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Summary: This manuscript takes a fresh look at group sequential methods applied to two-sample tests of censored

survival data and proposes an alternative method of defining and evaluating treatment benefit. Our method re-

purposes traditional censored event time data into a sequence of short-term outcomes taken from (potentially

overlapping) follow-up windows. A new two-sample restricted means test based on this restructured follow-up data is

proposed along with group sequential methods for its use in the clinical trial setting. This method compares favorably

with existing methods for group sequential monitoring of time-to-event outcomes, including methods for monitoring

the restricted means test and the logrank test. Our method performs particularly well in cases where there is a delayed

treatment effect and/or a subset of cured patients. As part of developing group sequential methods for these analyses,

we consider asymmetric error spending approaches that differentially limit the chances of stopping incorrectly for

perceived efficacy versus perceived harm attributed to the investigational arm of the trial. Recommendations for how

to choose proper group sequential stopping boundaries are given, with supporting simulations and an example from

the AIDS Clinical Trial Group.
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Nonparametric Group Sequential Methods for Evaluating Survival Benefit 1

1. Introduction

Traditionally in the censored time-to-event setting, with or without group sequential mon-

itoring, two-sample treatment comparisons are based on restricted mean event times or

integrated weighted hazard differences estimated over many follow-up years (Mantel, 1963;

Gehan, 1965; Mantel, 1966; Breslow, 1970; Peto and Peto, 1972; Prentice, 1978; Harrington

and Fleming, 1982; Tsiatis, 1982; Pepe and Fleming, 1989; Li, 1999; Murray and Tsiatis,

1999). Investigators and biostatisticians alike hope that treatment differences will emerge

throughout the trial, anticipating Kaplan-Meier curves that snake farther and farther apart

as the end of follow-up draws near.

In this manuscript we embrace the philosophy that for each patient in a clinical trial,

short-term survival over repeated, overlapping intervals are observed, and that each of these

has value in assessing treatment benefit. In short, time-to-event data can be reformulated

as repeated short-term longitudinal outcomes subject to censoring, and then analyzed using

methodology that takes into account both the censored nature of the data as well as the

correlation between short-term events measured from the same individual.

Tayob and Murray (2016) followed this train of thought when they evaluated the behavior

of an overall τ -restricted mean estimated from multiple, overlapping τ -length follow-up

windows. Their overall estimated τ -restricted mean integrates area under an estimated

survival curve, but instead of using time-to-event data in its original form, Tayob and

Murray estimate the curve from a massive censored longitudinal repeated measures dataset

with multiple overlapping short-term outcomes taken from each individual’s observed follow-

up. Corresponding confidence intervals nonparametrically take into account the correlation

between outcomes taken from the same individual. The choice of τ is typically taken from

the context in which the method is applied. For instance, in pulmonary literature a 1-year

restricted mean is common, and fairly stable over time as seen in Tayob and Murray. In

scenarios where τ -restricted means are not stable over time, the overall τ -restricted mean
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is an estimate from a mixture distribution that results from combining information from

overlapping follow-up windows.

In this manuscript we propose a new two-sample test comparing τ -year restricted means

estimated in the manner proposed by Tayob and Murray. As with existing two-sample

tests, this test is valid under the null hypothesis of no treatment difference regardless of

the distributions under study. We also develop group sequential methods for monitoring a

clinical trial via the proposed statistic, along with graphics displaying the estimated overall

years of life gained per τ time units when assigned the superior treatment.

Group sequential monitoring via nonparametric two-sample tests has a long and respected

history in clinical trial design. Classic group sequential analysis literature gives stopping rules

for statistically significant treatment benefit or harm (Pocock, 1977; O’Brien and Fleming,

1979). The most common approach for controlling type I error throughout a trial is to

use error spending functions proposed by Lan and DeMets (1983), which allow for both

symmetric and asymmetric stopping rules. Symmetric stopping rules imply that stopping

early for statistically significant treatment differences have the same cost, whether benefit

or harm is attributed to the experimental therapy. Asymmetric bounds are useful when

consequences of stopping early are different according to the treatment difference that is

emerging (Tsiatis, 1981; DeMets and Ware, 1982). Futility bounds have become increasingly

popular as a mechanism for stopping a trial that is unlikely to end in a new treatment

recommendation (Friedman et al., 2015; Harrington, 2012). These types of bounds also

avoid the ethically uncomfortable scenario of trial termination only after statistical proof

of increased mortality from the new treatment.

Our manuscript proceeds with a description of notation in Section 2. In Section 3 we

describe the proposed test statistic in the case where a single analysis is performed, with

an extension to the group sequential setting given in Section 4; Derivations behind methods
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Nonparametric Group Sequential Methods for Evaluating Survival Benefit 3

in Sections 3 and 4 are relegated to Supplementary Materials. In Section 4, we also review

symmetric versus asymmetric stopping boundaries, with a modified recommendation for

safety monitoring. Section 5 summarizes finite sampling behavior of our group sequential

monitoring procedure in a variety of clinical trial settings. An example from the AIDS Clinical

Trial Group is given in Section 6 and followed by discussion in Section 7.

2. Notation

Our ultimate goal is to group sequentially monitor two-sample tests that compare estimates

of τ -restricted mean lifetimes, µg(s, τ), g = 1, 2, incorporating information from multiple,

potentially overlapping, short-term follow-up windows of length τ . For simplicity, we first

describe notation for the one-sample case, submerging the g subscript.

2.1 Description of Random Variables

Suppose i = 1, . . . , N patients participate in a clinical trial. Patient-specific random variables

are measured against two different time scales in the group sequential setting: calendar time,

s, and study time, t. Study time, t, indexes time from a patient’s clinical trial entry; length

of life, length of follow-up and other clinical trial endpoints are described on this time-scale.

Calendar time, s, indexes time from the initiation of the overall study; patient entry times

and interim analysis times are described on this time scale.

