Supplementary Figure S1. Distribution of the 118 unique SATB2 pathogenic variants

Supplementary Figure S2. A) Frequency distribution of 89 SATB2 point pathogenic variants per exon. B) Frequency of SATB2 point pathogenic variants normalized to the length of each exon per 100bp
A.

B.

Supplementary Figure S3. Severity of speech delay as determined by current number of spoken words according to molecular mechanisms and age at assessment.

Supplementary Table S1. In silico predictions supporting evidence of pathogenicity for 11 novel missense variants reported in 12 individuals included in this manuscript. Variants were determined to be de novo in all 12 cases. Numbering is according to the cDNA (NM_015265.3).

Record ID	coding	protein	Number of individua Is with missense variants at position	Genomic	Frequenc y (gnomA D)	SIFT (score)	Polyphen 2 (score)	PROVEAN (score)	$\begin{gathered} \text { CAD } \\ \text { D } \\ \text { scor } \\ \text { e } \end{gathered}$	Mutation taster (p-value)	GERP	Variant interpretation
$\begin{gathered} \text { SATB2- } \\ 136 \\ \hline \end{gathered}$	c.257T>G	p.Leu86Arg	1	$\begin{gathered} \text { chr2:200298150A } \\ >C \end{gathered}$	0	$\begin{gathered} \hline \text { Deleterious } \\ (0.011) \\ \hline \end{gathered}$	Probably damaging (0.983)	Deleterious (-4.96)	29.6	Disease causing (1)	Conserved	Likely pathogenic
SATB2-68	c. $760 \mathrm{C}>\mathrm{T}$	p.His254Tyr	1	$\begin{gathered} \text { chr2:200213837G } \\ >A \end{gathered}$	0	$\begin{gathered} \hline \text { Deleterious } \\ (0.001) \\ \hline \end{gathered}$	Probably damaging (1)	Deleterious (-2.63)	23.1	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \text { SATB2- } \\ 133 \end{gathered}$	$\begin{gathered} \text { c.1102G> } \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { p.Val368Ph } \\ \mathrm{e} \end{gathered}$	1	$\begin{gathered} \text { chr2:200213495C } \\ >A \end{gathered}$	0	Deleterious (0)	Probably damaging (1)	Deleterious (-2.69)	29.2	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \hline \text { SATB2- } \\ 131 \\ \hline \end{gathered}$	$\begin{gathered} \text { c. } 1136 \mathrm{~A}> \\ \text { C } \end{gathered}$	$\begin{gathered} \text { p.Gln379Pr } \\ o \end{gathered}$	1	$\begin{gathered} \text { chr2:200213461T } \\ >G \end{gathered}$	0	$\begin{gathered} \text { Deleterious } \\ (0.002) \\ \hline \end{gathered}$	Probably damaging (1)	Deleterious (-2.74)	26.3	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \text { SATB2- } \\ 112 \end{gathered}$	$\begin{gathered} \text { c. } 1175 \mathrm{G}> \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { p. Gly392GI } \\ u \end{gathered}$	2	$\begin{gathered} \text { chr2:200193632C } \\ >T \end{gathered}$	0	$\begin{aligned} & \text { Deleterious } \\ & (0.003) \end{aligned}$	Probably damaging (1)	Deleterious (-4.64)	28.5	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \hline \text { SATB2- } \\ 129 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { c.1196G> } \\ T \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { p.Arg399Le } \\ u \end{gathered}$	7	$\begin{gathered} \text { chr2:200193611C } \\ >A \end{gathered}$	0	Deleterious (0)	Probably damaging (1)	Deleterious (-3.21)	34.0	Disease causing (1)	Conserved	Likely pathogenic
SATB2-96	$\begin{gathered} \mathrm{c} .1253 \mathrm{~T}> \\ \mathrm{G} \end{gathered}$	$\begin{gathered} \hline \text { p.Met418A } \\ \text { rg } \\ \hline \end{gathered}$	1	$\begin{gathered} \text { chr2:200193554A } \\ >C \end{gathered}$	0	Deleterious (0)	Probably damaging (0.998)	Deleterious (-3.14)	27.0	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \hline \text { SATB2- } \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} \text { c. } 1541 A> \\ G \end{gathered}$	$\begin{gathered} \hline \text { p.GIn514Ar } \\ \mathrm{g} \\ \hline \end{gathered}$	1	$\begin{gathered} \text { chr2:200188527T } \\ >C \end{gathered}$	0	Deleterious (0)	Probably damaging (0.998)	Tolerable (-2.02)	25.0	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \hline \text { SATB2- } \\ 109 \end{gathered}$	$\begin{gathered} \text { c. } 1554 \mathrm{~T}> \\ \mathrm{G} \end{gathered}$	$\begin{gathered} \text { p.Cys518Tr } \\ \text { p } \end{gathered}$	1	$\begin{gathered} \text { chr2:200173669A } \\ >C \end{gathered}$	0	Deleterious (0)	Probably damaging (1)	Deleterious (-5.98)	24.7	Disease causing (1)	Non Conserved	Likely pathogenic
$\begin{gathered} \text { SATB2- } \\ 101 \end{gathered}$	$\begin{gathered} \text { c. } 1564 \mathrm{C}> \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { p.Arg522Cy } \\ s \end{gathered}$	1	$\begin{gathered} \text { chr2:200173659G } \\ >A \end{gathered}$	0	Deleterious (0)	Probably damaging (1)	Deleterious (-4.19)	35.0	Disease causing (1)	Conserved	Likely pathogenic
$\begin{gathered} \hline \text { SATB2- } \\ 116 \end{gathered}$	$\begin{gathered} \hline \text { c. } 1903 \mathrm{G}> \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { p.Asp635Ty } \\ \text { r } \end{gathered}$	1	$\begin{gathered} \hline \text { chr2:200137233C } \\ >A \end{gathered}$	0	Deleterious (0)	Probably damaging (1)	Deleterious (-5.03)	29.3	Disease causing (1)	Conserved	Likely pathogenic

