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Abstract
We develop a new method for covariate error correction in the Cox survival regres-

sion model, given a modest sample of internal validation data. Unlike most previous

methods for this setting, our method can handle covariate error of arbitrary form.

Asymptotic properties of the estimator are derived. In a simulation study, the method

was found to perform very well in terms of bias reduction and confidence interval

coverage. The method is applied to data from the Health Professionals Follow-Up

Study (HPFS) on the effect of diet on incidence of Type II diabetes.
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1 INTRODUCTION

In the Cox (1972) regression model for survival data, the haz-

ard function 𝜆(𝑡|𝐱) for an individual with covariate vector

𝐱 ∈ IR𝑝 is modeled semiparametrically as

𝜆(𝑡|𝐱) = 𝜆0(𝑡) exp(𝜷𝑇𝐱), (1)

where 𝜷 ∈ IR𝑝 is a vector of regression coefficients and 𝜆0(𝑡)
is an unspecified baseline hazard function 𝜆0(𝑡). Cox proposed

drawing inference on 𝜷 based on the notion of partial likeli-

hood, which was subsequently justified rigorously by Tsiatis

(1981), who used classical limit theory, and by Andersen and

Gill (1982), who used a martingale theory approach.

In many applications, however, the covariate 𝐗 is not

measured exactly, but is subject to measurement error of

some degree, often substantial. Thus, instead of observing

𝐗, we observe a surrogate measure 𝐖. Starting from Pren-

tice (1982), a considerable literature has been developed on

inference for the Cox regression model with covariate error in

various contexts; see Zucker (2005) for a brief review.

The existing methods generally involve some model

assumptions on the joint distribution of the true covariate and

the surrogate. Many of the methods make use of specific para-

metric forms for this joint distribution. Other methods, such as

those of Huang and Wang (2000) and Kong and Gu (1999),

avoid use of a specific parametric form but still rely on an

assumption that the covariate error is of independent addi-

tive structure. Some papers, such as Zhou and Pepe (1995),

Zhou and Wang (2000), and Chen (2002), present methods

without this additive error assumption for the internal vali-

dation design in which there is a subsample of individuals

with a measurement on both the true covariate and the sur-

rogate. These methods, however, have challenges as well.

The approach taken by Zhou and Pepe (1995) and by Zhou

and Wang (2000) involves stratification or smoothing in the

covariate space; when the number of covariates is moderate to

large, this approach breaks down due to the “curse of dimen-

sionality.” Chen (2002) assumes that it is possible to form a

satisfactory initial estimate of the regression coefficient vec-

tor based on the validation sample alone. This is not the case,

however, for studies where the event rate is low to moderate,

the main study sample size is in the thousands to hundreds

of thousands, and the validation study sample size is, as in

all applications we know of, only a few hundred. Under these

circumstances, the number of events in the validation study is

very small, so that a satisfactory initial estimate of the regres-

sion coefficient vector based on the validation sample alone

cannot be obtained. Thus, in such situations, which often arise

in practice, Chen’s approach is problematic.

This paper presents a new method for the Cox model with

covariate error, which overcomes the limitations of previously

proposed methods. The method involves a modified version

of the classical Cox partial likelihood score function, with

the internal validation data incorporated in a suitable way.

Our approach is very simple in concept. It is in the spirit of

Lin and Ying’s (1993) work on Cox regression with incom-

plete covariate data. There is also some resemblance to Huang

and Wang’s (2000) method for Cox regression with covariate

error, and to work of Kulich and Lin (2000, 2004). The method

requires no assumptions on the form of the covariate error. It

is especially designed for the internal validation design with

a relatively small validation sample and a moderate to large

number of covariates, which, as indicated above, is a challeng-

ing situation that often arises in epidemiological studies. The

method is easy to implement, and its practical utility is backed

by large-sample theory and small-sample simulations.

The outline of the remainder of the paper is as follows.

Section 2 presents the proposed method and its asymptotic

properties, Section 3 a simulation study, Section 4 an appli-

cation to data from the Health Professionals Follow-Up Study

(HPFS), and Section 5 a brief summary. The Web Appendix

provides theoretical details.

2 THE PROPOSED METHOD AND
ITS ASYMPTOTIC PROPERTIES

2.1 The Proposed Method
We assume a classical survival data setup. We have i.i.d.

observations on 𝑛 individuals. Associated with each individ-

ual 𝑖 is a set of random variables (𝑇 ◦
𝑖
, 𝐶𝑖,𝐗𝑖,𝐖𝑖), with 𝑇 ◦

𝑖

representing the time to event, 𝐶𝑖 representing the time to

censoring, 𝐗𝑖 representing a 𝑝-vector of true covariate val-

ues, and 𝐖𝑖 representing a 𝑝-vector of surrogate covariate

values. We assume that the covariates are arranged so that

the first 𝑝1 covariates are the error-prone covariates and the

remaining 𝑝2 = 𝑝− 𝑝1 covariates are error-free. For the error-

free covariates, the relevant component of 𝐖𝑖 is identical to

the corresponding component of 𝐗𝑖. We denote the maximum

follow-up time by 𝜏. The available data on all individuals con-

sist of (𝑇𝑖, 𝛿𝑖,𝐖𝑖), where 𝑇𝑖 = min(𝑇 ◦
𝑖
, 𝐶𝑖) is the follow-up

time and 𝛿𝑖 = 𝐼(𝑇 ◦
𝑖
≤ 𝐶𝑖), with 𝐼(⋅) being the indicator func-

tion, is the event indicator. In addition, within the main study

we have a random internal validation sample of size𝑚 of indi-

viduals with both 𝐗𝑖 and 𝐖𝑖 observed. We take𝑚 = 𝑐𝑒𝑖𝑙(𝜋𝑛),
where 𝜋 is a specified number in (0, 1) and 𝑐𝑒𝑖𝑙(𝑢) denotes the

smallest integer greater than or equal to 𝑢. We define 𝜔𝑖 to be

equal to 1 if individual 𝑖 is in the internal validation sample

and 0 otherwise. Thus, the random vector (𝜔1,… , 𝜔𝑛) has a

uniform distribution over the finite set (𝑛, 𝑚) of vectors with

𝑚 ones and 𝑛 − 𝑚 zeros (i.e., (𝑛, 𝑚) expresses the various

ways of selecting 𝑚 elements from a set of 𝑛 elements). We

write 𝜋 = 𝑚∕𝑛. Note that 𝜋 is not an estimate, but rather is

fixed by design. Also, as usual, we define 𝑌𝑖(𝑡) = 𝐼(𝑇𝑖 ≥ 𝑡)
and 𝑁𝑖(𝑡) = 𝛿𝑖𝐼(𝑇𝑖 ≤ 𝑡). Left truncation is handled by setting
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𝑌𝑖(𝑡) to zero until the time at which individual 𝑖 comes under

observation.

We assume, as usual, that 𝑇 ◦
𝑖

and 𝐶𝑖 are conditionally

independent given 𝐗𝑖. We assume further that the measure-

ment error is noninformative in the sense that 𝐖𝑖 is con-

ditionally independent of (𝑇 ◦
𝑖
, 𝐶𝑖) given 𝐗𝑖. We make no

assumptions about the form of the measurement error. Finally,

we assume that the survival time 𝑇 ◦
𝑖

follows the Cox model

(1). We denote the true value of 𝜷 by 𝜷∗. We present our devel-

opment for the case of the classical Cox relative risk function

𝑒𝜷
𝑇𝐗𝑖 , but it is straightforward to extend the development to

more general relative risk functions, as in Thomas (1981) and

in Breslow and Day, 1993, Sec. 5.1(c).

We construct our procedure as follows. Let 𝐸 denote

empirical expectation, so that, for example,

𝐸{𝑌 (𝑡) exp(𝜷𝑇𝐗)} = 1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡) exp(𝜷𝑇𝐗𝑗),

𝐸{𝑌 (𝑡)𝐗 exp(𝜷𝑇𝐗)} = 1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡)𝐗𝑗 exp(𝜷𝑇𝐗𝑗).

