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Additional details on experiments and calculations: 

 

Powder X-ray diffraction: Powder X-ray diffraction (PXRD) patterns were measured on a 

Rigaku Miniflex 600 instrument with Cu Kα radiation (λ = 1.5406 Å) at 40 kV and 15 mA 

and with a Kβ filter.  Lattice parameters were refined using the Rietveld method in GSAS-II 

software. 

 

Fourier transformed infrared spectroscopy (FT-IR): Optical band gaps were determined 

by diffuse reflectance measurements performed with a Nicolet 6700 FT-IR spectrometer. 

Samples consisted of powders prepared by finely grinding the SPSed NaPbmSbSem+2 in a 

mortar and pestle.  The reflectance data was converted to absorption with the Kubelka–Munk 

equation α/S = (1–R)
2
/2R where R is the reflectance, and α and S are the absorption and 

scattering coefficients, respectively. The band gaps were estimated by extrapolating the 

absorption edges of each spectra. 

 

Calculation of the Lorenz number and estimation of the lattice thermal conductivity:  

For the nominally undoped NaPbmSbSem+2 compounds, we calculated the Lorenz number 

using the following equation for nondegenerate semiconductors:
[1]

 

                                                             𝐿 = (𝑟 + 5 2⁄ ) (
  

 
)
 

                                                             

(S1) 

Where 𝑘  is the Boltzmann constant, e is the electron charge, and r gives the energy 

dependence of the relaxation time.  Here, we used r = -1/2 characteristic of acoustic phonon 

scattering, which yields L = 1.485x10
-8

 V
2
∙K

-2
.  While the acoustic phonon scattering 

assumption is not valid in our compounds under 500 K where grain boundary scattering 

dominates the transport, we expect this to ultimate contribute negligible errors to the 

estimation of the lattice thermal conductivities in the undoped samples because the electrical 

conductivities are all very low (under 80 S∙cm
-3

). 

In the case of the doped samples: Na1+xPb10-xSbSem+2 and Na1+xPb10Sb1-xSem+2, we 

estimated the temperature dependence of 𝐿 by fitting the reduced chemical potential η to the 

measured Seebeck coefficients as shown below:
[2]

  

                                                           𝑆 =
  

 
(
   ( )

  ( )
− 𝜂)                                                             

(S2) 

where 𝐹 (𝜂) are the Fermi-Dirac integrals defined as follows:  
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and 𝜀  is the reduced carrier energy.  The values of η that fit the temperature-dependent 

Seebeck coefficients were then used to calculate 𝐿 through 

                                                   𝐿 = (
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(
   ( )  ( )    ( )

 

  ( ) 
)                                                    

(S4) 

This fitting process assumes a single parabolic band dominated by acoustic phonon scattering 

and an energy-independent scattering time.  Calculated values of L are shown in Figure S2 

and the corresponding electronic thermal conductivities in Figure S3. 

 Once we determined the temperature depend values of L, the electronic (𝜅    ) and 

lattice (𝜅   ) thermal conductivities were calculated using the following: 

                                                                   𝜅    = 𝜎𝐿𝑇                                                                

(S5) 

                                                              𝜅   = 𝜅   − 𝜅                                                              

(S6) 

Where σ is the electrical conductivity, T is the absolute temperature and 𝜅    is the total 

thermal conductivity.   

 

Impact of the grain boundary charge carrier scattering on the estimated lattice thermal 

conductivity: As alluded to in the main text, the process described above will impede reliable 

estimation of the lattice thermal conductivity. This occurs because most of the heat 

transported by charge carriers will come from the electrical conduction in the bulk grains, 

where 𝜎 is presumably much higher than our measured values. Our measured 𝜎 are lower 

than the true bulk values because the electrical conductivities are dominated by the GBs 

below 500 K. As a consequence, the values of 𝜎 reported in the main text below 500 K reflect 

only the electrical conduction at the GBs, leaving the bulk electrical conductivity unknown. 

