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1 Web Appendix A: Derivation of the asymptotic joint

distribution of the proposed test statistic at interim

analysis times, s1, . . . , sK

In this section, we derive the asymptotic joint distribution of the proposed test statistics,

T (s1), . . . ,T (sK) at interim analysis times, s1, . . . , sK . The overall strategy is to first

show that the vector of test statistics, {T (s1), . . . ,T (sK)} , is asymptotically equivalent in

distribution to the more tractable vector of random variables, {T ∗(s1), . . . ,T ∗(sK)}, where

elements of this latter vector are based on sums of independent and identically distributed

quantities. From there, a standard application of the multivariate central limit theorem gives

the desired result.

Our test statistic at analysis time s,

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)},
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can be rewritten as

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ), (1)

where ng(s)/{n1(s) + n2(s)} p→ πg(s). Suppose at analysis time s, combining information

across b follow-up windows of length τ , we record M events {0 ≡ T0 < T1 < ... < TM <

TM+1 ≡ τ}. Then, by Taylor series expansion,

√
ng(s)µ̂g(s, τ) =

√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j=0

dNg(s, Tj)

Yg(s, Tj)

}

is asymptotically equivalent in distribution to the following terms:

√
ng(s)

M∑
m=0

(Tm+1 − Tm) exp

{
−

m∑
j=0

λWg (s, Tj)dTj

}
(2)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]
(3)

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
λWg (s, Tj)dTj

]
(4)

+
√
ng(s)

M∑
m=0

(Tm+1−Tm)
1

2!
exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}[ m∑
j=0

{
dNg(s, Tj)

Yg(s, Tj)
− λWg (s, Tj)dTj

}]2

(5)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)[higher order terms] (6)

Using arguments similar to those in Tayob and Murray (2016) Appendix B, terms (5)

and (6) converge to zero in probability. When there is no treatment effect (i.e., the null

hypothesis is true), terms (2) and (4) for group g = 1 will cancel the corresponding terms
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for group g = 2 in the test statistic T (s). Hence, the asymptotic distribution of T (s) is

based on the behavior of term (3) for groups g = 1, 2. Term (3) can be further rewritten as

√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]

= −
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp{−
m∑
j′=0

λWg (s, Tj′)dTj′}
m∑
j=0

dNg(s, Tj)

Yg(s, Tj)
,

which is asymptotically equivalent in distribution (via Taylor series) to

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
×

{
m∑
j=0

EdNg(s, Tj)

EYg(s, Tj)
(7)

+
m∑
j=0

[
1

EYg(s, Tj)
[dNg(s, Tj)−EdNg(s, Tj)]−

EdNg(s, Tj)

EYg(s, Tj)2
[Yg(s, Tj)−EYg(s, Tj)]

]
(8)

+[higher order terms]} . (9)

Using arguments similar to those in Tayob and Murray Appendix B once again, the higher

order terms in (9) converge to zero in probability. In addition when the null hypothesis is

true, term (7) for group g = 1 will cancel with its counterpart term for g = 2 in the test

statistic T (s). Hence, the asymptotic distribution of T (s) is based on the behavior of term

(8) for groups g = 1, 2 which upon noting that EdNg(s, Tj)/EYg(s, Tj) = λWg (s, Tj) and

EYg(s, Tj) =
∑b

l=1 Pr(Xgi(s, tl) ≥ Tj) can be algebraically rearranged as:

−
√
ng(s)

M∑
m=0

(Tm+1−Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
m∑
j=0

dNg(s, Tj)− Yg(s, Tj)λWg (s, Tj)∑b
l=1 Pr(Xgi(s, tl) ≥ Tj)
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or returning to more standard stochastic integral notation as:

−
√
ng(s)

∫ τ

0

exp

{
−
∫ u2

0

λWg (s, u1)du1

}∫ u2

0

dNg(s, u1)− Yg(s, u1)λWg (s, u1)∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2. (10)

Summarizing calculations from equation (1) to equation (10),

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ)

is asymptotically equivalent in distribution to

√
π1(s)

√
n2(s)

∫ τ

0

exp

{
−
∫ u2

0

λW2 (s, u1)du1

}∫ u2

0

dN2(s, u1)− Y2(s, u1)λW2 (s, u1)∑b
l=1 Pr(X2i(s, tl) ≥ u1)

du2

−
√
π2(s)

√
n1(s)

∫ τ

0

exp

{
−
∫ u2

0

λW1 (s, u1)du1

}∫ u2

0

dN1(s, u1)− Y1(s, u1)λW1 (s, u1)∑b
l=1 Pr(X1i(s, tl) ≥ u1)

du2.

