beta}^{1} \mid S, X^{1}\right)=\sigma^{2} \Sigma_{S \cup j}^{-1} / m$, which is bounded by assumption (A1). Thus,

$$
\begin{equation*}
\sqrt{m}\left(\tilde{\beta}^{1}-\beta_{S \cup j}^{0}\right) \mid S, X^{1} \xrightarrow{d} N\left(0, \sigma^{2} \Sigma_{S \cup j}^{-1}\right) . \tag{A.3}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\sqrt{m}\left(\tilde{\beta}_{j}-\beta_{j}^{0}\right) \mid S, X^{1} \xrightarrow{d} N\left(0, \tilde{\sigma}_{j}^{2}\right), \tag{A.4}
\end{equation*}
$$

where $\tilde{\sigma}_{j}^{2}=\sigma^{2}\left(\Sigma_{S \cup j}^{-1}\right)_{j j}$.
Next we show the uniform convergence of $\sqrt{m}\left(\tilde{\beta}_{j}-\beta_{j}^{0}\right) / \tilde{\sigma}_{j}$ with respect to j, S and X^{1}. From the partial regression formulation of $\tilde{\beta}_{j}$, if $S \supset S_{0, n}$,

$$
\begin{equation*}
\tilde{\beta}_{j}-\beta_{j}^{0}=\frac{X_{j}^{1^{\mathrm{T}}}\left(I_{m}-H_{S \backslash j}^{1}\right) \varepsilon^{1}}{X_{j}^{1 \mathrm{~T}}\left(I_{m}-H_{S \backslash j}^{1}\right) X_{j}^{1}}=\frac{m}{X_{j}^{1 \mathrm{~T}}\left(I_{m}-H_{S \backslash j}^{1}\right) X_{j}^{1}} \frac{X_{j}^{1^{\mathrm{T}}}\left(I_{m}-H_{S \backslash j}^{1}\right) \varepsilon^{1}}{m} \tag{A.5}
\end{equation*}
$$

By Lemma (1),

$$
\begin{equation*}
\frac{m}{X_{j}^{1 \mathrm{~T}}\left(I_{m}-H_{S \backslash j}^{1}\right) X_{j}^{1}}=\left(\widehat{\Sigma}_{S \cup j}^{-1}\right)_{j j} \rightarrow\left(\Sigma_{S \cup j}^{-1}\right)_{j j} \tag{A.6}
\end{equation*}
$$

and $\forall j, S,\left|\frac{m}{X_{j}^{1 \mathrm{~T}}\left(I_{m}-H_{S \backslash j}^{1}\right) X_{j}^{1}}\right| \leq 2 / c_{\text {min }}$. Moreover, the second term of the right hand side in (A.5) is the mean of i.i.d. $\tilde{x}_{i j}^{1} \varepsilon_{i}^{1}$'s, where $\left(\tilde{x}_{i j}^{1}\right)_{i=1, ., m}=X_{j}^{1}\left(I_{m}-H_{S \backslash j}^{1}\right)$. Since $\mathbf{E}\left|\varepsilon_{i}\right|^{3} \leq \rho_{0}$ and $X_{j}^{1}\left(I_{m}-H_{S \backslash j}^{1}\right)$ is the projection vector of X_{j}^{1},

$$
\begin{equation*}
\mathbf{E}\left|X_{j}^{1}\left(I_{m}-H_{S \backslash j}^{1}\right)\right|_{\infty}^{3} \leq \mathbf{E}\left|X_{j}^{1}\right|_{\infty}^{3} \leq \rho_{1} \tag{A.7}
\end{equation*}
$$

By the Berry-Esseen Theorem, $\forall j, X$ and $S \supset S_{0, n}$,

$$
\begin{equation*}
\left|F_{n}(x)-\Phi(x)\right| \leq\left(\frac{2}{c_{\min }}\right)^{3} \frac{C \rho_{0} \rho_{1}}{\tilde{\sigma}_{j}^{3} \sqrt{m}} \leq \frac{8 c_{\max }^{3 / 2} C \rho_{0} \rho_{1}}{c_{\min }^{3} \sigma^{3} \sqrt{m}} \tag{A.8}
\end{equation*}
$$

where $F_{n}(x)$ is the CDF of $\sqrt{m}\left(\tilde{\beta}_{j}-\beta_{j}^{0}\right) / \tilde{\sigma}_{j}$ and $\Phi(x)$ is the CDF of standard normal. Thus as $m \rightarrow \infty$, with probability at least $1-o\left(m^{-c_{2}-1}\right)$,

$$
\begin{equation*}
\sqrt{m}\left(\tilde{\beta}_{j}-\beta_{j}^{0}\right) / \tilde{\sigma}_{j} \rightarrow N(0,1) . \tag{A.9}
\end{equation*}
$$