In the absence of measurement error, the Cox partial likeli-

hood score function is given by

𝐔𝐶𝑂𝑋(𝜷) =
1
𝑛

𝑛∑
𝑖=1
𝛿𝑖

⎛⎜⎜⎝𝐗𝑖 −
[
𝐸{𝑌 (𝑡)𝐗 exp(𝜷𝑇𝐗)}
𝐸{𝑌 (𝑡) exp(𝜷𝑇𝐗)}

]
𝑡=𝑇𝑖

⎞⎟⎟⎠ .
(2)

When 𝐗 is measured only for a sample of the individuals

and only 𝐖 is available for the others, a naive Cox analysis

involves simply substituting 𝐖 in place of 𝐗 for the individ-

uals without a measurement of 𝐗. In other words, defining

𝐖◦
𝑖
= 𝜔𝑖𝐗𝑖 + (1 − 𝜔𝑖)𝐖𝑖, the naive Cox analysis is based on

the score function

𝐔𝑁𝐴𝐼 (𝜷) =
1
𝑛

𝑛∑
𝑖=1
𝛿𝑖

⎛⎜⎜⎝𝐖◦
𝑖 −

[
𝐸{𝑌 (𝑡)𝐖◦ exp(𝜷𝑇𝐖◦)}
𝐸{𝑌 (𝑡) exp(𝜷𝑇𝐖◦)}

]
𝑡=𝑇𝑖

⎞⎟⎟⎠ ,
(3)

with

𝐸{𝑌 (𝑡) exp(𝜷𝑇𝐖◦)}=𝑆◦
0 (𝑡,𝜷)=

1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡) exp(𝜷𝑇𝐖◦

𝑗 ),

𝐸{𝑌 (𝑡)𝐖◦ exp(𝜷𝑇𝐖◦)}=𝐒◦1(𝑡,𝜷)=
1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡)𝐖◦

𝑗 exp(𝜷
𝑇𝐖◦

𝑗 ).

We denote the corresponding estimator by 𝜷𝑁𝐴𝐼 . The terms

in 𝐔𝑁𝐴𝐼 (𝜷) are of “observed − expected” form, but the

“expected” term is incorrect. Consequently, the naive score

function does not have zero asymptotic expectation under 𝜷∗,

and therefore 𝜷𝑁𝐴𝐼 is biased.

An improved estimator can be obtained using regression

calibration, which is an established technique for measure-

ment error problems; see, for example, Carroll et al. (2006,

Chapter 4). In regression calibration, we redefine 𝐖◦
𝑖

to be

𝐖◦
𝑖
= 𝜔𝑖𝐗𝑖 + (1 − 𝜔𝑖)𝐗̂𝑖, with 𝑋𝑖𝑟 (𝑟 = 1,… , 𝑝1) defined as

𝑋𝑖𝑟 = 𝛼𝑟0 +
𝑝∑
𝑠=1
𝛼𝑟𝑠𝑊𝑖𝑠 (4)

where 𝛼𝑟0,… , 𝛼𝑟𝑝 are the ordinary least squares estimates of

the regression of 𝑋𝑖𝑟 on 𝐖𝑖 based on the internal valida-

tion sample. Having redefined 𝐖◦
𝑖
, we redefine 𝑆◦

0 (𝑡,𝜷) and

𝐒◦1(𝑡,𝜷) correspondingly. We denote the resulting estimator by

𝜷𝑅𝐶 . In (4), for the sake of generality, we have included all of

the components of 𝐖𝑖 in the regression, but in typical appli-

cations of regression calibration the regression model for 𝑋𝑖𝑟
includes only 𝑊𝑖𝑟 and perhaps one or two additional compo-

nents of 𝐖𝑖. Substantial improvement is often achieved with

the regression calibration approach, but the “expected” term

is still not exactly correct, and therefore the resulting estimator

is not exactly consistent. The regression calibration approxi-

mation is good when the degree of measurement error is small

or the regression coefficients of the error-prone covariates are

small, but otherwise the approximation can be unsatisfactory

(Spiegelman, Rosner, and Logan, 2000).

We present an estimator that builds on the regression cal-

ibration estimator but is exactly consistent. As in regression

calibration, we use the regression model (4). However, we use

this model only as a working model, and it is not necessary for

the model to be correct for our estimator to be consistent. As

with standard regression calibration, it is possible in princi-

ple, as written in (4), to include all of the components of 𝐖𝑖

in the model, but in practice we recommend using only 𝑊𝑖𝑟

and perhaps one or two additional components.

The idea of our approach is to replace the incorrect

“expected” term with a correct one. Let 𝜶(𝑟) be the column

vector with components 𝛼𝑟0, 𝛼𝑟1,… , 𝛼𝑟𝑝, let 𝜶 denote the vec-

tor formed by stacking the vectors 𝜶(𝑟) one on top of the

other, and let 𝜶∗ denote the true value of 𝜶. To emphasize

the dependence of 𝑋𝑖𝑟 on 𝜶, we denote the vector of 𝑋𝑖𝑟’s by

𝐗̂𝑖(𝜶).
Define

𝑆0𝑎(𝑡,𝜷) =
1
𝑛

𝑛∑
𝑗=1
𝜔𝑗𝑌𝑗(𝑡) exp(𝜷𝑇𝐗𝑗), (5)

𝑆0𝑏(𝑡,𝜷,𝜶) =
1
𝑛

𝑛∑
𝑗=1

(1 − 𝜔𝑗)𝑌𝑗(𝑡) exp{𝜷𝑇 𝐗̂𝑗(𝜶)}, (6)

𝑆0𝑐(𝑡,𝜷,𝜶) =
1
𝑛

𝑛∑
𝑗=1
𝜔𝑗𝑌𝑗(𝑡) exp{𝜷𝑇 𝐗̂𝑗(𝜶)}, (7)

2 ZUCKER ET AL.416
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𝐒1𝑎(𝑡,𝜷) =
1
𝑛

𝑛∑
𝑗=1
𝜔𝑗𝑌𝑗(𝑡)𝐗𝑗 exp(𝜷𝑇𝐗𝑗), (8)

𝐒1𝑏(𝑡,𝜷,𝜶)=
1
𝑛

𝑛∑
𝑗=1

(1−𝜔𝑗)𝑌𝑗(𝑡)𝐗̂𝑗(𝜶) exp{𝜷𝑇 𝐗̂𝑗(𝜶)}, (9)

𝐒1𝑐(𝑡,𝜷,𝜶) =
1
𝑛

𝑛∑
𝑗=1
𝜔𝑗𝑌𝑗(𝑡)𝐗̂𝑗(𝜶) exp{𝜷𝑇 𝐗̂𝑗(𝜶)}, (10)

𝐒̃1𝑎(𝑡,𝜷,𝜶) =
1
𝑛

𝑛∑
𝑗=1
𝜔𝑗𝑌𝑗(𝑡)𝐗̂𝑗(𝜶) exp(𝜷𝑇𝐗𝑗), (11)

𝑆0(𝑡,𝜷,𝜶)=𝑆0𝑎(𝑡,𝜷)+
{
𝑆0𝑎(𝑡,𝜷)
𝑆0𝑐(𝑡,𝜷,𝜶)

}
𝑆0𝑏(𝑡,𝜷,𝜶), (12)

𝜙(𝑡,𝜷,𝜶) = 𝑆0𝑏(𝑡,𝜷,𝜶)/𝑆0𝑐(𝑡,𝜷,𝜶), (13)

𝐒1(𝑡,𝜷,𝜶) = 𝐒1𝑎(𝑡,𝜷) + 𝐒1𝑏(𝑡,𝜷,𝜶)

+𝜙(𝑡,𝜷,𝜶)
{̃
𝐒1𝑎(𝑡,𝜷,𝜶)−𝐒1𝑐(𝑡,𝜷,𝜶)

}
. (14)

We then take the score function to be

𝐔𝑀𝑆 (𝜷,𝜶) =
1
𝑛

𝑛∑
𝑖=1
𝛿𝑖

{
𝐖◦
𝑖 −

𝐒1(𝑇𝑖,𝜷,𝜶)
𝑆0(𝑇𝑖, 𝜷,𝜶)

}
. (15)

The estimator 𝜷𝑀𝑆 is defined to be the solution to the score

equation 𝐔𝑀𝑆 (𝜷, 𝜶̂) = 𝟎. We could have used 𝜙 = (1 −
𝜋)∕𝜋 = (𝑛 − 𝑚)∕𝑚 in place of 𝜙(𝑡,𝜷,𝜶), but we found that

better finite-sample performance is achieved with 𝜙(𝑡,𝜷,𝜶).
The motivation behind 𝐔𝑀𝑆 (𝜷,𝜶) is as follows. The

regression calibration function 𝐔𝑅𝐶 (𝜷) can be written in

counting process notation as

𝐔𝑅𝐶 (𝜷,𝜶) =
1
𝑛

𝑛∑
𝑖=1

∫
𝜏

0

{
𝐖◦
𝑖 − 𝐸(𝑡,𝜷,𝜶)

}
𝑑𝑁𝑖(𝑡)

with

𝐸(𝑡,𝜷,𝜶) =
𝐒◦1(𝑡,𝜷,𝜶)
𝑆◦
0 (𝑡,𝜷,𝜶)

.

