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Summary

In emergency departments (EDs), care providers continuously weigh admissions
against continued monitoring and treatment often without knowing their condition
and health needs. To understand the decision process and its causal effect on out-
comes, an observational study must contend with unobserved/missing information
and a lack of exchangeability between admitted and discharged patients. Our goal
was to provide a general framework to evaluate admission decisions from electronic
healthcare records (EHR). We describe admission decisions as a decision-making
process in which the patient’s health needs is a binary latent variable. We estimate
latent health needs from EHR with only partial knowledge of the decision process
(i.e., initial evaluation, admission decision, length of stay). Estimated latent health
needs are then used to understand the admission decision and the decision’s causal
impact on outcomes. For the latter, we assume potential outcomes are stochasti-
cally independent from the admission decision conditional on latent health needs.
As a case study, we apply our approach to over 150,000 patient encounters with the
ED from the University of Michigan Health System collected from August 2012
through July 2015. We estimate that while admitting a patient with higher latent
needs reduces the 30-day risk of revisiting the ED or later being admitted through
the ED by over 79%, admitting a patient with lower latent needs actually increases
these 30-day risks by 3.0% and 7.6%, respectively.
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Introduction

In the United States, hospitalizations account for one-third of healthcare expenditure with over half of admissions originating
from the emergency department (ED)1. A growing portion of admission decisions to inpatient hospital units are being made
in the ED2. By ordering more tests or monitoring patients longer, an ED care provider can delay their admission decision to
better inform their final decision, but this can delay treatment to other time-critical patients and lead to long waits in already-
overcrowded EDs. Alternatively, patients are being increasingly sent to a medical short-stay or observation units, to allow for
extended evaluation for up to 24 to 48 hours to better determine if the patient should be sent home or admitted3,4. However,
whether delaying or increasing admission decisions improve outcomes, efficiency, or costs is an open-ended and hotly-debated
topic with important policy implications5,6. Thus, ED care providers must quickly discriminate between who to send home,
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continue to treat/monitor, send to a short stay unit, or admit to the hospital, balancing patient outcomes with costs and timely
access to care for all patients.

The admission decision process in EDs begins when a patient arrives and proceeds to triage, where they are usually assigned
an acuity level based on severity of illness. Acuity is commonly assigned using the emergency severity index (ESI), a five-
level triage algorithm designed to facilitate the sorting and streaming of patients. Higher acuity patients (1 or 2) are almost
immediately brought to a bed for treatment. Lower acuity patients (3, 4, and 5) wait for treatment until they are brought
to a bed. Once in a room/bed, they are visited by providers to determine a plan of care involving a series of examinations,
diagnostic testing such as imaging (e.g. radiographs, ultrasound CT scans, MRI), laboratory work, and treatment. After testing
and treatment, the patient is either well enough to be discharged home or is admitted to the hospital. This seemingly simple
decision-making scenario turns out to be surprisingly complex, with important health and policy implications.

Because admission is one of the most expensive routine decisions made in health care for a patient7, it is important to
determine how the admission decision causally impacts patient outcomes such as ED revisits and hospital readmissions. Patients
or clinics would ideally be randomized to various treatment groups (e.g. discharge home, admit), but randomized clinical
trials are difficult, if not unethical, to conduct for this question. Alternatively, electronic health records (EHR) could be used
to leverage large amounts of transactional data on daily ED operations, but then finding an association between admission
decisions and an outcome may be insufficient to conclude that the decision caused the outcome. The issue is that the decision to
admit a patient or not cannot be reasonably assumed to be independent from their potential outcomes, where potential outcomes
are those outcomes that would have been observed if each person could be assigned to all treatment groups. Notably, the severity
of a patient’s condition is expected to strongly influence both admission decisions and outcomes.

Causal inference methods such as propensity score matching, inverse probability weighting, standardization, g-estimation,
and instrument variables (IVs) attempt to overcome this issue. To date, most empirical studies on transfer decisions between
hospital units, such as admitting a patient to an inpatient hospital unit, use an IV approach. This approach relies on a variable
called an instrument that is correlated with the treatment, but not with the outcomes except perhaps through its association with
treatment. Kim et al.8 examine how congestion impacts ICU admission decisions and patient outcomes. They use congestion
as an IV to identify the causal effect of ICU admission decisions on patient outcomes. Chan et al.9 considers admission to ICU
versus step down units (SDUs), an intermediate level of care for semi-critically ill patients who are not sick enough to require
intensive care but not stable enough to be treated on a general ward. They use IV approaches to estimate the impact on patient
outcomes of routing patients to the SDU from the ED as well as the ICU. Kim et al.10 study whether ICU occupancy influences
ICU admission decisions and patient outcomes in a retrospective study also using IVs. Bartels et al.11 use IVs to address the
potential bias in hospital length-of-stay. Causal inference studies on the ED are more rare. One example is Kuntz et al.12. The
authors also use IVs to support replacing general hospitals with what they term as “value-adding process clinics” and “solution
shop hospitals” for less and more complicated patients, respectively. In these applications, researchers justify their use and
choice of IVs as a way to overcome potential bias when unobserved patient severity/needs affects both transfer decisions and
patient outcomes.

The challenge with IVs is in identifying an appropriate instrument13,14,15. When there is a strong backdoor factor (also
referred to as endogenous variable or confounder), such as we expect patient severity is for ED admissions and outcomes, the
instrument should also be strongly correlated with treatment assignments. This can be extremely challenging. Moreover, an
IV approach does not model the backdoor factor, unobserved patient severity, or the process upon which a physician accrues
information while treating the patient until an admission decision is finally made. Thus, this approach may not offer insight into
the actual decision-making process.

Other methods to making causal inferences try to mimic a randomized trial by compensating for the bias introduced by
backdoor factors. These methods include propensity score matching, inverse probability weighting, standardization, and g-
estimation; see e.g.,16,17,18,19 and20,21,22,23 for comprehensive treatments on these methods. These methods must satisfy certain
assumptions: positivity, consistency, and exchangeability, of which exchangeability is arguably the hardest to satisfy. Full
exchangeability says that treatment assignments are stochastically independent from potential outcomes. Often too strict, full
exchangeability is often replaced with conditional exchangeability which requires treatment assignments are stochastically
independent from potential outcomes within strata (e.g., strata defined by sex and age). Additionally, these methods require
a conceptual understanding of what factors impact treatment assignments, and this conceptual understanding needs to be for-
malized mathematically. These methods can fail when an unobserved or latent variable introduces hidden bias that is not taken
into account in the model21. Latent variable models within causal inference frameworks have been studied in the literature; see
e.g.,24,25,26,27,28,29,30,31,32. In27, for instance, the authors consider how to causally evaluate a class of probabilistic diagrams when
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there are unmeasured, or latent, variables. In32, the authors use latent variable models to estimate latent confounders (i.e., fac-
tors that affect both an intervention and its outcome) and individual-level causal effects from observational data. Applications
have been studied in29,31. In29, for instance, the authors study weight loss intervention programs. The authors model uninten-
tional weight loss as a latent variable and use potential outcomes to estimate associations between weight loss and mortality.
Motivated by angiography in myocardial infarction, the authors in31 propose a causal inference method for treatment in a two-
arm experimental study with noncompliance in treatment and control arms. Their model includes individual patient covariates
and latent variables for unobserved heterogeneity between subjects.

This prior work provides useful models for embedding latent variables in causal inference frameworks. Here, we aim to posit
and model a latent variable to capture a care provider’s uncertainty related to patient’s health needs. Our paper is based on
the hypothesis that explicitly modeling a patient’s unknown, or latent, health needs can help evaluate admission decisions and
estimate causal effects of admissions on outcomes. We introduce a model that describes the admission decision as a decision-
making process with health needs as a latent variable. We make the assumption that latent health needs provides a natural
conditional exchangeability assumption: admission decisions are stochastically independent from potential outcomes within a
group of individuals with similar latent health needs, and integrate this assumption into the potential outcomes framework to
estimate causal effects from observational data. We use this approach to examine data on over 150,000 patient encounters in
the ED and inpatient units from the University of Michigan Health System (UMHS) collected from August 2012 through July
2015.

We view our work as making the following contributions:

1. A continuous-time decision making model of the admission decision process in the ED in which health needs are
explicitly captured as a latent variable; and

2. A method to estimate causal effects using the latent variable to overcome a lack of exchangeability.

In the process, we impose minimal conditions on EHR data: only an initial observation, final decisions, length of stay, and
demographic information are needed, so the method should be applicable to most ED datasets. The rest of the paper is organized
as follows: Section 2 describes the modeling framework; Section 3 describes parameter specification and estimation; Section 4
studies estimation via simulation. Section 5 contains our case study and a sensitivity analysis. Section 6 contains a discussion
of these results and our conclusions.

Admission Decision Process

Decision-Making Model
We present a model of the decision process for a single patient from the perspective of a care provider (e.g. physician) tasked
with making an admission decision. We let random variable X ∈ ℝk denote patient characteristics known prior to the start of
treatment such as age and sex. Let H ∈ {0, 1} denote the hidden or latent health state. The health state denotes the (unknown)
patient’s needs for hospital resources (e.g., level of treatment). For this study, we assume H is a binary random variable with
H = 1(0) representing higher (lower) needs. We remark that the results presented here also hold in the case when H can take
on a finite number of ordered values.

We let Z ∈ {0, 1} be a random variable denoting an initial (noisy) observation, or belief, of health needs taken prior to the
start of treatment or testing by the medical provider, where Z = 1(0) represents an initial belief of higher (lower) health needs.
In practice, the observation Z is usually in the form of ESI or acuity level. Lastly, we define random variables A ∈ {0, 1}
to represent the realized admission decision, i.e., admit (1) or discharge (0), and T ∈ (0,∞) to represent the time from when
treatment begins until the admission decision is made, i.e. treatment time. We assume that the random vector (X,H,Z,A, T , Y )
are independent and identically distributed, where Y will denote outcomes which we define later.

