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Abstract

We develop a new method for covariate error correction in the Cox survival regres-
sion model, given a modest sample of internal validation data. Unlike most previous
methods for this setting, our method can handle covariate error of arbitrary form.
Asymptotic properties of the estimator are derived. In a simulation study, the method
was found to perform very well in terms of bias reduction and confidence interval
coverage. The method is applied to data from the Health Professionals Follow-Up
Study (HPFS) on the effect of diet on incidence of Type II diabetes.
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1 | INTRODUCTION

In the Cox (1972) regression model for survival data, the haz-
ard function A(¢|x) for an individual with covariate vector
x € IR? is modeled semiparametrically as

At|x) = Ag(1) exp(B7x), (1)

where € R” is a vector of regression coefficients and A,(f)
is an unspecified baseline hazard function 4,(f). Cox proposed
drawing inference on f based on the notion of partial likeli-
hood, which was subsequently justified rigorously by Tsiatis
(1981), who used classical limit theory, and by Andersen and
Gill (1982), who used a martingale theory approach.

In many applications, however, the covariate X is not
measured exactly, but is subject to measurement error of
some degree, often substantial. Thus, instead of observing
X, we observe a surrogate measure W. Starting from Pren-
tice (1982), a considerable literature has been developed on
inference for the Cox regression model with covariate error in
various contexts; see Zucker (2005) for a brief review.

The existing methods generally involve some model
assumptions on the joint distribution of the true covariate and
the surrogate. Many of the methods make use of specific para-
metric forms for this joint distribution. Other methods, such as
those of Huang and Wang (2000) and Kong and Gu (1999),
avoid use of a specific parametric form but still rely on an
assumption that the covariate error is of independent addi-
tive structure. Some papers, such as Zhou and Pepe (1995),
Zhou and Wang (2000), and Chen (2002), present methods
without this additive error assumption for the internal vali-
dation design in which there is a subsample of individuals
with a measurement on both the true covariate and the sur-
rogate. These methods, however, have challenges as well.
The approach taken by Zhou and Pepe (1995) and by Zhou
and Wang (2000) involves stratification or smoothing in the
covariate space; when the number of covariates is moderate to
large, this approach breaks down due to the “curse of dimen-
sionality.” Chen (2002) assumes that it is possible to form a
satisfactory initial estimate of the regression coefficient vec-
tor based on the validation sample alone. This is not the case,
however, for studies where the event rate is low to moderate,
the main study sample size is in the thousands to hundreds
of thousands, and the validation study sample size is, as in
all applications we know of, only a few hundred. Under these
circumstances, the number of events in the validation study is
very small, so that a satisfactory initial estimate of the regres-
sion coefficient vector based on the validation sample alone
cannot be obtained. Thus, in such situations, which often arise
in practice, Chen’s approach is problematic.

This paper presents a new method for the Cox model with
covariate error, which overcomes the limitations of previously
proposed methods. The method involves a modified version
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of the classical Cox partial likelihood score function, with
the internal validation data incorporated in a suitable way.
Our approach is very simple in concept. It is in the spirit of
Lin and Ying’s (1993) work on Cox regression with incom-
plete covariate data. There is also some resemblance to Huang
and Wang’s (2000) method for Cox regression with covariate
error, and to work of Kulich and Lin (2000, 2004). The method
requires no assumptions on the form of the covariate error. It
is especially designed for the internal validation design with
a relatively small validation sample and a moderate to large
number of covariates, which, as indicated above, is a challeng-
ing situation that often arises in epidemiological studies. The
method is easy to implement, and its practical utility is backed
by large-sample theory and small-sample simulations.

The outline of the remainder of the paper is as follows.
Section 2 presents the proposed method and its asymptotic
properties, Section 3 a simulation study, Section 4 an appli-
cation to data from the Health Professionals Follow-Up Study
(HPES), and Section 5 a brief summary. The Web Appendix
provides theoretical details.

2 | THE PROPOSED METHOD AND
ITS ASYMPTOTIC PROPERTIES

2.1 | The Proposed Method

We assume a classical survival data setup. We have i.i.d.
observations on n individuals. Associated with each individ-
ual 7 is a set of random variables (Tl.°, C,,X;,W,), with Ti°
representing the time to event, C; representing the time to
censoring, X; representing a p-vector of true covariate val-
ues, and W, representing a p-vector of surrogate covariate
values. We assume that the covariates are arranged so that
the first p; covariates are the error-prone covariates and the
remaining p, = p — p; covariates are error-free. For the error-
free covariates, the relevant component of W; is identical to
the corresponding component of X;. We denote the maximum
follow-up time by 7. The available data on all individuals con-
sist of (T}, 6;, W;), where T; = min(T;, C;) is the follow-up
time and 6; = I(T? < C;), with I(-) being the indicator func-
tion, is the event indicator. In addition, within the main study
we have a random internal validation sample of size m of indi-
viduals with both X; and W, observed. We take m = ceil(zn),
where 7 is a specified number in (0, 1) and ceil(u) denotes the
smallest integer greater than or equal to u. We define w; to be
equal to 1 if individual i/ is in the internal validation sample
and O otherwise. Thus, the random vector (@, ..., ®,,) has a
uniform distribution over the finite set O(n, m) of vectors with
m ones and n — m zeros (i.e., O(n, m) expresses the various
ways of selecting m elements from a set of n elements). We
write 7 = m/n. Note that 7 is not an estimate, but rather is
fixed by design. Also, as usual, we define Y;(t) = I(T; > 1)
and N;(t) = 6;I(T; < t). Left truncation is handled by setting
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Y;(?) to zero until the time at which individual i comes under
observation.

We assume, as usual, that T[.° and C; are conditionally
independent given X;. We assume further that the measure-
ment error is noninformative in the sense that W; is con-
ditionally independent of (T7°,C;) given X;. We make no
assumptions about the form of the measurement error. Finally,
we assume that the survival time T, follows the Cox model
(1). We denote the true value of B by *. We present our devel-
opment for the case of the classical Cox relative risk function
A Xi but it is straightforward to extend the development to
more general relative risk functions, as in Thomas (1981) and
in Breslow and Day, 1993, Sec. 5.1(c).

We construct our procedure as follows. Let E denote
empirical expectation, so that, for example,

B(r@exp(8™X)} = = Y Y0 exp(67X,),
j=1
B(r@Xexp(6"X)) = 5 ¥ ¥, 00X, exp(6" X))
=1

In the absence of measurement error, the Cox partial likeli-
hood score function is given by

Ucox(ﬂ) = % 25[' Xi - l
i=1

E(rmx exp(ﬂTXn]
E{Ynexp(B"X)} |,y

(@)

When X is measured only for a sample of the individuals
and only W is available for the others, a naive Cox analysis
involves simply substituting W in place of X for the individ-
uals without a measurement of X. In other words, defining
W? = w,X; + (1 — »;)W,, the naive Cox analysis is based on
the score function

_EY(yWe exp(B"W°))
EtymexpB™Wo)) ||
3)

n

1 o

Unar(B) = - 2 6; |W;
i=1

with

BY(mesp(T W) =55 0= Y, exp(BT W),
j=1

E(YOW® exp(BTW*)} =850, B)= 3" Y,(0W; exp(5TW?).
j=1

We denote the corresponding estimator by ﬁ Nag- The terms
in Uyy(B) are of “observed — expected” form, but the
“expected” term is incorrect. Consequently, the naive score

function does not have zero asymptotic expectation under *,
and therefore ﬁ N Az 1s biased.