From here, we note that the remaining terms above can be written in terms of indepen-

dent and identically distributed random variables that lend themselves to standard limiting

distribution results via the multivariate central limit theorem. Recall that

Ng(s, u) =

ng(s)∑
i=1

Ngi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ngi(s, tj, u)

and

Yg(s, u) =

ng(s)∑
i=1

Ygi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ygi(s, tj, u).

Define:

Zij{µ̂g(s, τ)} =

∫ τ

0

exp

{
−
∫ u2

0

λWg (s, u1)du1

}∫ u2

0

dNgi(s, tj, u1)− Ygi(s, tj, u1)λWg (s, u1)du1∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2

and

Zi{µ̂g(s, τ)} =
b∑

j=1

Zij{µ̂g(s, τ)}.
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Note that Zi{µ̂g(s, τ)} only depends on patient i and is independent and identically dis-

tributed for i = 1, . . . , ng(s). Using this notation, the above asymptotically equivalent rep-

resentation of the distribution of T (s) becomes

T ∗(s) =
√
π1(s)

√
n2(s)

∑n2(s)
i=1 Zi{µ̂2(s, τ)}

n2(s)
−
√
π2(s)

√
n1(s)

∑n1(s)
i=1 Zi{µ̂1(s, τ)}

n1(s)
. (11)

Application of the multivariate central limit theorem to the vector of test statistics

{T ∗(s1), . . . ,T ∗(sK)} calculated at calendar times, s1, s2, . . . , sK (K finite), gives a lim-

iting multivariate normal distribution as ng(s1) → ∞, g = 1, 2, with asymptotic covariance

matrix estimated empirically as described in Web Appendix B. A closed-form version of the

asymptotic covariance is described in Web Appendix C.

For convenience, we explicitly describe the special case where only a single analysis is

performed. When the null hypothesis is true, the asymptotic limiting distribution of T (s)

is Normal with mean 0 and variance π2(s)σ2
1(s) + π1(s)σ2

2(s), where σ2
g(s), g = 1, 2 is the

variance of Zi(µ̂g(s, τ)) and can be estimated using the sampling variability of Zi{µ̂g(s, τ)},

that is, σ̂2
g(s) =

∑ng(s)
i=1 [zi{µ̂g(s, τ)} − z̄{µ̂g(s, τ)}]2/[ng(s)− 1], where

zi{µ̂g(s, τ)} =
b∑

j=1

zij{µ̂g(s, τ)}; z̄{µ̂g(s, τ)} =

ng(s)∑
i=1

zi{µ̂g(s, τ)}/ng(s)

and

zij{µ̂g(s, τ)} =

∫ τ

0

exp

{
−
∫ u2

0

dNg(s, u1)

Yg(s, u1)

}{∫ u2

0

dNgi(s, tj, u1)− Ygi(s, tj, u1)dNg(s,u1)

Yg(s,u1)

Yg(s, u1)/ng(s)

}
du2.(12)

For finite sample sizes, we use a standardized version of the test statistic,

T̃ (s) =
T (s)√

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s)
,

which has an approximate Normal(0,1) distribution, with critical values of ± 1.96 conferring
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an overall type I error of 5% when a single analysis is performed.

2 Web Appendix B: Empirical covariance matrix for{
T̃ (s1), . . . , T̃ (sK)

}
In this appendix, we describe how to estimate the empirical version of the K×K asymptotic

covariance matrix, Σ, corresponding to standardized test statistics,
{

T̃ (s1), . . . , T̃ (sK)
}

.