gnomAD browser (v2.1.1): https://gnomad.broadinstitute.org/gene/ENSG00000119042
SIFT (v6.2.1): https://sift.bii.a-star.edu.sg/. SIFT score ranges from 0.0 (deleterious) to 1.0 (tolerated) with scores from 0.0 to 0.05 considered deleterious.
Polyphen2 (v2.2): http://genetics.bwh.harvard.edu/pph2/. A prediction of probably damaging means that the query substitution is predicted to be damaging with high confidence
PROVEAN (v1.1.3): http://provean.jcvi.org/index.php. Score threshold is set at -2.5 for binary classification (i.e. deleterious vs neutral)
CADD: https://cadd.gs.washington.edu/. A scaled CADD score of 20 means that a variant is amongst the top 1% of deleterious variants in the human genome and of 30 means that the variant is in the top 0.1%
Mutation taster: http://www.mutationtaster.org/. The probability value is the probability of the prediction, a value close to 1 indicates a high 'security' of the prediction
 mammalian species

Supplementary Table S2. Detailed clinical information from 158 individuals with SATB2-associated syndrome previously reported and from this report

-71		ale														
SATB2		Fem														
-84	10.5	ale	c.1165C>T	de novo	Yes	Yes	N/A	Yes	19	N/A	None	Yes	No	Yes	Yes	This study
SATB2		Fem														
-122	10	ale	c. $1165 C>$ T	de novo	Yes	No	N/A	No	29	N/A	None	Yes	Yes	Yes	No	This study
SATB2		Fem														
-100	28	ale	c. $1165 \mathrm{C}>$ T	de novo	Yes	No	Yes	No	24	N/A	None	Yes	Yes	No	No	This study
SATB2		Mal														
-132	4	e	c. $1165 \mathrm{C}>$ T	de novo	Yes	No	N/A	No	24	N/A	None	Yes	No	No	Yes	This study
SATB2		Fem														
-138	5.5	ale	c. $1165 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	No	23	48	1 to 10	Yes	No	Yes	Yes	This Study
		Mal														
N/A	3	e	c. $1165 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	Trakadis et al.								
27104		Fem														
4	2.6	ale	c. $1165 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	No	24	N/A	None	N/A	No	No	N/A	Bengani et al.
SATB2		Mal														
-104	21	e	c.1166G>T	de novo	Yes	No	N/A	Yes	27	45	1 to 10	Yes	No	Yes	Yes	This study