Proof of Theorem 2. We first introduce the oracle SPARE estimators of β_{j}^{0} 's, i.e. the ones we would compute if we knew the true active set $S_{0, n}$,

$$
\begin{align*}
\hat{\beta}_{j}^{0} & =\left\{\left(X_{S_{0, n} \cup j}{ }^{T} X_{S_{0, n} \cup j}\right)^{-1} X_{S_{0, n} \cup j}{ }^{T} Y\right\}_{j} \tag{A.10}\\
\hat{\beta}_{j, S_{0, n}}^{b} & =\left\{\left(X_{S_{0, n} \cup j}^{b}{ }^{T} X_{S_{0, n} \cup j}^{b}\right)^{-1} X_{S_{0, n} \cup j}^{b}{ }^{T} Y^{b}\right\}_{j}, \tag{A.11}
\end{align*}
$$

which are estimations on the original data (X, Y) and the bootstrap half data D_{1}^{b}, respectively. Since $\hat{\beta}_{j}^{0}$ is the least square corresponding to X_{j} when regressing Y on $X_{S_{0, n} \cup j}$, we have for each j

$$
\begin{equation*}
W_{j}^{0}=\sqrt{n}\left(\hat{\beta}_{j}^{0}-\beta_{j}^{0}\right) / \sigma_{j} \xrightarrow{d} N(0,1) \quad \text { as } \quad n \rightarrow \infty, \tag{A.12}
\end{equation*}
$$

where $\sigma_{j}^{2}=\sigma^{2}\left(\Sigma_{S_{0, n} \cup j}^{-1}\right)_{j j}$ that corresponds to subscript j. By Cauchy's interlacing theorem (Proposition 3), $\sigma^{2} / c_{\max } \leq \sigma_{j}^{2} \leq \sigma^{2} / c_{\min }$, and thus it is bounded away from zero and infinity.

Now we consider the behavior of the selections S^{b} 's from D_{2}^{b} 's. For each $b=1,2, \ldots, B$, the subsample D_{2}^{b} consists of $m_{b} \geq n / 2$ distinct observations from the original data that are not drawn in the bootstrap half dataset D_{1}^{b}. In other words, D_{2}^{b} can be regarded as a sample of m_{b} i.i.d. observations from the population distribution. In addition, since m_{b} is independent of the observations, with a conditional argument on m_{b}, the following holds for each b by (B3),

$$
\begin{align*}
& \mathbf{P}\left(S^{b}=S_{0, n}\right) \\
= & \int \mathbf{P}\left(S^{b}=S_{0, n} \mid m_{b}=m\right) \mathrm{d} \mathbf{P}(m) \\
\geq & \int\left\{1-o\left(m^{-c_{2}-1}\right)\right\} \mathrm{d} \mathbf{P}(m) \tag{A.13}\\
\geq & 1-o\left\{(n / 2)^{-c_{2}-1}\right\} \\
= & 1-o\left(n^{-c_{2}-1}\right)
\end{align*}
$$

Next, we decompose $\hat{\beta}_{j}$ into two parts:

$$
\begin{align*}
\hat{\beta}_{j} & =\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j}^{b} \\
& =\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j, S_{0, n}}^{b}+\frac{1}{B} \sum_{b: S^{b} \neq S_{0, n}}\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right), \tag{A.14}
\end{align*}
$$

and equivalently

$$
\begin{align*}
& \sqrt{n}\left(\hat{\beta}_{j}-\beta_{j}^{0}\right) \\
= & \sqrt{n}\left(\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j, S_{0, n}}^{b}-\beta_{j}^{0}\right)+\frac{\sqrt{n}}{B} \sum_{b: S^{b} \neq S_{0, n}}\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right) \tag{A.15}\\
= & Z_{j}^{0}+\Delta_{j} .
\end{align*}
$$