By design, diagonal elements of this matrix are equal to one, so that this covariance matrix

is also a correlation matrix. Off-diagonal elements, σk1k2 = σk2k1 , k1 < k2, can be estimated

based on the more updated dataset at analysis sk2 .

In Web Appendix A, we show that {T (s1), . . . ,T (sK)} is asymptotically equivalent in

distribution to {T ∗(s1), . . . ,T ∗(sK)}. Similarly, for the standardized version of each test

statistic, T̃ (sk), sk = s1, . . . , sK , we work with the corresponding asymptotically equiva-

lent in distribution standardized form, T ∗(sk)/
√
π2(sk)σ2

1(sk) + π1(sk)σ2
2(sk). Hence, off-

diagonal elements σk1k2 = σk2k1 , k1 < k2, of the covariance matrix, Σ, can be estimated

by

σ̂k1k2 =
ˆCov {T ∗(sk1),T

∗(sk2)}√
π̂2(sk1)σ̃

2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)

√
π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)

(13)

We define each component of σ̂k1k2 in more detail below.

Estimated terms that use the most up-to-date information at analysis time sk2 have

already been described for σ̂2
g(sk2), g = 1, 2, in Web Appendix A, captured by terms in equa-

tion (12). Web Appendix A also defines π̂g(sk) = ng(sk)/{n1(sk) + n2(sk)}, for g = 1, 2 and

sk = sk1 , sk2 . Estimates of σ2
g(sk1), g = 1, 2 used in the covariance estimate are modified

to take advantage of additional information available at sk2 for estimating terms that do

not depend on analysis time. In particular, since both dNgi(sk1 , tj, u1)/Ygi(sk1 , tj, u1) and

dNgi(sk2 , tj, u1)/Ygi(sk2 , tj, u1) estimate λgi(tj, u1)du1, and the latter term uses more data, we
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replace dNgi(sk1 , tj, u1) in equation (1) with Ygi(sk1 , tj, u1)× dNgi(sk2 , tj, u1)/Ygi(sk2 , tj, u1).

Similarly in equation (12), we replace Yg(sk1 , u1)/ng(sk1), which is an estimate of∑b
l=1 Pr(Tgi(sk1 , tl) ≥ u1)Pr(Cgi(sk1 , tl) ≥ u1), with

[∑ng(sk2 )

i=1 I{Tgi ≥ u1 + tl}/ng(sk2)
]

×
[∑ng(sk1 )

i=1 I{Cgi(sk1) ≥ u1 + tl}/ng(sk1)
]
. Here, terms involving the event time are esti-

mated using updated data, while terms involving the censoring distribution remain relevant

to analysis time sk1 . Putting these modifications together gives us

z̃ij{µ̂g(sk1 , τ)} =

∫ τ

0

exp{−
∫ u2

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[∫ u2

0
b∑
l=1

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2

as an updated version of zij{µ̂g(sk1 , τ)} for use in covariance terms. And mimicking Web

Appendix A notation, σ̃2
g(sk1) used in equation (13) is calculated by replacing zij{µ̂g(sk1 , τ)}

with z̃ij{µ̂g(sk1 , τ)} terms in corresponding formulas for σ̂2
g(sk1) from Web Appendix A.

The only remaining undefined term from equation (13) is ˆCov {T ∗(sk1),T
∗(sk2)} , which

is described in the following. From equation (11),

Cov {T ∗(sk1),T ∗(sk2)}

=

2∑
g=1

Cov

[√
π3−g(sk1)

√
ng(sk1)

∑ng(sk1 )

i=1 Zi{µ̂g(sk1 , τ)}
ng(sk1)

,
√
π3−g(sk2)

√
ng(sk2)

∑ng(sk2 )

i=1 Zi{µ̂g(sk2 , τ)}
ng(sk2)

]
.