26135		Mal														
5	10.5	e	c.1166G>T	de novo	Yes	Yes	N/A	N/A	30	N/A	None	Yes	No	No	N/A	Bengani et al.
SATB2		Mal														
-58	24.5	e	c.1169C>T	de novo	Yes	No	Yes	N/A	30	10	1 to 10	Yes	No	No	No	Zarate et al., 2018a
SATB2		Mal														
-110	7	e	c.1169C>T	de novo	Yes	No	N/A	Yes	30	N/A	None	Yes	No	Yes	Yes	This study
SATB2		Fem														
-35	9	ale	c.1174G>C	unknown	Yes	No	Yes	Yes	N/A	144	1 to 10	Yes	No	No	Yes	Zarate et al., 2018a
SATB2		Mal														
-112	6	e	c.1175G>A	de novo	Yes	No	Yes	No	46	N/A	None	Yes	Yes	Yes	Yes	This study
26344		Fem														
0	5.3	ale	c.1181T>C	de novo	Yes	Yes	N/A	N/A	22	N/A	None	N/A	No	No	N/A	Bengani et al.
		Fem														
Case 1	3	ale	c.1186G>C	de novo	Yes	No	Yes	Yes	N/A	N/A	None	Yes	No	No	No	Lee et al.
SATB2		Fem														
-36	14	ale	c.1196G>C	unknown	Yes	Yes	Yes	No	36	N/A	None	Yes	No	No	No	Zarate et al., 2018a
SATB2		Mal									Greater					Zarate et al., 2018a;
-53	7.5	e	c.1196G>A	de novo	Yes	No	N/A	Yes	22	5	than 50	Yes	Yes	Yes	No	Scott et al.
SATB2		Mal														
-94	12.5	e	c.1196G>A	de novo	Yes	No	N/A	No	16	36	1 to 10	Yes	Yes	Yes	Yes	This study
SATB2		Fem														
-134	4	ale	c.1196G>A	unknown	Yes	No	N/A	No	24	24	1 to 10	Yes	Yes	No	Yes	This study
25995		Mal														
0	5.5	e	c.1196G>A	de novo	Yes	No	N/A	N/A	18	N/A	None	N/A	No	No	N/A	Bengani et al.
SATB2		Mal														
-125	6	e	c.1196G>T	de novo	Yes	No	N/A	No	28	N/A	None	Yes	No	Yes	Yes	This study
SATB2		Fem														
-129	5.5	ale	c.1196G>T	de novo	Yes	No	N/A	Yes	24	N/A	None	Yes	No	No	Yes	This study
SATB2		Mal														Zarate et al., 2018a;
-47	7	e	c.1204G>A	de novo	Yes	No	N/A	Yes	N/A	48	1 to 10	No	No	Yes	Yes	Bengani et al.
SATB2		Mal														
-96	12.5	e	c.1253T>G	de novo	Yes	No	Yes	No	30	60	1 to 10	yes	No	No	No	This study
SATB2		Mal														
-14	15	e	c. 1286 G>A	de novo	Yes	No	N/A	No	22	N/A	None	Yes	Yes	Yes	Yes	Zarate et al., 2018a
SATB2		Mal														
-23	3	e	c. 1286 G>A	de novo	Yes	No	N/A	Yes	20	N/A	None	Yes	Yes	No	No	Zarate et al., 2018a
SATB2	5	Fem	c.1286G>A	de novo	Yes	No	Yes	No	24	16	None	Yes	No	No	Yes	Zarate et al., 2018a