Therefore, our estimations of 𝜅     also are reflective only of the GBs and are severely 

underestimated when the GB charge carrier scattering is strong, leading to potentially severe 

overestimation of 𝜅   . Indeed, comparing the 𝜅    presented in Figure 4b with the 

corresponding electrical conductivities plotted in Figure 3a, we indeed see that the compounds 

with strongest GB scattering (x = 0.05–0.15) appear to have the highest estimated lattice 

thermal conductivities under 500 K, exactly as anticipated from the above analysis.  
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Pisarenko plots: To compliment the predictions of band convergence indicated by the DFT 

calculated band structures, we compared theoretical plots of carrier density (n) vs. Seebeck 

coefficient generated using a single Kane band (SKB) model and a two-band model.  The 

SKB Pisarenko plots utilized following equations,
[1, 3, 4]

        

                                                           𝑛 =
(    

    )
   

     
𝐹  
   

                                                      

(S7) 

where 𝑚   
  is the density of states effective mass and   is the Planck constant. The Hall 

coefficient 𝑅  and carrier density are related by: 

                                                                   𝑅 = 𝐴 𝑒𝑛                                                                 

(S8) 

 

and A is the Hall factor given as: 

                                                         𝐴 =
  (   )

(    ) 

    
   

    
   

(     
 ) 

                                                        

(S9) 

Where K parameterizes the anisotropy of the band structure and is equal to 1.75 for PbSe.
[4]

  

The Seebeck coefficients are calculated as follows: 

                                                             𝑆 =
  

 
(

    
 

    
 − 𝜂)                                                           

(S10) 

Where η is the reduced chemical potential.  The functions 𝐹  
  

are of the following form, 

                                                     𝐹  
 = ∫ (

   

  
)

 

 
𝜀 (𝜀 + 𝛼𝜀 ) [(1 + 𝛼𝜀) + 2]   𝑑𝜀                                      

(S11) 

with 𝛼 =
   

  

 
and 𝐸  is the band gap.  For the SKB Pisarenko plot calculations, we kept all of 

the above variables constant and varied the band effective mass to achieve the best fit to the 

experimental data.  The band effective mass is related to the density of states mass through the 

band degeneracy Nv: 

                                                             𝑚   
 = 𝑁 

   
𝑚 
                                                            

(S12) 

For the two-band model we utilized the relationships presented by Chasapis et al. in 

their work on Na doped PbSe.
[5]

  Here, the thermoelectric properties of the L-band were 

calculated using the equations shown above for a single Kane type band.  The Σ-band uses the 
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same equations but is considered parabolic by setting  𝛼 
= 0 and K = 1.  The parameters 

considered for the temperature dependent bands are shown below. 

                                            𝐸 = 0.25 + 0.0004  𝑇                                                      

(S13) 

                                        𝛥𝐸   = 0.22 − 0.00022  𝑇                                                     

(S14) 

                                                    𝑚 
  = 0.14 𝑚                                                                

(S15)                     

                                                    𝑚 
  = 0.475 𝑚                                                              

(S16) 

                                              𝜂 = 𝜂 − 𝛥𝐸   𝑘 𝑇⁄                                                            

(S17) 

 

Where 𝛥𝐸    is the energy difference between the two bands and 𝑚 
  and 𝑚 

  are respectively 

the band effective mass of the L- and Σ-bands, and 𝜂  is the chemical potential of the Σ-band.  

The valley degeneracy of each band is 4 (L-band) and 12 (Σ-band).  The temperature 

dependence of the L-band was assumed to follow the relationship 𝑑𝑙𝑛(𝑚 
 ) 𝑑𝑙𝑛(𝑇)⁄  = 0.5 

found by Wang et al.
[4]

  Using the above parameters for each band, the carrier densities and 

Seebeck coefficients were calculated in the two-band model as follows: 

 

                                                                  𝑛 = 𝑛 +  𝑛                                                                 

(S18) 

 

                                                                 𝑆 =
         

     
                                                                

(S19) 

 

 

Debye-Callaway model for theoretical lattice thermal conductivity: To gain insight into 

the origins of the low thermal conductivity measured in NaPbmSbSem+2, we calculated 

theoretical values of 𝜅    based on a simplified Debye-Callway model.
[6-8]

  Here, we only 

considered phonon-phonon scattering (Umklapp and Normal processes) and point defect 

phonon scattering processes.  The lattice thermal conductivity is given as follows: 
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                                                 𝜅   =
  

    
(
   

 
)
 

∫ 𝜏 (𝑥)
    

 

    

(    ) 
𝑑𝑥                                   

(S20) 

where 𝑥 =  𝜔
𝑘 𝑇
⁄ , 𝜔  is the phonon frequency, 𝜃 is the Debye temperature, 𝜏  is the 

combined phonon relaxation time, and 𝑣 is the phonon group velocity (equal to the average 

speed of sound in our polycrystalline samples).  The combined relaxation time was found by 

summing the contributions from the various phonon scattering processes considered in our 

model. 