Without loss of generality, assume k1 ≤ k2 so that ng(sk1) ≤ ng(sk2) and there are ng(sk1) pa-

tients contributing (correlated) data from both analysis times. Then the previous expression

reduces to

=
2∑
g=1

√
π3−g(sk1)

√
π3−g(sk2)

ng(sk1)√
ng(sk1)ng(sk2)

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,
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which is asymptotically equivalent to

=
2∑
g=1

√
π3−g(sk1)π3−g(sk2)ψg(sk1 , sk2)Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

where ψg(sk1 , sk2) is the limiting proportion of patients entered at sk1 of those eventually

entered by sk2 of group g, that is estimated by ng(sk1)/ng(sk2).

In practice, Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] can be estimated based on the empirical

covariance of sample realizations of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, that is,

ˆCov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1 )∑
i=1

[z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

,

where z̃i{µ̂g(sk1 , τ)} =
∑b

j=1 z̃ij{µ̂g(sk1 , τ)}, ¯̃z{µ̂g(sk1 , τ)} =
∑ng(sk1 )

i=1 z̃i{µ̂g(sk1 , τ)}/ng(sk1).

Putting each described component into equation (13), we have the version of σ̂k1k2 listed in

Section 4 of the main manuscript.

3 Web Appendix C: Closed form covariance matrix for{
T̃ (s1), . . . , T̃ (sK)

}
At times it is convenient to have an asymptotic closed form version of the covariance matrix

for
{

T̃ (s1), . . . , T̃ (sK)
}

, for instance in assessing whether an independent increments vari-

ability structure is present. Working from results in the last paragraph of Web Appendix

B, instead of estimating Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] with the empirical covariance,

in this section we derive its asymptotic closed-form formula. Consider Zi{µ̂g(sk, τ)} =∑b
j=1 Zij{µ̂g(sk, τ)} at analysis times sk = sk1 and sk2 and recall that group g patients are

independent and identically distributed. Then

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =
b∑

j=1

b∑
j′=1

Cov [Zij{µ̂g(sk1 , τ)}, Zij′{µ̂g(sk2 , τ)}] .
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For notational simplicity, we submerge the group indicator g as we work with the summand

term above. That is,

Cov [Zij{µ̂g(sk1 , τ)}, Zij′{µ̂g(sk2 , τ)}]

=
b∑

j=1

b∑
j′=1

∫ τ

0

∫ τ

0

exp{−
∫ u2

0

λW (sk1 , u1)du1}exp{−
∫ v2

0

λW (sk2 , v1)dv1}

×
∫ u2

0

∫ v2

0

1∑
l Pr(Xi(sk1 , tl) ≥ u1)

∑
l′ Pr(Xi(sk2 , tl′) ≥ v1)

× Cov
{
dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1, dNi(sk2 , tj′, v1)

− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1

}
du2dv2.

Focusing on this last term:

Cov

{
dNi(sk1 , tj, u1)−Yi(sk1 , tj, u1)λW (sk1 , u1)du1, dNi(sk2 , tj′, v1)−Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1

}

= E[dNi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] (14)

−λW (sk1 , u1)E[Yi(sk1 , tj, u1)dNi(sk2 , tj′, v1)]du1 (15)

−λW (sk2 , v1)E[Yi(sk2 , tj′, v1)dNi(sk1 , tj, u1)]dv1 (16)

+λW (sk1 , u1)λW (sk2 , v1)E[Yi(sk1 , tj, u1)Yi(sk2 , tj′, v1)]du1dv1 (17)

−E[dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1] (18)

×E[dNi(sk2 , tj′, v1)− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1]. (19)
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Term (14) becomes:

E[dNi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] = lim
∆u1,∆v1→0

Pr{u1 ≤ Xi(sk1 , tj) < u1 + ∆u1, δi(sk1 , tj) = 1,

v1 ≤ Xi(sk2 , tj′) < v1 + ∆v1, δi(sk2 , tj′) = 1}

= lim
∆u1→0

Pr{u1 ≤ Xi(sk1 , tj) < u1 + ∆u1, δi(sk1 , tj) = 1}

× I{u1 + tj = v1 + tj′}

= λ(sk1 , tj, u1)Pr{Xi(sk1 , tj) ≥ u1}I{u1 + tj = v1 + tj′}du1.