Putting it all together, immediately after an initial (noisy) assessment,Z, the patient undergoes treatment/testing at time t = 0
that yield new (noisy) observations of the patient’s health state. The physician views observations collected so far until enough
information is collected after a random amount of time T to decide among two mutually-exclusive decisions: discharge patient
home; or admit patient to an inpatient hospital unit, with A = 0, 1 denoting, respectively, the decision to discharge or admit.
Once the physician decides to admit or discharge a patient, a patient no longer undergoes treatment/testing and waits to be sent
home or admitted to the hospital.
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FIGURE 1 Bayesian network of admission decision model. Patient health needs H influences an initial observation Z. Care
providers use this observation and other observations collected so far from treatment and testing until time T , when they make
a final decision A on whether to admit or discharge. Dashed circle represents our latent variable, whereas rectangles represent
observed variables.

FIGURE 2 Structural model of treatment time T and admission decision A is constructed from, respectively, the first-passage
time and exit location of Brownian motion Bt. To capture the dependence on patient characteristics X, latent health needs H ,
and initial observation Z, we assume Brownian motion starts at a point c(X,Z)b(X) and drifts at a speed of d(H)b(X) until
reaching the boundary 0 (discharge) or b(X) (admit).

Our model of the admission decision process yields the Bayesian network depicted in Figure 1 , for which nodes are sets of
variables and edges link one node to the other whenever variables in the latter node are conditionally dependent on variables
in the former node. For example, we see from the network that the admission decision A depends on the initial observation Z,
health state H , and patient characteristics X.

Structural model for admission decision & treatment time
We introduce a joint structural model for final decision A and treatment time T to reflect the decision-making process of a care
provider. It is a drift-diffusion model that captures similar decision-making scenarios whereby one collects information contin-
uously over time until eventually deciding between two mutually exclusive options after a variable amount of time; see e.g.,33

for an application in neuroscience of drift-diffusion models to decision-making. Such an approach is also used in threshold
regression to jointly model a continuous time-to-event and an event’s outcome34. Specifically, we introduce parameters b(X),
c(X,Z), d(H) and construct a joint model of admission decision A and treatment time T (conditional on X,H and Z) from
first-passage locations and times of Brownian motion Bt (Figure 2 ). Assuming a drift of d(H)b(X) and infinitesimal variance
of �2, then Brownian motion Bt is a continuous-time stochastic process with stationary and independent increments Bt+s − Bt
which are normally-distributed with mean d(H)b(X)s and variance �2s. We model treatment time T as the first-passage time
of Bt out of an open interval (0, b(X)) starting at some point B0 ∶= c(X,Z)b(X) with c(X,Z) ∈ (0, 1):

T ∶= inf{t > 0 ∶ Bt ∉ (0, b(X))},

The admission decision A is then captured by whether Bt exits through 0 or through b(X):

A ∶=

{

0 BT = 0
1 BT = b(X).

Note the value of Bt does not represent a physical quantity. We can thus scale Bt, �, and b(X) without changing the distribution
of (A, T ) given X,H,Z. Hence, it is without loss of generality that we assume �2 = 1 with units 1/time.

Based on the assumptions above, we arrive at a structural model for the joint density function of (A, T ) = (a, t):

ℙ(T ∈ [t, t + dt], A = a|X,H,Z) ∶= g (a, t|b(X), c(X,Z), d(H)) dt

where the differential dt here is informally used to denote an infinitely small (or infinitesimal) change in the value t and
g(a, t|b, c, d) denotes the joint density of (A, T ) = (a, t) for a given initial point bc, drift rate db, and upper boundary b. Note
that to place these parameter functions into the context of the admission decision-making scenario, we assumed that c is a
function of patient characteristics X and initial observation Z to reflect that a medical care provider only has Z and X to
initially evaluate the patient. We assumed the drift term d is a function of health needs H to reflect that information collected
by the care provider in the ED will be determined largely by their health needs H . Lastly, we assumed the boundary b depends
on X to reflect that the level of evidence required to make a decision depends on patient characteristics.

Remark 2.1. The function g has two equivalent expressions, both in the form of infinite series (see Appendix B). Following35,
g can be approximated by the truncated version of one series for small t and the truncated version of the other series otherwise.
In35, guidelines are provided for when to use which approximation.
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Potential outcomes with latent health needs
We now consider an outcome of interest, represented by a random variable Y ∈ ℝ. The outcome random variable Y may or may
not depend on other variables in our admission decision process. Common outcomes of interest in the ED include ED revisits
(i.e., return to the ED within, say, 30 days) and hospital admission within 30, 60 or 90 days after the patient is discharged.
These two outcomes are often used to measure the quality of hospital care, since it could mean patient follow-up care was not
properly organized, or that the patient was not adequately treated before discharge36,37.

We want to infer the causal impact of admitting a patient on the outcome of interest. For causal inference, it is common to
consider random potential outcomes Y a ∈ ℝ for a = 0, 1, where Y a represents the outcome that would have been observed
if we always admitted our model patient (a = 1) or if we always discharged our model patient (a = 0). Hence, we assume
actual outcomes Y are either Y 0 if the patient is discharged (A = 0) or Y 1 if the patient is admitted (A = 1), leaving one of the
potential outcomes missing.

We want to use actual outcomes Y to provide information on the distribution of potential outcomes Y a. If admission decisions
were randomized, then potential outcomes Y a would be independent from the admission decision A, and Y a would have the
same distribution as (Y a|A = a) = (Y |A = a). Put differently, with randomized admission decisions, potential outcomes for
admitted patients are exchangeable with potential outcomes for discharged patients. In other applications, potential outcomes
may reasonably be assumed to be independent from treatment assignments, i.e. exchangeability can be a reasonable assumption,
even when treatment assignments are not randomized. However, for EDs and other hospital transfer decisions, it should be
clear that these decisions cannot be reasonably assumed to be independent from potential outcomes. Admitted patients are
necessarily in a poorer health state than discharged patients, and whether a patient is readmitted to an inpatient unit or revisits
the ED is likely to be related to a patient’s health.

Given this conceptual understanding of the ED admission process, it is then natural to try to account for the impact that
severity of patient health has on both admission decisions and outcomes. We address this by exploiting the latent variable H to
control for confounding between actual outcomes and admission decisions. Specifically, we make the following assumption

Assumption 2.2 (Conditional Exchangeability). Potential outcomes Y a (a = 0, 1) are independent from the admission decision
A conditional on the health state H and patient characteristics X.

Remark 2.3. Conditional exchangeability is a common assumption for causal inference approaches known as standardization
and inverse probability weighting (IPW). These approaches assume potential outcomes Y a are independent from the admission
decision A conditional on a subset of observed variables U and then use the fact that Y a|U has the same distribution as
Y |U,A = a to estimate E Y a for a = 0, 1.

Discussion on the decision-making model
Model choice is important for causal inference approaches because estimates generally depend on a model that specifies how
variables influence treatment assignments and outcomes. The model should be chosen carefully to recover accurate estimates
from causal inference approaches. We thus wanted a model to best reflect the actual admission decision process.

We highlight three important features of the decision-making model. First, patient health needs are latent or hidden (cf.,38). In
the ED, physician’s do not always arrive at complete diagnoses for patient symptoms (e.g., chest pain, abdominal pain, syncope,
headache, shortness of breath) at the end of the visit. As a result there is variability in how physicians determine the need
for hospitalization. Second, patient health needs are elucidated through a series of noisy (i.e. imperfect) observations through
diagnostic testing and/or treatment. The noisy assumptions are because a physician’s decision to admit a patient involves many
unobserved, complex factors. Moreover, diagnostic testing and response to treatment may be ambiguous. Third, decisions to
transfer or to continue treatment and testing occur at continuous and variable times throughout a patient’s stay in a hospital unit.

To capture these features, we used a particular version of threshold regression34 based on hitting time of a drift-diffusion
process on one of two boundaries. This regression model describes processes of evidence accumulation, such as how humans
discriminate between two choices over time39. Unlike traditional regression models, it captures many important features: con-
tinuous decision times; initial bias in the admission decision process; rate at which information is collected; and the threshold
level of information at which point a final decision is made. The underlying assumption is that the individual, in this case, the
physician, extracts, per time unit, a constant piece of evidence from the stimulus (drift) which is disturbed by noise (diffusion).
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This accumulation stops once enough evidence has been sampled and a decision is made. These features are consistent with the
admission decision model.

Another consideration is that our model of the decision-making process is not a standard survival model. Despite being
non-standard, threshold regression has been used to model survival processes for many applications, including hospital length
of stay and latent health status40,41,42,43. In fact, the more commonly-used inverse Gaussian distribution is also a threshold
regression model. See Lee and Whitmore for an overview and examples43. Moreover, our model also simplified analysis in
three main regards. First, we could use one joint model for both the admission decision and treatment time. By contrast, a
more conventional survival analysis model (e.g., Weibull regression model) would require two regression models, one model
for the admission decision and another for treatment time conditional on the admission decision or one model for the treatment
time and another for admission decision conditional on the treatment time. Second, if we were to use two regression models as
discussed above, we would require 2 additional parameters to capture main effects (characteristics, acuity, and health state in
both models and treatment time or admission decision in the second model) compared to our model.

Third, there was a simple way to capture the dependence of the admission process (A,T ) on the initial observation Z and
health state Z, because our model was a more realistic model of the admission process than other conventional survival mod-
els. The initial observation Z influences the initial level of evidence, and the health state H influences the rate of evidence
accumulation. These assumptions can automatically capture treatment times that are longer on average when there was a mis-
match between acuity and admission decision, which we observe in our dataset. By contrast, capturing this effect using the
two-model approach discussed above would require interaction terms in our regression model, leading to even more coefficients
to estimate.

Parameter specification and estimation

To fit the admission decision model to EHR data, we assume that we have data onN visits and that for visit n (n = 1, 2, 3,… , N)
the following variables are collected: a vector of patient characteristics xn ∈ ℝk; an initial assessment zn ∈ {0, 1}; admission
decision an ∈ {0, 1}; treatment time tn ∈ (0,∞); and a binary outcome yn ∈ {0, 1}. Although we focus on binary outcomes,
results can be extended to continuous outcomes. We assume that the admission decision process is independent and identically-
distributed for each visit.