                                                             𝜏 
  = 𝜏 

  + 𝜏 
  + 𝜏  

                                                     

(S21) 

The above correspond to the relaxation times for Umklapp, normal, and point defect phonon 

scattering respectively.  In principle, many more mechanisms may contribute to phonon 

scattering such as grain boundaries, precipitates, phase boundaries, electron phonon 

interaction, etc.; however, we found that our simplified model matches experimental the data 

well near room temperature, suggesting that point defect phonon scattering is the primary 

origin of the low thermal conductivity. 

 The relaxation times for Umklapp and Normal processes are given in the following 

equations: 

                                                          𝜏 
  =

   

     
𝜔 𝑇 exp (

   

  
)                                                  

(S22) 

                                                                      𝜏 
  = 𝛽𝜏 

                                                               

(S23) 

Where 𝛾 is the Gruneisen parameter, M is the average mass of an atom in the crystal, and β is 

a fitting constant used to determine the ratio of Umklapp to normal processes.  β was 

determined by fitting the calculated values of 𝜅    for experimental data to that of pure PbSe. 

 Lastly the relations for the point defect phonon scattering in a solid solution are shown 

below: 

                                                                 𝜏  
  =

   

    
𝛤                                                           

(S24) 

                                                                 𝛤 = 𝛤 + 𝛤                                                              

(S25) 
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where V is the average volume of an atom in the crystal, and 𝛤  is the disorder scaling 

parameter which characterizes the phonon scattering from mass and strain field fluctuations 

between the host lattice and alloying atoms. 

                                                 𝛤 =
∑   (

    

  
)
 
  
   

 (
  
    

 

    
)

 
 
   

∑   
 
   

                                                  

(S26) 

                                                 𝛤 =
∑   (

    

  
)
 
  
   

  (
  
    

 

    
)

 
 
   

∑   
 
   

                                                   

(S27) 

 

Where 𝑐  is the degeneracy (here 𝑐  = 2), 𝑓 
  is the fractional occupation of atom k (Pb, Sb, 

Na), < 𝑀 > and < 𝑟 > are the average mass and radius of the ith sublattice (< 𝑀 > =

∑ 𝑓 
 𝑀 

 
  and < 𝑟 > = ∑ 𝑓 

 𝑟 
 

 ), and 𝑀  is the average atomic mass of the compound 

(𝑀 =
 

 
∑ < 𝑀 > ).  𝜀 is a phenomenological parameter related to the lattice anharmonicity 

which was found by fitting the experimental data.  Here, we found 𝜀  = 90 to give a 

satisfactory fit, which is in reasonable agreement with previous studies on PbTe, which 

reported 𝜀 = 110.
[7, 8]

  The parameters used in the Debye-Callaway calculations are outlined 

below in Table S2.  
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Table S1. Constants and parameters used in the Debye-Callaway lattice thermal conductivity 

calculations for NaPbmSbSem+2.  The values of 𝑣, γ, θD, and the radii were obtained from 

references 7 and 8.  

 

Parameters Value 

𝒗 1926.3 m∙s
-1

 

𝜽  125 K 

γ 1.65 

𝑴   207.2 g∙mol
-1

 

𝑴   78.96 g∙mol
-1

 

𝑴   22.989 g∙mol
-1

 

𝑴   121.76 g∙mol
-1

 

𝒓   175 pm 

𝒓   115 pm 

𝒓   186 pm 

𝒓   136 pm 

β (fit) 3.8 

𝜺 (fit) 90 

 

 

 

Figure S1. Experimentally determined lattice thermal conductivity for NaPbmSbSem+2 for m = 

2–30 and PbSe, plotted as % NaSbSe2 in PbSe, compared with the theoretical curve generated 

from the simplified Debye-Callaway model.  The experimental data is shown with 8% error 

bars. 
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Average ZT calculations:  To estimate the theoretical efficiency of our NaPbmSbSem+2 in a 

thermoelectric module, we utilized the procedure outlined by Snyder et al.
[9]

 to estimate the 

average ZT (ZTavg, often also found in other publications denoted as ZTdev or ZTeng ) 

considering cold and hot side temperatures of 400 and 873 K respectively. 400 K was chosen 

as the cold side temperature (instead of room temperature) because in realistic applications, 

energy is required to maintain the cold side at 300 K. This lowers the device efficiency 

despite the greater temperature gradient. As such, practical modules will utilize cold side 

temperatures ~400 K.  To arrive at a representative number for ZTavg, we separately prepared 

and measured the thermoelectric properties of five samples with the optimal doping 

composition Na1.10Pb10Sb0.90Se12 (data shown in Figure S10) and calculated the ZTavg for each.  