In particular, study time indexed random variables include failure times, Ti and potential

loss-to-follow-up times Vi, i = 1, . . . , N . On the calendar time scale, we define random

study entry times, Ei, for participant i = 1, . . . , N, as well as interim analysis times,

s = s1, s2, . . ., which are (non-random) study design parameters. At interim analysis time

s, n(s) =
∑N

i=1 I(Ei 6 s) individuals have entered the trial with n(s) = N for s >

max(E1, . . . , EN). An individual’s maximum follow-up time at analysis time s is admin-

istratively capped at s−Ei. Hence, the censoring random variable, Ci(s) = min(Vi, s−Ei),

for individual i can potentially change at each analysis time s, depending on the censoring

mechanism. We assume that Ti is independent of Ci(s), i = 1, . . . , N . For patients who have
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entered the trial, observed event times at analysis time s are Xi(s) = min {Ti, Ci(s)}, with

corresponding failure indicator variables δi(s) = I{Ti 6 Ci(s)}, i = 1, . . . , n(s).

Notation for residual lifetime random variables are needed to define short-term outcomes

during several, potentially overlapping, τ -length follow-up windows of interest. The starting

times of these follow-up windows, t ∈ {t1, t2, . . . , tb}, are non-random design parameters

measured on the study time scale with t1 = 0, and b indicating the total number of windows.

We define the residual lifetime from study time t observed at analysis time s as Xi(s, t) =

(Xi(s)− t)I{Xi(s) > t} with corresponding failure indicator δi(s, t) = δi(s)I{Xi(s) > t}. A

third time-scale metric, window time u, indexes time from the beginning of each follow-up

window. We use the window time metric as a common time-scale for residual lifetime random

variables, Xi(s, t1), Xi(s, t2), . . . Xi(s, tb).

Figure 1 displays data for 3 example individuals, with random variables specific to subject

A given in detail. Patient entry times EA, EB, EC and interim analysis times s1, s2 are given

on the calendar time scale. Death, loss to follow-up, administrative censoring and window

start times are given on the study time scale. At the second interim analysis conducted

on January 1, 2016, n(s2) = 3 individuals have entered the study. Subject A contributes

information from three windows starting at t1 = 0, t2 = 6 months and t3 = 12 months.

Observed residual lifetime and censoring indicator data pairs contributed by Subject A at the

second analysis time are (17, 1), (11, 1) and (5, 1). In terms of short-term follow-up windows

of length τ = 12 months, Subject A contributes uncensored information from three windows:

in the first window, Subject A lives 12 of 12 months, in the second Subject A lives 11 of

12 months, and in the third window Subject A lives 5 of 12 months. Any test statistic

incorporating multiple short-term outcomes taken from an individual as laid out in Figure

1 will need to account for potential correlation between these outcomes.

[Figure 1 about here.]

Page 5 of 28 Biometrics



Aut
ho

r M
an

us
cr

ipt

Nonparametric Group Sequential Methods for Evaluating Survival Benefit 5

2.2 Counting Process Notation and Estimation

For an individual i who has entered the trial by interim analysis time s, Ni(s, t, u) =

I{Xi(s, t) 6 u, δi(s, t) = 1} and Yi(s, t, u) = I{Xi(s, t) > u} are the counting and at

risk processes for the number of events occurring no later than window time u within the

follow-up window starting at study time t. From Figure 1, consider Subject A’s data at

the 2nd interim analysis time, s2, from the follow-up window starting at t2 = 6 months.

Subject A’s corresponding counting process data at window times u = 11−, 11, and 11+

months are {NA(s2, t2, 11−) = 0, YA(s2, t2, 11−) = 1}, {NA(s2, t2, 11) = 1, YA(s2, t2, 11) = 1}

and {NA(s2, t2, 11+) = 1, YA(s2, t2, 11+) = 0}.

LetN(s, t, u) =
∑n(s)

i=1 Ni(s, t, u) and Y (s, t, u) =
∑n(s)

i=1 Yi(s, t, u) represent processes summed

across individuals entered by interim analysis time s. For individual i at interim analysis

s, let Ni(s, u) =
∑b

j=1Ni(s, tj, u) count the observed residual lifetime events across the b

follow-up windows attributed to individual i that are seen prior to window time u; the

corresponding at risk process is Yi(s, u) =
∑b

j=1 Yi(s, tj, u). Ni(s, u) has the potential to

count the same event more than once, since this event may be contained in more than one

follow-up window. Likewise, Yi(s, u), includes at-risk processes from the same individual

more than once from follow-up windows that overlap. Combining all information available at

interim analysis time s regarding event and at-risk information for window time u we define

N(s, u) =
∑n(s)

i=1 Ni(s, u) and Y (s, u) =
∑n(s)

i=1 Yi(s, u).

At analysis time s, let hazard function λ(s, t, u) = lim∆u→0[Pr{u 6 Xi(s, t) 6 u +

∆u, δi(s, t) = 1|Xi(s, t) > u}/∆u] and

λW (s, u) =

∑b
j=1 λ(s, tj, u)Pr{Xi(s, tj) > u}∑b

l=1 Pr{Xi(s, tl) > u}
.

As in standard group sequential methods, we assume that analysis time does not affect the

true event-time hazard, so that the superfluous s notation in λ(s, t, u) can be dropped to

become λ(t, u). However, because λW (s, u) corresponds to a mixture distribution of residual
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lifetimes contributed from individuals at time s, and is a function of Pr{Xi(s, t) > u} that

depends on follow-up, analysis time s can influence this term.

3. Two-sample test at a single analysis time, s

In this section, we propose a two-sample test that compares average lifetime per τ follow-up

years. The test is inspired by overall τ -restricted mean estimates developed by Tayob and

Murray (2016) that incorporate information from repeated, overlapping follow-up windows

of length τ , subject to censoring. Additional subscripts g, g = 1, 2, indicate treatment group

when used with notation from the last section; random variables from different treatment

groups are assumed independent. We assume a single analysis at calendar time s.