Along with parameter functions b(X), c(X,Z), d(H), we specify the admission decision process with parameter functions:

�(X) ∶= ℙ(H = 1|X) and �(X,H) ∶= ℙ(Z = 1|X,H).

We further restrict attention to when

logit �(X), logit �(X,H), log |d|(H), logit c(X,Z), log b(X)

are linear in their arguments and estimate the set of linear coefficients of these functions. For k-dimensional X, this restriction
leads to 8 + 4k unknown parameters. The sign of the drift rate d(H) is assumed to be negative for lower health needs (H = 0)
and positive for higher health needs (H = 1) to capture propensity for lower health needs patients to be discharged and higher
health needs patients to be admitted. For outcomes, we assume potential outcomes depend linearly on latent health needs:

ℙ(Y a = 1|X,Z, T ,H) = ℙ(Y = 1|X,Z, T , A = a,H)
∶= �1 + (�2 − �1)H + (�3 − �1)a + (�4 − �2 − �3 + �1)Ha

so that

E
[

Y 1 − Y 0|H = 0
]

= �3 − �1 and E
[

Y 1 − Y 0|H = 1
]

= �4 − �2,

where we employ the Conditional Exchangeablility Assumption 2.2 to relate potential outcomes to actual outcomes. Potential
outcomes lead to an additional 4 unknown parameters, leading to 12 + 4k unknown parameters in total. Note that the latent
variable H represents a confounder in the sense that it partitions the population into strata such that, within each stratum,
exchangeablity of the A = 0 and A = 1 populations holds, whereas exchangeability might not hold marginally over H . The
latent variable H , however, may also serve as a modifier of the treatment effect of A. Effect modification occurs when the
interaction term (�4−�2−�3+�1) is nonzero. Further, we chose to omit variablesX,Z, T in the above expression for potential
outcomes to reduce the number of parameters and to reflect that patient characteristics, acuity, and treatment time might not
have a direct effect on potential outcomes when controlling for patient health needs. However, our framework is sufficiently
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flexible that variablesX,Z, T may be included if desired, and confidence intervals of any resulting coefficients may be checked
to see if they contain 0 in order to justify removing variables.

Let � be the vector of unknown parameters and Θ ∶= ℝ12+4k be the set of possible parameter vectors. We estimate model
parameters by performing maximum likelihood estimation (MLE) using the expectation-maximization (EM) algorithm44.
For the EM algorithm, we need to specify the complete data likelihood of observing (H,Z,A, T , Y ) = (ℎ, z, a, t, y) given
parameters � and patient characteristics X = x. Based on our Bayesian network, the complete log-likelihood is expressed as

(1 − a)
(

y log
[

�1(1 − ℎ) + �2ℎ
]

+ (1 − y) log
[

(1 − �1)(1 − ℎ) + (1 − �2)ℎ
])

+
a
(

y log
[

�3(1 − ℎ) + �4ℎ
]

+ (1 − y) log
[

(1 − �3)(1 − ℎ) + (1 − �4)ℎ
])

+
log g (a, t|b(x), c(x, z), d(ℎ)) + z log �(x, ℎ) + (1 − z) log [1 − �(x, ℎ)] +…

ℎ log �(x) + (1 − ℎ) log [1 − �(x)] ,

where we suppressed the dependence on � in our parameter functions.
Confidence intervals are estimated using a numerical approximation to Oakes Identity45 used in EM methods to estimate

Fisher’s information matrix, which when inverted, yields estimates of sampling variances for each parameter. These variances
were then used to construct 95% confidence intervals assuming parameter estimates are normally-distributed. Confidence inter-
vals for functions of parameter estimates were estimated using the delta method. For completeness, we consider an alternative
estimation approach in the Appendix that first estimates parameters for the admission decision process and then estimate param-
eters for outcomes. This alternative approach was considered to mirror our dual goals of discovering how a decision process
could be explained by latent health needs and then determining how outcomes are influenced by this latent variable; and because
estimating latent variables in other settings separately from effects of latent states had also been suggested in46 and shown
numerically in47 to be more robust to model violations. This alternative approach also does not require distribution assumptions
on outcomes.

Simulation

We consider two simulation examples to assess parameter estimation and robustness of our estimates to violations in the Con-
ditional Exchangeability Assumption 2.2. We compared mean difference in potential outcomes E Y 1 − E Y 0 for our method
to three other methods. Inverse probability weighting was performed by building a logistic regression model to predict admis-
sion decisions from patient characteristics X, initial observation Z, and treatment time T . We then estimated mean potential
outcomes E Y a by taking a weighted average of outcomes Y with admission decision A = a where weights are given by one
over the probability of admission decision A = a predicted from the logistic regression model. The method of g-estimation was
performed by building a logistic regression model to predict admission decision from X, Z, T , and a variable J ∶= Y −  A
for some parameter  . We varied  until the fitted regression model had a zero coefficient for J . In order to assess the value
of using a latent-variable to adjust for confounding, the last method we compared estimated mean potential outcomes from our
model when the dependence on the latent variable H is removed. Specifically, we dropped the dependence on H in the initial
observation Z, admission decision process (A, T ), and Assumption 2.2. We then adjusted the log drift term log |d|(H) to be
linear in the initial observation Z rather than H and adjusted to the logit of potential outcomes logit ℙ(Ya|X,Z,T) to be linear
in patient characteristics X and initial observation Z rather than H . Throughout this section, we assume patient characteristics
X is a two-dimensional random vector (X1, X2) with X1 describing a binary characteristic such as gender and X2 describing a
numerical variable such as age.

Example 1: Correct model
We simulated N ED visits by sampling directly from the model of admission decisions and outcomes for a particular choice
of 20 unknown parameters (Table E1 ). We considered both N=1,000 and N=10,000. For comparison, our UMHS dataset has
over 150,000 visits. Parameters were estimated along with their confidence intervals and the process repeated for a total of 500
replicates. To arrive at reasonable parameters, we used our UMHS dataset with the admission decisions as a proxy for health
needs (see Table E3 for description of UMHS dataset and see Appendix D for justification of parameter choices).

For this model, we checked bias, mean squared error (MSE), and coverage for parameter estimates. Results are summarized
in Table E1 . When N=1,000, certain parameters are not estimated accurately. For example, the linear coefficient for the term
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H = 1 in logit �(X,H) is estimated poorly in terms of bias (1.6) and MSE (44.4). Confidence intervals, however, capture this
uncertainty with 94% coverage of the true parameter. We also understate estimated outcomes for higher needs patients who
are discharged (�2) by about 12%. In this case, confidence intervals are associated with only 90% coverage. All estimates,
however, improve significantly in terms of bias, MSE, and coverage when N increases to 10,000 data points. Based on this, we
hypothesize that estimates will improve when we increase the number of data points to 150,000.

Out of all of the parameters, �2 was the most difficult to estimate. MSE decreased from 0.0801 for 1,000 data points to
0.0130 for 10,000 data points, and we expect even more accurate estimates for �2 when the number of data points is increased to
N=150,000. This parameter corresponds to higher-needs patients that are discharged (i.e., H = 1 and A = 0). It was estimated
from discharged patients, but, by design, the majority of these patients have lower health needs (H = 0). By our choice in
parameters, this group tended to be the smallest group (out of the four groups divided on health needs and admission decision)
in simulated data samples (≈5%), which may explain why it is the most difficult group for which to estimate outcomes.

To connect to other causal inference methods, we also estimated mean difference in potential outcomes:

E
[

Y 1 − Y 0
]

and log odds ratio of potential outcomes

log
E Y 1 E

[

1 − Y 0
]

E Y 0 E
[

1 − Y 1
] .

Mean difference in potential outcomes has an actual value of −0.12 for this example. When N=1,000, our estimates for this
quantity had a bias of 0.019, MSE of 0.014, and 86% coverage. WhenN=10,000, estimates for this quantity improve leading to
a bias of 0.0080, MSE of 0.0017, and 90% coverage. Log odds ratio of potential outcomes has an actual value of −0.63. When
N =1,000, our estimates for this log odds ratio had a bias of 0.067, MSE of 0.46, and 86% coverage. When N =10,000, our
estimates perform better with a bias of 0.041, MSE of 0.049, and 92% coverage.

By comparison, the other methods (inverse probability weighting, g-estimation, and fitting our model without the latent
variable) led to poor estimates of mean difference in potential outcomes which do not improve with sample size. For instance
when N=1,000, inverse probability weighting led to an average estimate of mean difference in potential outcomes of 0.053
far from the true value of -0.12. When N=1,000, inverse probability weighting led to a bias in mean difference in potential
outcomes 0.173 and MSE of 0.031, whereas g-estimation led to a bias of of 0.166 and MSE of 0.028 and fitting our model
without the latent variable led to a bias of 0.176 and MSE of 0.032. When N=10,000, inverse probability weighting led to a
bias in mean difference in potential outcomes of 0.168 and MSE of 0.028, whereas g-estimation led to a bias of 0.161 and MSE
of 0.026 and fitting our model without the latent variable led to a bias of 0.176 and MSE of 0.031. Critically, all three methods
incorrectly suggest admitting a patient carries a higher risk than discharging a patient. These methods are effectively missing
the large risk associated with discharging individuals with higher health needs.

Example 2: Violation in Conditional Exchangeability Assumption
We also checked the robustness of our model to violations in our Conditional Exchangability Assumption 2.2. Keeping the
rest of the model and parameters as in Example 1, we introduced an independent Bernoulli random variable U with “success"
probability 0.05 that influenced the admission decision and the outcome. If U = 1 and A = 1, so that the patient would be
admitted, we then re-defined A to be zero. For these same patients, who also had higher health needs, we set Y to be one.
This models the situation when an admitted patient goes home against medical advice and then comes back to the ED if they
originally had higher health needs. Results are summarized in Table E2 .