An improved estimator can be obtained using regression
calibration, which is an established technique for measure-
ment error problems; see, for example, Carroll et al. (2006,
Chapter 4). In regression calibration, we redefine W? to be

W° = 0,X; + (1 — 0)X,, with X,, (r = 1,..., p;) defined as

P
X = ar() + Z 6‘\rsVVis “
s=1

where @, ...
the regression of X;. on W, based on the internal valida-
tion sample. Having redefined Wl‘.’, we redefine S(‘)’ (t, B) and
S?(t, p) correspondingly. We denote the resulting estimator by

, ?x\rp are the ordinary least squares estimates of

[f rc- In (4), for the sake of generality, we have included all of
the components of W; in the regression, but in typical appli-
cations of regression calibration the regression model for X,
includes only W, and perhaps one or two additional compo-
nents of W;. Substantial improvement is often achieved with
the regression calibration approach, but the “expected” term
is still not exactly correct, and therefore the resulting estimator
is not exactly consistent. The regression calibration approxi-
mation is good when the degree of measurement error is small
or the regression coefficients of the error-prone covariates are
small, but otherwise the approximation can be unsatisfactory
(Spiegelman, Rosner, and Logan, 2000).

We present an estimator that builds on the regression cal-
ibration estimator but is exactly consistent. As in regression
calibration, we use the regression model (4). However, we use
this model only as a working model, and it is not necessary for
the model to be correct for our estimator to be consistent. As
with standard regression calibration, it is possible in princi-
ple, as written in (4), to include all of the components of W;
in the model, but in practice we recommend using only W,
and perhaps one or two additional components.

The idea of our approach is to replace the incorrect
“expected” term with a correct one. Let &) be the column
vector with components a,q, ., ... let a denote the vec-
tor formed by stacking the vectors a”) one on top of the

7arp7

other, and let a™ denote the true value of . To emphasize
the dependence of X, on e, we denote the vector of X;,’s by
X;(a).

Define

Soalts ) = = D' @, ,(0exp(BTX)). 5)
j=1

Sont-B.@) = 1 3 (1 @)Y, K @), ©)
j=1

Soclt: B @) = 1 ' 0¥, exp( 57K (@), %)
=1
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$140:8) = 5 Y 0,¥, 0, exp(pT X)), ()
j=1

Syt .= Y (1-0)Y,0%, @ exp{ 5K, @), ©)

j=1
S B = 1 Y 0,08 @exp(5 K @), (10)
j=1
S10. 8.0 = = Y 00X @exp(67X), (D
j=1
Soa(: B)
So(t, B.a)=S,,(1, B)+ {m} Sop(t, B, @), (12)

Sop(t, B, @)/ S, (t, B, @), (13)
S14(, B) + 81,1, B, @)

460 B.0) {8140, . )=, B @) . (14)

o, B a) =
Sl(t’ ﬁ» a) =

We then take the score function to be

T, B, a)} (15)

The estimator ﬁ wm.s 1s defined to be the solution to the score
equation U,,g(B,@) = 0. We could have used $ = (1 -
7)/7% = (n — m)/m in place of o, B, a), but we found that
better finite-sample performance is achieved with (Z(t, B, a).

The motivation behind U,,¢(f, @) is as follows. The
regression calibration function Ug-(B) can be written in
counting process notation as

Ugc(B, @) = % D /0 {W? - E(t.B.0)} dN;(1)
i=1
with
So 9 o
E p,a) = 10—'6“) .
Sy, B, @)

Let us now define d M;(t) = d N,;(t) — Y,-(t)eﬂ*TXi Ap(t)dt. We
can then write

Upc(B. @) = / (We - E@t, B,a)} Y,(0)eP "X, (ndt

+ % 2 /0 (W° - E@t, B, @)} dM;(1)
i=1

= /0 {S°(t, B*. @) — E(t, B, ) Sy, (1, B*) } Ag(t)dt

+ % Z/ {We—E@, B, )} dM;(1),  (16)
i=1 70
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where
n
Soa(t. B) = % )3 Y, (nef %,
1 . T
Si°(. By = - JZ{ Y, (WP X = 8,,(8, @)

1 < N TY .
+ ;(1 - 0))Y;(0X(@)ef Xi.

Using counting process theory (Gill, 1984), it can be seen that
the second term of (16) has expectation zero. In the absence of
measurement error, the value at 8 of the quantity in brackets
in the first term of (16) is zero, so that the score function is
unbiased. In the presence of measurement error, the value at
B of this quantity is in general nonzero. We need to redefine
E(t, B, @) so that the limiting value of this quantity at §*, a*
is zero. Define

Ex(t,B) = E{Y@®)exp(BTX)},
Exx(t, B) = E{Y(®)Xexp(fTX)},
Ewx(t, B.a) = E{Y(O)X(a)exp(8TX)}.

The limiting value of Sy, (#, B) is then € y (¢, B, @) and the lim-
iting value ofS‘l’°(t, B.a)iss|(t,p,a) = n€xx(t, B, )+ (1 —
)€y x(t, B, a). We thus have to redefine E(z, B, a) so that
its limiting value is equal to s;(t, B, a)/E x(t, B, @). Taking
E(t, p,a) =S, B, @)/ Sy(t, B, &) achieves this objective. At
the same time, our estimator reduces to the usual Cox estima-
tor under zero measurement error. We regard this reducibility
property to be important for measurement error correction
methods.

We reiterate that our method makes no assumptions about
the form of the covariate error, and that the model (4) is
only a working model, with our estimator still being consis-
tent even if the working model is misspecified. In addition,
our method requires only estimation of unconditional means
involving Y, W, and X, and therefore does not require use of
smoothing methods. For this reason, a modestly-sized inter-
nal validation sample is sufficient. By contrast, the approaches
taken by Zhou and Pepe (1995) and by Zhou and Wang
(2000) require consistent estimates of conditional means,
which involve stratification or smoothing in the covariate
space, and thus require a larger validation sample. In addition,
since our method is based on separate empirical averages for
each risk set, a rare disease approximation is not needed.

We have worked in the setting of time-independent covari-
ates, but it is possible to consider extension to the case of
time-dependent covariates. When the covariate processes are
measured on an approximately continuous basis (W(¥) for the
full cohort and X(¢) for the internal validation sample), the
method and its asymptotic theory carry over with notational
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changes only. Since the method is based on separate empirical
averages for each risk set, changes over time in the measure-
ment error distribution are handled automatically. The method
and the asymptotic theory also carry over to the case where
the covariate processes are measured only intermittently, as
commonly occurs in practice, but the processes vary slowly,
so that carrying forward the last observed covariate value is
areasonable approximation. In the case where the the covari-
ate processes are measured only intermittently and vary more
rapidly, the extension to the case of time-dependent covariates
is more complex and is beyond the scope of this paper.