To show $\Delta_{j}=o_{p}(1)$, we write

$$
\begin{gather*}
\Delta_{j}=\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}\left(S^{b} \neq S_{0, n}\right) \sqrt{n}\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right) ; \tag{A.16}\\
\Delta_{j}=\frac{1}{B} \sum_{b=1}^{B} \delta_{b} ; \quad \delta_{b} \doteq \mathbf{1}\left(S^{b} \neq S_{0, n}\right) \sqrt{n}\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right) . \tag{A.17}
\end{gather*}
$$

By Corollary (2),

$$
\begin{align*}
\mathbf{E} \delta_{b} & =\mathbf{P}\left(S^{b} \neq S_{0, n}\right) \mathbf{E} \sqrt{n}\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right) \\
& =o\left(n^{-c_{2}-1} 2 C_{\beta} n^{c_{1}+\frac{1}{2}}\right) \tag{A.18}\\
& =o\left(n^{-c_{2}+c_{1}-\frac{1}{2}}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

Similarly,

$$
\begin{align*}
\operatorname{Var} \delta_{b} & =\mathbf{P}\left(S^{b} \neq S_{0, n}\right) \mathbf{E} n\left(\hat{\beta}_{j}^{b}-\hat{\beta}_{j, S_{0, n}}^{b}\right)^{2} \\
& =o\left(n^{-c_{2}-1} 4 C_{\beta}^{2} n^{2 c_{1}+1}\right) \tag{A.19}\\
& =o\left(n^{-c_{2}+2 c_{1}}\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Thus $\delta_{b}=o_{p}(1)$ for all $b \in[B]$. Furthermore, since $\mathbf{E} \Delta_{j}=\mathbf{E} \delta_{b}$ and $\operatorname{Var} \Delta_{j} \leq \operatorname{Var} \delta_{b}$, we have $\Delta_{j}=o_{p}(1)$.

Next, we show the convergence of Z_{j}^{0}. Notice that

$$
\begin{equation*}
Z_{j}^{0} / \sigma_{j}=W_{j}^{0}+\sqrt{n}\left(\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j, S_{0, n}}^{b}-\hat{\beta}_{j}^{0}\right) / \sigma_{j} \doteq W_{j}^{0}+T_{n}^{B} / \sigma_{j} . \tag{A.20}
\end{equation*}
$$

By (A.12), we are only left to show $T_{n}^{B}=o_{p}(1)$. Define $t_{n, b}=\sqrt{n}\left(\hat{\beta}_{j, S_{0, n}}^{b}-\hat{\beta}_{j}^{0}\right)$, then $T_{n}^{B}=\sqrt{n}\left(\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j, S_{0, n}}^{b}-\hat{\beta}_{j}^{0}\right)=\frac{1}{B} \sum_{b=1}^{B} t_{n, b}$. Recall that $\hat{\beta}_{j, S_{0, n}}^{b}$ is the bootstrap statistic of $\hat{\beta}_{j}^{0}$, so its conditional mean is $\hat{\beta}_{j}^{0}$ and conditional variance is $\hat{\sigma}^{2}\left\{\left(X_{S_{0, n} \cup j}^{T} X_{S_{0, n} \cup j}\right)^{-1}\right\}_{j j}=$ $\hat{\sigma}^{2}\left(\widehat{\Sigma}_{S_{0, n} \cup j}^{-1}\right)_{j j} / n \doteq \hat{\sigma}_{j}^{2} / n$, where $\hat{\sigma}^{2}=\left\|\left(\mathrm{I}_{n}-H_{S_{0, n}}\right) Y\right\|_{2}^{2} / n$ (Freedman (1981)). Thus, conditional on the data, $\left\{t_{n, b}\right\}_{b=1,2, . ., B}$ are i.i.d. with

$$
\begin{equation*}
\mathbf{E}\left(t_{n, b} \mid\left(X^{(n)}, Y^{(n)}\right)\right)=0, \quad \operatorname{Var}\left(t_{n, b} \mid\left(X^{(n)}, Y^{(n)}\right)\right)=\hat{\sigma}_{j}^{2}=\hat{\sigma}^{2}\left(\widehat{\Sigma}_{S_{0, n} \cup j}^{-1}\right)_{j j} \tag{A.21}
\end{equation*}
$$