Compared to Example 1, we find that many of the estimates related to latent health needs are more greatly biased. For
example, we underestimate the proportion �(X) of higher needs patients. It is important to note that our latent variable is simply
a construct to help us understand how care providers in the ED make admission decisions and cannot be measured. Relations
between the latent variable and the (measured) variables are specified in a mathematical model to help us explain the statistical
properties of the measured variables in terms of the hypothesized latent variable. The implication for Example 2 is that, when
multiple endogenous variables share similar relationships between variables (e.g., admission decision and outcomes) then the
latent-variable tries to reflect both endogenous variables. Thus, we suspect that this bias reflects that our latent variable captures
both the health state H and the second endogenous variable U .

Although our estimates for the latent variable change, we found that we can achieve similar performance to Example 1 for
our estimates of mean difference in potential outcomes and log odds ratio of potential outcomes in which the effect of the latent
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variable is averaged out. We assume true values are the mean difference in potential outcomes and log odds ratio of potential
outcomes conditional on U = 0, i.e. ignoring the effect of U which is not captured by our model. Our estimate for mean
difference in potential outcomes has a bias of −0.0154, MSE of 0.0008, and 92% coverage. Our estimate for log odds ratio of
potential outcomes had a bias of −0.0675, MSE of 0.024, and 92% coverage.

As in Example 1, the three other methods led to significantly worse estimates of risk difference. Mean difference in potential
outcomes has a bias of 0.152 and MSE of 0.023 for inverse probability weighting, whereas g-estimation led to a bias of 0.142
and MSE of 0.020 and fitting our model without the latent variable led to a bias of 0.162 and MSE of 0.026. Again, both inverse
probability and g-estimation incorrectly suggest admitting a patient carries a higher risk than discharging a patient.

Case study

Data
Patient visits to the ED were analyzed using EHR from the University of Michigan Health Systems (UMHS). For each patient
visit, we recovered Demographic information (age, sex); Acuity (emergency severity index); Treatment Time (duration
between when treatment starts and ends) Admission Decision (the decision to discharge patient or admit to them to inpatient
unit); ED Revisit (a binary outcome [yes/no] specifying whether patient returns to the ED within 30 days of being discharged
from any hospital unit, including the ED); Readmission (a binary outcome [yes/no] specifying whether patient is admitted in
the ED to an inpatient unit within 30 days of being discharged from any hospital unit, including the ED). Note we used this
broader definition of readmission to be able to define a readmission variable for each visit.

For the analysis, we only included patient visits that met the following criteria: treatment start fell within a three-year period
between August 1st, 2012 and August 1st, 2015; the patient was assigned an acuity level of 2 or 3; and the patient was not
admitted to an ICU. The latter two criteria were imposed to focus on patient visits with the highest degree of medical uncertainty
with respect to needs for longer term acute care need in an inpatient hospital need. A total of 156,720 visits were included in
the analysis.

A summary of the data is in Table E3 . Note that each sex, age, and acuity group is well represented in the data. Among the
patients included in our data set, there are also a reasonable number of patients that are admitted (approximately 29.4%) and
that return to the ED within 30 days after being discharged (approximately 18.7%). The least represented variable is the number
of patients that are admitted within 30 days of being discharge from a hospital unit (approximately 7.1%).

Finally, we must contend with missing data. Of the 156,720 visits, 91 (0.06%) had missing data: 58 (0.04%) had a miss-
ing treatment time and 33 (0.02%) had a missing admission decision. To handle missing data, we imputed missing variables
from one ED visit with corresponding variables of its nearest ‘neighbor’ (ED visit) with complete data in terms of Euclidean
distance48. All variables were used for imputation. Age and treatment time were standardized prior to measuring distance in
imputation by centering around their respective mean and dividing by their standard deviation. Standardized age was also used
in subsequent regression models. Age had a mean of 47.7 years and standard deviation of 19.7 years.

Descriptive statistics of admission decisions and treatment times
We first analyzed treatment times and admission decisions directly to generate questions about latent health needs (Table E4 ).
Sex, age, and acuity are important factors in the admission decision process. Men are admitted at a higher rate than women,
suggesting that either admission decisions are biased towards men or that women are more likely to visit the ED with lower
latent health needs. The latter would explain why women are more likely to visit the ED (Table E3 ). Our admission decision
model will help us determine if men and women differ on average for similar latent health needs. Similarly, older age groups
are admitted at higher rates than younger age groups, which again could suggest bias or differences in latent states at the onset.
As for acuity, acuity 2 patients are admitted at higher rates than acuity 3 patients, which is to be expected. It would be natural
to attribute these differences to differences in latent health needs.

Analyzing treatment times and admission decisions together further generated questions about latent health needs, while
demonstrating that understanding the admission decision process requires working with complex relationships. Treatment times
are similar between men and women who are discharged, but differ between men and women who are admitted. Meanwhile,
treatment time is similar among age groups who are admitted, but differ among age groups who are discharged. We ques-
tion whether identifying health needs is more or less difficult in different age and gender groups. Importantly, treatment time

This article is protected by copyright. All rights reserved.



10 Cochran ET AL

FIGURE 3 Results from parameter estimation: percent with higher latent health needs H = 1 (determined by �) and percent
with higher initial observation (acuity 2) by latent health needs (determined by �).

decreases with patient acuity among discharged patients, but increases with patient acuity among admitted patients. Are care
providers keeping patients longer for whom there is greater uncertainty about their latent health needs? In sum, modeling health
needs helps one answer these questions on whether differences in admission rates and treatment times can be attributed to
differences in latent health needs.

Fitting the decision-making model to data and estimating causal effects
We fitted the decision-making model and outcomes described in Section 2 to data on age, sex, acuity, admission decisions, and
treatment times using the same procedure described in Section 3. Sex and age were considered to be patient characteristics X.
Estimates and confidence intervals are reported in the Appendix (Tables E6 – E7 ). For comparison, we also estimated causal
effects by applying inverse probability weighting and g-estimation approaches using the same approach outlined in Section 4.

Inferences from the decision-making model
In fitting the decision-making model, we can use a patient’s latent health needs (H) to gain insight into the admission decision
process. For this study, we estimated that on average, about 25.3% of patients have higher health needs. Further, men were
more likely to have higher health needs than women (Figure 3 ; parameter estimates and 95% confidence intervals are in
Table E6 of the Appendix). Based on the estimate of the probability �(X) of having higher health needs, about 23.4% of men
had higher health needs at the mean age of 47.0 years, compared to only 19.2% of women, a difference of about 4.2%. This
result could largely explain the difference of 5.6% in admission rates between men and women. Similarly, we estimated that
older individuals are dramatically more likely to have higher health needs than younger individuals. Only 6.2% of individuals
at 18 years of age are estimated to have higher health needs, compared to 44.6% of individuals at 70 years of age, a difference
of 38.4%. Again, a difference in health needs can largely explain the difference of 41.3% in admission rates between the 18-
24 year old group and the 75+ year old group. Of note, though, is that individuals with higher health needs are smaller in
percentage than admitted patients, indicating individuals with lower health needs are often admitted.

An individual’s health needs is estimated to disagree with the initial observation, which in the UMHS ED is acuity level,
about 25-55% of the time, as determined from the estimate of �(X,H) (Figure 3 ). While this percent mismatch may seem
high, it is important to note acuity level does not only target an individual’s health needs, but also targets urgency and splits
individuals nearly equally between acuity 2 and acuity 3. Mismatch is higher for lower health needs, about 41.6% compared
to 31.4% for higher health needs at the mean age of 47.0 years. In other words, acuity level is more sensitive to higher health
needs than specific.

The final set of parameters b, c, d describe the admission decision process and its dependence on age, sex, health needs,
and initial observation. Parameters b, c, and d are interpreted, respectively, as the threshold of evidence before a final decision
is made, the initial level of evidence acquired from patient characteristics and the initial observation, and the rate at which
evidence is accrued for the admission decision. Since these parameters indirectly determine the final decision and treatment
time, we briefly discuss their estimates. The initial level of evidence is generally below the midpoint of 0.5 and increases
significantly with acuity. This result can be interpreted as follows: a care provider tends at the onset towards the decision to
discharge a patient over admitting, particularly acuity 3 individuals. This tendency to discharge a patient is slightly higher in
men and younger individuals. We also find that the threshold of evidence is significantly higher for women than men and for
older age groups, which can be interpreted as care providers are more careful when making a decision with women and older
individuals. Lastly, the rate of evidence is determined by an individual’s health needs, with information on higher health needs
more quickly accrued relative to lower health needs.

Parameters b, c, d on the admission decision process are best examined by assessing their influence on admission rates and
treatment times. Figure 4 depicts how admission rates and treatment times are related to health needs, age, and sex. We estimate
that care providers take longer with patients with lower health needs than higher health needs. Care providers also take longer
when a patient’s initial observation does not match their latent health state. So for example, care providers spend the most time
with lower-needs individuals who are assigned an acuity 2. This result suggests care providers keep patients longer when there
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FIGURE 4 Estimated average treatment times and admission rates by sex, age, acuity, and latent health needs. Higher health
needs is accompanied by shorter treatment times and better accuracy in the final decision compared to a lower health state.

FIGURE 5 Risk of ED revisits and readmissions as a function of admission decisions and latent health needs H = 0 and
H = 1.

is uncertainty in their needs. We also estimate that whereas the admission decision tends to agree with health needs, lower-
needs individuals have greater disagreement with their ideal final decision (which should be to discharge) than higher-needs
individuals (which should be to admit). For example, the proportion of lower-need individuals (H = 0) who are discharged
ranges from 87% to 97% depending on acuity, sex, and age, compared to 89% to 99% for higher-needs individuals (H = 1)
who are admitted. Greater disagreement in a lower health state may also translate into keeping patients longer.

As for differences in age and sex, we find that women are kept slightly longer than men and older individuals are kept longer
than younger individuals. Put differently, differences in treatment time observed in age and gender groups cannot be attributed
solely to health needs, highlighting potential bias in the admission decision process. Importantly, we find that keeping women
and older individuals longer is accompanied by greater agreement in their final admission decisions, independent of health needs
or acuity level. At best, certain higher-needs individuals are correctly admitted 99% of the time. At worst, certain lower-needs
individuals are incorrectly admitted 13% of the time.