For treatment g at analysis time s, following results from Tayob and Murray,

µ̂g(s, τ) =

∫ τ

0

exp

{
−
∫ u2

0

dNg(s, u1)

Yg(s, u1)

}
du2

consistently estimates µg(s, τ) =
∫ τ

0
exp

{
−
∫ u2

0
λWg (s, u1)du1

}
du2, the average lifetime per

τ time units as measured from the mixture distribution of short-term, overlapping τ -length

follow-up windows starting at times t1, . . . , tb. Our proposed two-sample test becomes

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)}.

Let π̂g(s) = ng(s)/{n1(s) + n2(s)}, g = 1, 2. As shown in Web Appendix A, under the null

hypothesis of µ1(s, τ) = µ2(s, τ), the asymptotic limiting distribution of T (s) has a mean 0

Normal distribution with variance that can be estimated by π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s), where

σ̂2
g(s) =

∑ng(s)
i=1 [zi{µ̂g(s, τ)}−z̄{µ̂g(s, τ)}]2/[ng(s)−1], with zi{µ̂g(s, τ)} =

∑b
j=1 zij{µ̂g(s, τ)};

z̄{µ̂g(s, τ)} =
∑ng(s)

i=1 zi{µ̂g(s, τ)}/ng(s) and

zij{µ̂g(s, τ)} =

∫ τ

0

exp

{
−
∫ u2

0

dNg(s, u1)

Yg(s, u1)

}{∫ u2

0

dNgi(s, tj, u1)− Ygi(s, tj, u1)dNg(s,u1)

Yg(s,u1)

Yg(s, u1)/ng(s)

}
du2

An approximate 1− α level confidence interval for the average difference in lifetime per τ

time units, µ1(s, τ)−µ2(s, τ), becomes {µ̂1(s, τ)−µ̂2(s, τ)}±Z1−α/2
√
σ̂2

1(s)/n1(s) + σ̂2
2(s)/n2(s),

where Z1−α/2 is the 100×(1−α/2)% quantile of the standard Normal distribution. A standard
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Normal(0,1) version of the test statistic can be calculated using

T̃ (s) =
T (s)√

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s)
=

√
n1(s)n2(s)

n2(s)σ̂2
1(s) + n1(s)σ̂2

2(s)
{µ̂1(s, τ)− µ̂2(s, τ)}.

In describing efficiency of their estimation procedure, Tayob and Murray (2016) give

guidance on selection of follow-up window start times t1, t2, . . . , tb based on the special case

where event-times follow an exponential distribution. In this case, an analysis of their closed

form asymptotic variance showed that, for a fixed number b of incorporated windows, equal

spacing of t1, t2, . . . , tb gave the smallest possible variability. For any fixed duration follow-up

period, simulations also indicated increased efficiency in estimation with increasing b, even

though increases in b create increasing amounts of overlap between a patient’s incorporated

short-term follow-up windows. However, Tayob and Murray (2016) found that increasing

b beyond approximately (2s − τ)/τ gave diminishing returns in efficiency; they ultimately

recommended incorporating outcomes from follow-up windows starting after every τ
2

units

of follow-up time, i.e., t = {0, τ
2
, τ, . . . , s− τ}. For instance, with τ = 1 year and an interim

analysis 3 years into the trial, we would incorporate information from 1-year duration follow-

up windows starting at t1 = 0, t2 = 0.5 years, t3 = 1 year, t4 = 1.5 years and t5 = 2 years.

4. More Than One Analysis at Calendar Times, s1, . . . , sK

At analysis time s, a decision to continue or end the clinical trial is based on the standardized

test statistic, T̃ (s), exceeding predetermined lower or upper critical values (CVs), cL(s)

and cU(s), respectively. When K > 1 analyses are planned, group sequential methodology

tells us that CVs, {cL(s1), cU(s1)} , . . . , {cL(sK), cU(sK)} , corresponding to test statistics,

T̃K =
{

T̃ (s1), . . . , T̃ (sK)
}

, must be carefully chosen to preserve an overall type I error of

α (Pocock, 1977; O’Brien and Fleming, 1979; DeMets and Lan, 1994).

CVs, {cL(sk), cU(sk)} , for the kth analysis (k = 1, . . . , K) can be calculated from the

multivariate distribution of T̃k. As shown in Web Appendices A and B, T̃k has a mean zero

multivariate Normal distribution with k×k covariance matrix Σ, where the diagonal elements
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are equal to one and the off-diagonal elements, σk1k2 = σk2k1 , k1 < k2, can be estimated by

σ̂k1k2 ={π̂2(sk1)σ̃
2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)}−

1
2{π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)}−

1
2

×
2∑
g=1

√
π̂3−g(sk1)π̂3−g(sk2)ψ̂g(sk1 , sk2)

( ng(sk1 )∑
i=1

{ng(sk1)− 1}−1

× [z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}] [zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
)

where π̂g, σ̂
2
g(sk2), zi{µ̂g(sk2 , τ)} and z̄{µ̂g(sk2 , τ)} have been defined in Section 3 with s = sk2

and ψ̂g(sk1 , sk2) = ng(sk1)/ng(sk2). The zij{µ̂g(sk1 , τ)} terms in σ̂2
g(sk1), zi{µ̂g(sk1 , τ)} and

z̄{µ̂g(sk1 , τ)} are replaced with

z̃ij{µ̂g(sk1 , τ)} =

∫ τ

0

exp{−
∫ u2

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[∫ u2

0
b∑
l=1

ng(sk2 )∑
i=1

I{Tgi > u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) > u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2

when calculating σ̃2
g(sk1), z̃i{µ̂g(sk1 , τ)} and ¯̃z{µ̂g(sk1 , τ)}.

Examples of calculating CVs based on the joint distribution of T̃k are described further

in Sections 4.1 and 4.2. Section 4.1 reviews how to calculate CVs based on symmetric type

I error spending functions that are in common use. In Section 4.2 we describe calculation of

CVs based on asymmetric error spending approaches that differentially limit the chances of

stopping incorrectly for perceived efficacy versus harm attributed to the investigational arm.