2.2 | Asymptotic Properties

The asymptotic properties of the estimator are presented in
the following theorem.

Theorem 1. Under the regularity conditions stated in the
Web Appendix, ﬁ Mms converges almost surely to B*, and
\/;(f}\ wms — BY) is asymptotically mean-zero multivariate nor-
mal with covariance matrix that can be estimated consistently
by the sandwich-type estimator described below.

We present here a sketch of the proof of this result. The
details are presented in the Web Appendix.

The consistency proof hinges on the fact that, as explained
above, U,,s(B, ) is constructed so that it converges to a
limit u(B, a) for which u(f*, a*) = 0. We can then appeal
to arguments of Foutz (1977) to obtain the consistency result.

The asymptotic normality proof is based on estimating
equations theory, and uses an argument along the lines of Lin
and Wei (1989). Setting 8 = (B, @), we can define the esti-
mator  of @ to be the solution  to 1/'(8) = 0 with 1/(0) =
(UMD, UP), where UV () is the U, ¢(B, @) defined in (15)
and U () is given by stacking the vectors

n p
1 1
; 2 ,wi <Xir - &0 — §l,arsVVis> [ Wz‘ ]
§=

i=1

U (a) =

where we include Uiz) only for covariates that are subject to
measurement error. We can write

n
U0 = 1 Y 0z
n
i=1
with
270 = x, ®W,) - {I,, ® (W,W, )}
where x; consists of X, ..., X;, , W; consists of a 1 followed

py’
by the components of W;, ® denotes the Kronecker product,

and I, denotes the b X b identity matrix. The vector U?(0) is
of length (p + 1)p;. When the model for a given X, includes

only some of the W,’s, we delete the superfluous elements of
a and Z{'?(6).

In the Web Appendix we show that U)(6*) is asymptot-
ically equivalent to the quantity

U(l)*(e* A{ Z Z(ll)(O* }
+(1 —n){ Z(l »ZE”(@*)}

where (Z{'(0) : ; = 1} and {ZV(0) : w; = 0} are each
sets of i.i.d. vectors with mean zero under 0 = 6%, the expres-
sions for which are presented in the Web Appendix. Thus,
the solution to T'(6*) = 0 is asymptotically equivalent to the
solution to U™*(6%) = 0, with U™* = (UV*,U®). Let Z"
denote the stacked vector formed by ng and ng and let

ZEZ) denote the stacked vector formed by ZEZU and the zero
vector of length (p + 1)p;. We can then write

Koy A 1 % (1) *
v(e)_n{;; (9)}
_a R P V7@ g
+( ﬂ){n_m;(l PRV A (9)}.

Define C; = Cov(Z\"), C, = Cov(Z), and C =
7C; + (1 — 7)C,. We see that the asymptotic distribution
of \/ﬁ U*(0*) is mean-zero normal with covariance matrix
C. Consequently \/71(3 ws — B is asymptotically mean-zero
normal with covariance matrix V = RCRT, where R is the
matrix consisting of the first p rows of d(©@)~!, where d(0)
is the limiting value of the matrix D(0) given by —1 times
the Jacoblan of l/'(@) In principle, we can estimate V by
V= RCR where R con31sts of the first p rows of D(G)‘
and C = 7rC1 +(1- 7r)C2, where CS is the sample covariance
of Z{(0), ie.

¢ =1 Y 200z )" (17
i3

In actuality, the terms of U"* involve additional unknown
quantities, so we compute C s using the sample covariance of
the vectors ng)(é\) defined by replacing these quantities with
consistent estimates. The detailed derivations of the expres-
sions for ZE] l)(9), ZEZI)(G), and D(0) are presented in the Web
Appendix.

3 | SIMULATION STUDY

We examined the performance of the proposed method in a
simulation study. We constructed the simulation setup so as
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to be representative of a typical epidemiological cohort study.
We considered a setup where the time metameter is age, with
age at entry to the study being uniformly distributed over the
interval 30 to 50 years. The study horizon was 12 years. We
took the censoring distribution to be exponential with a rate
of 1% per year. We took the baseline survival function to be
Weibull with shape parameter 5, as in Zucker and Spiegel-
man (2004, 2008). In terms of the sample size and the event
rate (determined by the Weibull scale parameter), we consid-
ered two scenarios: a rare event scenario with n = 10, 000
and a cumulative event rate of about 5% (so that the num-
ber of events is about 500), and a common event scenario
with n = 500 and a cumulative event rate of about 25% (so
that the number of events is about 125). The internal val-
idation sample size was 200. Thus, in the rare event case,
the internal validation sample size included a mere hand-
ful of events, which may hamper the use of Chen’s (2002)
approach.

We carried out two sets of simulations. In the first set, we
worked with a single covariate X, generated from a standard
normal distribution. We considered two measurement error
models, as follows:

Independent Measurement Error Model: W = X + e with
€ ~ N (0, a) independently of X

Dependent Measurement Error Model: W = X + e with
e|X ~ N(@,a(l +|X]))

We chose a range of a values corresponding to the following
range of values for the correlation between X and W: 0.9,
0.7, 0.5. Finally, we took ef =1.5,2.5, or 4. We compared
our proposed estimator (MS) against Chen’s (2002) estimator
(CH), the regression calibration estimator obtained by replac-
ing X by X in the Cox score function (RC), the “complete
case” (CC) estimator based only on the data with a measure-
ment of X, and the naive estimator ignoring the measurement
error (NA). In the second set of simulations, we worked with
five covariates X, ..., X5, with X error-prone and the other
covariates error-free. We took the five covariates to be N (0, 1)
random variables, either independent or equally-correlated
with a correlation of 0.2. We took the hazard function to be
A1) = Ag(t) exp(By X1 + Poxy + P3x3 + Pyx4 + P5x5) With f, =
Py = B, = Ps = log(1.5), where, as before, we took A(() to be
Weibull with shape parameter 5 and e? =1.5,2.5, or 4. The
other settings were as in the the first set of simulations. The
simulation results were based on 10,000 replications. If the
zero-finding procedure with our method failed to converge,
we used the RC estimate. In the univariate simulations this
usually occurred in less than 1% of the replications, and in the
worst instance it occurred in 6% of the replications. In the mul-
tivariate simulations, convergence failure usually occurred in
less than 5% of the replications, and in the worst instance it
occurred in 10% of the replications. In both the univariate
and multivariate simulation, the worst instance was with the
highest value of f; and the highest degree of measurement
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error. The results for the rare event scenario are presented in
Tables 1-6. The corresponding results for the common event
scenario are presented in the Supplementary Web Materials
in Tables S1-S6.

The naive estimator was seriously biased in all cases stud-
ied, often dramatically. In the single covariate setup, the MS
method exhibited low bias across the board, while the RC
method often exhibited appreciable bias, especially under the
dependent error model, with the bias increasing as the true f
increases and as the degree of measurement error increases.
In the rare disease case, as expected, the CC method had
very high variance, while the variance of the MS method
was usually considerably lower. In the common disease case,
the MS method had lower variance than the CC method in
most configurations, although there are some configurations
in which the CC method had lower variance. As expected,
Chen’s method performed very well in the common disease
setup, where the MS method and Chen’s method are com-
parable in terms of bias, variance and coverage probability.
In the rare disease setup, Chen’s estimator had low bias in
some cases and considerable bias in other cases. In addition,
the standard deviation of Chen’s estimator was substantially
greater than that of the MS estimator, in some cases around
3 times greater. Also, the estimate of the standard deviation
tended to underestimate, leading to considerably lower than
nominal confidence interval coverage rates.