Impact of latent health state on ED revisits and readmissions
We estimate that admitting an individual in the lower latent state increases the risk of ED revisits and readmissions (Figure 5 ;
Tables E6 –E7 in the Appendix). With lower health needs (H = 0), an individual has an estimated 21.6% (20.1%, 23.3%) risk
of revisiting the ED within 30 days of being discharged if they were admitted, compared to only a 17.3% (17.1%, 17.5%) risk
if they were discharged, leading to an estimated risk difference of 4.3%. These individuals also have a 10.6% (9.1%, 12.3%)
risk of being admitted though the ED within 30 days after being discharged if they were admitted, compared to 3.0% (2.9%,
3.1%) if they were discharged, leading to an estimated risk difference of 7.6%. That admitting a patient would lead to worse
outcomes is contrary to a common assumption that increasing one’s level of care means better care.

Admitting an individual with higher health needs (H = 1), however, has an opposite effect: significantly decreasing the
risk of ED revisits and readmissions (Figure 5 ; Tables E6 –E7 in Appendix). With higher health needs, an individual has an
estimated 20.1% (19.6%, 20.6%) risk of revisiting the ED within 30 days of being discharged if they were admitted, compared
to 100.0% (100.0%, 100.0%) risk if they were discharged, leading to a risk difference of about -79.9%. These individuals also
have a 15.4% (14.9%, 15.8%) risk of being admitted though the ED within 30 days after being discharged if they were admitted,
compared to 99.9% (99.5%, 100.0%) if they were discharged, leading to an estimated risk difference of -84.5%. In other words,
discharging an individual with higher health needs carries a significant risk.

Marginalizing over the latent health state, we find that an admission carries a lower risk than a discharge, with an estimated
risk difference of -17.0% (-18.1%, -15.8%) for revisits and -15.6% (-16.8%, -14.4%) for readmission. In contrast, inverse
probability weighting and g-estimation conclude that admission carries a higher risk than a discharge. Inverse probability
weighting estimates a 20.3% risk of ED revisits when admitting a patient compared a 18.4% risk when discharging a patient
(risk difference of 1.9%), and a 13.7% risk of readmission when discharging a patient compared to a 4.6% risk of readmission
(risk difference of 9.1%). G-estimation estimates similar risk differences: 1.5% higher risk of ED revisit and 9.0% higher risk
of readmission when admitting a patient over discharging a patient. These estimates would suggest that care providers reduce
admissions. If, however, our estimates are correct, then these alternative methods miss the high risk of discharging a high-needs
patient.
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Sensitivity to Conditional Exchangeability Assumption
We tested how sensitive our estimates of potential outcomes are to violations in the Conditional Exchangeability
Assumption 2.2. In general, the probability density function of Y , A, T given H,X,Z decomposes as

[

f
(

A = 1, T |H,X,Z, Y 1
)

ℙ
(

Y 1|H,X,Z
)]A [f

(

A = 0, T |H,X,Z, Y 0
)

ℙ
(

Y 0|H,X,Z
)]1−A ,

where we use f to denote a general density function. Assumption 2.2 allows us to drop the dependence of the admission
decision process A, T on potential outcomes Y 0, Y 1. Alternatively, if we suppose that

f
(

A, T |H,X,Z, Y 1
)

∝  AY 1
1 f (A, T |H,X,Z) ;

f
(

A, T |H,X,Z, Y 0
)

∝  (1−A)Y
0

0 f (A, T |H,X,Z)

then violations in the assumption can be captured by choosing values for  1 and  0 that are not both one.
We thus fit the model to data for  0 and  1 set to either 0.95, 0.975, 1, 1.025, or 1.05 in a factorial design, resulting in 25

comparisons. In all 25 comparisons, we found that estimates on potential outcomes (�1, �2, �3, �4,EY 1 − EY 0) for either ED
revisits or ED readmissions did not differ from their reference value when  0 =  1 = 1 by more than 0.022 (Tables E8 –E9 ).
For example, estimates of mean difference in potential outcomes ranged from -0.144 when  0 =  1 = 0.95 to -0.168 when
 0 =  1 = 1.05 in the case of ED readmissions. Thus, these important causal effects were relatively insensitive to the specified
violations in Assumption 2.2.

Discussion

We aimed to provide a general framework to evaluate the admission decision process in the ED and to establish causation
between admission decisions and outcomes. Our contribution is two-fold: a conceptual model for the ED admission decision
process in which a patient’s health or needs for resources is latent and a causal inference approach that uses latent health state
and observational data to determine to what extent admitting a patient improves outcomes. We evaluated our framework with
simulation and with an extensive dataset of over 150,000 patient encounters in the ED from the University of Michigan Health
System collected from August 2012 through July 2015. By modeling latent health needs, we could examine variation in the
admission decision process due to latent health needs. We could also estimate separate risks of an ED revisit or readmission for
individuals with lower needs versus individuals with higher needs.

Our causal inference approach is based on the potential outcomes framework49 and accounts for the lack of independence
between treatment assignment and potential outcomes that arises in an observational study (i.e., when treatment assignments
are not random). More broadly in an observational study, potential outcomes from one treatment group are not exchangeable
with potential outcomes from another treatment group. A popular strategy is to estimate mean potential outcomes within certain
groups or strata, for which it is reasonable to assume potential outcomes are exchangeable between treatment groups20,21,22,23.
Our approach is similar by estimating mean potential outcomes within similar health needs but differs by using strata that are
latent.

By marginalizing over the latent variable, we could still recover estimates of the mean difference in potential outcomes,
a common target for causal inference approaches. In simulation, we demonstrate that our method accurately estimates mean
difference in potential outcomes when data is generated from our model (Example 1) or closely-generated from our model
(Example 2). By contrast, inverse probability weighting, g-estimation, and fitting our model without the latent variable provided
significantly worse estimates in both examples to the point of drawing the wrong conclusion. That is, these alternative methods
predict an admission carries a higher risk than a discharge, when in fact an admission carries a lower risk than a discharge. These
methods did not adequately adjust for the risk of discharging associated with high-needs individual. A similar discrepancy
between our method and these alternative methods was found in our case study. While our method predicts an admission carries
a lower risk than a discharge, inverse probability weighting and g-estimation predicts an admission carries a higher risk than a
discharge. Hence, our method is providing different estimates than other causal inferences.

There are several aspects about our method that should be carefully considered. One consideration is that our causal approach
depends on a latent-variable model. Model-dependence is a common concern with all causal inference approaches because
estimates generally depend on model choice. For example, we expect estimates of mean difference in potential outcomes to
improve with better models of the admission process. Indeed, when data is simulated from our model (Example 1) or closely-
simulated from our model (Example 2), we find that our approach yields significantly better estimates of this risk difference than
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inverse probability weighting or g-estimation approaches. Model-dependence, however is not a unique concern to our approach.
All causal inferences require a conceptual model or hypothesis of the problem, at the very least, to specify to what extent
certain variables could influence both treatment assignments and outcomes. For the classic question of whether smoking causes
lung cancer, one might hypothesize that poor habits in general (e.g., excessive drinking) could be be associated with increased
smoking and lung cancer. Causal methods can be made robust to violations in the mathematical model (c.f.,50). However, the
conceptual model can rarely be validated22. In other words, the model should be chosen carefully to recover accurate estimates
from causal inference approaches. We thus strove to present a model that best reflects the actual admission decision process.

Even if less robust to model violations, a latent-variable approach could still provide more useful information in certain
contexts compared to other causal information approaches. In our case study, for example, we estimated that admitting an
individual with lower health needs increased the risk of an ED revisit by 3.0% and readmission by 7.6%, but discharging
an individual with higher health needs increased the risk of an ED revisit by 79.9% and readmission by 84.5%. In other
words, admitting a patient leads to worse outcomes only for lower needs individuals, suggesting efforts to decrease admission
rates could be welcome, provided it did not impact higher needs individuals. In contrast, g-estimation and inverse probability
weighting estimated that admitting a general individual increased the risk of an ED revisit by about 2% and readmission by
about 9%. This result would also support efforts to decrease admission rates, but would not bring the caveat that discharging
certain individuals could be disastrous.

Researchers in the clinical community have employed different empirical approaches to similar questions. In the ED, for
example, Stowell et al.51 use a matched pair cluster study to compare quality of care (i.e. length of stay, mortality, hospital
readmissions, and rate of transfer to the ICU) for patients outlying in inappropriate wards after admission because of lack of
vacant beds in appropriate specialty wards to the care given to non outlying patients. Empirical techniques have similarly been
used to assess outcomes from the care process in the ICU (c.f., Suter et al.52, Azoulay et al.53, Simchen et al.54). Related to
the present study are those assessing the impact of length of stay on patient outcomes (c.f. Bueno et al.55, Williams et al.56,
Nichols et al.57, Reynolds et al.58, Kaboli et al.59).

We remark that transfer decisions, such as ED admission decisions, are routine in hospital units (c.f.,60). We contend that our
approach is sufficiently broad that it could capture many of these transfer decisions, but specific enough to provide insight to
the transfer decision of interest. In addition, and as alluded to, we assume that both observations beyond an initial observation
and the number of decisions until the final decision to transfer/discharge are completely missing from the data. This assumption
ensures observational data can be analyzed with both minimal restrictions: only an initial observation, final decisions, length of
stay, and demographic information are needed; and in general populations.