We now argue that with probability going to $1, \hat{\sigma}_{j}^{2}$'s, $j=1,2, . ., p$, are bounded. First, $\mathbf{P}\left(\hat{\sigma}^{2}<2 \sigma^{2}\right) \rightarrow 1$ as $n \rightarrow \infty$. Then,

$$
\begin{equation*}
\left(\widehat{\Sigma}_{S_{0, n} \cup j}^{-1}\right)_{j j} \leq \lambda_{\max }\left(\widehat{\Sigma}_{S_{0, n} \cup j}^{-1}\right)=1 / \lambda_{\min }\left(\widehat{\Sigma}_{S_{0, n} \cup j}\right), \tag{A.22}
\end{equation*}
$$

whenever $\lambda_{\text {min }}\left(\widehat{\Sigma}_{S_{0, n} \cup j}\right)>0$. Assumption (B3) implies $\left|S_{0, n}\right| / n \leq \eta$. By Lemma (4) from Vershynin (2010) and Lemma (5), letting $\epsilon=c_{\min } / 2$ and $t^{2}=c_{\min }^{2} \eta / C$ for some constant C only depending on the sub-Gaussian norm $\left\|\mathbf{x}_{i}\right\|_{\psi_{2}}$, we have that with probability at least $1-2 \exp \left(-c_{\min }^{2} \eta n^{\gamma_{0}} / C\right)$

$$
\begin{equation*}
\lambda_{\min }\left(\widehat{\Sigma}_{S_{0, n} \cup j}\right) \geq \lambda_{\min }\left(\Sigma_{S_{0, n} \cup j}\right)-c_{\min } / 2 \geq \lambda_{\min }(\Sigma)-c_{\min } / 2 \geq c_{\min } / 2, \tag{A.23}
\end{equation*}
$$

where the second inequality follows the interlacing property of the eigenvalues. Combining (A.22) and (A.23), $\left(\widehat{\Sigma}_{S_{0, n} \cup j}^{-1}\right)_{j j} \leq 2 / c_{\text {min }}$ with probability going to 1 exponentially fast in n, and consequently $\hat{\sigma}_{j}^{2}<4 \sigma^{2} / c_{\text {min }}$. Now define

$$
\begin{equation*}
\Omega_{n}=\left\{\left(X^{(n)}, Y^{(n)}\right)=\left(\mathbf{x}_{i}, y_{i}\right)_{i=1,2, ., n}: \hat{\sigma}_{j}^{2}<4 \sigma^{2} / c_{\min }, \forall j=1,2, \ldots, p\right\} . \tag{A.24}
\end{equation*}
$$

Since $p=O\left(n^{\gamma_{1}}\right)$ for some $\gamma_{1}>1, \mathbf{P}\left\{\left(X^{(n)}, Y^{(n)}\right) \in \Omega_{n}\right\} \rightarrow 1$ as $n \rightarrow \infty$. Thus $\forall\left(X^{(n)}, Y^{(n)}\right) \in \Omega_{n}, \operatorname{Var}\left\{t_{n, b} \mid\left(X^{(n)}, Y^{(n)}\right)\right\} \leq 4 \sigma^{2} / c_{\text {min }}$. Furthermore,

$$
\begin{equation*}
\operatorname{Var}\left\{T_{n}^{B} \mid\left(X^{(n)}, Y^{(n)}\right)\right\}=\frac{1}{B^{2}} \sum_{b=1}^{B} \operatorname{Var}\left\{t_{n, b} \mid\left(X^{(n)}, Y^{(n)}\right)\right\} \leq \frac{4 \sigma^{2}}{B c_{\min }} \tag{A.25}
\end{equation*}
$$