In the multiple-covariate setup, the MS method exhibited
noticeable bias in some configurations, but the bias with the
MS method was typically lower than with the RC method,
often considerably so. The patterns were similar across the
disease incidence levels (common/rare) and the measurement
error models (independent/dependent). The performance of
the MS method with dependent covariates was similar to
that with independent covariates, and no systematic trends
emerged between the dependent covariate case and the inde-
pendent covariate case in the relative performance of the MS
method as compared with the other methods. Chen’s method
had a noticeably lower standard deviation than the MS method
in the multivariate common disease setting with for large f
and moderate correlation between the surrogate and the true
exposure (Tables S3-S6 in the Web Appendix, bottom panel).
To explore the relative performance of the two methods fur-
ther, we conducted additional simulations with ef = 4 under
an “intermediate event rate” scenario with n = 500, validation
sample size of 200, and a cumulative event rate of about 15%
(Table S7 in the Web Appendix). In these simulations, Chen’s
method again had a noticeably lower standard deviation than
the MS method; at the same time, Chen’s estimate of the stan-
dard deviation of the estimate was noticeably lower than the
empirical standard deviation. As a rough practical guide, we
suggest that the MS estimator is to be preferred when the num-
ber of events in the validation study is very low, while Chen’s
estimator is to be preferred when the number of events in the
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TABLE 1 Simulation results for the single-covariate rare disease case with independent measurement error. f* is the true value of f.
Bias(%) is the relative bias, i.e. Bias(%)=100 X (ﬁ — p*)/p*. IQR is 0.74 times the interquartile range of the ﬁ values. SE is the mean of the
estimated standard error of /. SD is the empirical standard deviation of the f values. CR is the empirical coverage rate of the asymptotic 95%
confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median
Corr(X,W) exp(f*) p* Method S Bias(%) £ Bias (%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4050 0.1 0.4011 -1.1  0.0577 00525 00517 0.965
CH 0.4230 43 0.4313 6.4 01621 0.1373 0.1743  0.879
RC 0.4036 0.5 0.4032 0.6 00562 00511 0.0506 0957
cC 0.4188 33 0.4163 2.7 03120 03384 03684 0945
NA 0.3287 -18.9 0.3309 -184  0.0404  0.0402  0.0386  0.543
0.70 L5 0.4055 MS 0.4088 0.8 0.4040 04 00737 00738 00753 0.945
CH 0.4277 5.5 0.4403 8.6 02545 02126 02979  0.855
RC 0.4029 0.6 0.4032 0.6 0.0704 0.0688 0.069  0.965
cC 0.4188 33 0.4163 2.7 03120 03384 03684  0.945
NA 0.1993 -50.9 0.2011 -50.4  0.0346  0.0313  0.0306  0.000
0.50 15 0.4055 MS 0.4129 1.8 0.4103 12 01081 0.1099 0.1186  0.938
CH 0.4326 6.7 0.4459 100 03006 02518 03558  0.859
RC 0.4030 0.6 0.4004 -1.3 01052 0.0976 0.1011  0.938
cc 0.4188 33 0.4163 2.7 03120 03384 03684 0945
NA 0.1022 -74.8 0.1036 744 00237 0.0224  0.0223  0.000
0.90 2.5 09163 MS 0.9279 1.3 0.9221 0.6 00750 0.0720 0.0721  0.949
CH 0.9401 26 0.9289 14 01857 0.1599 02120 0.875
RC 0.9098 0.7 0.9045 -1.3  0.0619 00584 0.0575 0973
cc 0.9380 2.4 0.9259 1.0 03401 03590 04109  0.941
NA 0.7412 -19.1 0.7406 2192 0.0393  0.0409  0.0395  0.004
0.70 25 09163  MS 0.9449 3.1 0.9376 23 01269 0.1279  0.1324  0.957
CH 0.9545 4.2 0.9511 3.8 02756 02394 03477  0.867
RC 0.8944 24 0.8910 2.8 0.0904 00878 0.0845  0.949
cC 0.9380 24 0.9259 1.0 03401 03590 04109  0.941
NA 0.4434 516 0.4438 516 00272 0.0315  0.0307  0.000
0.50 2.5 09163 MS 0.9620 5.0 0.9460 32 02069 02263 02401  0.957
CH 0.9577 4.5 0.9601 48 03152 02761 04026  0.855
RC 0.8785 4.1 0.8766 43 0.1345 01263 0.1258 0914
cC 0.9380 2.4 0.9259 1.0 03401 03590 04109  0.941
NA 0.2254 -75.4 0.2270 752 00191  0.0224  0.0223  0.000
0.90 4.0 13863 MS 1.4214 2.5 1.4080 1.6 01166 0.1162 0.1196  0.930
CH 1.4359 3.6 1.4159 2.1 02352 02004 02625 0.875
RC 1.3464 2.9 13476 2.8 0.0718 0.0687 0.0651  0.906
cC 1.4460 43 1.4134 2.0 03881 04063 04590  0.957
NA 1.0967 -20.9 1.0997 207 00449  0.0426  0.0422  0.000
0.70 4.0 13863 MS 1.4862 7.2 1.4587 52 02271 02405 02590  0.957
CH 1.4654 5.7 1.4196 24 03281 02837 0398  0.856
RC 1.2863 7.2 1.2901 6.9 0.1112 0.1079 01020  0.781
cC 1.4460 43 1.4134 2.0 03881 04063 04590  0.957
NA 0.6384 -53.9 0.6388 5539  0.0337  0.0319 00312  0.000
0.50 4.0 13863 MS 1.4992 8.1 1.4446 42 03384 03698 0378  0.944
CH 1.4752 6.4 1.4155 2.1 03636 03168 04497  0.863
RC 1.2358 -10.9 1.2302 -113 01650  0.1496  0.1490  0.739
cC 1.4460 43 1.4134 2.0 03881 04063 04590  0.957