However, our approach is not without limitations. First is that admission decisions and, in general, transfer decisions between
hospital units, may or may not depend on "operational factors" such as congestion, patient home environment, and hospital size
(c.f.,61,10,62,63,64,65,66,67) which need to be accounted for when assessing the causal impact of admission and transfer decisions
on patient outcomes. Second is that we used a threshold regression model of the disposition decision. Estimating causal effects
using an alternative model of the admission decision and comparing with our model is of clear interest. One alternative model
is described in Section 2.4: use a more conventional survival model such as a Weibull regression model for treatment time
and an another model for the admission decision conditional on the treatment time. This approach would require 2 additional
parameters to capture main effects (characteristics, acuity, and health state in both models and treatment time or admission
decision in the second model). More parameters would be needed for interaction terms in order to reproduce the observation
in the data whereby a mismatch between acuity and admission decision leads to longer treatment times. Third is that we apply
our approach to a general ED population after restricting to those patients with ESI index 2 and 3 and excluding patients
admitted to the ICU. EHR, however, may contain additional patient-specific information, such as chief complaint, that can
be leveraged at baseline. Fourth, EHR may also contain intermediate information (e.g., vitals, lab tests) that could strengthen
causal relationships. However, mapping this information onto observations in the admission decision process is expected to
require additional models and assumptions that are specific to a condition and/or hospital. Fifth, we chose a specific form of
our parametric model of potential outcomes in which only health needs have a direct effect. However, one may want to include
patient characteristics, acuity, and treatment time in this model if these variables are believed to have a direct effect on potential
outcomes even when controlling for health state.
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Appendix

Table of parameter estimates for simulation

Table of all parameter estimates for example 1 would go here.

Joint density approximation for admission decision and treatment time

In the main text, we introduced a structural model of the joint distribution of the admission decision A and treatment time T
conditional on patient characteristicsX, health needsH , and initial observationZ. The density function for (A, T ) = (a, t) con-
ditional on X,Z,H was expressed in the form g (a, t|b(X), c(X,Z), d(H)) with b(X), c(X,Z)b(X), d(H)b(X) representing
respectively a upper boundary, starting point, and drift rate. Dropping the explicit dependence on X,Z,H , the density function
g(a, t|b, c, d) can be expressed exactly35 as either

g(a, t|b, c, d) = exp
(

−(db)bc −
(db)2t
2

)

�
b2

∞
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k exp

(

−k
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2b2

)
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or
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√
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2t

)

.

We can thus approximate g(a, t|b, c, d) by truncating either series. However, the number of terms needed for an accurate
approximation depends on the value of t. When t is large, g can be accurately approximated with relatively few terms from
the second approximation. When t is small, g can be accurately approximated with relatively few terms from the second
approximation. We found g could be approximated accurately using the first approximation truncated to 10 terms (from k = 1
to k = 10) when t∕b2 ≥ 1∕10 and using the second approximation truncated to 21 terms (from k = −10 to k = 10) when
t∕b2 < 1∕10.

Alternative approach to parameter estimation

We present an alternative approach to estimate unknown parameters. There are three reasons to consider another approach, since
MLE yields an asymptotically efficient estimator provided model distributions are correctly specified. First, one may estimate
the distribution of latent variables prior to considering its effect on outcomes and then later decide to use these estimate to
estimate outcomes. Second, one may not specify a distribution for outcomes. Third, the model may be incorrect, which raises
several practical issues, depending on which part of the model is incorrect. Latent variables are hypothetical constructs for the
purpose of understanding admission decisions; generally there are no methods for directly measuring them38. Therefore, one
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may overlook incorrect models for latent variables. An incorrect model is more worrisome when estimating outcomes, since
changes in policy will stem from knowledge of how admission decisions causally impact outcomes. An incorrect model of
outcomes might then influence interpretation of latent variables, if we try to simultaneously estimate latent states and outcomes.
We thus propose an alternative approach that disentangles the estimation of the latent variable from the estimation of outcomes.
A similar idea of separating estimating latent variables and effects of latent states on outcomes in several steps can be found
in46. In47 the authors show numerically that, in certain cases, the approach in46 can be more robust to model violations.

To describe the estimation approaches, let � be a set of model parameters and let Θ be the feasible set for �. We first assume
that we can decompose � and Θ as (�1, �2) and Θ1 ⊗ Θ2 so that �1 fully specifies the part of the model that does not involve
outcomes Y :

f (z, a, t|x; �) = f (z, a, t|x; �1).

Second, we assume that both the log-likelihood function log f (z, a, t, y|x; �) of data (z, a, t, y) and the log-likelihood function
log f (z, a, t|x; �1) of the data (z, a, t) with outcomes excluded, satisfy the typical regularity conditions needed for MLE, e.g,
identifiability and continuity.

A MLE approach would search for (�1, �2) ∈ Θ1 ⊗ Θ2 that maximizes
∑

n
log f (zn, an, tn, yn|xn; �1, �2) =

∑

n
log f (yn|xn, zn, an, tn; �1, �2) +

∑

n
log f (zn, an, tn|xn; �1).

Under standard regularity conditions and provided the model is correctly specified, we know that the maximum likelihood
estimator is a consistent and asymptotically-efficient estimator of the true value of (�1, �2). These properties can be derived
from the theory of estimating functions by noting that the maximum likelihood estimator satisfies

∑

n

[

∇�1 log f (yn|xn, zn, an, tn; �1, �2) + ∇�1 log f (zn, an, tn|xn, �1)
∇�2 log f (yn|zn, an, tn; �1, �2)

]

= 0,

where the left hand side is an estimating function with expectation 0.
Our alternative approach is a two-step approach whereby MLE is performed once and then generalized estimating

equation approach is used next. Step 1 ignores information on outcomes Y and searches for �1 ∈ Θ1 that maximizes
∑

n log f (zn, an, tn|xn; �1). Assumed regularity conditions ensure that the maximum likelihood estimator is a consistent and
asymptotically-efficient (in the sense when Y is ignored) estimator of the true value of �1. These properties also follow from
the MLE estimator satisfying

∑

n
∇�1 log f (zn, an, tn|xn, �1) = 0

where the left hand side is an estimating equation of �1 with mean zero. If �̂1 is the resulting estimator, Step 2 then estimates �̂2
using a generalized estimating equation. Together, the two-steps amount to solving

∑

n

[

∇�1 log f (zn, an, tn|xn, �1)
)�T

)�1
Vn(�)−1

(

yn − �(xn, zn, an, tn; �1, �2)
)

]

= 0, (C1)

where functions � and Vn(�) are defined to respectively approximate the mean and variance of Y given X,Z,A, T and parame-
ters �1, �2. Only � needs to be correctly specified for the left hand side of (C1) to be an estimating function of �1, �2 with mean
zero. The two-step MLE/GEE approach will thus also yield a consistent estimator of (�1, �2).

Handling the latent variable
Finally, we turn to discuss how to handle latent-variables H . It is easiest to define the joint distribution of all the random
variables including H . In such a case, f (y|x, z, a, t; �1, �2) and f (z, a, t|x, �1) are not explicitly available, and so, we use
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expectation-maximum algorithm to perform MLE44. We also note that

E(y|x, z, a, t, �1, �2) =
∑

ℎ
E(y|x, z, a, t, ℎ, �1, �2)ℙ(H = ℎ|x, z, a, t, �1, �2)

=
∑

ℎ
E(y|x, z, a, t, ℎ, �1, �2)ℙ(H = ℎ|x, z, a, t, �1)

=
∑

ℎ
E(y|x, z, a, t, ℎ, �2)ℙ(H = ℎ|x, z, a, t, �1)

=
∑

ℎ
E(ya|x, z, t, ℎ, �2)ℙ(H = ℎ|x, z, a, t, �1),

where we first drop �1 from E(y|x, z, a, t, ℎ, �1, �2) since we conditioned on H = ℎ along with the other variables; then drop �2
in ℙ(H = ℎ|x, v, z, a, t, �1) because of how parameters � were decomposed; and finally use Assumption 2.2 to relate estimation
of the distribution of outcomes Y with estimation of the distribution of potential outcomes Y a. These expressions mean that
estimation of �2 is linked to the estimation of �1 only through ℙ(H = ℎ|x, z, a, t, �1). So even if the latent-variable model or
�1 is incorrect, we can still estimate �2 correctly and thereby make correct conclusions about potential outcomes provided the
model for outcomes and ℙ(H = ℎ|x, z, a, t, �1) are correct. These expressions also motivate choosing �(x, z, a, t; �1, �2) in Step
2 in the two-step MLE/GEE approach to be of the form:

�(x, z, a, t; �1, �2) ∶=
∑

ℎ
�ℎ,a(x, z, t, �2)ℙ(H = ℎ|x, z, a, t, �1),

for functions �ℎ,a(x, z, t, �2) that model E
[

Y a|x, z, t, ℎ, �2
]

.

Simulation results for a two-step approach
We applied our estimation approach to data from the same two simulation examples in the main text with N = 10, 000. Results
can be found in Tables E10 - E11 . In both examples, our two-step approach has similar performance in terms of bias and
MSE to the one-step approach for nearly all the estimated parameters. In Example 1, the two-step estimate of �2 is arguably the
worst when compared to the one-step estimate of �2, with bias equal to 0.0667 compared to -0.022. However in Example 2, the
two-step estimate of �2 has nearly the same bias as the one-step estimate of �2, with bias equal to 0.0955 compared to 0.0958.

Justification of parameter choices for simulation

Patient characteristics X = (X1, X2) was defined with X1 describing a binary characteristic such as gender and X2 describing a
numerical variable such as age. We chose an even 50% of simulated individuals to have X1 = 1 and chose X2 to be a uniformly
random variable between -1/2 and 1/2, where for reference about 45% of individuals visiting the ED are female and age is
roughly uniformly-distributed from 18 to 75 years among ED visits. We chose parameters in a linear model of logit �(X) such
that on average 30% ofX1 = 0 individuals have higher health needs (H = 1) and 25% ofX1 = 1 individuals have higher health
needs (H = 1) to reflect the approximate 30% admission rates for men and 25% for women. We assumed the linear coefficient
for X2 in logit �(X) was equal to 1 to reflect that older individuals are more likely to have higher health needs (H = 1).