Thus, $\forall \delta, \zeta>0, \exists N_{0}, B_{0}>0$ such that $\forall n>N_{0}, B>B_{0}$,

$$
\begin{aligned}
& \mathbf{P}\left(\left|T_{n}^{B}\right| \geq \delta\right) \\
\leq & \int_{\Omega_{n}} \mathbf{P}\left\{\left|T_{n}^{B}\right| \geq \delta \mid\left(X^{(n)}, Y^{(n)}\right)\right\} \mathrm{d} \mathbf{P}\left(X^{(n)}, Y^{(n)}\right)+\mathbf{P}\left\{\left(X^{(n)}, Y^{(n)}\right) \notin \Omega_{n}\right\} \\
\leq & \int_{\Omega_{n}} \frac{\operatorname{Var}\left\{T_{n}^{B} \mid\left(X^{(n)}, Y^{(n)}\right)\right\}}{\delta^{2}} \mathrm{~d} \mathbf{P}\left(X^{(n)}, Y^{(n)}\right)+\mathbf{P}\left\{\left(X^{(n)}, Y^{(n)}\right) \notin \Omega_{n}\right\} \\
\leq & \frac{4 \sigma^{2}}{B_{0} \delta^{2} c_{\min }} \int_{\Omega_{n}} \mathrm{~d} \mathbf{P}\left(X^{(n)}, Y^{(n)}\right)+\mathbf{P}\left\{\left(X^{(n)}, Y^{(n)}\right) \notin \Omega_{n}\right\} \\
\leq & \zeta / 2+\zeta / 2 \\
\leq & \zeta
\end{aligned}
$$

Finally, combining this with (A.12), we have

$$
\begin{equation*}
Z_{j}^{0} / \sigma_{j}=W_{j}^{0}+T_{n}^{B} / \sigma_{j} \xrightarrow{d} N(0,1) \quad \text { as } \quad B, n \rightarrow \infty . \tag{A.27}
\end{equation*}
$$

Proof of Theorem 3. Follow the previous proof, we replace the arguments in j with those in $S^{(1)}$. The oracle estimators are

$$
\begin{gather*}
\hat{\beta}_{S^{(1)}}^{0}=\left(\left(X_{S_{0, n} \cup S^{(1)}} T^{T} X_{S_{0, n} \cup S^{(1)}}\right)^{-1} X_{S_{0, n} \cup S^{(1)}}{ }^{T} Y\right)_{S^{(1)}} \tag{A.28}\\
\hat{\beta}_{S^{(1)}, S_{0, n}}^{b}=\left(\left(X_{S_{0, n} \cup S^{(1)}}^{b} X_{S_{0, n} \cup S^{(1)}}^{b}\right)^{-1} X_{S_{0, n} \cup S^{(1)}}^{b} Y^{b}\right)_{S^{(1)}} . \tag{A.29}
\end{gather*}
$$

Notice that $\left|S^{(1)}\right|=p_{1}=O(1)$, as $n \rightarrow \infty,\left|S_{0, n} \cup S^{(1)}\right|=O\left(\left|S_{0, n}\right|\right)=o(n)$, so that the above quantities are well-defined. Next

$$
\begin{equation*}
W^{(1)}=\sqrt{n}\left\{\Sigma^{(1)}\right\}^{-1}\left(\hat{\beta}_{S^{(1)}}^{0}-\beta_{S^{(1)}}^{0}\right) \xrightarrow{d} N\left(0, \mathrm{I}_{p_{1}}\right) \quad \text { as } \quad n \rightarrow \infty, \tag{A.30}
\end{equation*}
$$

where $\Sigma^{(1)}=\sigma^{2}\left(\Sigma_{S_{0, n} \cup S^{(1)}}^{-1}\right)_{S^{(1)}}$. Similar to (A.15), we decompose $\sqrt{n}\left(\hat{\beta}_{S^{(1)}}-\beta_{S^{(1)}}^{0}\right)$ into three parts:

$$
\begin{align*}
& \sqrt{n}\left(\hat{\beta}_{S^{(1)}}-\beta_{S^{(1)}}^{0}\right) \\
\doteq & Z^{(1)}+\Delta_{0}^{(1)}+\Delta_{1}^{(1)} . \tag{A.31}
\end{align*}
$$

For the sake of space, we prefer not to write out these quantities, but it is straightforward analog that $\Delta_{0}^{(1)}=\Delta_{1}^{(1)}=o_{p}\left(\mathbf{1}_{p_{1}}\right)$ and $\Sigma^{(1)^{-1}} Z^{(1)}-W^{(1)}=o_{p}\left(\mathbf{1}_{p_{1}}\right)$ as well, which completes the proof.