	-70		ale														
	$\begin{gathered} \text { SATB2 } \\ -105 \end{gathered}$	12.5	Fem ale	c.1286G>A	unknown	Yes	No	No	Yes	21	N/A	1 to 10	Yes	Yes	No	No	This study
	SATB2		Fem					N/A									
	-111	1	ale	c.1541A>G	de novo	Yes	No	+	Yes	N/A	N/A	None	N/A	No	Yes	Yes	This study
	26224		Mal														
	0	5.5	e	c.1543G>A	de novo	Yes	No	N/A	No	48	N/A	None	N/A	Yes	Yes	N/A	Bengani et al.
	SATB2		Mal														
	-109	5	e	c. $1554 \mathrm{~T}>\mathrm{G}$	de novo	Yes	No	N/A	No	30	30	10 to 50	Yes	Yes	Yes	No	This study
	SATB2		Fem									Greater					
	-101	4	ale	c. $1564 \mathrm{C}>$ T	de novo	Yes	No	N/A	No	15	N/A	than 50	Yes	No	No	Yes	This study
	26484		Fem														
	0	1.5	ale	c.1696G>A	de novo	Yes	No	N/A	N/A	N/A	N/A	N/A	N/A	No	No	N/A	Bengani et al.
	SATB2		Mal														
	-116	6	e	c.1903G>T	de novo	Yes	No	No	Yes	20	14	1 to 10	Yes	Yes	No	No	This study
	SATB2		Fem														
	-18	8	ale	c.1964C>T	de novo	Yes	No	N/A	No	18	N/A	None	Yes	No	No	Yes	Zarate et al., 2018a
	SATB2		Fem														
Nonsense	-24	7	ale	c.124G>T	de novo	Yes	No	Yes	Yes	14	N/A	10 to 50	Yes	No	No	Yes	Zarate et al., 2018a
	SATB2		Mal														Zarate et al., 2018a;
	-39	9	e	c.346G>T	de novo	Yes	Yes	Yes	Yes	15	N/A	1 to 10	Yes	No	No	Yes	Scott et al.
	SATB2		Fem														Zarate et al., 2018a;
	-27	9	ale	c.390T>A	unknown	Yes	No	N/A	No	60	96	1 to 10	Yes	No	No	Yes	Bengani et al.
	SATB2		Mal														
	-55	34	e	c. $505 \mathrm{C}>$ T	de novo	Yes	No	N/A	N/A	42	48	None	Yes	No	Yes	Yes	Zarate et al., 2018a
	\#62	N/A	N/A	c.688A>T	de novo	Yes	N/A	Vissers et al.									
	SATB2		Fem														
	-33	6.5	ale	c. $715 \mathrm{C}>$ T	unknown	Yes	Yes	Yes	No	22	18	None	Yes	No	No	Yes	Zarate et al., 2018a
	SATB2		Mal														
	-76	3	e	c. $715 \mathrm{C}>$ T	unknown	Yes	Yes	No	N/A	19	18	1 to 10	Yes	No	No	Yes	Zarate et al., 2018a
	SATB2		Mal														
	-114	5	e	c. $715 \mathrm{C}>$ T	de novo	Yes	No	N/A	Yes	N/A	N/A	1 to 10	Yes	No	No	Yes	This study
	SATB2		Mal														
	-139	3	e	c. $715 \mathrm{C}>$ T	unknown	Yes	Yes	N/A	N/A	32	N/A	None	Yes	No	No	Yes	This Study
	SATB2		Mal														
	-121	9.5	e	c. $715 \mathrm{C}>$ T	unknown	Yes	Yes	No	No	28	48	1 to 10	Yes	Yes	No	Yes	This Study
			Mal														
	N/A	36	e	c. $715 \mathrm{C}>$ T	de novo	Yes	Yes	Yes	No	N/A	N/A	1 to 10	Yes	Yes	Yes	No	Leoykland e tal.
	Patien		Mal														
	t 3	32	e	c. $748 \mathrm{C}>$ T	de novo	Yes	Yes	Yes	No	N/A	N/A	None	Yes	Yes	No	No	Zarate et al., 2015
	SATB2		Mal														
	-117	12	e	c. $847 \mathrm{C}>$ T	de novo	Yes	No	Yes	Yes	38	48	1 to 10	Yes	No	Yes	Yes	This study
	SATB2		Mal									Greater					Zarate et al., 2018a;
	-04	4	e	c. $847 \mathrm{C}>$ T	de novo	Yes	No	N/A	N/A	11	14	than 50	Yes	No	No	Yes	Scott et al.
	SATB2		Fem														
	-89	1.5	ale	c. $847 \mathrm{C}>$ T	de novo	Yes	No	N/A	Yes	N/A	20	1 to 10	Yes	No	Yes	No	This study
	Patien		Mal														
	t 5	4	e	c. $847 \mathrm{C}>$ T	de novo	Yes	No	N/A	Yes	21	N/A	None	Yes	No	No	No	Zarate et al., 2018a
	N/A	N/A	N/A	c. $847 \mathrm{C}>$ T	unknown	Yes	Yes	N/A	Farwell et al.								
	Patien		Fem														
	t 2	19	ale	c. $847 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	N/A	N/A	N/A	1 to 10	yes	N/A	N/A	N/A	Kikuiri et al.
	SATB2		Fem														
	-83	6	ale	c. $868 \mathrm{C}>$ T	de novo	Yes	Yes	No	Yes	N/A	N/A	1 to 10	Yes	No	No	Yes	This study