4.1 Symmetric Spending Functions

Interim analysis CVs are often based on a monotonically increasing spending function,

α(γ), 0 6 γ 6 1, with α(0) = 0 and α(1) = α, the desired overall type I error. A valuable

advantage of spending functions is increased flexibility in scheduling interim analyses, for

instance as prespecified accrual and follow-up targets are met. Spending functions that

approximate the Pocock (P) and the O’Brien-Fleming (OF) approaches to type I error

control are αOF (γ) = 2 − 2Φ(Z1−α/2/
√
γ) and αP (γ) = α ln{1 + (e − 1)γ}, respectively.
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At interim analysis time s, γ is often taken to be the proportion of available statistical

information relative to the information anticipated at the final analysis. Another common

choice for γ is the proportion of expired calendar time relative to the planned trial duration.

As a simple example of the OF spending function with α = 0.05, suppose K = 2 analyses

are planned at s1 and s2. We choose to use symmetric bounds so that cL(s1) = −cU(s1)

and cL(s2) = −cU(s2). Further suppose that at s1, γ = 2
3
, giving αOF (2

3
) = 0.016; at the

final analysis time γ = 1 and αOF (1) = 0.05 by design. Since under the null hypothesis

T̃ (s1) has an approximate Normal(0,1) distribution, and no type I error has been spent

prior to s1, {cL(s1), cU(s1)} =
{
Z0.016/2,Z1−0.016/2

}
. Calculation of {cL(s2), cU(s2)} is not as

straightforward due to stochastic dependence between T̃ (s1) and T̃ (s2). The symmetric OF

spending function allows 0.05 − 0.016 = 0.034 type I error to be spent at the 2nd analysis,

with 0.017 error allocated towards incorrectly claiming a statistically significant treatment

benefit and 0.017 error towards incorrectly claiming statistically significant treatment harm.

Calculations for {cL(s2), cU(s2)} are only relevant when the trial continues beyond the first

interim analysis (Z0.016/2 < T̃ (s1) < Z1−0.016/2) and need to satisfy:

Pr
{

T̃ (s2) /∈ (cL(s2), cU(s2)) | Z0.016/2 < T̃ (s1) < Z1−0.016/2, H0

}
=
Pr
{
Z0.016/2 < T̃ (s1) < Z1−0.016/2, T̃ (s2) /∈ (cL(s2), cU(s2))|H0

}
Pr
{
Z0.016/2 < T̃ (s1) < Z1−0.016/2|H0

} =
0.034

1− 0.016
≈ 0.035.

Suppose the estimated correlation between T̃ (s1) and T̃ (s2), i.e. σ12, is 0.5. Modern

software packages can easily generate a large number of mean zero bivariate normal iterates

with correlation 0.5, {Zm(s1), Zm(s2)} ,m = 1, . . . ,M ; in simulation we used M=10 million.

The desired CVs, cL(s2) = −cU(s2), satisfying Pr{T̃ (s2) /∈ (cL(s2), cU(s2)) | Z0.016/2 <

T̃ (s1) < Z1−0.016/2, H0} = 0.035 are calculated by first subsetting the iterates who failed

to reject at s1, i.e., the set S(s1) =
{
m ∈ 1, . . . ,M : Z0.016/2 < Zm(s1) < Z1−0.016/2

}
. Then

cU(s2) = −cL(s2) is the 1-0.035=0.965 percentile of |Zm(s2)| iterates taken from S(s1).

The calculation of CVs in the general case with an arbitrary spending function α(γ) is

Page 10 of 28Biometrics
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similar. At analysis time sk with γk, estimate Σk and generate M mean zero multivariate nor-

mal iterates, {Zm(s1), . . . , Zm(sk)}, with correlation (covariance) matrix Σk,m = 1, . . . ,M .

Calculate the subset of iterates S(sk−1) that fail to reject the null hypothesis at all previous

interim analyses 1, . . . , k−1. Then cU(sk) is the 1− α(γk)−α(γk−1)

1−α(γk−1)
percentile of |Zm(sk)| iterates

taken from the set S(sk), and cL(sk) = −cU(sk).

4.2 Asymmetric Type I Error Control and Patient Protection

Symmetric stopping boundaries make it equally difficult to reject the null hypothesis due to

treatment benefit or harm. These bounds are appropriate when trial monitors are blinded

to the identity of the superior treatment arm at each analysis. Modern Data and Safety

Monitoring Committees are rarely blinded, however, and in cases where the control is a viable

therapeutic choice, there is additional motivation to end a trial where the investigational arm

is trending towards harm. For the remainder of this section we consider asymmetric stopping

boundaries, classified as efficacy, safety or futility bounds.

The priority of the efficacy stopping bound is to limit the clinical trial false positive rate

to α/2, where a false positive clinical trial is defined as a trial that incorrectly stops in favor

of the investigational arm. Typically we choose α/2 = 2.5% and use a traditional spending

function approach for this bound. This bound is tightly linked to overall study power. When

triggered, futility and safety bounds stop the trial without favoring the investigational arm,

but are motivated by different desired operating characteristics of the trial.

The goal of a futility boundary is to terminate the trial once it seems unlikely to end

with statistical evidence favoring the investigational arm (Ware et al., 1985). Criteria for

defining a futility boundary are variable, chosen to have simulated operating characteristics

attractive to the trial sponsor and investigative team in the trial’s design phase. Such

boundaries are much more aggressive at ending an unpromising trial than when compared to

a symmetric stopping rule; trial sponsors using a futility boundary avoid spending resources

that prove their latest offering is significantly worse than the current standard of care.
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Although this logic suggests a cost-benefit motivation, such boundaries have the added

attraction of stopping a trial before even weak statistical evidence of harm attributed to

the clinical trial has been obtained. Further discussion of futility stopping boundaries with

examples can be found in Friedman et al. (2015); Harrington (2012). If the only goal of a

clinical trial is to move forward with a new therapeutic, the financial and ethical protection

afforded by futility boundaries are quite attractive.