2 Web Appendix B

Technical details on useful definitions, lemmas and related proofs.
Lemma 1. Assume $X=\left(X_{1}, \ldots, X_{p}\right)=\left(x_{1}^{\mathrm{T}}, \ldots, x_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$ where x_{i} 's are i.i.d. copies of a subGaussian random vector in \mathbf{R}^{p} with covariance matrix $\Sigma_{p \times p}$, with

$$
0<c_{\min } \leq \lambda_{\min }(\Sigma) \leq \lambda_{\max }(\Sigma) \leq c_{\max }<\infty .
$$

For any subset $S \subset\{1,2, . ., p\}$ with $|S| \leq \eta n, 0<\eta<1$, and $\forall j \in S$, with probability at least $1-2 \exp \left(-\frac{\varepsilon^{2} \eta}{C_{K}} n\right)$,

$$
\begin{equation*}
\frac{c_{\min }}{2} \leq \frac{1}{n} X_{j}^{\mathrm{T}}\left(I_{n}-H_{S \backslash j}\right) X_{j} \leq c_{\max }+\frac{1+c_{\min }}{2} \tag{B.1}
\end{equation*}
$$

where $\varepsilon=\min \left(\frac{1}{2}, \frac{c_{\text {min }}}{2}\right)$ and C_{K} is the constant depends only on the sub-Gaussian norm $K=\left\|x_{i}\right\|_{\psi_{2}}$.
Corollary 2. Given model (1) and assumptions (A1,A2), consider the partial regression estimator on (X, Y) given subset S. If $|S| \leq \eta n, 0<\eta<1$, then with probability at least $1-2 \exp \left(-\frac{\varepsilon^{2} \eta}{C_{K}} n\right)$,

$$
\begin{equation*}
\hat{\beta}_{j} \leq C_{\beta} n^{c_{1}} \tag{B.2}
\end{equation*}
$$

where C_{β} depends on $c_{\text {min }}, c_{\text {max }}, c_{\beta}$.
Proposition 3 (Cauchy interlacing theorem). Let A be a symmetric $n \times n$ matrix. The $m \times m$ matrix B, where $m \leq n$, is called a compression of A if there exists an orthogonal projection P onto a subspace of dimension m such that $P^{\mathrm{T}} A P=B$. The Cauchy interlacing theorem states:
if the eigenvalues of A are $\lambda_{1} \leq \ldots \leq \lambda_{n}$, and those of B are $\nu_{1} \leq \ldots \leq \nu_{m}$, then for all $j<m+1$,

$$
\lambda_{j} \leq \nu_{j} \leq \lambda_{n-m+j}
$$

Proposition 4 (Corollary 5.50 in Vershynin (2010)). Consider a $n \times q$ matrix X whose rows \mathbf{x}_{i} 's are i.i.d. samples from a sub-Gaussian distribution in R^{q} with covariance matrix Σ, and let $\epsilon \in(0,1), t \geq 1$. Denote the sample covariance matrix as $\widehat{\Sigma}_{n}=X^{\mathrm{T}} X / n$ Then with probability at least $1-2 \exp \left(-t^{2} q\right)$ one has

$$
\begin{equation*}
\text { If } \quad n \geq C(t / \epsilon)^{2} q \quad \text { then } \quad\left\|\widehat{\Sigma}_{n}-\Sigma\right\| \leq \epsilon \tag{B.3}
\end{equation*}
$$

Here $C=C_{K}$ depends only on the sub-Gaussian norm $K=\left\|\mathbf{x}_{i}\right\|_{\psi_{2}}$ of a random vector taken from this distribution.