	$\begin{gathered} \text { SATB2 } \\ -91 \end{gathered}$	26	Mal e	c.868C> ${ }^{\text {T }}$	unknown	Yes	Yes	N/A	Yes	30	N/A	None	Yes	No	Yes	Yes	This study
	SATB2		Fem														
	-127	8	ale	c. $988 \mathrm{C}>$ T	de novo	Yes	No	N/A	No	22	60	1 to 10	Yes	No	Yes	Yes	This study
	SATB2		Fem														
	-97	5.5	ale	c.997C>T	de novo	Yes	No	N/A	Yes	18	13	1 to 10	Yes	No	No	No	This study
	SATB2		Mal														
	-106	4	e	c. $1135 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	No	27	N/A	1 to 10	Yes	No	No	Yes	This study
	SATB2		Mal														Zarate et al., 2018a;
	-20	6	e	c.1171C>T	de novo	Yes	Yes	N/A	No	24	N/A	None	Yes	No	No	Yes	Scott et al.
	SATB2		Mal														Zarate et al., 2018a;
	-06	8	e	c. $1255 \mathrm{C}>$ T	de novo	Yes	Yes	Yes	Yes	20	N/A	1 to 10	Yes	No	Yes	Yes	Scott et al.
	SATB2		Mal														
	-108	14	e	c. $1285 \mathrm{C}>$ T	de novo	Yes	No	N/A	No	18	N/A	1 to 10	Yes	No	Yes	Yes	This study
	SATB2		Mal														Zarate et al., 2018a;
	-29	1.5	e	c. $1285 \mathrm{C}>$ T	de novo	Yes	No	N/A	No	N/A	N/A	None	Yes	No	No	Yes	Scott et al.
	Case 8		Fem														
	AN	N/A	ale	c. $1285 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	No	20	N/A	1 to 10	Yes	No	No	N/A	Bengani et al.
			Mal														
	N/A	2.3	e	c. $1285 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	Yes	N/A	N/A	None	Yes	No	No	No	Lv et al.
	25903		Mal														
	0	11.8	e	c. $1375 C>$ T	de novo	Yes	Yes	N/A	N/A	30	N/A	None	Yes	No	No	N/A	Bengani et al.
	SATB2		Mal														
	-59	15	e	c. $1375 C>$ T	de novo	Yes	Yes	N/A	No	22	22	1 to 10	Yes	No	No	No	Zarate et al., 2018a
	SATB2		Mal														
	-60	15	e	c. $1375 C>$ T	de novo	Yes	Yes	N/A	No	22	21	1 to 10	Yes	No	No	No	Zarate et al., 2018a
	SATB2		Fem														
	-124	12	ale	c. $1375 \mathrm{C}>$ T	de novo	Yes	Yes	N/A	No	30	36	1 to 10	Yes	No	No	No	This study
	SATB2		Mal														Zarate et al., 2018a;
	-69	6	e	c. $1375 \mathrm{C}>$ T	unknown	Yes	No	Yes	N/A	11	19	10 to 50	Yes	No	Yes	Yes	Scott et al.
			Fem														
	Case 2	4	ale	c. $1375 C>$ T	de novo	Yes	Yes	N/A	No	N/A	N/A	None	Yes	No	No	No	Lee et al.
	SATB2		Fem									Greater					Zarate et al., 2018a;
	-38	5	ale	c. 1495 A>T	de novo	Yes	No	No	Yes	16	32	than 50	Yes	No	No	No	Scott et al.
	SATB2		Mal									Greater					
	-137	9	e	c. $1756 \mathrm{C}>$ T	unknown	Yes	No	No	No	36	48	than 50	Yes	No	Yes	Yes	This Study
	Case																
	14	N/A	N/A	c. $2074 \mathrm{G}>\mathrm{T}$	de novo	Yes	No	N/A	No	60	N/A	None	Yes	No	No	N/A	Bengani et al.
In frame				929_930insTTG													
insertion	25	N/A	N/A	AAGGCAAC	de novo	Yes	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A	Gilissen et al.
splice site	Patien		Mal														
	t 1	7	e	c. $346+2 \mathrm{~T}>\mathrm{G}$	de novo	Yes	Yes	Yes	Yes	N/A	N/A	N/A	Yes	Yes	Yes	No	Zarate et al., 2015
	SATB2		Mal														
	-95	4	e	c. $473+1$ delG	unknown	Yes	No	N/A	No	24	N/A	None	Yes	No	No	No	This study
	SATB2		Mal	c.598-2A>G													
	-86	21	e		germline	Yes	No	N/A	N/A	36	N/A	None	Yes	No	Yes	Yes	Bengani, This study
	SATB2		Mal	c.598-2A>G	germline	Yes	No	N/A	Yes	12	50	Greater than 50	Yes	No	No		Bengani, This study
	-87	17.5	e													No	
	26017		Mal														
	5	4.3	e	c. $1173+2 \mathrm{~T}>\mathrm{C}$	de novo	Yes	Yes	N/A	No	16	N/A	None	Yes	No	No	N/A	Bengani et al. Zarate et al., 2018a; Scott et al.
	SATB2		Fem ale														
	-34	12		c.1174-2A>G	de novo	Yes	No	N/A	No	23	60	1 to 10	Yes	Yes	Yes	Yes	
	Patien		Fem														
	t 1	19	ale	c.1741-1G>A	de novo	Yes	Yes	N/A	N/A	N/A	N/A	1 to 10	Yes	N/A	N/A	N/A	Kikuiri et al.