The value shown in Figure 8 of the main text (ZTdev ~ 0.64) is the average of the five samples. 
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Additional data: 

Table S2. Measured densities and fraction of the theoretical density (obtained by refinement 

of the powder XRD patterns) of NaPbmSbSem+2, Na1+xPb10-xSbSe12, and Na1+xPb10Sb1-xSe12.  

The densities were measured from the masses and volumes of the ~6x6x2 mm
2
 squares used 

for the LFA measurements. 

 

Compound Density (g∙cm
-3

) % of theoretical 

NaPb30SbSe32 7.831 97 

NaPb18SbSe20 7.675 97 

NaPb14SbSe16 7.715 98 

NaPb10SbSe12 7.525 98 

NaPb8SbSe10 7.33 96 

NaPb4SbSe6 7.056 98 

NaPb2SbSe4 6.321 96 

Na1.01Pb9.99SbSe12 7.292 95 

Na1.03Pb9.97SbSe12 7.32 95 

Na1.05Pb9.95SbSe12 7.35 95 

Na1.10Pb9.90SbSe12 7.446 97 

Na1.15Pb9.85SbSe12 7.469 97 

Na1.20Pb9.80SbSe12 7.291 95 

Na1.05Pb10Sb0.95Se12 7.502 97 

Na1.10Pb10Sb0.90Se12 7.348 95 

Na1.15Pb10Sb0.85Se12 7.254 94 

 

Table S3. Room temperature Hall coefficients and Hall carrier densities for Na1+xPb10-xSbSe12 

and Na1.10Pb10Sb0.90Se12. 

 

Compound RH (cm
3
∙C

-1
) nH (10

19
cm

-3
) 

Na1.01Pb9.99SbSe12 14.494 0.043 

Na1.03Pb9.97SbSe12 0.284 2.198 

Na1.05Pb9.95SbSe12 0.097 6.433 

Na1.10Pb9.90SbSe12 0.062 10.028 

Na1.15Pb9.85SbSe12 0.044 14.239 

Na1.10Pb10Sb0.90Se12 0.032 19.681 
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Figure S2. Temperature-dependent thermoelectric properties of nominally undoped of 

NaPbmSbSem+2 (m = 2–30). (a) electrical conductivity, (b) Seebeck coefficients, (c) total 

thermal conductivity, and (d) estimated lattice thermal conductivity (𝜅   − 𝜅    ).  The m = 8, 

10, and 30 samples have slightly higher p-type electrical conductivities, potentially arising 

from cation vacancies or slight off-stoichiometry during the synthesis; the other compounds 

behave as undoped semiconductors as expected.  All compounds show strong bipolar 

diffusion above 600 K as evident in the Seebeck coefficients and thermal conductivities, 

consistent with low charge carrier densities. 
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Figure S3. Temperature-dependent (a) thermal diffusivities, (b) estimated specific heats, (c) 

and calculated electronic thermal conductivities of nominally undoped Na1+xPb10-xSbSe12 (m 

= 2–30).  For all samples shown above we used L = 1.485x10
-8

 V
2
∙K

-2
.   
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Figure S4. Temperature-dependent (a) thermal diffusivities, (b) estimated specific heats, (c) 

Lorentz numbers, and (d) calculated electronic thermal conductivities of Na1+xPb10-xSbSe12. 
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Figure S5. Temperature-dependent (a) thermal diffusivities, (b) estimated specific heats, (c) 

Lorentz numbers, and (d) calculated electronic thermal conductivities of Na1+xPb10Sb1-xSe12. 
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Figure S6. Powder X-ray diffraction patterns for Na1+xPb10-xSbSe12 (a) and Na1+xPb10Sb1-

xSe12 (c).  (b) and (d) are respectively the refined lattice parameters for each.  A small amount 

of secondary phases begin to be observed in (a) for x = 0.20. 
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Figure S7. Temperature-dependent (a) electrical conductivity, (b) Seebeck coefficient, (c) 

variable-temperature powder X-ray diffraction patterns of a p-type NaPbmSbSem+2 sample 

with nominal composition Na1.10Pb9.90Sb0.90Se12, and (d) refined lattice parameters from first 

four patterns shown in (c). The PXRD patterns show no clear changes upon heating and 

cooling, and the lattice parameters increase nearly linearly with heating as expected. These 

results suggest the unorthodox semiconducting-like electrical conductivity observed below 

500 K and turnover to metallic charge transport above in (a) is not from a change in phase or 

change in dopant solubility. 