The distinction we place between a safety boundary and a futility boundary is that safety

boundaries never recommend ending a trial early if the investigational arm is performing at

the level of or superior to the control arm. Symmetric OF and Pocock stopping rules include

a boundary that can be classified as a safety boundary, the boundary that ends the trial

in favor of the control when crossed. Hereafter, we refer to these as OF or Pocock safety

boundaries. It is possible to mix and match efficacy and safety boundaries using commercial

software, for instance an OF efficacy boundary may be paired with a Pocock safety boundary

(Proschan et al., 2006). Traditional type I error is maintained at level α, with α/2 type I

error generated from efficacy and safety boundaries, respectively. The OF efficacy bound

encourages additional follow-up time for collecting data on secondary endpoints when the

investigative arm is favored, while the Pocock safety boundary allows for an earlier average

stopping time when the treatment arm reflecting current medical practice is favored.

In updating our own thoughts on safety boundaries, we note that (1) in the era of big

data (proteomics, genetics. microbiome, etc.), clinical trial auxiliary data is tremendously

valuable. Clean prospective longitudinal follow-up can generate preliminary data on disease

mechanism, therapeutics and personalized medicine, for a start. For this reason, futility

boundaries with very early termination of unpromising therapies seem less appealing. How-

ever, (2) we feel uncomfortable with current OF and Pocock safety boundaries that require

statistically significant harm attributed to the investigational therapy before stopping a trial.
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For our own clinical trials, we have sought solutions via asymmetric boundaries inspired

by Jennison and Turnbull with ideas incorporated from Proschan et al. as well as DeMets

and Lan (Jennison and Turnbull, 2000; Proschan et al., 2006; DeMets and Lan, 1994). In

particular, we recommend a safety bound modified from a Jennison and Turnbull (JT)

spending function, αJT (γ) = γωαsafety, where γ is the proportion of information at the interim

analysis, ω > 0 is a user-defined shape parameter and αsafety > 0 is a user-specified overall

error rate for exceeding the safety boundary and stopping the trial under the null hypothesis.

Our recommendation for ω is log
{
α−1

safetyα/2
}
/log(γ), which allows the trial to terminate at

the first interim analysis time if the test statistic indicates harm from the investigational

therapy at the α/2 significance level; hereafter we call this the JT safety boundary.

Figure 2 displays symmetric, futility and safety boundaries for a trial planning 5 interim

analyses using a standardized test statistic; an OF efficacy bound with a 2.5% false positive

clinical trial rate is also shown. OF and Pocock safety boundaries are also shown, where the

overall probability of ending the trial incorrectly due to safety is taken to be 2.5% for each of

these boundaries. The displayed JT safety boundary assumes αsafety = 0.20 and α/2 = 0.025,

so that ω ≈ 1.29. The displayed Pampallona and Tsiatis (PT) futility bound (Pampallona

and Tsiatis (1994)) is the only bound with potential to stop the trial while the investigational

arm is performing at or above the level of the control.

[Figure 2 about here.]

5. Simulation Study

In this section we summarize finite sample operating characteristics of our test statistic, with

τ = 1 year, against the most popular group sequentially monitored tests: the logrank test and

the restricted mean survival test (RMS). In Web Appendix D of supplementary materials we

summarize results for our test statistic using alternative choices of τ = 0.25, 0.50 and 0.75
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years as well as results for weighted logrank tests that use Peto & Peto’s weight favoring early

treatment differences and Fleming and Harrington’s (0.5, 0.5) weight favoring late differences.

In each setting we use an OF efficacy bound with a 2.5% false positive clinical trial rate.

For safety, we consider (1) an OF safety boundary and (2) a Pocock safety boundary, where

each of these assume an overall 2.5% chance of ending the trial incorrectly due to safety.

And finally, we consider (3) a JT safety boundary assuming αsafety = 0.20 and α/2 = 0.025.

Each scenario assumes a 5 year study with 100 participants per treatment arm; 50 partic-

ipants per group are accrued at baseline with the remainder accrued uniformly over 4 years.

Interim analysis are conducted annually (K = 5). In addition to administrative censoring at

each analysis time, we assume a loss-to-follow-up mechanism, Vi = 5Bi+Ẽi×(1−Bi), where

Bi and Ẽi are distributed as Bernoulli(0.3) and Exponential with hazard 0.3, respectively.

Event times are generated from exponential or piecewise exponential distributions. In

Scenario 1, both intervention and control arms have hazards of 0.5 throughout follow-up (null

hypothesis scenario). Scenarios 2-9, shown in Figure 3 with piecewise hazards superimposed

over the various survival curves, consider proportional hazard alternatives (Scenarios 2-

3), delayed treatment effect alternatives (Scenarios 4-5), early treatment differences that

attenuate over time (Scenarios 6-7) and alternatives subject to a cure pattern (Scenarios 8-

9). Left and right panels of Figure 3 show scenarios where the investigational arm is beneficial

or harmful, respectively; asymmetric stopping rules have different operating characteristics

depending on the benefit/harm profile of the investigational arm.

[Figure 3 about here.]

Tables 1 and 2 summarize group sequential operating characterics in Scenarios 1 though 9.

Table 1 shows rates of stopping for perceived efficacy (column 3) or a perceived safety signal

(columns 4-6). Table 2 shows the average study time (AST), the average sample number
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(ASN) and the average number of events (ANE) for each scenario. For improved precision,

scenario 1 includes 10,000 iterations; scenarios 2-9 include 1,000 iterations.

[Table 1 about here.]

[Table 2 about here.]

Table 1, Scenario 1, shows that under the null hypothesis, all of the estimated efficacy

and safety stopping rates meet their corresponding design targets within our tolerance for

simulation error, where these targets were 0.025 for the OF Efficacy boundary, 0.20 for the

JT safety boundary and 0.025 for the OF and Pocock safety boundaries. The JT safety

boundary ends the trial more frequently (Table 1) and earlier (AST in Table 2) than either

the Pocock or OF safety boundaries in Scenario 1. Regardless of the test statistic used, the

JT safety boundary tends to end the trial 0.3-0.4 years earlier with 5 fewer patients enrolled

and 7-9 fewer events observed (See AST, ASN and ANE, respectively in 2).