	$\begin{gathered} \text { SATB2 } \\ -02 \end{gathered}$	6	Fem ale	Exons 1-8	presumed germline	Yes	No	Yes	No	21	27	Greater than 50	Yes	Yes	No	Yes	Zarate et al., 2018a; Scott et al.
Intragenic	SATB2		Fem														
Deletions	-08	2	ale	Exons 9-10	unknown	Yes	Yes	N/A	N/A	N/A	N/A	None	Yes	No	No	Yes	Zarate et al., 2018a
	SATB2		Fem														
	-22	14	ale	Exons 1-11	unknown	Yes	No	Yes	No	22	N/A	None	Yes	No	Yes	Yes	Zarate et al., 2018a
	SATB2		Fem														
	-25	4	ale	Exons 5-12	de novo	Yes	Yes	N/A	N/A	23	N/A	None	Yes	No	Yes	No	Zarate et al., 2018a
	SATB2		Mal														
	-49	18	e	Exon 9	unknown	Yes	Yes	N/A	Yes	144	N/A	None	Yes	Yes	Yes	Yes	Zarate et al., 2018a
	SATB2		Mal														
	-52	8	e	Exons 2-4	de novo	Yes	No	N/A	No	18	N/A	None	Yes	No	No	No	Zarate et al., 2018a
	SATB2		Mal														
	-64	25	e	Exons 5-8	unknown	Yes	Yes	Yes	No	12	N/A	1 to 10	Yes	No	Yes	Yes	Zarate et al., 2018a
	SATB2		Fem									Greater					
	-78	5	ale	Exon 4	unknown	Yes	No	N/A	No	15	12	than 50	Yes	No	No	No	Zarate et al., 2018a
	SATB2		Fem														
	-80	1.5	ale	Exons 4-8	unknown	Yes	No	N/A	N/A	N/A	N/A	None	Yes	No	No	No	This study
	SATB2		Mal														
	-82	4	e	Exons 8-9	unknown	Yes	Yes	Yes	N/A	15	36	1 to 10	Yes	No	Yes	Yes	This study
	SATB2		Mal														
	-92	6	e	Exon 7	unknown	Yes	No	N/A	Yes	20	36	1 to 10	Yes	Yes	No	Yes	This study
	SATB2		Mal									10 to 50					
	-126	15	e	Exons 1-12	de novo	Yes	No	No	N/A	24	N/A	words	Yes	No	No	No	This study
	SATB2		Fem														
	-115	2.5	ale	Exons 7-8	de novo	Yes	Yes	N/A	Yes	N/A	N/A	None	Yes	No	Yes	Yes	This study
	SATB2		Mal														
	-102	4	e	Exons 7-8	de novo	Yes	Yes	N/A	Yes	N/A	N/A	None	Yes	No	Yes	Yes	This study
	SATB2		Fem		presumed												
	-128	0.5	ale	Exons 4-8	germline	N/A	No	N/A	N/A	N/A	N/A	N/A	N/A	No	No	No	This study
	SATB2		Fem														
	-107	5	ale	Exon 5	de novo	Yes	Yes	No	N/A	18	N/A	1 to 10	Yes	No	No	No	This study
	SATB2		Mal														
	-113	2.5	e	Exons 1-4	unknown	Yes	No	N/A	N/A	20	N/A	None	N/A	No	No	No	This study
	SATB2		Mal														
	-140	13.5	e	Exon 9	de novo	Yes	Yes	N/A	No	23	N/A	1 to 10	Yes	Yes	No	Yes	This study
	Patien		Mal														Balasubramanian et
	t 5	3	e	Exons 9-11	unknown	Yes	Yes	N/A	N/A	24	N/A	None	N/A	No	No	Yes	al.
	Subjec		Fem														
	t 1	9.5	ale	Exons 4-12	unknown	Yes	No	N/A	No	N/A	N/A	N/A	Yes	No	No	No	Rosenfeld et al.
	Subjec		Mal														
	t 2	21	e	Exons 3-11	unknown	Yes	Yes	N/A	N/A	30	N/A	N/A	Yes	No	No	Yes	Rosenfeld et al.
	Subjec		Fem														
	t 3	6	ale	Exons 1-11	unknown	Yes	No	N/A	N/A	N/A	N/A	None	N/A	No	No	No	Rosenfeld et al.
Intragenic Duplications			Mal														
	70886	4	e	Exon 4	de novo	Yes	Yes	N/A	N/A	18	N/A	1 to 10	Yes	N/A	N/A	Yes	Asadollahi et al.
			Fem														
	N/A	10	ale	Exon 4	de novo	Yes	No	N/A	Yes	N/A	N/A	1 to 10	Yes	No	No	Yes	Kaiser et al.
			Mal														
	N/A	20	e	Exons 5-7	de novo	Yes	Yes	Yes	No	N/A	N/A	1 to 10	Yes	N/A	N/A	N/A	Lieden et al.
Translocation			Fem														
	Case 1	24	ale	c.?	de novo	Yes	Yes	No	Yes	24	N/A	N/A	Yes	No	No	Yes	Rainger et al.
			Mal														
	Case 2	33	e	c.?	de novo	Yes	Yes	Yes	N/A	60	N/A	None	Yes	N/A	N/A	Yes	Rainger et al.