Definition 1. The sub-Gaussian norm of a random variable V is defined as

$$
\begin{equation*}
\|V\|_{\psi_{2}}=\sup _{k \geq 1} k^{-1 / 2}\left(E|V|^{k}\right)^{1 / k} \tag{B.4}
\end{equation*}
$$

then the sub-Gaussian norm of a random vector V in R^{q} is defined as

$$
\begin{equation*}
\|V\|_{\psi_{2}}=\sup _{x \in S^{q-1}}\left\|V^{\mathrm{T}} x\right\|_{\psi_{2}} \tag{B.5}
\end{equation*}
$$

Remark 1. Assume $V_{0}=\left(v_{1}, v_{2}, \ldots, v_{q}\right)$ is a sub-Gaussian random vector in R^{q}, and $V_{1}=$ $\left(v_{1}, v_{2}, \ldots, v_{r}\right), r<q$ is the sub-vector of V_{0}. By taking $x=\left(x_{1}, . ., x_{r}, 0, . ., 0\right) \in S^{q-1}$, we have $\left\|V_{1}\right\|_{\psi_{2}} \leq\left\|V_{0}\right\|_{\psi_{2}}$.
Corollary 5. For two $n \times n$ positive definite matrices Σ_{1} and Σ_{2}, if $\left\|\Sigma_{1}-\Sigma_{2}\right\| \leq \epsilon$, then

$$
\begin{align*}
& \lambda_{\min }\left(\Sigma_{2}\right) \geq \lambda_{\min }\left(\Sigma_{1}\right)-\epsilon \\
& \lambda_{\max }\left(\Sigma_{2}\right) \leq \lambda_{\max }\left(\Sigma_{1}\right)+\epsilon \tag{B.6}
\end{align*}
$$

Proof. On one hand, $\forall n-$ vector X with $\|X\|_{2}=1$,

$$
\begin{align*}
& \epsilon \geq\left\|\Sigma_{1}-\Sigma_{2}\right\| \\
& \quad \geq\left\|\left(\Sigma_{1}-\Sigma_{2}\right) X\right\|_{2} \tag{B.7}\\
& \quad \geq\left\|\Sigma_{1} X\right\|_{2}-\left\|\Sigma_{2} X\right\|_{2}
\end{align*}
$$

then take X to be the eigenvector for $\lambda_{\min }\left(\Sigma_{2}\right)$, we have

$$
\begin{align*}
\lambda_{\min }\left(\Sigma_{2}\right) & =\left\|\Sigma_{2} X\right\|_{2} \\
& \geq\left\|\Sigma_{1} X\right\|_{2}-\epsilon \tag{B.8}\\
& \geq \lambda_{\min }\left(\Sigma_{1}\right)-\epsilon .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\lambda_{\max }\left(\Sigma_{2}\right) & =\left\|\Sigma_{2}\right\| \\
& \leq\left\|\Sigma_{1}\right\|+\left\|\Sigma_{2}-\Sigma_{1}\right\| \tag{B.9}\\
& \leq\left\|\Sigma_{1}\right\|+\epsilon \\
& =\lambda_{\max }\left(\Sigma_{1}\right)+\epsilon
\end{align*}
$$

Proof of lemma (1). Note that

$$
\frac{n}{X_{j}^{T}\left(I_{n}-H_{S \backslash j}\right) X_{j}}
$$

is the $(j, j)^{\text {th }}$ entry of $\widehat{\Sigma}_{S}^{-1}$, where $\widehat{\Sigma}_{S}=\left(X_{S}^{T} X_{S}\right) / n$ is the sample covariance matrix corresponds to subset S. Therefore

$$
\begin{equation*}
\frac{1}{\lambda_{\max }\left(\widehat{\Sigma}_{S}\right)} \leq \frac{n}{X_{j}^{T}\left(I_{n}-H_{S \backslash j}\right) X_{j}} \leq \frac{1}{\lambda_{\min }\left(\widehat{\Sigma}_{S}\right)} \tag{B.10}
\end{equation*}
$$

Refer to Corollary 5.50 in Vershynin (2010) and choose $\varepsilon=\min \left(\frac{1}{2}, \frac{c_{\text {min }}}{2}\right)$. Then with probability at least $1-2 \exp \left(-\frac{\varepsilon^{2} \eta}{C_{K}} n\right)$,

$$
\begin{equation*}
\left\|\widehat{\Sigma}_{S}-\Sigma_{S}\right\| \leq \varepsilon \tag{B.11}
\end{equation*}
$$