Term (15) becomes

E[Yi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] = lim
∆v1→0

Pr{Xi(sk1 , tj) ≥ u1, v1 ≤ Xi(sk2 , tj′) < v1 + ∆v1,

δi(sk2 , tj′) = 1}

= λ(sk2 , tj′, v1)Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}

[I{u1 + tj ≤ v1 + tj′}+ I{u1 = 0, tj > v1 + tj′}]dv1,

where the expectation is only none-zero when u1 + tj ≤ v1 + tj′. The term I{u1 = 0, tj >

v1 + tj′} comes from the case when the failure occurs before calendar time tj, namely

tj > v1 + tj′, by definition Xi(sk1 , tj) = 0. Therefore the expectation is also non-zero when

u1 = 0.

Term (16) becomes

E[Yi(sk2 , tj′, v1)dNi(sk1 , tj, u1)] = lim
∆u1→0

Pr{Xi(sk2 , tj′) ≥ v1, u1 ≤ Xi(sk1 , tj) < u1 + ∆u1,

δi(sk1 , tj) = 1}

= λ(sk1 , tj, u1)Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}

[I{u1 + tj ≥ v1 + tj′}+ I{v1 = 0, u1 + tj < tj′}]du1,

10



where the expectation is only none-zero when u1 + tj ≥ v1 + tj′. The term I{v1 = 0, u1 + tj <

tj′} comes from the case when the failure occurs before calendar time tj′, namely u1 +tj < tj′,

by definition Xi(sk2 , tj′) = 0. Therefore the expectation is also non-zero when v1 = 0.

Term (17) becomes

E[Yi(sk1 , tj, u1)Yi(sk2 , tj′, v1)] = Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}.

Term (18) becomes

E[dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1] =[λ(sk1 , tj, u1)− λW (sk1 , u1)]

× Pr{Xi(sk1 , tj) ≥ u1}du1.

And term (19) becomes

E[dNi(sk2 , tj′, v1)− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1] =[λ(sk2 , tj′, v1)− λW (sk2 , v1)]

× Pr{Xi(sk2 , tj′) ≥ v1}dv1.
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Substituting appropriate terms we now have

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

=
b∑

j=1

b∑
j′=1

∫ τ

0

∫ τ

0

exp{−
∫ u2

0

λWg (sk1 , u1)du1}exp{−
∫ v2

0

λWg (sk2 , v1)dv1}

×
∫ u2

0

∫ v2

0

1∑
l Pr(Xgi(sk1 , tl) ≥ u1)

∑
l′ Pr(Xgi(sk2 , tl′) ≥ v1)

×
{
λg(tj, u1)Pr{Xgi(sk1 , tj) ≥ u1}I{u1 + tj = v1 + tj′}du1

−
[
λWg (sk1 , u1)λ(tj′, v1)[I{u1 + tj ≤ v1 + tj′}+ I{u1 = 0, tj > v1 + tj′}]

+ λWg (sk2 , v1)λ(tj, u1)[I{u1 + tj ≥ v1 + tj′}+ I{v1 = 0, u1 + tj < tj′}]

− λWg (sk1 , u1)λW (sk2 , v1)

]
Pr{Xgi(sk1 , tj) ≥ u1, Xgi(sk2 , tj′) ≥ v1}du1dv1

− {λg(tj, u1)− λWg (sk1 , u1)}{λg(tj′, v1)− λWg (sk2 , v1)}

× Pr{Xgi(sk1 , tj) ≥ u1}Pr{Xgi(sk2 , tj′) ≥ v1}du1dv1

}
du2dv2

Unfortunately, this covariance does not simplify to an independent increments structure

except in special cases such as an exponentially distributed event time. The independent

increments structure emerges in this special case upon noting that λWg (s, u) = λ(t, u) = λ

for all s, t and u. However, given the advantages of avoiding parametric assumptions, there

is no practical computation savings that can be made from knowledge of this special case.