For the remaining model components, we assume X has no influence. We chose parameters for logit �(X,H) such that 40%
of individuals with lower health needs (H = 0) have a higher initial observation (Z = 1) compared to 80% of individuals
with higher health needs (H = 1), which when taken with the rate �(X) of latent health needs, reflects that about half of the
individuals are assigned the higher acuity level (Acuity 2). We chose parameters for logit c(X,Z) such that c(X,Z) had a value
of 0.5 for individuals with a higher initial observation (Z = 1) compared to 0.4 for individuals with a lower initial observation
(Z = 0) to reflect that higher acuity patients are more likely to be admitted (about 42% of acuity 2 patients are admitted
compared to 18% of acuity 3 patients). Because the drift rate term d(H) and the boundary b(X) are difficult to relate to the data
and we can always re-scale time in the simulation, we simply chose parameters to result in a value of 2 for d(H) for higher
health needs (H = 1) and −1.5 for lower health needs (H = 0) and a constant value of 1 for b(X). Lastly, we assumed that
10% of lower needs patients have a poor outcome Y = 1 when discharged (A = 0) compared to 20% when admitted (A = 1)
and that 20% of higher needs patients have a worse outcome Y = 1 when admitted (A = 1) compared to 90% when discharged
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(A = 0). These values were chosen to capture two potential trends: higher needs patients have worse outcomes than lower needs
patients and a mismatch between needs and admission decisions leads to worse outcomes.

Tables of parameter estimates for case study

Tables from Case Study would go here.
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The following tables would be inserted in the main text:

N=1,000 N=10,000

Value Bias MSE Coverage Bias MSE Coverage

E
[

Y 1 − Y 0
]

n/a -0.12 0.0192 0.0143 0.86 0.008 0.0017 0.90

log E Y 1 E[1−Y 0]
E Y 0 E[1−Y 1] n/a -0.63 0.0674 0.4608 0.86 0.0411 0.0491 0.92

TABLE E1 Performance of parameter estimates when the model is correct (Example 1) in terms of bias, mean square error
(MSE), and percent coverage of true parameters for 95% confidence intervals. True parameter values are also reported. Variable
X2 was uniformly distributed between -1/2 and 1/2.
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N=10,000

Value Bias MSE Coverage

logit �(X) Intercept -0.85 -0.1227 0.0214 0.72
X1 = 1 -0.25 -0.0055 0.0053 0.94
X2 1 0.0339 0.0192 0.92

logit �(X,H) H = 0 -0.41 0.0185 0.0017 0.94
H = 1 1.39 0.1530 0.0465 0.94
X1 = 1 0 0.0047 0.0023 0.94
X2 0 0.0001 0.0067 0.90

log |d|(H) H = 0 0.41 0.0207 0.0009 0.76
H = 1 0.69 0.0042 0.0006 0.90

logit c(X,Z) Z = 0 -0.41 -0.0006 0.0006 0.92
Z = 1 0 0.0041 0.0018 0.96
X1 = 1 0 -0.0143 0.0023 0.96
X2 0 -0.0751 0.0084 0.72

log b(X) Intercept 0 -0.0022 0.0001 0.98
X1 = 1 0 0.0021 0.0001 0.90
X2 0 -0.0049 0.0004 0.90

�1 Intercept 0.1 0.0076 0.0001 0.70
�2 Intercept 0.9 0.0958 0.0095 1.00
�3 Intercept 0.2 0.0005 0.0008 0.96
�4 Intercept 0.2 -0.0005 0.0002 0.98
E
[

Y 1 − Y 0
]

n/a -0.12 -0.0154 0.0008 0.92

log E Y 1 E[1−Y 0]
E Y 0 E[1−Y 1] n/a -0.63 -0.0675 0.0240 0.92

TABLE E2 Performance of parameter estimates when the Conditional Exchangeability Assumption is violated (Example 2) in
terms of bias, mean square error (MSE), and percent coverage of true parameters for 95% confidence intervals. True parameter
values are also reported. Variable X2 was uniformly distributed between -1/2 and 1/2.
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Variable Count (%) Mean (SD)
Female 86,814 (55.4)
Age, years 47.7 (19.7)
Acuity 2 76,033 (48.5)
Treatment time, hours 5.4 (4.1)
Admitted 46,060 (29.4)
Revisited ED 29,333 (18.7)
Readmitted 11,176 (7.1)

TABLE E3 Composition of UMHS dataset (N=156,720) by demography (age, sex), variables related to ED visit (acuity,
treament time, admission decision), and outcomes (30-day ED revisits and readmissions).
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Mean (SD) treatment time, hr

Variable Admitted (%) Discharged Admitted

Male 22,961 (32.9) 5.6 (4.4) 4.9 (3.3)
Female 23,099 (26.6) 5.6 (4.3) 5.2 (3.4)
Age

18–24 2,702 (11.0) 4.6 (3.0) 5.0 (3.6)
25–34 3,835 (15.0) 5.0 (3.4) 5.1 (3.4)
35–44 4,499 (20.6) 5.7 (4.3) 5.2 (3.4)
45–54 7,251 (28.9) 6.3 (5.2) 5.2 (3.5)
55–64 10,096 (40.2) 6.4 (5.2) 5.1 (3.4)
65–74 9,105 (50.3) 6.3 (5.1) 5.0 (3.3)
75+ 8,571 (52.3) 5.9 (4.3) 5.0 (3.1)

Acuity 3 14,453 (17.9) 5.0 (3.6) 5.6 (3.6)
Acuity 2 31,607 (41.6) 6.5 (5.2) 4.8 (3.2)

TABLE E4 Admission rates and treatment times by sex, age, and acuity.
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The following tables would be inserted in the Appendix:

N=1,000 N=10,000

Value Bias MSE Coverage Bias MSE Coverage

logit �(X) Intercept -0.85 -0.0112 0.0743 0.98 -0.0005 0.0056 0.94
X1 = 1 -0.25 0.0121 0.0555 0.96 0.0008 0.0049 0.92
X2 0.0441 0.2444 0.94 0.0133 0.018 0.94

logit �(X,H) H = 0 -0.41 -0.0342 0.0620 1.00 -0.0049 0.0016 0.92
H = 1 1.39 1.5758 44.4350 0.94 0.0128 0.0158 0.94
X1 = 1 0 -0.0056 0.0256 1.00 0.0043 0.0023 0.94
X2 0 -0.0628 0.1684 0.98 -0.0003 0.0069 0.92

log |d|(H) H = 0 0.41 0.0059 0.0053 0.94 0.0043 0.0005 0.94
H = 1 0.69 -0.0048 0.0061 0.96 0.0011 0.0006 0.90

logit c(X,Z) Z = 0 -0.41 -0.0051 0.0053 0.98 0.0001 0.0006 0.90
Z = 1 0 0.0040 0.0190 0.98 -0.0007 0.0019 0.92
X1 = 1 0 -0.0146 0.0270 0.94 -0.007 0.0025 0.98
X2 0 -0.0606 0.1045 0.86 -0.0161 0.0032 0.96

log b(X) Intercept 0 0.0101 0.0013 0.90 0.006 0.0002 0.92
X1 = 1 0 0.0006 0.0013 0.94 0.001 0.0001 0.90
X2 0 -0.0020 0.0040 0.94 -0.0001 0.0004 0.96

�1 Intercept 0.1 0.0063 0.0005 0.94 0.0006 0.0001 0.90
�2 Intercept 0.9 -0.1152 0.0801 0.94 -0.022 0.013 0.88
�3 Intercept 0.2 0.0073 0.0177 0.96 0.0004 0.001 0.96
�4 Intercept 0.2 -0.0009 0.0025 0.90 -0.0004 0.0002 0.98

TABLE E5 Performance of parameter estimates when the model is correct (Example 1) in terms of bias, mean square error
(MSE), and percent coverage of true parameters for 95% confidence intervals. True parameter values are also reported. Variable
X2 was uniformly distributed between -1/2 and 1/2.
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95% CI

Estimate Lower Upper

logit �(X) Intercept -1.294 -1.314 -1.274
Sex 0.952 0.934 0.969
Age -0.254 -0.284 -0.224

logit �(X) H = 0 -0.331 -0.344 -0.319
H = 1 0.786 0.760 0.812
Sex 0.193 0.181 0.204
Age -0.347 -0.368 -0.326

log |d|(H) H = 0 -0.354 -0.363 -0.345
H = 1 -0.054 -0.064 -0.044

logit c(X,Z) Z = 0 0.030 0.024 0.036
Z = 1 -0.005 -0.017 0.007
Sex 0.465 0.456 0.474
Age 0.921 0.910 0.931

log b(X) Intercept 0.198 0.194 0.202
Sex 0.099 0.096 0.103
Age 0.052 0.045 0.059

�1 Intercept 0.173 0.171 0.175
�2 Intercept 1.000 1.000 1.000
�3 Intercept 0.216 0.201 0.233
�4 Intercept 0.201 0.196 0.206
E
[

Y 1 − Y 0
]

n/a -0.170 -0.181 -0.158

log E Y 1 E[1−Y 0]
E Y 0 E[1−Y 1] n/a -0.799 -0.868 -0.729

TABLE E6 Parameter estimates and 95% confidence intervals (CI) for admission decision model and causal effects of admis-
sions on ED revisits. Parameters were expressed as a linear model transformed by a nonlinear link function. Estimates are
reported for coefficients in the linear model. Variables were encoded such that male was zero and female was one; acuity 3 was
zero and acuity 2 was one. Age was standardized and sex was centered to its mean.