NA 0.3206 -76.9 0.3228 -76.7  0.0227  0.0225  0.0221  0.000
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TABLE2 Simulation results for the single-covariate rare disease case with dependent measurement error. * is the true value of g. Bias(%)

is the relative bias, i.e. Bias(%)=100 x (ﬁ — p*)/B*. IQR is 0.74 times the interquartile range of the ﬂ values. SE is the mean of the estimated

standard error of f. SD is the empirical standard deviation of the f values. CR is the empirical coverage rate of the asymptotic 95% confidence
interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median
Corr(X,W) exp(f*) p* Method §  Bias(%) B Bias(%) IQR SE SD CR
0.90 15 04055 MS 0.4043 03 0.4012 -1.1 00558 00525 00516 0.957
CH 0.4255 49 0.4314 64 01628 01345 01729 0.871
RC 0.4005 1.2 0.4009 -1 00517  0.0499  0.0497  0.949
cc 0.4188 33 0.4163 27 03120 03384 03684  0.945
NA 0.3299 -18.6 0.3315 183 0.0392  0.0400 0.0382  0.531
0.70 15 04055 MS 0.4071 0.4 0.4055 0.0 00739 0.0730 0.0729 0.953
CH 0.4272 5.4 0.4406 87 02622 02126 03012 0.867
RC 0.3992 -15 0.3980 -1.8 00694 00669 00667 0.957
cc 0.4188 33 0.4163 2.7 03120 03384 03684  0.945
NA 0.1974 513 0.1985 -51.0 0.0322 0.0308 0.0301  0.000
0.50 15 04055 MS 0.4156 25 0.4111 14 01020 01122 0.1175 0.953
CH 0.4267 5.2 0.4287 57 03036 02509 03561  0.855
RC 0.4016 1.0 0.3995 1.5 0.1007 0.0974  0.0995  0.949
cC 0.4188 3.3 0.4163 2.7 03120 03384 03684  0.945
NA 0.1023 74.8 0.1042 743 0.0224 0.0223 0.0224  0.000
0.90 25 09163 MS 0.9226 0.7 0.9091 0.8 00763 00840 0.0801 0.949
CH 0.9386 24 0.9283 13 0.1835 0.1623 02210  0.859
RC 0.8798 4.0 0.8778 42 00579 00550 00552 0.887
cc 0.9380 24 0.9259 1.0 03401 03590 0.4109  0.941
NA 0.7247 -20.9 0.7229 21.1 0.0354 0.0392 00376 0.000
0.70 2.5 09163 MS 0.9415 2.8 0.9221 0.6 0.1341 0.1433  0.1346  0.961
CH 0.9492 3.6 0.9506 37 02732 02431 03613  0.867
RC 0.8631 58 0.8669 54 00861 00807 00779 0.879
cC 0.9380 24 0.9259 1.0 03401 03590 04109  0.941
NA 0.4268 534 0.4264 535 0.0261  0.0297 0.0292  0.000
0.50 2.5 09163 MS 0.9616 49 0.9365 22 02144 02861 02327 0953
CH 0.9367 22 0.9367 22 03046 02777 03913  0.871
RC 0.8675 53 0.8698 51 01360 0.1257 0.1246  0.902
cc 0.9380 24 0.9259 1.0 03401 03590 04109  0.941
NA 0.2230 5.7 0.2246 755 0.0202  0.0219 0.0226  0.000
0.90 4.0 13863  MS 1.4056 14 1.3595 219 01087 02276 02203 0928
CH 1.4280 3.0 1.4047 13 02489 02089 02907 0.883
RC 1.2652 87 1.2619 90 00659 00635 00608 0.508
cC 1.4460 43 1.4134 2.0 03881 04063 04590 0.957
NA 1.0416 -24.9 1.0429 248 00417 00392 0038  0.000
0.70 4.0 13863 MS 1.4559 5.0 1.4036 12 02359 03021 02920 0.939
CH 1.4517 4.7 1.4043 13 03466 02888  0.4162  0.859
RC 1.2086 -12.8 1.2094 -12.8  0.0963  0.0962  0.0906 0.535
cC 1.4460 43 1.4134 2.0 03881 04063 04590  0.957
NA 0.5969 -56.9 0.5988 -56.8  0.0304 0.0288  0.0284  0.000
0.50 4.0 13863  MS 1.4663 5.8 1.4039 13 03186 03821 03793  0.934
CH 1.4564 5.1 13922 04 03705 03192 04530  0.856
RC 1.2105 -12.7 1.1978 136 0.1572  0.1490  0.1478  0.696
cc 1.4460 43 1.4134 2.0 03881 04063 04590 0.957

NA 0.3135 -17.4 0.3149 -77.3 0.0239  0.0214  0.0221 0.000
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TABLE 3 Simulation results for the multiple-covariate rare disease case with independent covariates and independent measurement error.
p* is the true value of B. Bias(%) is the relative bias, i.e. Bias(%)=100 X (ﬁ — p*)/p*. IQR is 0.74 times the interquartile range of the ﬁ values.
SE is the mean of the estimated standard error of f. SD is the empirical standard deviation of the § values. CR is the empirical coverage rate of
the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete
case, NA = naive.

Mean Median
Corr(X,W) exp(f*) p* Metho j  Bias(%) fF  Bias(%) IQR SE SD CR
0.90 1.5 0.4055  MS 0.4118 1.6 0.4101 1.1 00512 00684 0.0573 0.949
CH 0.4136 2.0 0.4106 13 01962 0.1352 02432  0.772
RC 0.4074 0.5 0.4063 0.2 00486 00523 0.0507 0.945
cC 0.4717 163 0.4533 118 03626 03782 04538  0.961
NA 0.3321 -18.1 0.3337 -17.7 00420  0.0410  0.0408  0.567
0.70 1.5 0.4055 MS 0.4175 3.0 0.4067 03 00761 00860 0.0814 0.957
CH 0.4292 5.8 0.4518 114 03221 02026 04050  0.749
RC 0.4066 0.3 0.4074 05 00700 0.0709 0.0684  0.949
cc 0.4717 163 0.4533 118 03626 03782 04538  0.961
NA 0.1997 -50.8 0.2017 502 0.0333 00319 0.0320  0.000
0.50 1.5 0.4055  MS 0.4300 6.1 0.4148 23 01105 0.1402 0.1340  0.952
CH 0.4274 5.4 0.4542 120 03518 02358 04852  0.749
RC 0.4081 0.6 0.4065 03 01050 0.1016 0.0986  0.957
cC 0.4717 163 0.4533 118 03626 03782 04538  0.961
NA 0.1013 -75.0 0.1021 748 00248  0.0228 0.0228  0.000
0.90 25 09163  MS 0.9429 2.9 0.9289 14 01076 0.1272 0.1230  0.937
CH 0.9757 6.5 0.9480 35 02110 01596 02607  0.785
RC 0.9109 0.6 0.9133 03  0.0536 0.0595 0.0569  0.961
cc 1.0757 17.4 1.0305 125 03716 04151 04676  0.945
NA 0.7424 -19.0 0.7429 1189  0.0441 00415 0.0418 0016
0.70 25 09163 MS 0.9657 54 0.9398 2.6 01901 02015 02146  0.955
CH 1.0211 114 0.9778 6.7 03117 02287 04124 0754
RC 0.8962 22 0.8896 29 0.0883 00901 0.0865 0.930
cC 1.0757 17.4 1.0305 125 03716 04151 04676  0.945
NA 0.4408 -51.9 0.4428 517 00311 00318 0.0333  0.000
0.50 25 09163  MS 1.0264 12.0 0.9356 2.1 03004 03131 03227 0.938
CH 1.0330 12.7 1.0100 102 03453 02602 04751  0.762
RC 0.8868 32 0.8738 46 0.1235 01308  0.1308  0.930
cC 1.0757 17.4 1.0305 125 03716 04151 04676  0.945
NA 0.2228 75.7 0.2244 755 00221  0.0226 0.0236  0.000
0.90 4.0 13863 MS 1.4395 3.8 1.4175 23 01245 01333  0.1490  0.943
CH 1.5051 8.6 1.4591 52 03151 02087 04670  0.769
RC 1.3467 2.9 1.3496 26 0.0732 00705 0.0683  0.902
cc 1.6563 19.5 1.5847 143 04873 05055  0.5971  0.945
NA 1.0974 -20.8 1.0969 209  0.0440 0.0438  0.0453  0.000
0.70 4.0 13863 MS 1.5253 10.0 1.4410 39 03180 03329 0348  0.936
CH 1.5592 12.5 1.5045 85 04780 02822 05824  0.741
RC 1.2853 13 1.2782 78 0.1074 01110 0.1091  0.805
cC 1.6563 19.5 1.5847 143 04873 05055 0.5971  0.945
NA 0.6327 544 0.6349 542 00354 00326 0.0347  0.000
0.50 4.0 13863  MS 1.5407 11.1 1.4472 44 04363 04511 04404  0.925
CH 1.5903 14.7 1.5255 100 05249 03138 0.6286  0.706
RC 1.2423 -104 1.2252 -11.6  0.1481  0.1546  0.1546  0.789
cc 1.6563 19.5 1.5847 143 04873 05055 0.5971  0.945