Let us now define 𝑑𝑀𝑖(𝑡) = 𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝑒𝜷
∗𝑇𝐗𝑖𝜆0(𝑡)𝑑𝑡. We

can then write

𝐔𝑅𝐶 (𝜷,𝜶) =
1
𝑛

𝑛∑
𝑖=1

∫
𝜏

0

{
𝐖◦
𝑖 − 𝐸(𝑡,𝜷,𝜶)

}
𝑌𝑖(𝑡)𝑒𝜷

∗𝑇𝐗𝑖𝜆0(𝑡)𝑑𝑡

+ 1
𝑛

𝑛∑
𝑖=1

∫
𝜏

0

{
𝐖◦
𝑖 − 𝐸(𝑡,𝜷,𝜶)

}
𝑑𝑀𝑖(𝑡)

= ∫
𝜏

0

{
𝐒◦◦1 (𝑡,𝜷∗,𝜶) − 𝐸(𝑡,𝜷,𝜶)𝑆0𝑑(𝑡,𝜷∗)

}
𝜆0(𝑡)𝑑𝑡

+ 1
𝑛

𝑛∑
𝑖=1

∫
𝜏

0

{
𝐖◦
𝑖 − 𝐸(𝑡,𝜷,𝜶)

}
𝑑𝑀𝑖(𝑡), (16)

where

𝑆0𝑑(𝑡,𝜷) =
1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡)𝑒𝜷

𝑇𝐗𝑗 ,

𝐒◦◦1 (𝑡,𝜷,𝜶) = 1
𝑛

𝑛∑
𝑗=1
𝑌𝑗(𝑡)𝐖◦

𝑗 𝑒
𝜷𝑇𝐗𝑗 = 𝐒1𝑎(𝜷,𝜶)

+1
𝑛

𝑛∑
𝑗=1

(1 − 𝜔𝑗)𝑌𝑗(𝑡)𝐗̂𝑗(𝜶)𝑒𝜷
𝑇𝐗𝑗 .

Using counting process theory (Gill, 1984), it can be seen that

the second term of (16) has expectation zero. In the absence of

measurement error, the value at 𝜷∗ of the quantity in brackets

in the first term of (16) is zero, so that the score function is

unbiased. In the presence of measurement error, the value at

𝜷∗ of this quantity is in general nonzero. We need to redefine

𝐸(𝑡,𝜷,𝜶) so that the limiting value of this quantity at 𝜷∗,𝜶∗

is zero. Define

𝑋(𝑡,𝜷) = 𝐸{𝑌 (𝑡) exp(𝜷𝑇𝐗)},
𝑋𝑋(𝑡,𝜷) = 𝐸{𝑌 (𝑡)𝐗 exp(𝜷𝑇𝐗)},

𝑊𝑋(𝑡,𝜷,𝜶) = 𝐸{𝑌 (𝑡)𝐗̂(𝜶) exp(𝜷𝑇𝐗)}.

The limiting value of 𝑆0𝑑(𝑡,𝜷) is then 𝑋(𝑡,𝜷,𝜶) and the lim-

iting value of 𝐒◦◦1 (𝑡,𝜷,𝜶) is 𝐬1(𝑡,𝜷,𝜶) = 𝜋𝑋𝑋(𝑡,𝜷,𝜶)+ (1−
𝜋)𝑊𝑋(𝑡,𝜷,𝜶). We thus have to redefine 𝐸(𝑡,𝜷,𝜶) so that

its limiting value is equal to 𝐬1(𝑡,𝜷,𝜶)∕𝑋(𝑡,𝜷,𝜶). Taking

𝐸(𝑡,𝜷,𝜶) = 𝐒1(𝑡,𝜷,𝜶)∕𝑆0(𝑡,𝜷,𝜶) achieves this objective. At

the same time, our estimator reduces to the usual Cox estima-

tor under zero measurement error. We regard this reducibility

property to be important for measurement error correction

methods.

We reiterate that our method makes no assumptions about

the form of the covariate error, and that the model (4) is

only a working model, with our estimator still being consis-

tent even if the working model is misspecified. In addition,

our method requires only estimation of unconditional means

involving 𝑌 , 𝐖, and 𝐗, and therefore does not require use of

smoothing methods. For this reason, a modestly-sized inter-

nal validation sample is sufficient. By contrast, the approaches

taken by Zhou and Pepe (1995) and by Zhou and Wang

(2000) require consistent estimates of conditional means,

which involve stratification or smoothing in the covariate

space, and thus require a larger validation sample. In addition,

since our method is based on separate empirical averages for

each risk set, a rare disease approximation is not needed.

We have worked in the setting of time-independent covari-

ates, but it is possible to consider extension to the case of

time-dependent covariates. When the covariate processes are

measured on an approximately continuous basis (𝐖(𝑡) for the

full cohort and 𝐗(𝑡) for the internal validation sample), the

method and its asymptotic theory carry over with notational
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changes only. Since the method is based on separate empirical

averages for each risk set, changes over time in the measure-

ment error distribution are handled automatically. The method

and the asymptotic theory also carry over to the case where

the covariate processes are measured only intermittently, as

commonly occurs in practice, but the processes vary slowly,

so that carrying forward the last observed covariate value is

a reasonable approximation. In the case where the the covari-

ate processes are measured only intermittently and vary more

rapidly, the extension to the case of time-dependent covariates

is more complex and is beyond the scope of this paper.

2.2 Asymptotic Properties
The asymptotic properties of the estimator are presented in

the following theorem.

Theorem 1. Under the regularity conditions stated in the
Web Appendix, 𝜷𝑀𝑆 converges almost surely to 𝜷∗, and√
𝑛(𝜷𝑀𝑆 −𝜷∗) is asymptotically mean-zero multivariate nor-

mal with covariance matrix that can be estimated consistently
by the sandwich-type estimator described below.

We present here a sketch of the proof of this result. The

details are presented in the Web Appendix.

The consistency proof hinges on the fact that, as explained

above, 𝐔𝑀𝑆 (𝜷,𝜶) is constructed so that it converges to a

limit 𝐮(𝜷,𝜶) for which 𝐮(𝜷∗,𝜶∗) = 𝟎. We can then appeal

to arguments of Foutz (1977) to obtain the consistency result.