We’ve also used this asymptotic closed form variance as a method to double-check that

R code for our empirically calculated covariance is on target. For example, a covariance

matrix estimated from 500 individuals’ data should be relatively close to the asymptotic

closed form. Assuming an Exp(0.5) event time with 2 years of uniform accrual, and analyses

using τ = 1 conducted at 1, 2, 3, 4 and 5 years in calendar time, the closed form covariance

12



matrix calculation gives:



0.175 0.085 0.042 0.039 0.035

0.085 0.091 0.052 0.041 0.036

0.042 0.052 0.054 0.042 0.038

0.039 0.041 0.042 0.043 0.038

0.035 0.036 0.038 0.038 0.039


,

whereas the corresponding empirical covariance estimate from the 500 individuals was



0.149 0.082 0.050 0.040 0.034

0.082 0.104 0.056 0.044 0.039

0.050 0.056 0.059 0.045 0.041

0.040 0.044 0.045 0.046 0.042

0.034 0.039 0.041 0.042 0.043


with difference matrix



−0.026 −0.003 0.008 0.001 −0.001

−0.003 0.013 0.004 0.003 0.003

0.008 0.004 0.005 0.003 0.003

0.001 0.003 0.003 0.003 0.004

−0.001 0.003 0.003 0.004 0.004


.

Repeating this exercise for different simulated datasets and sample sizes is a comforting

coding check.
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4 Web Appendix D: Supplemental simulation results

In this section we show supplemental simulation results for our proposed method using the

same simulation scenarios 1-9 described in the main manuscript. In Web Tables S1 and S2,

we (1) examine the performance of our method for alternative choices of τ = 0.25, 0.50 and

0.75 years, (2) show results for the Peto and Peto (WLR-PP) test that places more weight

on hazards at the beginning of the study and (3) show results for the Fleming-Harrington

(WLR-FH) (0.5, 0.5) test that places more weight on hazards at the end of the study. Web

Table S1 shows stopping rates based on OF efficacy, JT safety, Pocock safety and OF safety

bounds. Web Table S2 shows the average study time (AST) in years, the average sample

number (ASN) and the average number of events (ANE).

All test statistic boundaries meet their targets within simulation error under Scenario 1,

the null hypothesis (Web Table S1, Scenario 1).

For the most part, stopping rates do not seem to vary much based on the selection for

τ . The only possible exception is in Scenario 4, the delayed treatment effect scenario, where

power is slightly smaller for smaller values of τ . The WLR-FH test does well in this setting,

with slightly less power than the proposed test using τ = 1 year and slightly more power

than the proposed test with smaller values of τ . The WLR-PP test has much lower power

than all other methods in this setting. The WLR-PP test also performs poorly in Scenario

8, the Scenario with mixed cure distribution alternatives under consideration.

Note that these extra simulations for τ = 0.25, 0.5 and 0.75 are not intended to be an

exhaustive look at how to choose τ since we believe most applications will have a natural

choice. But these additional simulations verify that the method performs well for a broader

selection of short-term window lengths.
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5 Web Appendix E: Supplemental example results

Web Figure S1 shows group sequential OF efficacy boundaries as well as OF, Pocock and

JT safety boundaries for the proposed test statistic (left panel), the RMS statistic (middle

panel) and the logrank statistic (right panel). All test statistics are standardized to ease

comparisons between panels of the figure. Boundaries and test statistics shown in Web

Figure S1 are enumerated for clarity in Web Table S3. Although historically during that

period of clinical trial design symmetric stopping boundaries were typically used, a more

modern safety boundary would make sense in this setting, particularly since it was not

known for certain that the low-dose was sufficient to protect against mortality in the same

way the high dose had up to that time. Observed values of the test statistics in each panel

of Web Figure S1 are superimposed as dots with bold connecting lines. None of the test

statistics approached the safety boundaries at any of the interim analyses. As shown in Web

Table S3, the standardized proposed test statistics and the standardized RMS test statistics

crossed the OF efficacy boundary at year 1990. The logrank test did not cross the OF

efficacy boundary at any interim analysis time.
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Table S1: Rates of stopping for efficacy or for safety

Scenario Test Statistic OF Efficacy JT Safety P Safety OF Safety

Proposed τ = 0.75 0.024 0.192 0.025 0.024
Proposed τ = 0.5 0.023 0.197 0.024 0.023