NA 0.3156 -77.2 0.3164 =772 0.0238  0.0229  0.0236  0.000
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TABLE4 Simulation results for the multiple-covariate rare disease case with independent covariates and dependent measurement error. f*
is the true value of f. Bias(%) is the relative bias, i.e. Bias(%)=100 x (ﬁ — p*)/p*. 1QR is 0.74 times the interquartile range of the ﬁ values. SE
is the mean of the estimated standard error of f. SD is the empirical standard deviation of the f values. CR is the empirical coverage rate of
the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Corr(X,W)
0.90

0.70

0.50

0.90

0.70

0.50

0.90

0.70

0.50

exp(f*)
1.5

1.5

1.5

2.5

2.5

2.5

4.0

4.0

4.0

ﬂ*
0.4055

0.4055

0.4055

0.9163

0.9163

0.9163

1.3863

1.3863

1.3863

Mean
Method §  Bias(%)
MS 0.4098 1.1
CH 0.4157 25
RC 0.4045 —02
cC 0.4717 16.3
NA 0.3339 176
MS 0.4141 2.1
CH 0.4250 48
RC 0.4036 05
cCc 0.4717 16.3
NA 0.1984 —51.1
MS 0.4312 6.4
CH 0.4299 6.0
RC 0.4084 0.7
cC 0.4717 16.3
NA 0.1019 749
MS 0.9414 2.7
CH 0.9741 6.3
RC 0.8828 37
cc 1.0757 17.4
NA 0.7284 -205
MS 0.9504 3.7
CH 1.0096 102
RC 0.8686 52
cC 1.0757 17.4
NA 0.4271 —534
MS 1.0023 9.4
CH 1.0173 11.0
RC 0.8800 —40
cCc 1.0757 174
NA 0.2219 ~75.8
MS 1.4155 2.1
CH 1.4825 6.9
RC 1.2701 -84
cCc 1.6563 195
NA 1.0474 —24.4
MS 1.4339 3.4
CH 1.5297 103
RC 1.2156 ~12.3
cCc 1.6563 195
NA 0.5969 ~56.9
MS 1.4985 8.1
CH 1.5673 13.1
RC 1.2240 ~11.7
cc 1.6563 19.5

NA 03112 -77.6

Median

B
0.4057

0.4113
0.4017
0.4533
0.3367
0.4062
0.4472
0.4043
0.4533
0.1994
0.4123
0.4346
0.4070
0.4533
0.1031
0.9183
0.9437
0.8821
1.0305
0.7276
0.9223
0.9775
0.8685
1.0305
0.4276
0.9252
0.9848
0.8685
1.0305
0.2228
1.3822
1.4324
1.2703
1.5847
1.0466
1.3776
1.4711
1.2144
1.5847
0.6004
1.3904
1.5050
1.2001
1.5847
0.3120

Bias(%)
0.1
1.4

-0.9
11.8
-16.9
0.2
10.3
-0.3
11.8
-50.8
1.7
7.2
0.4
11.8
-74.6
0.2
3.0
=37
12.5
—20.6
0.7
6.7
=52
12.5
-53.3
1.0
7.5
=52
12.5
=757
-0.3
33
-84
14.3
-24.5
-0.6
6.1
-12.4
14.3
-56.7
0.3
8.6
-13.4
14.3
=715

IQR

0.0558
0.2128
0.0482
0.3626
0.0417
0.0735
0.3061
0.0710
0.3626
0.0331
0.1164
0.3686
0.1048
0.3626
0.0260
0.0839
0.2253
0.0492
0.3716
0.0411
0.1275
0.3164
0.0795
0.3716
0.0298
0.2244
0.3487
0.1307
0.3716
0.0235
0.1549
0.3299
0.0645
0.4873
0.0405
0.3308
0.4686
0.1054
0.4873
0.0320
0.4507
0.5324
0.1560
0.4873
0.0249

SE

0.0564
0.1334
0.0511
0.3782
0.0408
0.0833
0.2026
0.0690
0.3782
0.0315
0.1460
0.2346
0.1017
0.3782
0.0227
0.1050
0.1617
0.0562
0.4151
0.0399
0.1366
0.2295
0.0833
0.4151
0.0302
0.2382
0.2594
0.1311
0.4151
0.0221
0.1720
0.2126
0.0654
0.5055
0.0405
0.3563
0.2837
0.0997
0.5055
0.0297
0.4740
0.3130
0.1549
0.5055
0.0220

SD

0.0546
0.2410
0.0504
0.4538
0.0406
0.0800
0.4028
0.0678
0.4538
0.0320
0.1453
0.4725
0.1004
0.4538
0.0233
0.1148
0.2700
0.0548
0.4676
0.0400
0.1429
0.4197
0.0803
0.4676
0.0318
0.2352
0.4739
0.1323
0.4676
0.0238
0.1881
0.4456
0.0639
0.5971
0.0424
0.3666
0.5652
0.0980
0.5971
0.0320
0.4678
0.6322
0.1561
0.5971
0.0234

CR

0.948
0.760
0.949
0.961
0.571
0.957
0.733
0.953
0.961
0.000
0.957
0.753
0.953
0.961
0.000
0.956
0.782
0.891
0.945
0.004
0.935
0.754
0.883
0.945
0.000
0.928
0.750
0.906
0.945
0.000
0.942
0.764
0.571
0.945
0.000
0.930
0.732
0.567
0.945
0.000
0.926
0.710
0.758
0.945
0.000
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TABLES Simulation results for the multiple-covariate rare disease case with dependent covariates and independent measurement error. f*
is the true value of f. Bias(%) is the relative bias, i.e. Bias(%)=100 x (ﬁA — p*)/p*. 1QR is 0.74 times the interquartile range of the ﬁ values. SE
is the mean of the estimated standard error of f. SD is the empirical standard deviation of the f values. CR is the empirical coverage rate of
the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete
case, NA = naive.