The asymptotic normality proof is based on estimating

equations theory, and uses an argument along the lines of Lin

and Wei (1989). Setting 𝜽 = (𝜷,𝜶), we can define the esti-

mator 𝜽̂ of 𝜽 to be the solution 𝜽 to  (𝜽) = 𝟎 with  (𝜽) =
(𝐔(1),𝐔(2)), where 𝐔(1)(𝜽) is the 𝐔𝑀𝑆 (𝜷,𝜶) defined in (15)

and 𝐔(2)(𝜽) is given by stacking the vectors

𝐔(2)
𝑟 (𝜶) = 1

𝑛

𝑛∑
𝑖=1
𝜔𝑖

(
𝑋𝑖𝑟 − 𝛼𝑟0 −

𝑝∑
𝑠=1
𝛼𝑟𝑠𝑊𝑖𝑠

)[
1
𝐖𝑖

]

where we include 𝐔(2)
𝑟 only for covariates that are subject to

measurement error. We can write

𝐔(2)(𝜽) = 1
𝑛

𝑛∑
𝑖=1
𝜔𝑖𝐙

(12)
𝑖

(𝜽)

with

𝐙(12)
𝑖

(𝜽) = (𝐱𝑖 ⊗ 𝐰𝑖) − {𝐈𝑝1 ⊗ (𝐰𝑖𝐰
𝑇
𝑖 )}𝜶

where 𝐱𝑖 consists of𝑋𝑖1,… , 𝑋𝑖𝑝1 , 𝐰𝑖 consists of a 1 followed

by the components of 𝐖𝑖, ⊗ denotes the Kronecker product,

and 𝐈𝑏 denotes the 𝑏 × 𝑏 identity matrix. The vector 𝐔(2)(𝜽) is

of length (𝑝 + 1)𝑝1. When the model for a given 𝑋𝑖𝑟 includes

only some of the𝑊𝑖𝑠’s, we delete the superfluous elements of

𝜶 and 𝐙(12)
𝑖

(𝜽).
In the Web Appendix we show that 𝐔(1)(𝜽∗) is asymptot-

ically equivalent to the quantity

𝐔(1)∗(𝜽∗) = 𝜋

{
1
𝑚

𝑛∑
𝑖=1
𝜔𝑖𝐙

(11)
𝑖

(𝜽∗)

}

+(1 − 𝜋)

{
1

𝑛 − 𝑚

𝑛∑
𝑖=1

(1 − 𝜔𝑖)𝐙
(21)
𝑖

(𝜽∗)

}

where {𝐙(11)
𝑖

(𝜽) ∶ 𝜔𝑖 = 1} and {𝐙(21)
𝑖

(𝜽) ∶ 𝜔𝑖 = 0} are each

sets of i.i.d. vectors with mean zero under 𝜽 = 𝜽∗, the expres-

sions for which are presented in the Web Appendix. Thus,

the solution to  (𝜽∗) = 𝟎 is asymptotically equivalent to the

solution to 
∗(𝜽∗) = 𝟎, with 

∗ = (𝐔(1)∗,𝐔(2)). Let 𝐙(1)
𝑖

denote the stacked vector formed by 𝐙(11)
𝑖

and 𝐙(12)
𝑖

and let

𝐙(2)
𝑖

denote the stacked vector formed by 𝐙(21)
𝑖

and the zero

vector of length (𝑝 + 1)𝑝1. We can then write


∗(𝜽) = 𝜋

{
1
𝑚

𝑛∑
𝑖=1
𝜔𝑖𝐙

(1)
𝑖
(𝜽∗)

}

+(1 − 𝜋)

{
1

𝑛 − 𝑚

𝑛∑
𝑖=1

(1 − 𝜔𝑖)𝐙
(2)
𝑖
(𝜽∗)

}
.

Define 𝐂1 = Cov(𝐙(1)
𝑖
), 𝐂2 = Cov(𝐙(2)

𝑖
), and 𝐂 =

𝜋𝐂1 + (1 − 𝜋)𝐂2. We see that the asymptotic distribution

of
√
𝑛 ∗(𝜽∗) is mean-zero normal with covariance matrix

𝐂. Consequently
√
𝑛(𝜷𝑀𝑆 −𝜷∗) is asymptotically mean-zero

normal with covariance matrix 𝐕 = 𝐂𝑇 , where  is the

matrix consisting of the first 𝑝 rows of 𝐝(𝜽)−1, where 𝐝(𝜽)
is the limiting value of the matrix 𝐃(𝜽) given by −1 times

the Jacobian of  (𝜽). In principle, we can estimate 𝐕 by

𝐕̂ = ̂𝐂̂̂, where ̂ consists of the first 𝑝 rows of 𝐃(𝜽)−1
and 𝐂̂ = 𝜋𝐂̂1 + (1−𝜋)𝐂̂2, where 𝐂̂𝑠 is the sample covariance

of 𝐙(𝑠)
𝑖
(𝜽), i.e.

𝐂̂𝑠 =
1
𝑛

𝑛∑
𝑖=1

𝐙(𝑠)
𝑖
(𝜽)𝐙(𝑠)

𝑖
(𝜽)𝑇 . (17)

In actuality, the terms of 𝐔(1)∗ involve additional unknown

quantities, so we compute 𝐂̂𝑠 using the sample covariance of

the vectors 𝐙̂(𝑠)
𝑖
(𝜽) defined by replacing these quantities with

consistent estimates. The detailed derivations of the expres-

sions for 𝐙(11)
𝑖

(𝜽),𝐙(21)
𝑖

(𝜽), and 𝐃(𝜽) are presented in the Web

Appendix.

3 SIMULATION STUDY

We examined the performance of the proposed method in a

simulation study. We constructed the simulation setup so as
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to be representative of a typical epidemiological cohort study.

We considered a setup where the time metameter is age, with

age at entry to the study being uniformly distributed over the

interval 30 to 50 years. The study horizon was 12 years. We

took the censoring distribution to be exponential with a rate

of 1% per year. We took the baseline survival function to be

Weibull with shape parameter 5, as in Zucker and Spiegel-

man (2004, 2008). In terms of the sample size and the event

rate (determined by the Weibull scale parameter), we consid-

ered two scenarios: a rare event scenario with 𝑛 = 10, 000
and a cumulative event rate of about 5% (so that the num-

ber of events is about 500), and a common event scenario

with 𝑛 = 500 and a cumulative event rate of about 25% (so

that the number of events is about 125). The internal val-

idation sample size was 200. Thus, in the rare event case,

the internal validation sample size included a mere hand-

ful of events, which may hamper the use of Chen’s (2002)

approach.

We carried out two sets of simulations. In the first set, we

worked with a single covariate 𝑋, generated from a standard

normal distribution. We considered two measurement error

models, as follows:

Independent Measurement Error Model:𝑊 = 𝑋 + 𝜖 with

𝜖 ∼ 𝑁(0, 𝑎) independently of 𝑋

Dependent Measurement Error Model: 𝑊 = 𝑋 + 𝜖 with

𝜖|𝑋 ∼ 𝑁(0, 𝑎(1 + |𝑋|))
We chose a range of 𝑎 values corresponding to the following

range of values for the correlation between 𝑋 and 𝑊 : 0.9,

0.7, 0.5. Finally, we took 𝑒𝛽 = 1.5, 2.5, or 4. We compared

our proposed estimator (MS) against Chen’s (2002) estimator

(CH), the regression calibration estimator obtained by replac-

ing 𝑋 by 𝑋 in the Cox score function (RC), the “complete

case” (CC) estimator based only on the data with a measure-

ment of𝑋, and the naive estimator ignoring the measurement

error (NA). In the second set of simulations, we worked with

five covariates 𝑋1,… , 𝑋5, with 𝑋1 error-prone and the other

covariates error-free. We took the five covariates to be𝑁(0, 1)
random variables, either independent or equally-correlated

with a correlation of 0.2. We took the hazard function to be

𝜆(𝑡) = 𝜆0(𝑡) exp(𝛽1𝑥1 +𝛽2𝑥2 +𝛽3𝑥3 +𝛽4𝑥4 +𝛽5𝑥5) with 𝛽2 =
𝛽3 = 𝛽4 = 𝛽5 = log(1.5), where, as before, we took 𝜆0(𝑡) to be

Weibull with shape parameter 5 and 𝑒𝛽 = 1.5, 2.5, or 4. The

other settings were as in the the first set of simulations. The

simulation results were based on 10,000 replications. If the

zero-finding procedure with our method failed to converge,

we used the RC estimate. In the univariate simulations this

usually occurred in less than 1% of the replications, and in the

worst instance it occurred in 6% of the replications. In the mul-

tivariate simulations, convergence failure usually occurred in

less than 5% of the replications, and in the worst instance it

occurred in 10% of the replications. In both the univariate

and multivariate simulation, the worst instance was with the

highest value of 𝛽1 and the highest degree of measurement

error. The results for the rare event scenario are presented in

Tables 1-6. The corresponding results for the common event

scenario are presented in the Supplementary Web Materials

in Tables S1-S6.