Regardless of test statistic used, in scenarios where the investigational drug is harmful

(Scenarios 3, 5, 7, and 9), the JT safety boundary reaches a safety signal at a much higher

rate than its competitor safety bounds (Table 1) and with a much smaller AST, ASN and

ANE (Table 2). In scenarios where the investigational drug is beneficial (scenarios 2, 4, 6

and 8), the additional safety conferred by use of the JT bound does not reduce study power

except very modestly in scenario 4, where the treatment benefit does not emerge until after

the first interim analysis. In this one case, less than a percentage point of simulated power

is lost when using the JT safety boundary compared to the other safety boundaries.

For proportional hazards scenarios (Table 1, Scenarios 2-3), all three test statistics have

comparable probabilities of stopping for efficacy (Scenario 2) or safety (Scenario 3), with

the logrank test edging out its competitors very slightly. Table 2, likewise, gives very similar

AST, ASN and ANE results for the three test statistics.

In Scenarios 4-5, where there is a delayed treatment effect, the proposed statistic has at
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least 10% higher power (Scenario 4, Table 1) with a better safety profile (Scenario 5, Table

1) compared with both the logrank and RMS tests. Modest improvements in AST, ASN and

ANE are also attributed to use of the proposed test statistic (Scenarios 4-5, Table 2).

In Scenarios 6-7, where an early treatment difference emerges but becomes attenuated

over time, power increases by approximately 2 percentages points when moving from the

proposed to the logrank test, and from the logrank to the RMS test (Scenario 6, Table 1).

Safety profiles, AST, ASN and ANE likewise slightly favor the RMS procedure over the

logrank and proposed test, respectively (Scenario 7, Tables 1 and 2).

In Scenarios 8-9, where a cure pattern emerges during the trial, the proposed test statistic

has approximately 2% and 10% higher power than the logrank and RMS tests, respectively

(Scenario 8, Table 1). Safety profiles shown for Scenario 9 in Table 1 likewise reflect a slight

improvement over the logrank test and a large improvement over the RMS test. AST, ASN

and ANE results, however, show only minimal differences (Scenario 8-9, Table 2).

6. Example

Fischl et al. (1990), on behalf of the AIDS Clinical Trials Group (ACTG), randomized

524 patients to high-dose (n=262) versus low-dose (n=262) azidothymidine (AZT). The

standard, higher AZT dose succeeded in reducing mortality but came with substantial

toxicity. Investigators hoped that the lower dose would reduce toxicity while maintaining the

survival benefit. Figure 4(a) displays the average number of additional days lived per year

when taking low versus high dose AZT, estimated using our methodology with τ = 1 year,

at analysis times in 1987, 1988, 1989 and 1990. Although validity of our testing procedure

does not require a stable treatment effect over time, the low-dose AZT benefit appears

approximately stable at each analysis. Using our proposed group sequentially monitored

test statistic, the OF efficacy boundary is crossed at the 1990 analysis with the low dose

group living an estimated 10.7 days longer per year than the high dose group. The JT safety
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boundary ensures early trial termination if the experimental low-dose trends towards higher

mortality, but this boundary was not crossed. Web Appendix E of supplementary materials

summarizes how group sequentially monitored logrank and RMS tests performed in this

case. As seen in Figure 4(b), there was a delayed treatment effect that perhaps favored our

methodology as compared to the logrank and RMS methods. Neither of these competitors

recommended stopping at the 1990 analysis time.

[Figure 4 about here.]

7. Discussion

There are a good many nonparametric group sequential monitoring methods available for

censored time-to-event outcomes in clinical trials, the logrank test and the RMS test among

the most popular, and so a natural question is what the proposed test statistic offers clinical

trial researchers that the others do not. We see both philosophical and operational advantages

to this statistic being used in practice. The philosophical argument hinges on the idea that

times-to-event can be repurposed into a longitudinal data structure, with repeated measures

within individual measured regularly throughout follow-up. Each τ -restricted time-to-event

carved from the overall follow-up time can be thought of as a longitudinal measure in this

philosophy. Tayob and Murray (2016) proposed an improved estimate of τ -restricted means

based on this idea and showed that τ -length follow-up windows starting every τ/2 time units

apart give attractive efficiency in estimating restricted means without unduly increasing

computational time in creating these longitudinal measures. They extended this idea to the

parametric setting in Tayob and Murray (2017), multiply imputing censored event times and

then using standard generalized estimating equation methods for analyzing the longitudinal

restricted event times. There is great potential in shifting our thoughts on censored times-to-

event towards longitudinal data structures and the available methodology this shift entails.

In this manuscript, we develop a two-sample test statistic based on comparing τ -restricted
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means as introduced in Tayob and Murray and we further develop group sequential mon-

itoring methodology for using the test statistic in standard clinical trial settings where

interim monitoring is common. The validity of the proposed testing procedure does not hinge

upon stability of τ -restricted means in the different follow-up windows; the type I error is

preserved regardless of the true event-time distribution. In scenarios where τ -restricted means

are not stable over time, the test statistic compares overall τ -restricted means of mixture

distributions that result from combining information from overlapping follow-up windows.

Event rates that shift year-by-year affect the power of all two sample testing procedures. It

is well known that non-proportional hazards plague the power of the logrank test. Restricted

mean differences also change as the period of follow-up lengthens, with differences becoming

larger or smaller as event rates shift over time. As with all two-sample tests, as data

accumulates, so does our interpretation of the data and the power of the testing procedure.

The main concern in choosing any two-sample test statistic is whether authentic treatment

differences can be detected with high power.

Our proposed method performs well not only in scenarios where short-term differences are

anticipated to be stable, but also in settings that it may be hard to anticipate in the design

stage of a clinical trial. We find it comforting that our methodology compares favorably to

its competitors in proportional hazards settings, and has a notably improved performance in

settings where treatment differences emerge only after a certain period of time or in settings

where there is potential for cure.