Mean Median
Corr(X,W) exp(f*) p* Method S Bias (%) /] Bias (%) IQR SE SD CR
0.90 1.5 04055 MS 0.4095 1.0 0.4045 -0.2  0.0526 0.0570 0.0589  0.957
CH 0.4199 3.6 0.4149 23  0.1793 0.1364 02120 0.825
RC 0.3954 =25 0.3916 -34 00503 0.0482 0.0510 0.941
CcC 0.4373 7.8 0.4208 38 03744 03529 03891  0.961
NA 0.3221 -20.6 0.3215 -20.7 0.0393 0.0378 0.0398 0.375
0.70 1.5 0.4055 MS 0.4139 2.1 0.4063 0.2 0.0787 0.0902 0.0883 0.949
CH 0.4355 7.4 0.4363 7.6 0.2904 0.2044 0.3414 0.774
RC 0.3768 -7.1 0.3721 -8.2 0.0596 0.0638 0.0657 0.910
CC 0.4373 7.8 0.4208 38 03744 03529 03891 0.961
NA 0.1861 —54.1 0.1840 -54.6  0.0304 0.0288  0.0305 0.000
0.50 1.5 04055 MS 0.4320 6.5 0.3959 —-24  0.1214 0.1533 0.1429  0.941
CH 0.4391 8.3 0.4414 89 0.3502 02381 03977 0.770
RC 0.3603 —11.1 0.3601 —-11.2 0.0824 0.0885 0.0870 0.906
CcC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961
NA 0.0916 -77.4 0.0905 =717.7 0.0204 0.0203 0.0212 0.000
0.90 2.5 0.9163 MS 0.9375 2.3 0.9201 0.4 0.0837 0.1190 0.1109 0.937
CH 0.9507 3.8 0.9219 0.6 0.1921 0.1569 0.2324 0.840
RC 0.8767 —4.3 0.8719 —4.8 0.0541 0.0543 0.0581 0.875
CC 0.9886 7.9 0.9803 7.0 03273 03707 04115  0.961
NA 0.7140 -22.1 0.7141 -22.1 0.0453 0.0373  0.0395  0.000
0.70 2.5 09163 MS 0.9738 6.3 0.9403 2.6 0.1825 02151 02035 0.934
CH 0.9886 7.9 0.9670 5.5 0.2972 0.2296 0.3536 0.809
RC 0.8191 —10.6 0.8130 —11.3 0.0862 0.0801 0.0827 0.699
CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 04115 0.961
NA 0.4042 -55.9 0.4042 —-55.9 0.0306 0.0280 0.0297 0.000
0.50 2.5 0.9163 MS 1.0112 10.4 0.9172 0.1 0.2953 0.3348 0.3250 0.928
CH 0.9965 8.8 0.9604 48 03475 0.2607 04162  0.805
RC 0.7736 -15.6 0.7737 —-15.6 0.1150 0.1118  0.1099  0.683
CC 0.9886 7.9 0.9803 7.0 03273 03707 04115  0.961
NA 0.1975 -78.4 0.1969 -785 0.0216  0.0196  0.0206  0.000
0.90 4.0 1.3863 MS 1.4361 3.6 1.3980 0.8 0.1537 0.2373  0.1928 0.938
CH 1.4638 5.6 1.3997 1.0 0.2668 0.2105 0.3759 0.824
RC 1.2871 72 1.2805 -7.6 0.0675 0.0648 0.0665 0.606
CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969
NA 1.0479 —24.4 1.0419 —24.8 0.0425 0.0392 0.0421 0.000
0.70 4.0 1.3863 MS 1.5063 8.7 1.4175 2.3 0.2952 0.3454 0.3020 0.920
CH 1.5515 11.9 1.4604 53 03985 0.2887  0.5080  0.807
RC 1.1605 -16.3 1.1516 —-169 0.1026  0.0986  0.0994  0.383
CC 1.6191 16.8 1.5145 92 04535 04886 0.7240  0.969
NA 0.5725 —58.7 0.5714 —58.8 0.0348 0.0285 0.0310 0.000
0.50 4.0 1.3863 MS 1.4931 7.7 1.4066 1.5 0.3796 0.4436 0.4172 0918
CH 1.5455 11.5 1.4421 4.0 0.4568 0.3185 0.5594 0.792
RC 1.0735 —22.6 1.0742 -22.5 0.1330 0.1334 0.1296 0.367
CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.2753 —80.1 0.2737 -80.3  0.0256  0.0197  0.0209  0.000
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TABLE 6 Simulation results for the multiple-covariate rare disease case with with dependent covariates and dependent measurement error.
p* is the true value of B. Bias(%) is the relative bias, i.e. Bias(%)=100 X (ﬁ — p*)/p*. IQR is 0.74 times the interquartile range of the ﬁ values.
SE is the mean of the estimated standard error of f. SD is the empirical standard deviation of the § values. CR is the empirical coverage rate of
the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Corr(X, W)
0.90

0.70

0.50

0.90

0.70

0.50

0.90

0.70

0.50

exp(f*)
1.5

1.5

2.5

2.5

2.5

4.0

4.0

4.0

ﬁ*
0.4055

0.4055

0.4055

0.9163

0.9163

0.9163

1.3863

1.3863

1.3863

Mean Median
Method f Bias (%) B Bias (%)
MS 0.4132 1.9 0.4034 -0.5
CH 0.4256 5.0 0.4184 32
RC 0.3882 -43 0.3845 -52
CC 0.4373 7.8 0.4208 3.8
NA 0.3201 -21.1 0.3190 -21.3
MS 0.4097 1.0 0.3965 -2.2
CH 0.4247 4.7 0.3979 -1.9
RC 0.3656 -9.8 0.3627 -10.5
CcC 0.4373 7.8 0.4208 38
NA 0.1804 -55.5 0.1782 -56.0
MS 0.4249 4.8 0.3938 -29
CH 0.3966 -22 0.3846 -5.2
RC 0.3519 -13.2 0.3498 -13.7
CC 0.4373 7.8 0.4208 3.8
NA 0.0897 -77.9 0.0885 -78.2
MS 0.9330 1.8 0.9018 -1.6
CH 0.9425 2.9 0.9136 -0.3
RC 0.8400 -8.3 0.8350 -89
cC 0.9886 7.9 0.9803 7.0
NA 0.6922 -24.5 0.6923 -24.4
MS 0.9499 3.7 0.9150 -0.1
CH 0.9770 6.6 0.9371 2.3
RC 0.7789 -15.0 0.7735 -15.6
CC 0.9886 7.9 0.9803 7.0
NA 0.3834 -58.2 0.3838 -58.1
MS 0.9763 6.5 0.8980 -2.0
CH 0.9659 5.4 0.9285 1.3
RC 0.7554 -17.6 0.7568 -17.4
CcC 0.9886 7.9 0.9803 7.0
NA 0.1929 -79.0 0.1929 —78.9
MS 1.4213 2.5 1.3515 -2.5
CH 1.4668 5.8 1.4018 1.1
RC 1.2054 -13.1 1.1996 -13.5
CC 1.6191 16.8 1.5145 9.2
NA 0.9925 -28.4 0.9893 —28.6
MS 1.4304 32 1.3619 -1.8
CH 1.5199 9.6 1.4261 2.9
RC 1.0864 -21.6 1.0744 -22.5
CcC 1.6191 16.8 1.5145 9.2
NA 0.5337 —61.5 0.5336 -61.5
MS 1.4489 4.5 1.3289 —4.1
CH 1.5204 9.7 1.4437 4.1
RC 1.0487 -24.4 1.0493 -24.3
CC 1.6191 16.8 1.5145 9.2
NA 0.2686 -80.6 0.2676 -80.7