1 Proposed τ = 0.25 0.024 0.193 0.024 0.024
WLR-PP 0.023 0.195 0.025 0.026

WLR-FH (0.5, 0.5) 0.023 0.196 0.026 0.026
Proposed τ = 0.75 0.813 0 0 0
Proposed τ = 0.5 0.803-0.804 0.002 0 0

2 Proposed τ = 0.25 0.806-0.807 0.002 0 0
WLR-PP 0.75 0 0 0

WLR-FH (0.5, 0.5) 0.807 0 0 0
Proposed τ = 0.75 0 0.977 0.79 0.847
Proposed τ = 0.5 0 0.979 0.773 0.829

3 Proposed τ = 0.25 0 0.973 0.778 0.839
WLR-PP 0 0.967 0.724 0.76

WLR-FH (0.5, 0.5) 0 0.971 0.773 0.815
Proposed τ = 0.75 0.813-0.825 0.024 0.007 0
Proposed τ = 0.5 0.817-0.824 0.019 0.005 0

4 Proposed τ = 0.25 0.803-0.811 0.025 0.007 0
WLR-PP 0.367 0.029 0.008 0

WLR-FH (0.5, 0.5) 0.823-0.834 0.031 0.008 0
Proposed τ = 0.75 0 0.970 0.742 0.817
Proposed τ = 0.5 0 0.967 0.730 0.819

5 Proposed τ = 0.25 0 0.965 0.718 0.809
WLR-PP 0 0.743 0.325 0.381

WLR-FH (0.5, 0.5) 0 0.970 0.778 0.848
Proposed τ = 0.75 0.764 0 0 0
Proposed τ = 0.5 0.767 0.001 0 0

6 Proposed τ = 0.25 0.761 0 0 0
WLR-PP 0.753 0.001 0 0

WLR-FH (0.5, 0.5) 0.784 0 0 0
Proposed τ = 0.75 0 0.960 0.707 0.744
Proposed τ = 0.5 0 0.961 0.701 0.748

7 Proposed τ = 0.25 0 0.959 0.696 0.743
WLR-PP 0 0.956 0.696 0.736

WLR-FH (0.5, 0.5) 0 0.963 0.725 0.768
Proposed τ = 0.75 0.883 0 0 0
Proposed τ = 0.5 0.876 0 0 0

8 Proposed τ = 0.25 0.879 0 0 0
WLR-PP 0.777 0 0 0

WLR-FH (0.5, 0.5) 0.854 0 0 0
Proposed τ = 0.75 0 0.991 0.849 0.890
Proposed τ = 0.5 0 0.989 0.840 0.881

9 Proposed τ = 0.25 0 0.988 0.843 0.884
WLR-PP 0 0.959 0.735 0.774

WLR-FH (0.5, 0.5) 0 0.982 0.807 0.852
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Table S2: AST in years, ASN and ANE in Scenarios 1 - 9

AST ASN ANE
Scenario Test Statistic JT P OF JT P OF JT P OF

Proposed τ = 0.75 4.7 4.9 5.0 195 199 200 156 163 164
Proposed τ = 0.5 4.7 4.9 5.0 195 199 200 156 163 165

1 Proposed τ = 0.25 4.7 4.9 5.0 195 199 200 156 164 165
WLR-PP 4.7 4.9 5.0 195 199 200 156 163 165

WLR-FH (0.5, 0.5) 4.7 4.9 5.0 195 199 200 156 163 164
Proposed τ = 0.75 3.8 3.8 3.8 186 186 186 144 144 144
Proposed τ = 0.5 3.8 3.8 3.8 185 185 185 144 144 144

2 Proposed τ = 0.25 3.8 3.8 3.8 186 186 186 145 145 145
WLR-PP 3.8 3.8 3.8 186 186 186 145 145 145

WLR-FH (0.5, 0.5) 3.7 3.7 3.7 184 184 184 142 142 142
Proposed τ = 0.75 2.1 3.0 3.7 151 169 185 93 120 142
Proposed τ = 0.5 2.1 3.1 3.7 151 170 185 93 123 143