The naive estimator was seriously biased in all cases stud-

ied, often dramatically. In the single covariate setup, the MS

method exhibited low bias across the board, while the RC

method often exhibited appreciable bias, especially under the

dependent error model, with the bias increasing as the true 𝛽

increases and as the degree of measurement error increases.

In the rare disease case, as expected, the CC method had

very high variance, while the variance of the MS method

was usually considerably lower. In the common disease case,

the MS method had lower variance than the CC method in

most configurations, although there are some configurations

in which the CC method had lower variance. As expected,

Chen’s method performed very well in the common disease

setup, where the MS method and Chen’s method are com-

parable in terms of bias, variance and coverage probability.

In the rare disease setup, Chen’s estimator had low bias in

some cases and considerable bias in other cases. In addition,

the standard deviation of Chen’s estimator was substantially

greater than that of the MS estimator, in some cases around

3 times greater. Also, the estimate of the standard deviation

tended to underestimate, leading to considerably lower than

nominal confidence interval coverage rates.

In the multiple-covariate setup, the MS method exhibited

noticeable bias in some configurations, but the bias with the

MS method was typically lower than with the RC method,

often considerably so. The patterns were similar across the

disease incidence levels (common/rare) and the measurement

error models (independent/dependent). The performance of

the MS method with dependent covariates was similar to

that with independent covariates, and no systematic trends

emerged between the dependent covariate case and the inde-

pendent covariate case in the relative performance of the MS

method as compared with the other methods. Chen’s method

had a noticeably lower standard deviation than the MS method

in the multivariate common disease setting with for large 𝛽

and moderate correlation between the surrogate and the true

exposure (Tables S3-S6 in the Web Appendix, bottom panel).

To explore the relative performance of the two methods fur-

ther, we conducted additional simulations with 𝑒𝛽 = 4 under

an “intermediate event rate” scenario with 𝑛 = 500, validation

sample size of 200, and a cumulative event rate of about 15%

(Table S7 in the Web Appendix). In these simulations, Chen’s

method again had a noticeably lower standard deviation than

the MS method; at the same time, Chen’s estimate of the stan-

dard deviation of the estimate was noticeably lower than the

empirical standard deviation. As a rough practical guide, we

suggest that the MS estimator is to be preferred when the num-

ber of events in the validation study is very low, while Chen’s

estimator is to be preferred when the number of events in the
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TABLE 1 Simulation results for the single-covariate rare disease case with independent measurement error. 𝛽∗ is the true value of 𝛽.

Bias(%) is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values. SE is the mean of the

estimated standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of the asymptotic 95%

confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Method 𝛽 Bias(%) 𝛽 Bias (%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4050 -0.1 0.4011 -1.1 0.0577 0.0525 0.0517 0.965

CH 0.4230 4.3 0.4313 6.4 0.1621 0.1373 0.1743 0.879

RC 0.4036 -0.5 0.4032 -0.6 0.0562 0.0511 0.0506 0.957

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.3287 -18.9 0.3309 -18.4 0.0404 0.0402 0.0386 0.543

0.70 1.5 0.4055 MS 0.4088 0.8 0.4040 -0.4 0.0737 0.0738 0.0753 0.945

CH 0.4277 5.5 0.4403 8.6 0.2545 0.2126 0.2979 0.855

RC 0.4029 -0.6 0.4032 -0.6 0.0704 0.0688 0.0690 0.965

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1993 -50.9 0.2011 -50.4 0.0346 0.0313 0.0306 0.000

0.50 1.5 0.4055 MS 0.4129 1.8 0.4103 1.2 0.1081 0.1099 0.1186 0.938

CH 0.4326 6.7 0.4459 10.0 0.3006 0.2518 0.3558 0.859

RC 0.4030 -0.6 0.4004 -1.3 0.1052 0.0976 0.1011 0.938

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1022 -74.8 0.1036 -74.4 0.0237 0.0224 0.0223 0.000

0.90 2.5 0.9163 MS 0.9279 1.3 0.9221 0.6 0.0750 0.0720 0.0721 0.949

CH 0.9401 2.6 0.9289 1.4 0.1857 0.1599 0.2120 0.875

RC 0.9098 -0.7 0.9045 -1.3 0.0619 0.0584 0.0575 0.973

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.7412 -19.1 0.7406 -19.2 0.0393 0.0409 0.0395 0.004

0.70 2.5 0.9163 MS 0.9449 3.1 0.9376 2.3 0.1269 0.1279 0.1324 0.957

CH 0.9545 4.2 0.9511 3.8 0.2756 0.2394 0.3477 0.867

RC 0.8944 -2.4 0.8910 -2.8 0.0904 0.0878 0.0845 0.949

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.4434 -51.6 0.4438 -51.6 0.0272 0.0315 0.0307 0.000

0.50 2.5 0.9163 MS 0.9620 5.0 0.9460 3.2 0.2069 0.2263 0.2401 0.957

CH 0.9577 4.5 0.9601 4.8 0.3152 0.2761 0.4026 0.855

RC 0.8785 -4.1 0.8766 -4.3 0.1345 0.1263 0.1258 0.914

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.2254 -75.4 0.2270 -75.2 0.0191 0.0224 0.0223 0.000

0.90 4.0 1.3863 MS 1.4214 2.5 1.4080 1.6 0.1166 0.1162 0.1196 0.930

CH 1.4359 3.6 1.4159 2.1 0.2352 0.2004 0.2625 0.875

RC 1.3464 -2.9 1.3476 -2.8 0.0718 0.0687 0.0651 0.906

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 1.0967 -20.9 1.0997 -20.7 0.0449 0.0426 0.0422 0.000

0.70 4.0 1.3863 MS 1.4862 7.2 1.4587 5.2 0.2271 0.2405 0.2590 0.957

CH 1.4654 5.7 1.4196 2.4 0.3281 0.2837 0.3986 0.856

RC 1.2863 -7.2 1.2901 -6.9 0.1112 0.1079 0.1020 0.781

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.6384 -53.9 0.6388 -53.9 0.0337 0.0319 0.0312 0.000

0.50 4.0 1.3863 MS 1.4992 8.1 1.4446 4.2 0.3384 0.3698 0.3786 0.944

CH 1.4752 6.4 1.4155 2.1 0.3636 0.3168 0.4497 0.863

RC 1.2358 -10.9 1.2302 -11.3 0.1650 0.1496 0.1490 0.739

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.3206 -76.9 0.3228 -76.7 0.0227 0.0225 0.0221 0.000
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TABLE 2 Simulation results for the single-covariate rare disease case with dependent measurement error. 𝛽∗ is the true value of 𝛽. Bias(%)

is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values. SE is the mean of the estimated

standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of the asymptotic 95% confidence

interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Method 𝛽 Bias(%) 𝛽 Bias(%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4043 -0.3 0.4012 -1.1 0.0558 0.0525 0.0516 0.957

CH 0.4255 4.9 0.4314 6.4 0.1628 0.1345 0.1729 0.871

RC 0.4005 -1.2 0.4009 -1.1 0.0517 0.0499 0.0497 0.949

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.3299 -18.6 0.3315 -18.3 0.0392 0.0400 0.0382 0.531

0.70 1.5 0.4055 MS 0.4071 0.4 0.4055 0.0 0.0739 0.0730 0.0729 0.953

CH 0.4272 5.4 0.4406 8.7 0.2622 0.2126 0.3012 0.867

RC 0.3992 -1.5 0.3980 -1.8 0.0694 0.0669 0.0667 0.957

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1974 -51.3 0.1985 -51.0 0.0322 0.0308 0.0301 0.000

0.50 1.5 0.4055 MS 0.4156 2.5 0.4111 1.4 0.1020 0.1122 0.1175 0.953

CH 0.4267 5.2 0.4287 5.7 0.3036 0.2509 0.3561 0.855

RC 0.4016 -1.0 0.3995 -1.5 0.1007 0.0974 0.0995 0.949

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1023 -74.8 0.1042 -74.3 0.0224 0.0223 0.0224 0.000