By Corollary (5) and Cauchy interlacing theorem,

$$
\begin{equation*}
\lambda_{\min }\left(\widehat{\Sigma}_{S}\right) \geq \lambda_{\min }\left(\Sigma_{S}\right)-\varepsilon \geq \lambda_{\min }(\Sigma)-\varepsilon \geq c_{\min } / 2 \tag{B.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\max }\left(\widehat{\Sigma}_{S}\right) \leq \lambda_{\max }\left(\Sigma_{S}\right)+\varepsilon \leq \lambda_{\max }(\Sigma)+\varepsilon \leq c_{\max }+\left(1+c_{\min }\right) / 2 \tag{B.13}
\end{equation*}
$$

Thus, with high probability,

$$
\begin{equation*}
\frac{c_{\min }}{2} \leq \frac{1}{n} X_{j}^{T}\left(I_{n}-H_{S \backslash j}\right) X_{j} \leq c_{\max }+\frac{1+c_{\min }}{2} \tag{B.14}
\end{equation*}
$$

Proof of Corollary (2). From Lemma (1), we can bound $\hat{\beta}_{j}$ as below:

$$
\begin{align*}
\hat{\beta}_{j} & =\frac{X_{j}^{\mathrm{T}}\left(I-H_{S \backslash j}\right) Y}{X_{j}^{\mathrm{T}}\left(I-H_{S \backslash j}\right) X_{j}} \\
& =\frac{n}{X_{j}^{\mathrm{T}}\left(I-H_{S \backslash j}\right) X_{j}} \frac{X_{j}^{\mathrm{T}}\left(I-H_{S \backslash j}\right) X_{S_{0, n}} \beta_{S_{0, n}}^{0}}{n} \tag{B.15}\\
& \leq \frac{2}{c_{\min }} \frac{c_{\beta} \sum_{k \in S_{0, n}}\left|X_{j}^{\mathrm{T}}\left(I-H_{S \backslash j}\right) X_{k}\right|}{n} \\
& \leq \frac{2}{c_{\min }} c_{\beta}\left(c_{\max }+\frac{1+c_{\min }}{2}\right) n^{c_{1}} .
\end{align*}
$$

Let $C_{\beta}=\frac{2 c_{\beta}}{c_{\text {min }}}\left(c_{\max }+\frac{1+c_{\text {min }}}{2}\right)$, we complete the proof.

References

Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics 9, 1218-1228.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027.

Web Table 1: Comparisons of SPARES and one-time SPARE based on 200 replications. Bias (SE) is displayed in each cell. LSE refers to least square estimation as if $S_{0, n}$ were known.

Index	β_{j}^{0}	SPARES	One-time SPARE	LSE
199	1.00	$0.03(0.16)$	$-0.02(0.26)$	$0.03(0.16)$
243	-1.00	$-0.02(0.16)$	$0.03(0.26)$	$-0.02(0.16)$
256	1.00	$-0.002(0.16)$	$-0.007(0.26)$	$-0.002(0.16)$
0 's	0.00	$0.000(0.16)$	$-0.001(0.26)$	

Web Figure 1: Performance of SPARES under simulation example 2.1. X-axis is the variable index. Topleft: Average estimates and average CIs V.S. true signals. Topright: Bias of SPARES estimates for each j , red dots are non-zero signals, dashed lines indicate blocks of the predictors. Bottomleft: Coverage probability of β^{0} for each j w.r.t. 0.95 norminal level. Bottomright: Empirical probability of not rejecting $H_{0}: \beta_{j}^{0}=0$.

Web Figure 2: Performance of SPARES under simulation examples 2.2.

Web Figure 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simulation example 4. Left panels: Mean estimates from each method and the true signals. Right panels: Coverage probabilities for each $j \in S_{0, n}$ and 20 representatives of $j \notin S_{0, n}$.

Web Figure 4: Correlation among predictors: left panel - riboflavin data; right panel multiple myeloma data.

Web Figure 5: Results of the riboflavin genomic data analysis. Left panel: selection frequency of each gene; Right panel: confidence intervals of the top five most significant genes.

Web Figure 6: Results of the Multiple Myeloma genomic data analysis. Left panel: selection frequency of each gene; Right panel: confidence intervals of the top two most significant genes.