Simulations suggest that shifting towards a longitudinal view of censored survival outcomes

has practical advantages in group sequential monitoring of clinical trials. The feature of

overlapping follow-up windows used in creating repeated τ -restricted event times subject to

censoring is reminiscent of smoothing methods in graphical displays of longitudinal data.

An additional contribution of this manuscript is an updated look at safety boundaries in

Page 18 of 28Biometrics



Aut
ho

r M
an

us
cr

ipt

18 Biometrics, December 2018

the group sequential setting and a new recommendation for the shape parameter ω used with

the JT spending function. Our recommended shape boundary allows the first interim analysis

to reject if the standardized normal test statistic exceeds the safety boundary of -1.96, which

clinical investigators have been hard-wired to associate with statistical significance. Data

and safety monitoring committees are likely to feel uncomfortable continuing a trial that

exceeds this critical value and yet for many years biostatisticians have taught investigators

the consequences of using traditional significance levels in the group sequential setting in

terms of inflated type I errors. This manuscript emphasizes the idea that type I error inflation

has different consequences for the efficacy boundary as opposed to the safety boundary.

We argue that is is possible to maintain an overall false positive trial result to an α/2

level using an appropriate efficacy boundary and separately strategize a stopping rule that

protects safety without unduly reducing power of the study. Our recommended variant of

the JT safety bound achieves this goal with remarkable effectiveness as seen in simulation.

We ultimately recommend use of our proposed test statistic in the group sequential setting

using OF efficacy and our JT safety boundaries.

8. Supplementary Materials

Web Appendices A-E are available at the Biometrics website on Wiley Online Library. An R

package implementing the proposed test is available at https://github.com/summerx0821/

Nonparametric-GS-Methods-for-Evaluating-Survival-Benefit as well as the Biomet-

rics website on Wiley Online Library.

References

Breslow, N. (1970). A generalized kruskal-wallis test for comparing k samples subject to

unequal patterns of censorship. Biometrika 57, 579–594.

Page 19 of 28 Biometrics

https://github.com/summerx0821/Nonparametric-GS-Methods-for-Evaluating-Survival-Benefit
https://github.com/summerx0821/Nonparametric-GS-Methods-for-Evaluating-Survival-Benefit


Aut
ho

r M
an

us
cr

ipt

Nonparametric Group Sequential Methods for Evaluating Survival Benefit 19

DeMets, D. L. and Lan, K. K. G. (1994). Interim analysis: The alpha spending function

approach. Statistics in Medicine 13, 1341–1352.

DeMets, D. L. and Ware, J. H. (1982). Asymmetric group sequential boundaries for

monitoring clinical trials. Biometrika 69, 661–663.

Fischl, M., Parker, L., Petinelli, C., and et al. (1990). A randomized controlled trial

of a reduced daily dose of zidovudine in patients with the aquired immunodeficiency

syndrome. The New England Journal of Medicine 323, 1009–1014.

Friedman, L. M., Furberg, C. D., DeMets, D. L., Reboussin, D. M., and Granger, C. B.

(2015). Foundamentals of Clinical Trials. Springer.

Gehan, E. A. (1965). A generalized wilcoxon test for comparing arbitrarily singly-censored

samples. Biometrika, 52, 203–223.

Harrington, D. P. (2012). Design for Clinical Trials. Springer.

Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored

survival data. Biometrika 69, 553–566.

Jennison, C. and Turnbull, B. W. (2000). Group Sequential Methods with Applications to

Clinical Trials. Chapman and Hall.

Lan, K. K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.

Biometrika 70, 659–663.

Li, Z. (1999). A group sequential test for survival trials: an alternative to rank-based

procedures. Biometrics 55, 277–283.

Mantel, N. (1963). Chi-square tests with one degree of freedom; extensions of the mantel–

haenszel procedure. Journal of the American Statistical Association 58, 690–700.

Mantel, N. (1966). Evaluation of survival data and two new rank-order statistics arising in

its consideration. Cancer Chemotherapy Reports 50, 163–170.

Murray, S. and Tsiatis, A. A. (1999). Sequential methods for comparing years of life saved

Page 20 of 28Biometrics



Aut
ho

r M
an

us
cr

ipt

20 Biometrics, December 2018

in the two-sample censored data problem. Biometrics 55, 1085–1092.

O’Brien, P. and Fleming, T. (1979). A multiple testing procedure for clinical trials.

Biometrics 35, 549–556.

Pampallona, S. and Tsiatis, A. A. (1994). Group sequential designs for one-sided and two-

sided hypothesis testing with provision for early stopping in favor of the null hypothesis.

Journal of Statistical Planning and Inference 42, 19–35.

Pepe, M. S. and Fleming, T. R. (1989). Weighted kaplan-meier statistics: A class of distance

tests for censored survival data. Biometrics 45, 497–507.

Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal

of the Royal Statistical Society, Series A 135, 185–207.

Pocock, S. (1977). Group sequential methods in the design and analysis of clinical trials.

Biometrika 64, 191–199.

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika 65, 167–179.

Proschan, M. A., Lan, K. K. G., and Wittes, J. T. (2006). Statistical Monitoring of Chinical

Trials: A Unified Approach. Springer.

Tayob, N. and Murray, S. (2016). Nonparametric restricted mean analysis across multiple

follow-up intervals. Statistics and Probability Letters 109, 152–158.

Tayob, N. and Murray, S. (2017). Statistical consequences of a successful lung allocation

system – recovering information and reducing bias in models for urgency. Statistics in

Medicine 36, 2435–2451.

Tsiatis, A. A. (1981). The asymptotic joint distribution of the efficient scores test for the

proportional hazards model calculated over time. Biometrika 68, 311–315.

Tsiatis, A. A. (1982). Repeated significance testing for a general class of statistics used in

censored survival analysis. Journal of the American Statistical Association 77, 855–861.

Ware, J. H., Muller, J., and Braunwald, E. (1985). The futility index. an approach to the

Page 21 of 28 Biometrics



Aut
ho

r M
an

us
cr

ipt

Nonparametric Group Sequential Methods for Evaluating Survival Benefit 21

cost-effective termination of randomized clinical trials. Am J Med 78, 635–643.