3 Proposed τ = 0.25 2.1 3.1 3.7 152 170 185 94 123 144
WLR-PP 2.1 3.1 3.8 152 170 185 94 123 144

WLR-FH (0.5, 0.5) 2.1 3.0 3.6 152 169 184 94 121 141
Proposed τ = 0.75 3.9 3.9 4.0 189 190 190 135 137 138
Proposed τ = 0.5 3.9 3.9 4.0 189 190 190 136 137 138

4 Proposed τ = 0.25 3.9 4.0 4.0 190 191 191 137 139 140
WLR-PP 4.5 4.6 4.7 195 196 197 152 154 155

WLR-FH (0.5, 0.5) 3.7 3.8 3.8 186 188 188 132 134 135
Proposed τ = 0.75 2.9 3.9 4.0 171 186 191 110 135 140
Proposed τ = 0.5 3.0 3.9 4.0 171 187 191 111 135 140

5 Proposed τ = 0.25 3.0 3.9 4.1 172 187 192 112 136 141
WLR-PP 3.7 4.5 4.6 182 194 197 129 151 154

WLR-FH (0.5, 0.5) 2.8 3.7 3.9 168 184 189 107 132 137
Proposed τ = 0.75 3.7 3.7 3.7 184 184 184 143 143 143
Proposed τ = 0.5 3.7 3.7 3.7 184 184 184 144 144 144

6 Proposed τ = 0.25 3.7 3.7 3.7 185 185 185 145 145 145
WLR-PP 3.7 3.7 3.7 184 184 184 145 145 145

WLR-FH (0.5, 0.5) 3.6 3.6 3.6 183 183 183 142 142 142
Proposed τ = 0.75 2.2 3.1 3.7 152 170 184 95 124 144
Proposed τ = 0.5 2.2 3.2 3.8 153 170 185 96 125 145

7 Proposed τ = 0.25 2.2 3.2 3.8 152 171 185 95 126 146
WLR-PP 2.2 3.2 3.8 152 171 185 95 126 145

WLR-FH (0.5, 0.5) 2.1 3.1 3.7 152 170 184 94 124 144
Proposed τ = 0.75 3.5 3.5 3.5 181 181 181 129 129 129
Proposed τ = 0.5 3.5 3.5 3.5 181 181 181 129 129 129

8 Proposed τ = 0.25 3.5 3.5 3.5 182 182 182 130 130 130
WLR-PP 3.7 3.7 3.7 184 184 184 133 133 133

WLR-FH (0.5, 0.5) 3.5 3.5 3.5 181 181 181 129 129 129
Proposed τ = 0.75 2.1 3.0 3.5 151 169 183 91 114 131
Proposed τ = 0.5 2.1 3.0 3.6 152 170 183 91 114 131

9 Proposed τ = 0.25 2.1 3.0 3.5 151 170 183 91 115 131
WLR-PP 2.2 3.2 3.8 153 171 185 92 116 134

WLR-FH (0.5, 0.5) 2.1 3.0 3.6 152 170 183 91 115 131
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Table S3: Test statistics and efficacy or safety boundaries

Proposed RMS Logrank

1987 1988 1989 1990 1987 1988 1989 1990 1987 1988 1989 1990

Test Statistics 0.96 1.62 2.20 2.12 0.92 1.97 2.27 2.20 0.92 1.76 2.00 1.83
OF Efficacy 3.91 2.78 2.31 2.00 3.92 2.78 2.28 1.97 3.91 2.77 2.31 1.99
JT Safety -1.96 -1.65 -1.36 -1.02 -1.96 -1.61 -1.26 -0.95 -1.96 -1.64 -1.35 -1.01

Pocock Safety -2.37 -2.46 -2.44 -2.30 -2.37 -2.41 -2.33 -2.17 -2.37 -2.44 -2.43 -2.28
OF Safety -3.91 -2.78 -2.31 -2.00 -3.92 -2.78 -2.28 -1.97 -3.91 -2.77 -2.31 -1.99
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Figure S1: Standardized test statistics and stopping boundaries
(RMS: Restricted Mean Survival; OF:O’Brien and Fleming; JT: Jennison and Turnbull)
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