Case 1	13	Fem ale	c.?	de novo	Yes	Yes	N/a	N/A	24	N/A	N/A	N/A	N/A	No	N/A	Brewer et al.
		Mal														
N/A	0.1	e	c.?	de novo	Yes	No	Yes	Yes	N/A	N/A	N/A	N/A	Yes	Yes	Yes	Tegay et al.
Case																
49	21	N/A	c.?	de novo	Yes	Yes	N/A	N/A	N/A	N/A	None	N/A	N/A	N/A	N/A	Baptista et al.
DGAP2		Mal														
11	N/A	e	c.?	de novo	Yes	N/A	Yes	N/A	N/A	N/A	N/A	N/A	Yes	Yes	N/A	Talkowski et al

†Individual SATB2-111 was found to have multiple fractures (femur and ribs) and leg bowing at 5 months of age. DXA scan at that age revealed a low bone mineral density (BMD) of -2SD. Given the lack of normal control data available for this age group, the presence of low BMD is marked as N/A

Supplementary Table S3. Genotype-phenotype correlations according to underlying molecular mechanism of disease. ${ }^{\dagger}$

CLINICAL FEATURE	Missense	Nonsense	Frameshift	Intragenic deletions	Splicing	Translocations
Cleft palate	$\begin{gathered} 11 / 49 \\ (22.4 \%)^{* *} \\ \hline \end{gathered}$	21/37 (56.8\%)	18/31 (58.1\%)	11/22 (50.0\%)	3/7 (42.9\%)	4/5 (80.0\%)
Abnormal Brain Neuroimaging	18/39 (46.2\%)	12/29 (41.4\%)	11/20 (55.0\%)	4/11 (36.4\%)	2/5 (40.0\%)	2/2 (100\%)
Low bone mineral density	9/12 (75.0\%)	8/13 (61.5\%)	7/9 (77.8\%)	4/6 (66.7\%)	1/1 (100\%)	3/4 (75.0\%)
Feeding difficulties	24/40 (60.0\%)	21/32 (65.6\%)	$\begin{gathered} 25 / 26 \\ (96.2 \%)^{* *} \end{gathered}$	12/22 (54.5\%)	2/5 (40.0\%)	3/3 (100\%)
Growth retardation	17/46 (37.0\%)	10/35 (28.6\%)	5/30 (16.7\%)	7/22 (31.8\%)	3/6 (50.0\%)	2/4 (50.0\%)
Seizures	14/46 (30.4\%)*	3/35 (8.6\%)*	4/30 (13.3\%)	4/22 (18.2)	2/6 (33.3\%)	2/3 (66.7\%)
NEURODEVELOPEMENTAL						
Average age at walking in months [range] (n with data)	$\begin{gathered} 24.9 \text { [13-60] } \\ (41) \\ \hline \end{gathered}$	26.2 [11-60] (27)	$\begin{gathered} 23.7[12-48] \\ (29) \\ \hline \end{gathered}$	28.6 [12-144] (15)	$\begin{gathered} 22.2[12-36] \\ (5) \end{gathered}$	36 [24-60] (3)
Average age at 1st word in months [range] (n with data)	$\begin{gathered} 32.6[5-144] \\ (20) \end{gathered}$	$\begin{gathered} 35.1[[13-96] \\ (16) \end{gathered}$	$\begin{gathered} 26.9[[9-48] \\ (16) \end{gathered}$	27.8 [12-36] (4)	55 [50-60] (2)	N/A
Individuals older than 4 years with absent verbal words	20/39 (51.3\%)*	8/29 (27.6\%)	12/28 (42.9\%)	6/14 (42.9\%)	3/6 (50.0\%)	2/2 (100\%)

'Each molecular mechanism group was compared to all other mechanisms using either Chi-square or Fisher's exact tests (when at least one cell had an expected count of less than 5) for categorical variables, and t-tests for continuous variables.
${ }_{*}^{*} \mathrm{p}<0.05$
p<0.001