Received April 2018. Revised September 2018. Accepted October 2018.

Page 22 of 28Biometrics



Aut
ho

r M
an

us
cr

ipt

22 Biometrics, December 2018
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Subj.	  A	  

D	  Subj.	  B	  

A	  
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Figure 1. Notation for 3 example individuals, with random variables specific to Subject
A given in detail (This figure appears in color in the electronic version of this article.)
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Figure 2. Example of Efficacy, Futility and Safety Boundaries
(OF: O’Brien and Fleming; PT: Pampallona and Tsiatis; JT: Jennison and Turnbull)
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Figure 3. Survival Probabilities of the Efficacy and Safety Scenarios

Page 25 of 28 Biometrics



Aut
ho

r M
an

us
cr

ipt

Nonparametric Group Sequential Methods for Evaluating Survival Benefit 25

−4
0

−2
0

0
20

40

Calendar Analysis Time (Year)

Da
ys

 S
av

ed
 p

er
 Y

ea
r

1987 1988 1989 1990

● ● ● ●

● Days Saved per Year
OF Efficacy Bound
JT Safety Bound

1987 1988 1989 1990

Days Saved per Year 9.9 10.7 11.7 10.7

OF Efficacy Bound (Days) 40.3 18.4 12.3 10.1

JT Safety Bound (Days) -20.2 -11 -7.2 -5.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years

Su
rv

iva
l

Low Dose
Standard Treatment

(a)
Estimated Days Saved Per Year Using Low 

Versus High Dose AZT

(b)

Kaplan-Meier Curves of by the End of the Study

Figure 4. Figures in Example: (a) Estimated Days Saved Per Year Using Low Versus High
Dose AZT; (b) Kaplan-Meier Curves of by the End of the Study
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Table 1
Rates of stopping for efficacy (OF Efficacy) or for safety (JT Safety, P Safety, OF Safety)

Scenario Test Statistic OF Efficacy JT Safety P Safety OF Safety
Proposed 0.022 0.198 0.026 0.025

1 RMS 0.023 0.198 0.027 0.027
Logrank 0.022 0.193 0.022 0.024
Proposed 0.807 0.002 0 0

2 RMS 0.816 0.001 0 0
Logrank 0.820 0.001 0 0
Proposed 0 0.982 0.790 0.838

3 RMS 0 0.980 0.786 0.852
Logrank 0 0.987 0.799 0.849
Proposed 0.855-0.863 † 0.021 0.007 0.001

4 RMS 0.715-0.722 † 0.034 0.010 0
Logrank 0.745-0.749 † 0.026 0.007 0
Proposed 0 0.979 0.787 0.860

5 RMS 0 0.939 0.619 0.731
Logrank 0 0.959 0.642 0.765
Proposed 0.761 0 0 0

6 RMS 0.802 0 0 0
Logrank 0.781 0 0 0
Proposed 0 0.960 0.709 0.738

7 RMS 0 0.965 0.736 0.786
Logrank 0 0.971 0.730 0.764
Proposed 0.884 0 0 0

8 RMS 0.771 0.001 0 0
Logrank 0.863 0 0 0
Proposed 0 0.989 0.847 0.885

9 RMS 0 0.955 0.727 0.770
Logrank 0 0.983 0.826 0.871

† There is potential for OF efficacy rates to be affected by the safety boundary used, for instance when an
efficacy boundary would have been crossed if not for an earlier safety boundary being crossed. This was only
observed in Scenario 4 of our simulations. In this scenario we give a range of observed OF efficacy stopping
rates for each test statistic, where the lower OF efficacy stopping rate shown corresponds to use of the JT
safety boundary (most strict safety boundary) and the higher OF efficacy stopping rate shown corresponds
to the OF safety boundary (least strict safety boundary).
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Table 2
Average study time (AST) in years, average sample number (ASN) and average number of events (ANE) in

Scenarios 1 - 9

AST ASN ANE
Scenario Test Statistic JT P OF JT P OF JT P OF

Proposed 4.7 4.9 5.0 195 199 200 156 163 164
1 RMS 4.6 4.9 5.0 195 199 200 156 163 164

Logrank 4.7 4.9 5.0 195 199 200 156 164 165
Proposed 3.7 3.7 3.7 185 185 185 143 143 143

2 RMS 3.7 3.7 3.7 184 184 184 142 142 142
Logrank 3.7 3.7 3.7 185 185 185 143 143 143
Proposed 2.1 3.0 3.6 151 169 184 93 121 142

3 RMS 2.1 3.1 3.6 151 170 183 93 123 141
Logrank 2.0 3.0 3.6 149 169 184 90 121 141
Proposed 3.7 3.8 3.8 187 188 188 132 134 134

4 RMS 4.2 4.3 4.3 193 195 196 143 146 147
Logrank 4.0 4.1 4.1 191 192 193 140 142 143
Proposed 2.8 3.8 3.9 169 185 189 108 132 137

5 RMS 3.4 4.3 4.3 180 193 195 123 146 147
Logrank 3.0 4.1 4.2 173 189 193 113 140 144
Proposed 3.7 3.7 3.7 184 184 184 143 143 143

6 RMS 3.6 3.6 3.6 183 183 183 141 141 141
Logrank 3.7 3.7 3.7 184 184 184 143 143 143
Proposed 2.2 3.2 3.8 153 171 185 96 126 145

7 RMS 2.2 3.2 3.6 153 171 183 96 126 142
Logrank 2.1 3.1 3.7 150 170 184 92 124 143
Proposed 3.4 3.4 3.4 181 181 181 128 128 128

8 RMS 3.7 3.7 3.7 183 183 183 132 132 132
Logrank 3.5 3.5 3.5 182 182 182 130 130 130
Proposed 2.1 3.0 3.5 152 169 182 92 113 130

9 RMS 2.2 3.2 3.7 154 172 184 94 118 133
Logrank 2.0 3.0 3.6 150 169 183 90 113 131
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