0.90 2.5 0.9163 MS 0.9226 0.7 0.9091 -0.8 0.0763 0.0840 0.0801 0.949

CH 0.9386 2.4 0.9283 1.3 0.1835 0.1623 0.2210 0.859

RC 0.8798 -4.0 0.8778 -4.2 0.0579 0.0550 0.0552 0.887

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.7247 -20.9 0.7229 -21.1 0.0354 0.0392 0.0376 0.000

0.70 2.5 0.9163 MS 0.9415 2.8 0.9221 0.6 0.1341 0.1433 0.1346 0.961

CH 0.9492 3.6 0.9506 3.7 0.2732 0.2431 0.3613 0.867

RC 0.8631 -5.8 0.8669 -5.4 0.0861 0.0807 0.0779 0.879

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.4268 -53.4 0.4264 -53.5 0.0261 0.0297 0.0292 0.000

0.50 2.5 0.9163 MS 0.9616 4.9 0.9365 2.2 0.2144 0.2861 0.2327 0.953

CH 0.9367 2.2 0.9367 2.2 0.3046 0.2777 0.3913 0.871

RC 0.8675 -5.3 0.8698 -5.1 0.1360 0.1257 0.1246 0.902

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.2230 -75.7 0.2246 -75.5 0.0202 0.0219 0.0226 0.000

0.90 4.0 1.3863 MS 1.4056 1.4 1.3595 -1.9 0.1087 0.2276 0.2203 0.928

CH 1.4280 3.0 1.4047 1.3 0.2489 0.2089 0.2907 0.883

RC 1.2652 -8.7 1.2619 -9.0 0.0659 0.0635 0.0608 0.508

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 1.0416 -24.9 1.0429 -24.8 0.0417 0.0392 0.0386 0.000

0.70 4.0 1.3863 MS 1.4559 5.0 1.4036 1.2 0.2359 0.3021 0.2920 0.939

CH 1.4517 4.7 1.4043 1.3 0.3466 0.2888 0.4162 0.859

RC 1.2086 -12.8 1.2094 -12.8 0.0963 0.0962 0.0906 0.535

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.5969 -56.9 0.5988 -56.8 0.0304 0.0288 0.0284 0.000

0.50 4.0 1.3863 MS 1.4663 5.8 1.4039 1.3 0.3186 0.3821 0.3793 0.934

CH 1.4564 5.1 1.3922 0.4 0.3705 0.3192 0.4530 0.856

RC 1.2105 -12.7 1.1978 -13.6 0.1572 0.1490 0.1478 0.696

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.3135 -77.4 0.3149 -77.3 0.0239 0.0214 0.0221 0.000
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TABLE 3 Simulation results for the multiple-covariate rare disease case with independent covariates and independent measurement error.

𝛽∗ is the true value of 𝛽. Bias(%) is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values.

SE is the mean of the estimated standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of

the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Metho 𝛽 Bias(%) 𝛽 Bias(%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4118 1.6 0.4101 1.1 0.0512 0.0684 0.0573 0.949

CH 0.4136 2.0 0.4106 1.3 0.1962 0.1352 0.2432 0.772

RC 0.4074 0.5 0.4063 0.2 0.0486 0.0523 0.0507 0.945

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.3321 -18.1 0.3337 -17.7 0.0420 0.0410 0.0408 0.567

0.70 1.5 0.4055 MS 0.4175 3.0 0.4067 0.3 0.0761 0.0860 0.0814 0.957

CH 0.4292 5.8 0.4518 11.4 0.3221 0.2026 0.4050 0.749

RC 0.4066 0.3 0.4074 0.5 0.0700 0.0709 0.0684 0.949

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1997 -50.8 0.2017 -50.2 0.0333 0.0319 0.0320 0.000

0.50 1.5 0.4055 MS 0.4300 6.1 0.4148 2.3 0.1105 0.1402 0.1340 0.952

CH 0.4274 5.4 0.4542 12.0 0.3518 0.2358 0.4852 0.749

RC 0.4081 0.6 0.4065 0.3 0.1050 0.1016 0.0986 0.957

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1013 -75.0 0.1021 -74.8 0.0248 0.0228 0.0228 0.000

0.90 2.5 0.9163 MS 0.9429 2.9 0.9289 1.4 0.1076 0.1272 0.1230 0.937

CH 0.9757 6.5 0.9480 3.5 0.2110 0.1596 0.2607 0.785

RC 0.9109 -0.6 0.9133 -0.3 0.0536 0.0595 0.0569 0.961

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.7424 -19.0 0.7429 -18.9 0.0441 0.0415 0.0418 0.016

0.70 2.5 0.9163 MS 0.9657 5.4 0.9398 2.6 0.1901 0.2015 0.2146 0.955

CH 1.0211 11.4 0.9778 6.7 0.3117 0.2287 0.4124 0.754

RC 0.8962 -2.2 0.8896 -2.9 0.0883 0.0901 0.0865 0.930

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.4408 -51.9 0.4428 -51.7 0.0311 0.0318 0.0333 0.000

0.50 2.5 0.9163 MS 1.0264 12.0 0.9356 2.1 0.3004 0.3131 0.3227 0.938

CH 1.0330 12.7 1.0100 10.2 0.3453 0.2602 0.4751 0.762

RC 0.8868 -3.2 0.8738 -4.6 0.1235 0.1308 0.1308 0.930

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.2228 -75.7 0.2244 -75.5 0.0221 0.0226 0.0236 0.000

0.90 4.0 1.3863 MS 1.4395 3.8 1.4175 2.3 0.1245 0.1333 0.1490 0.943

CH 1.5051 8.6 1.4591 5.2 0.3151 0.2087 0.4670 0.769

RC 1.3467 -2.9 1.3496 -2.6 0.0732 0.0705 0.0683 0.902

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 1.0974 -20.8 1.0969 -20.9 0.0440 0.0438 0.0453 0.000

0.70 4.0 1.3863 MS 1.5253 10.0 1.4410 3.9 0.3180 0.3329 0.3486 0.936

CH 1.5592 12.5 1.5045 8.5 0.4789 0.2822 0.5824 0.741

RC 1.2853 -7.3 1.2782 -7.8 0.1074 0.1110 0.1091 0.805

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.6327 -54.4 0.6349 -54.2 0.0354 0.0326 0.0347 0.000

0.50 4.0 1.3863 MS 1.5407 11.1 1.4472 4.4 0.4363 0.4511 0.4404 0.925

CH 1.5903 14.7 1.5255 10.0 0.5249 0.3138 0.6286 0.706

RC 1.2423 -10.4 1.2252 -11.6 0.1481 0.1546 0.1546 0.789

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.3156 -77.2 0.3164 -77.2 0.0238 0.0229 0.0236 0.000
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TABLE 4 Simulation results for the multiple-covariate rare disease case with independent covariates and dependent measurement error. 𝛽∗

is the true value of 𝛽. Bias(%) is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values. SE

is the mean of the estimated standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of

the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Method 𝛽 Bias(%) 𝛽 Bias(%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4098 1.1 0.4057 0.1 0.0558 0.0564 0.0546 0.948

CH 0.4157 2.5 0.4113 1.4 0.2128 0.1334 0.2410 0.760

RC 0.4045 −0.2 0.4017 −0.9 0.0482 0.0511 0.0504 0.949

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.3339 −17.6 0.3367 −16.9 0.0417 0.0408 0.0406 0.571

0.70 1.5 0.4055 MS 0.4141 2.1 0.4062 0.2 0.0735 0.0833 0.0800 0.957

CH 0.4250 4.8 0.4472 10.3 0.3061 0.2026 0.4028 0.733

RC 0.4036 −0.5 0.4043 −0.3 0.0710 0.0690 0.0678 0.953

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1984 −51.1 0.1994 −50.8 0.0331 0.0315 0.0320 0.000

0.50 1.5 0.4055 MS 0.4312 6.4 0.4123 1.7 0.1164 0.1460 0.1453 0.957

CH 0.4299 6.0 0.4346 7.2 0.3686 0.2346 0.4725 0.753

RC 0.4084 0.7 0.4070 0.4 0.1048 0.1017 0.1004 0.953

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1019 −74.9 0.1031 −74.6 0.0260 0.0227 0.0233 0.000