IQR

0.0535
0.1716
0.0475
0.3744
0.0385
0.0741
0.3105
0.0552
0.3744
0.0308
0.1226
0.3626
0.0848
0.3744
0.0226
0.0899
0.2188
0.0495
0.3273
0.0386
0.1512
0.3183
0.0799
0.3273
0.0297
0.2604
0.3232
0.1147
0.3273
0.0214
0.1523
0.2839
0.0561
0.4535
0.0387
0.2769
0.3573
0.0961
0.4535
0.0309
0.3643
0.3662
0.1392
0.4535
0.0230

SE

0.0638
0.1510
0.0467
0.3529
0.0373
0.0937
0.2402
0.0612
0.3529
0.0280
0.1663
0.2814
0.0876
0.3529
0.0200
0.1134
0.1830
0.0512
0.3707
0.0356
0.1800
0.2731
0.0733
0.3707
0.0262
0.3032
0.3116
0.1110
0.3707
0.0189
0.1813
0.2350
0.0602
0.4886
0.0362
0.3131
0.3232
0.0883
0.4886
0.0259
0.4592
0.3563
0.1332
0.4886
0.0188

SD

0.0717
0.2117
0.0494
0.3891
0.0389
0.0875
0.3989
0.0621
0.3891
0.0294
0.1591
0.4833
0.0842
0.3891
0.0209
0.1229
0.2600
0.0541
0.4115
0.0370
0.1843
0.4340
0.0742
0.4115
0.0273
0.2847
0.4971
0.1063
0.4115
0.0200
0.1713
0.4104
0.0609
0.7240
0.0386
0.3011
0.5417
0.0886
0.7240
0.0281
0.4374
0.5615
0.1277
0.7240
0.0204

CR

0.949
0.840
0.930
0.961
0.363
0.953
0.832
0.875
0.961
0.000
0.936
0.816
0.890
0.961
0.000
0.929
0.871
0.625
0.961
0.000
0.921
0.855
0.484
0.961
0.000
0.896
0.863
0.641
0.961
0.000
0.870
0.832
0.160
0.969
0.000
0.870
0.848
0.129
0.969
0.000
0.871
0.848
0.324
0.969
0.000
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TABLE 7 HPFS Results. SE = standard error of estimate. SE Ratio = Ratio between the standard error of the estimate and the standard
error of the modified score estimate. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Diet Score Coefficient BMI Coefficient
Method Estimate SE SE Ratio Estimate SE SE Ratio
Naive 0.0216 0.0027 0.1107 0.0867 0.0019 0.2346
CC 0.0788 0.0738 3.0246 0.0913 0.1335 16.4815
RC 0.0485 0.0096 0.3934 0.0867 0.0078 0.9630
CH 0.0136 0.0383 1.5697 0.0800 0.0220 2.7160
MS 0.0712 0.0244 1.0000 0.0865 0.0081 1.0000

validation study is 30 or more, with some caution needed with
Chen’s estimate of the standard deviation of the estimator.

In both the single-covariate and the multiple-covariate
setups, the empirical coverage rate of the asymptotic confi-
dence interval based on the MS method is generally close to
the nominal level of 95%, while for the RC method the cover-
age rate tended to be considerably below nominal for e/ = 4.

For the multiple-covariate setup, we conducted additional
simulations to examine the bias of the MS method for larger
sample sizes. These results are reported in the Supplemen-
tary Web Materials in Tables S8-S9. When the sample size
is increased, the bias decreases, eventually to a very small
level.

4 | EXAMPLE

We illustrate the method on data from the Health Profession-
als Follow-Up Study (HPFS), a prospective cohort study of
51,529 middle-aged (age 40-75 years at baseline) male health
professionals. Participants were recruited in 1986 and were
mailed questionnaires every other year to assess health status
and lifestyle. Here, we analyze the relationship between onset
of Type 2 diabetes (T2D) and a diet score relating to intake
of carbohydrates, protein, and fat (de Koning et al., 2011).
The diet score ranged from O to 30, with the score increas-
ing under a decrease in carbohydrate intake or an increase in
protein or fat intake. The analysis included the 41,616 study
participants who were free of T2D, cardiovascular disease, or
cancer at baseline, among whom there were 2,790 cases of
incident T2D during follow-up. Diet was assessed with a 131-
item semiquantitative food frequency questionnaire (FFQ), an
instrument which is subject to substantial measurement error.
In a subsample of 105 participants, another diet assessment
was carried out using a more accurate diet record (DR). The
analysis was stratified by age and adjusted for body mass index
(BMI). We analyzed the data using the naive Cox method, the
RC method, the complete case method, Chen’s method, and
our proposed MS method. There were only 6 events among the
105 individuals in the validation sample, which puts Chen’s
method and the complete case method at a very severe dis-
advantage. Table 7 presents the results for the various meth-
ods. For the regression coefficient for the diet score, the RC

estimate was considerably larger than the naive estimate, and
the MS and complete case estimates were noticeably larger
than the RC estimate. The estimate with Chen’s method was
lower than that with the naive method. The standard error with
Chen’s method was a bit over 1.5 times the standard error with
the MS method. For the regression coefficient for BMI, the
estimates were similar across all methods, and the standard
error with Chen’s method was 2.7 times that of the standard
error with the MS method.

5 | SUMMARY AND DISCUSSION

We have developed a new method for covariate error cor-
rection in the Cox survival regression model, given internal
validation data. The method can handle covariate error of arbi-
trary form, not just independent additive measurement error.
Only a modestly-sized internal validation sample is required.
The method can handle the case where the number of covari-
ates is moderate to large. In a simulation study, the method
was found to perform very well in terms of bias reduction and
confidence interval coverage.

We have worked in the setting of time-independent covari-
ates, but it is possible to consider extension to the case of
time-dependent covariates. When the covariate processes are
measured on an approximately continuous basis (W(#) for the
full cohort and X(¢) for the internal validation sample), the
method and its asymptotic theory carry over with notational
changes only. The same is true in the case where the covari-
ate processes are measured only intermittently, as commonly
occurs in practice, but the processes vary slowly, so that car-
rying forward the last observed covariate value is a reasonable
approximation.

If the association between W and X is very weak, the
proposed estimate will remain consistent and asymptotically
normal, but the variance will be very high. If there is no asso-
ciation at all between W and X, then W is not a suitable
surrogate for X and no correction method will help. If the rela-
tionship between W and X is highly nonlinear, the working
model (4) can be modified to include nonlinear W terms. A
plot of X, versus W;, for the individuals in the internal val-
idation sample can be used to examine whether nonlinear W
terms are needed in the working model for X,.
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Additional supporting information may be found online in the
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able with this paper at the Biometrics website on Wiley Online
Library, as is the code we used to implement the various
method.
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