 

 

 

 

 



  

17 

 

 
Figure S8. Hall coefficients for Na1+xPb10-xSbSe12 (x = 0.05, 0.15) and Na1.10Pb10Sb0.90Se12 

(normalized by respective values of RH at 300 K) showing that RH increases weakly with 

temperature between 300 and ~550K.  The onset of the decrease in RH shifts slightly towards 

lower temperature as the carrier density increases, consistent with the Fermi level moving 

closer to the Σ-band and inconsistent with bipolar diffusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300 400 500 600 700 800

0.7

0.8

0.9

1.0

1.1

 Na
1.05

Pb
9.95

SbSe
12

 Na
1.15

Pb
9.85

SbSe
12

 Na
1.10

Pb
10

Sb
0.90

Se
12

 

 

R
H
/R

H
-3

0
0
K

Temperature (K)



  

18 

 

 
Figure S9. Temperature-dependent power factors of two differently doped NaPb10SbSe12 

samples compared with those of PbSe-2%Na and band engineered PbSe-2% HgSe (2% Na 

doped).
[10]

 The PbSe-HgSe exhibits a record high power factor ~20 µW∙cm
-1

∙K
-2

 above 900 

K; however, the NaPb10SbSe12 have superior power factors below ~ 700 K that contribute to 

outstanding average ZTs discussed in the main text.  Considering each of the compounds 

shown above has comparable carrier densities ~2x10
20

 cm
-3

, we attribute the high power 

factors below 700 K in NaPb10SbSe12 to the greater contribution of the Σ-band.  Namely, as 

discussed in the main text, in NaPb10SbSe12 both L- and Σ-bands participate in the charge 

transport even near room temperature, which should improve the power factors at low and 

moderate temperatures due to the high valley degeneracy.   
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Figure S10. Temperature dependent thermoelectric properties of five separately prepared 

samples of the optimally doped Na1.10Pb10Sb0.90Se12. (a) electrical conductivities, (b) Seebeck 

coefficients, (c) powerfactors, (d) thermal diffusivities, (e) total thermal conductivities, and (f) 

ZTs.  The solid black line in (f) traces the average values of the temperature dependent ZT 

curves calculated at each temperature and is used in the comparison with the literature found 

in Figure 8 of the main text.  Sample 5 likely has a lower carrier concentration, evidenced by 

the lower σ and higher S.  The measurements are consistent above ~500 K but show more 

variability below. This is likely because the grain boundary carrier scattering may be very 

sensitive to the precise conditions at the GBs, which likely differs slightly from sample to 

sample. The measurements show good reproducibility within the 15% uncertainty typical of 

thermoelectric measurements. 
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Figure S11. Temperature dependent (a) electrical conductivities and (b) Seebeck coefficients 

for a sample with nominal composition Na1.15Pb9.85SbSe12. Two full heating and cooling 

cycles between 323 and 873 K are displayed, and the electrical conductivity clearly shows 

significant hysteresis between the first heating and cooling profile.  The properties stabilize 

upon cooling and show little hysteresis upon further heating and cooling cycles. The Seebeck 

coefficients have negligible hysteresis, indicating the changes shown in (a) may originate at 

the grain boundaries.  We measured a heating and cooling profile on all samples considered in 

this work, all of which show hysteresis in the electrical conductivity between the first heating 

and cooling profile like what is shown above.  Because the properties generally stabilize on 

cooling and further heating, all thermoelectric data reported in this work comes from the 

cooling profile, as discussed in the experimental section of the main text. 
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Figure S12. Temperature-dependent thermoelectric properties of a pure (nominally undoped) 

PbSe sample included for comparison with our PbSe-NaSbSe2 alloys. (a) electrical 

conductivities, (b) Seebeck coefficients, (c) power factors, (d) total thermal conductivities, (e) 

estimated lattice thermal conductivities, and (f) ZTs. 
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