0.90 2.5 0.9163 MS 0.9414 2.7 0.9183 0.2 0.0839 0.1050 0.1148 0.956

CH 0.9741 6.3 0.9437 3.0 0.2253 0.1617 0.2700 0.782

RC 0.8828 −3.7 0.8821 −3.7 0.0492 0.0562 0.0548 0.891

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.7284 −20.5 0.7276 −20.6 0.0411 0.0399 0.0400 0.004

0.70 2.5 0.9163 MS 0.9504 3.7 0.9223 0.7 0.1275 0.1366 0.1429 0.935

CH 1.0096 10.2 0.9775 6.7 0.3164 0.2295 0.4197 0.754

RC 0.8686 −5.2 0.8685 −5.2 0.0795 0.0833 0.0803 0.883

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.4271 −53.4 0.4276 −53.3 0.0298 0.0302 0.0318 0.000

0.50 2.5 0.9163 MS 1.0023 9.4 0.9252 1.0 0.2244 0.2382 0.2352 0.928

CH 1.0173 11.0 0.9848 7.5 0.3487 0.2594 0.4739 0.750

RC 0.8800 −4.0 0.8685 −5.2 0.1307 0.1311 0.1323 0.906

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.2219 −75.8 0.2228 -75.7 0.0235 0.0221 0.0238 0.000

0.90 4.0 1.3863 MS 1.4155 2.1 1.3822 −0.3 0.1549 0.1720 0.1881 0.942

CH 1.4825 6.9 1.4324 3.3 0.3299 0.2126 0.4456 0.764

RC 1.2701 −8.4 1.2703 −8.4 0.0645 0.0654 0.0639 0.571

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 1.0474 −24.4 1.0466 −24.5 0.0405 0.0405 0.0424 0.000

0.70 4.0 1.3863 MS 1.4339 3.4 1.3776 −0.6 0.3308 0.3563 0.3666 0.930

CH 1.5297 10.3 1.4711 6.1 0.4686 0.2837 0.5652 0.732

RC 1.2156 −12.3 1.2144 −12.4 0.1054 0.0997 0.0980 0.567

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.5969 −56.9 0.6004 −56.7 0.0320 0.0297 0.0320 0.000

0.50 4.0 1.3863 MS 1.4985 8.1 1.3904 0.3 0.4507 0.4740 0.4678 0.926

CH 1.5673 13.1 1.5050 8.6 0.5324 0.3130 0.6322 0.710

RC 1.2240 −11.7 1.2001 −13.4 0.1560 0.1549 0.1561 0.758

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.3112 −77.6 0.3120 −77.5 0.0249 0.0220 0.0234 0.000
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TABLE 5 Simulation results for the multiple-covariate rare disease case with dependent covariates and independent measurement error. 𝛽∗

is the true value of 𝛽. Bias(%) is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values. SE

is the mean of the estimated standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of

the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Method 𝛽 Bias (%) 𝛽 Bias (%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4095 1.0 0.4045 −0.2 0.0526 0.0570 0.0589 0.957

CH 0.4199 3.6 0.4149 2.3 0.1793 0.1364 0.2120 0.825

RC 0.3954 −2.5 0.3916 −3.4 0.0503 0.0482 0.0510 0.941

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.3221 −20.6 0.3215 −20.7 0.0393 0.0378 0.0398 0.375

0.70 1.5 0.4055 MS 0.4139 2.1 0.4063 0.2 0.0787 0.0902 0.0883 0.949

CH 0.4355 7.4 0.4363 7.6 0.2904 0.2044 0.3414 0.774

RC 0.3768 −7.1 0.3721 −8.2 0.0596 0.0638 0.0657 0.910

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.1861 −54.1 0.1840 −54.6 0.0304 0.0288 0.0305 0.000

0.50 1.5 0.4055 MS 0.4320 6.5 0.3959 −2.4 0.1214 0.1533 0.1429 0.941

CH 0.4391 8.3 0.4414 8.9 0.3502 0.2381 0.3977 0.770

RC 0.3603 −11.1 0.3601 −11.2 0.0824 0.0885 0.0870 0.906

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.0916 −77.4 0.0905 −77.7 0.0204 0.0203 0.0212 0.000

0.90 2.5 0.9163 MS 0.9375 2.3 0.9201 0.4 0.0837 0.1190 0.1109 0.937

CH 0.9507 3.8 0.9219 0.6 0.1921 0.1569 0.2324 0.840

RC 0.8767 −4.3 0.8719 −4.8 0.0541 0.0543 0.0581 0.875

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.7140 −22.1 0.7141 −22.1 0.0453 0.0373 0.0395 0.000

0.70 2.5 0.9163 MS 0.9738 6.3 0.9403 2.6 0.1825 0.2151 0.2035 0.934

CH 0.9886 7.9 0.9670 5.5 0.2972 0.2296 0.3536 0.809

RC 0.8191 −10.6 0.8130 −11.3 0.0862 0.0801 0.0827 0.699

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.4042 −55.9 0.4042 −55.9 0.0306 0.0280 0.0297 0.000

0.50 2.5 0.9163 MS 1.0112 10.4 0.9172 0.1 0.2953 0.3348 0.3250 0.928

CH 0.9965 8.8 0.9604 4.8 0.3475 0.2607 0.4162 0.805

RC 0.7736 −15.6 0.7737 −15.6 0.1150 0.1118 0.1099 0.683

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.1975 −78.4 0.1969 −78.5 0.0216 0.0196 0.0206 0.000

0.90 4.0 1.3863 MS 1.4361 3.6 1.3980 0.8 0.1537 0.2373 0.1928 0.938

CH 1.4638 5.6 1.3997 1.0 0.2668 0.2105 0.3759 0.824

RC 1.2871 −7.2 1.2805 −7.6 0.0675 0.0648 0.0665 0.606

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 1.0479 −24.4 1.0419 −24.8 0.0425 0.0392 0.0421 0.000

0.70 4.0 1.3863 MS 1.5063 8.7 1.4175 2.3 0.2952 0.3454 0.3020 0.920

CH 1.5515 11.9 1.4604 5.3 0.3985 0.2887 0.5080 0.807

RC 1.1605 −16.3 1.1516 −16.9 0.1026 0.0986 0.0994 0.383

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.5725 −58.7 0.5714 −58.8 0.0348 0.0285 0.0310 0.000

0.50 4.0 1.3863 MS 1.4931 7.7 1.4066 1.5 0.3796 0.4436 0.4172 0.918

CH 1.5455 11.5 1.4421 4.0 0.4568 0.3185 0.5594 0.792

RC 1.0735 −22.6 1.0742 −22.5 0.1330 0.1334 0.1296 0.367

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.2753 −80.1 0.2737 −80.3 0.0256 0.0197 0.0209 0.000
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TABLE 6 Simulation results for the multiple-covariate rare disease case with with dependent covariates and dependent measurement error.

𝛽∗ is the true value of 𝛽. Bias(%) is the relative bias, i.e. Bias(%)=100 × (𝛽 − 𝛽∗)∕𝛽∗. IQR is 0.74 times the interquartile range of the 𝛽 values.