95% CI

Estimate Lower Upper

�1 Intercept 0.030 0.029 0.031
�2 Intercept 0.999 0.995 1.000
�3 Intercept 0.106 0.091 0.123
�4 Intercept 0.154 0.149 0.158
E
[

Y 1 − Y 0
]

n/a -0.156 -0.168 -0.144

log E Y 1 E[1−Y 0]
E Y 0 E[1−Y 1] n/a -0.883 -0.998 -0.767

TABLE E7 Parameter estimates and 95% CI of causal effects of admission on ED readmission.
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 0  1 �1 �2 �3 �4 E
[

Y 1 − Y 0
]

0.95 0.95 0.17 (0.17, 0.17) 1.00 (1.00, 1.00) 0.24 (0.22, 0.25) 0.20 (0.19, 0.20) -0.15 (-0.17, -0.14)
0.95 0.975 0.17 (0.17, 0.17) 1.00 (0.95, 1.00) 0.23 (0.21, 0.24) 0.20 (0.19, 0.20) -0.16 (-0.17, -0.15)
0.95 1 0.17 (0.17, 0.17) 1.00 (1.00, 1.00) 0.22 (0.20, 0.24) 0.20 (0.20, 0.21) -0.17 (-0.18, -0.16)
0.95 1.025 0.17 (0.17, 0.17) 1.00 (1.00, 1.00) 0.21 (0.19, 0.22) 0.20 (0.20, 0.21) -0.18 (-0.19, -0.16)
0.95 1.05 0.17 (0.17, 0.17) 1.00 (1.00, 1.00) 0.20 (0.18, 0.21) 0.21 (0.20, 0.21) -0.18 (-0.20, -0.17)
0.975 0.95 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.24 (0.22, 0.25) 0.20 (0.19, 0.20) -0.15 (-0.17, -0.14)
0.975 0.975 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.23 (0.21, 0.24) 0.20 (0.19, 0.20) -0.16 (-0.18, -0.15)
0.975 1 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.22 (0.20, 0.24) 0.20 (0.20, 0.21) -0.17 (-0.18, -0.16)
0.975 1.025 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.21 (0.19, 0.22) 0.20 (0.20, 0.21) -0.18 (-0.19, -0.16)
0.975 1.05 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.20 (0.18, 0.21) 0.21 (0.20, 0.21) -0.18 (-0.20, -0.17)
1 0.95 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.24 (0.22, 0.25) 0.20 (0.19, 0.20) -0.15 (-0.17, -0.14)
1 0.975 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.23 (0.21, 0.25) 0.20 (0.19, 0.20) -0.16 (-0.17, -0.15)
1 1 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.22 (0.20, 0.23) 0.20 (0.20, 0.21) -0.17 (-0.18, -0.16)
1 1.025 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.21 (0.19, 0.22) 0.20 (0.20, 0.21) -0.18 (-0.19, -0.16)
1 1.05 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.19 (0.18, 0.21) 0.21 (0.20, 0.21) -0.19 (-0.20, -0.17)
1.025 0.95 0.17 (0.17, 0.18) 1.00 (0.99, 1.00) 0.24 (0.22, 0.26) 0.20 (0.19, 0.20) -0.15 (-0.17, -0.14)
1.025 0.975 0.17 (0.17, 0.18) 1.00 (0.99, 1.00) 0.23 (0.21, 0.25) 0.20 (0.19, 0.20) -0.16 (-0.18, -0.15)
1.025 1 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.22 (0.20, 0.23) 0.20 (0.20, 0.21) -0.17 (-0.18, -0.16)
1.025 1.025 0.17 (0.17, 0.18) 1.00 (0.99, 1.00) 0.21 (0.19, 0.22) 0.20 (0.20, 0.21) -0.18 (-0.19, -0.16)
1.025 1.05 0.17 (0.17, 0.18) 1.00 (1.00, 1.00) 0.19 (0.18, 0.21) 0.21 (0.20, 0.21) -0.19 (-0.20, -0.17)
1.05 0.95 0.17 (0.17, 0.18) 0.99 (0.99, 0.99) 0.24 (0.22, 0.26) 0.20 (0.19, 0.20) -0.15 (-0.17, -0.14)
1.05 0.975 0.17 (0.17, 0.18) 0.99 (0.99, 0.99) 0.23 (0.21, 0.25) 0.20 (0.19, 0.20) -0.16 (-0.17, -0.15)
1.05 1 0.17 (0.17, 0.18) 0.99 (0.99, 0.99) 0.22 (0.20, 0.24) 0.20 (0.20, 0.21) -0.17 (-0.18, -0.15)
1.05 1.025 0.17 (0.17, 0.18) 0.99 (0.99, 0.99) 0.21 (0.19, 0.22) 0.20 (0.20, 0.21) -0.18 (-0.19, -0.16)
1.05 1.05 0.17 (0.17, 0.18) 0.99 (0.99, 0.99) 0.19 (0.18, 0.21) 0.21 (0.20, 0.21) -0.18 (-0.20, -0.17)

TABLE E8 Sensitivity of causal impact of admission on ED revisits to violations in Assumption 2.2, captured when  0 and
 1 are not both 1. For each estimate, 95% confidence intervals are provided.

 0  1 �1 �2 �3 �4 E
[

Y 1 − Y 0
]

0.95 0.95 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.12 (0.11, 0.14) 0.15 (0.15, 0.16) -0.14 (-0.16, -0.13)
0.95 0.975 0.03 (0.03, 0.03) 1.00 (0.61, 1.00) 0.11 (0.10, 0.13) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.14)
0.95 1 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.09, 0.12) 0.15 (0.15, 0.16) -0.16 (-0.17, -0.14)
0.95 1.025 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.10 (0.08, 0.11) 0.16 (0.15, 0.16) -0.16 (-0.17, -0.15)
0.95 1.05 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.09 (0.08, 0.11) 0.16 (0.15, 0.16) -0.17 (-0.18, -0.16)
0.975 0.95 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.12 (0.11, 0.14) 0.15 (0.15, 0.16) -0.14 (-0.16, -0.13)
0.975 0.975 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.10, 0.13) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.14)
0.975 1 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.09, 0.12) 0.15 (0.15, 0.16) -0.16 (-0.17, -0.14)
0.975 1.025 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.10 (0.08, 0.11) 0.16 (0.15, 0.16) -0.16 (-0.17, -0.15)
0.975 1.05 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.09 (0.08, 0.11) 0.16 (0.15, 0.16) -0.17 (-0.18, -0.16)
1 0.95 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.12 (0.11, 0.14) 0.15 (0.15, 0.16) -0.14 (-0.16, -0.13)
1 0.975 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.10, 0.13) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.14)
1 1 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.09, 0.12) 0.15 (0.15, 0.16) -0.16 (-0.17, -0.14)
1 1.025 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.10 (0.08, 0.11) 0.16 (0.15, 0.16) -0.16 (-0.17, -0.15)
1 1.05 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.09 (0.08, 0.11) 0.16 (0.15, 0.16) -0.17 (-0.18, -0.16)
1.025 0.95 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.12 (0.11, 0.14) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.13)
1.025 0.975 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.10, 0.13) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.14)
1.025 1 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.09, 0.12) 0.15 (0.15, 0.16) -0.16 (-0.17, -0.15)
1.025 1.025 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.10 (0.09, 0.11) 0.16 (0.15, 0.16) -0.16 (-0.17, -0.15)
1.025 1.05 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.09 (0.08, 0.11) 0.16 (0.15, 0.16) -0.17 (-0.18, -0.16)
1.05 0.95 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.12 (0.11, 0.14) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.13)
1.05 0.975 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.10, 0.13) 0.15 (0.15, 0.16) -0.15 (-0.16, -0.14)
1.05 1 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.11 (0.09, 0.12) 0.15 (0.15, 0.16) -0.16 (-0.17, -0.15)
1.05 1.025 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.10 (0.08, 0.11) 0.16 (0.15, 0.16) -0.16 (-0.17, -0.15)
1.05 1.05 0.03 (0.03, 0.03) 1.00 (1.00, 1.00) 0.09 (0.08, 0.11) 0.16 (0.15, 0.16) -0.17 (-0.18, -0.16)

TABLE E9 Sensitivity of causal impact of admission on ED readmissions to violations in Assumption 2.2, captured when  0
and  1 are not both 1. For each estimate, 95% confidence intervals are provided.
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N=10,000

Bias MSE

logit �(X) Intercept -0.85 0.0011 0.0056
X = 1 -0.25 0.0016 0.0054
X2 1 0.0061 0.0197

logit �(X,H) H = 0 -0.41 -0.0023 0.0017
H = 1 1.39 0.0014 0.0157
X1 = 1 0 0.0035 0.0023
X2 0 0.0040 0.0073

log |d|(H) H = 0 0.41 0.0029 0.0005
H = 1 0.69 0.0008 0.0006

logit c(X,Z) Z = 0 -0.41 0.0002 0.0006
Z = 1 0 -0.0003 0.0020
X1 = 1 0 -0.0040 0.0024
X2 0 -0.0102 0.0039

log b(X) Intercept 0 0.0072 0.0002
X1 = 1 0 0.0010 0.0001
X2 0 0.0002 0.0004

�1 Intercept 0.1 0.0057 0.0001
�2 Intercept 0.9 0.0667 0.0057
�3 Intercept 0.2 0.0016 0.0010
�4 Intercept 0.2 0.0000 0.0002

TABLE E10 Bias and mean square error (MSE) for two-step parameter estimates. True values of parameters are also reported.
(Example 1)
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N=10,000

Bias MSE

logit �(X) Intercept -0.85 -0.1238 0.0216
X = 1 -0.25 0.0036 0.0060
X2 1 -0.0111 0.0206

logit �(X,H) H = 0 -0.41 0.0441 0.0035
H = 1 1.39 0.0515 0.0225
X1 = 1 0 -0.0028 0.0024
X2 0 0.0327 0.0080

log |d|(H) H = 0 0.41 0.0088 0.0006
H = 1 0.69 -0.0010 0.0006

logit c(X,Z) Z = 0 -0.41 -0.0001 0.0006
Z = 1 0 0.0032 0.0019
X1 = 1 0 0.0033 0.0022
X2 0 -0.0036 0.0042

log b(X) Intercept 0 0.0073 0.0002
X1 = 1 0 0.0013 0.0001
X2 0 -0.0015 0.0004

�1 Intercept 0.1 0.0081 0.0001
�2 Intercept 0.9 0.0955 0.0092
�3 Intercept 0.2 0.0017 0.0009
�4 Intercept 0.2 0.0000 0.0003

TABLE E11 Bias and mean square error (MSE) for two-step parameter estimates. True values of parameters are also reported.
(Example 2)
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