SE is the mean of the estimated standard error of 𝛽. SD is the empirical standard deviation of the 𝛽 values. CR is the empirical coverage rate of

the asymptotic 95% confidence interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Mean Median
Corr(𝑋,𝑊 ) exp(𝛽∗) 𝛽∗ Method 𝛽 Bias (%) 𝛽 Bias (%) IQR SE SD CR
0.90 1.5 0.4055 MS 0.4132 1.9 0.4034 −0.5 0.0535 0.0638 0.0717 0.949

CH 0.4256 5.0 0.4184 3.2 0.1716 0.1510 0.2117 0.840

RC 0.3882 −4.3 0.3845 −5.2 0.0475 0.0467 0.0494 0.930

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.3201 −21.1 0.3190 −21.3 0.0385 0.0373 0.0389 0.363

0.70 1.5 0.4055 MS 0.4097 1.0 0.3965 −2.2 0.0741 0.0937 0.0875 0.953

CH 0.4247 4.7 0.3979 -1.9 0.3105 0.2402 0.3989 0.832

RC 0.3656 −9.8 0.3627 −10.5 0.0552 0.0612 0.0621 0.875

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.1804 −55.5 0.1782 −56.0 0.0308 0.0280 0.0294 0.000

0.50 1.5 0.4055 MS 0.4249 4.8 0.3938 −2.9 0.1226 0.1663 0.1591 0.936

CH 0.3966 −2.2 0.3846 −5.2 0.3626 0.2814 0.4833 0.816

RC 0.3519 −13.2 0.3498 −13.7 0.0848 0.0876 0.0842 0.890

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.0897 −77.9 0.0885 −78.2 0.0226 0.0200 0.0209 0.000

0.90 2.5 0.9163 MS 0.9330 1.8 0.9018 −1.6 0.0899 0.1134 0.1229 0.929

CH 0.9425 2.9 0.9136 −0.3 0.2188 0.1830 0.2600 0.871

RC 0.8400 −8.3 0.8350 −8.9 0.0495 0.0512 0.0541 0.625

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.6922 −24.5 0.6923 −24.4 0.0386 0.0356 0.0370 0.000

0.70 2.5 0.9163 MS 0.9499 3.7 0.9150 −0.1 0.1512 0.1800 0.1843 0.921

CH 0.9770 6.6 0.9371 2.3 0.3183 0.2731 0.4340 0.855

RC 0.7789 −15.0 0.7735 −15.6 0.0799 0.0733 0.0742 0.484

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.3834 −58.2 0.3838 −58.1 0.0297 0.0262 0.0273 0.000

0.50 2.5 0.9163 MS 0.9763 6.5 0.8980 −2.0 0.2604 0.3032 0.2847 0.896

CH 0.9659 5.4 0.9285 1.3 0.3232 0.3116 0.4971 0.863

RC 0.7554 −17.6 0.7568 −17.4 0.1147 0.1110 0.1063 0.641

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.1929 −79.0 0.1929 −78.9 0.0214 0.0189 0.0200 0.000

0.90 4.0 1.3863 MS 1.4213 2.5 1.3515 −2.5 0.1523 0.1813 0.1713 0.870

CH 1.4668 5.8 1.4018 1.1 0.2839 0.2350 0.4104 0.832

RC 1.2054 −13.1 1.1996 −13.5 0.0561 0.0602 0.0609 0.160

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.9925 −28.4 0.9893 −28.6 0.0387 0.0362 0.0386 0.000

0.70 4.0 1.3863 MS 1.4304 3.2 1.3619 −1.8 0.2769 0.3131 0.3011 0.870

CH 1.5199 9.6 1.4261 2.9 0.3573 0.3232 0.5417 0.848

RC 1.0864 −21.6 1.0744 −22.5 0.0961 0.0883 0.0886 0.129

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.5337 −61.5 0.5336 −61.5 0.0309 0.0259 0.0281 0.000

0.50 4.0 1.3863 MS 1.4489 4.5 1.3289 −4.1 0.3643 0.4592 0.4374 0.871

CH 1.5204 9.7 1.4437 4.1 0.3662 0.3563 0.5615 0.848

RC 1.0487 −24.4 1.0493 −24.3 0.1392 0.1332 0.1277 0.324

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.2686 -80.6 0.2676 −80.7 0.0230 0.0188 0.0204 0.000
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TABLE 7 HPFS Results. SE = standard error of estimate. SE Ratio = Ratio between the standard error of the estimate and the standard

error of the modified score estimate. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete

case, NA = naive.

Diet Score Coefficient BMI Coefficient
Method Estimate SE SE Ratio Estimate SE SE Ratio
Naive 0.0216 0.0027 0.1107 0.0867 0.0019 0.2346

CC 0.0788 0.0738 3.0246 0.0913 0.1335 16.4815

RC 0.0485 0.0096 0.3934 0.0867 0.0078 0.9630

CH 0.0136 0.0383 1.5697 0.0800 0.0220 2.7160

MS 0.0712 0.0244 1.0000 0.0865 0.0081 1.0000

validation study is 30 or more, with some caution needed with

Chen’s estimate of the standard deviation of the estimator.

In both the single-covariate and the multiple-covariate

setups, the empirical coverage rate of the asymptotic confi-

dence interval based on the MS method is generally close to

the nominal level of 95%, while for the RC method the cover-

age rate tended to be considerably below nominal for 𝑒𝛽 = 4.

For the multiple-covariate setup, we conducted additional

simulations to examine the bias of the MS method for larger

sample sizes. These results are reported in the Supplemen-

tary Web Materials in Tables S8-S9. When the sample size

is increased, the bias decreases, eventually to a very small

level.

4 EXAMPLE

We illustrate the method on data from the Health Profession-

als Follow-Up Study (HPFS), a prospective cohort study of

51,529 middle-aged (age 40-75 years at baseline) male health

professionals. Participants were recruited in 1986 and were

mailed questionnaires every other year to assess health status

and lifestyle. Here, we analyze the relationship between onset

of Type 2 diabetes (T2D) and a diet score relating to intake

of carbohydrates, protein, and fat (de Koning et al., 2011).

The diet score ranged from 0 to 30, with the score increas-

ing under a decrease in carbohydrate intake or an increase in

protein or fat intake. The analysis included the 41,616 study

participants who were free of T2D, cardiovascular disease, or

cancer at baseline, among whom there were 2,790 cases of

incident T2D during follow-up. Diet was assessed with a 131-

item semiquantitative food frequency questionnaire (FFQ), an

instrument which is subject to substantial measurement error.

In a subsample of 105 participants, another diet assessment

was carried out using a more accurate diet record (DR). The

analysis was stratified by age and adjusted for body mass index

(BMI). We analyzed the data using the naive Cox method, the

RC method, the complete case method, Chen’s method, and

our proposed MS method. There were only 6 events among the

105 individuals in the validation sample, which puts Chen’s

method and the complete case method at a very severe dis-

advantage. Table 7 presents the results for the various meth-

ods. For the regression coefficient for the diet score, the RC

estimate was considerably larger than the naive estimate, and

the MS and complete case estimates were noticeably larger

than the RC estimate. The estimate with Chen’s method was

lower than that with the naive method. The standard error with

Chen’s method was a bit over 1.5 times the standard error with

the MS method. For the regression coefficient for BMI, the

estimates were similar across all methods, and the standard

error with Chen’s method was 2.7 times that of the standard

error with the MS method.

5 SUMMARY AND DISCUSSION

We have developed a new method for covariate error cor-

rection in the Cox survival regression model, given internal

validation data. The method can handle covariate error of arbi-

trary form, not just independent additive measurement error.

Only a modestly-sized internal validation sample is required.

The method can handle the case where the number of covari-

ates is moderate to large. In a simulation study, the method

was found to perform very well in terms of bias reduction and

confidence interval coverage.

We have worked in the setting of time-independent covari-

ates, but it is possible to consider extension to the case of

time-dependent covariates. When the covariate processes are

measured on an approximately continuous basis (𝐖(𝑡) for the

full cohort and 𝐗(𝑡) for the internal validation sample), the

method and its asymptotic theory carry over with notational

changes only. The same is true in the case where the covari-

ate processes are measured only intermittently, as commonly

occurs in practice, but the processes vary slowly, so that car-

rying forward the last observed covariate value is a reasonable

approximation.

If the association between 𝐖 and 𝐗 is very weak, the

proposed estimate will remain consistent and asymptotically

normal, but the variance will be very high. If there is no asso-

ciation at all between 𝐖 and 𝐗, then 𝐖 is not a suitable

surrogate for𝐗 and no correction method will help. If the rela-

tionship between 𝐖 and 𝐗 is highly nonlinear, the working

model (4) can be modified to include nonlinear 𝑊 terms. A

plot of 𝑋𝑖𝑟 versus 𝑊𝑖𝑟 for the individuals in the internal val-

idation sample can be used to examine whether nonlinear 𝑊

terms are needed in the working model for 𝑋𝑖𝑟.

2 ZUCKER ET AL.426
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method.
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