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ABSTRACT

In the field of high-dimensional statistics, it is commonly assumed that only a

small subset of the variables are relevant and sparse estimators are pursued to ex-

ploit this assumption. Sparse estimation methodologies are often straightforward to

construct, and indeed there is a full spectrum of sparse algorithms covering almost all

statistical learning problems. In contrast, theoretical developments are more limited

and often focus on asymptotic theories. In applications, non-asymptotic results may

be more relevant.

The goal of this work is to show how non-asymptotic statistical theory can be

developed for sparse estimation problems that assume group sparsity. We discuss

three different problems: principal component analysis (PCA), sliced inverse regres-

sion (SIR) and multivariate regression. For PCA, we study a two-stage thresholding

algorithm and provide theories that go beyond the common spiked-covariance model.

SIR is then related to PCA in some special settings, and it is shown that the theory

of sparse PCA can be modified to work for SIR. Regression represents another im-

portant research direction in high-dimensional analysis. We study a linear regression

model in which both the response and predictors are grouped, as an extension of

group Lasso.

Despite the distinctions in these problems, the proofs of consistency and sup-

port recovery share some common elements: concentration inequalities and union

probability bounds, which are also the foundation of most existing sparse estima-

iii



tion theories. The proofs are presented in modules in order to clearly reveal how

most sparse estimators can be theoretically justified. Moreover, we identify those

modules that are possibly not optimized to show the limitation of the existing proof

techniques and how they could be extended.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Matrix and vector norms . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Principal Component Analysis with Group Sparsity . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Overview of Sparse PCA(SPCA) . . . . . . . . . . . . . . . . . . . 6
2.1.2 Group Sparsity in PCA . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Outline and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 SPCA based on penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 SPCA via regression formulation (SPCA-reg) . . . . . . . . . . . . 11
2.2.2 SPCA with soft-thresholded power method (SPCA-Power) . . . . . 13
2.2.3 SPCA via semidefinite programming (SPCA-SDP) . . . . . . . . . 15

2.3 SPCA based on thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 SPCA with diagonal thresholding (SPCA-DT) . . . . . . . . . . . . 18
2.3.2 SPCA with augmented thresholding (SPCA-AT) . . . . . . . . . . 19

2.4 Statistical property of SPCA-DT and SPCA-AT . . . . . . . . . . . . . . . . 21
2.4.1 Distance between linear subspaces . . . . . . . . . . . . . . . . . . 21
2.4.2 Single-spike and i.i.d. noise, D = 1, Σe = σ2

eIp . . . . . . . . . . . . 23
2.4.3 Single-spike and non-i.i.d. noises, D = 1, Σe 6= σ2

eIp . . . . . . . . . 35
2.4.4 Multiple spikes D > 1 . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 Exponential tail bounds . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.2 Eigenvalue and eigenvector perturbation . . . . . . . . . . . . . . . 61

III. Sliced Inverse Regression with Group Sparsity . . . . . . . . . . . . . . . . . 64

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Sparse SIR methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 SSIR using SPCA-SDP . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 SSIR via Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Thresholding-based SSIR . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.4 Idea of refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Statistical property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Special case: Gaussian linear model . . . . . . . . . . . . . . . . . . 74
3.3.2 General model, D = 1, ΣX = Ip . . . . . . . . . . . . . . . . . . . . 80
3.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Simulation on SSIR-DT/AT . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.1 Asymptotic rate of sample size . . . . . . . . . . . . . . . . . . . . 85
3.4.2 Choice of slice number H . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Comparison of SSIR methods . . . . . . . . . . . . . . . . . . . . . . . . . . 99

IV. Regression with Block Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Statistical consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Exact sparsity recovery . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Lower bound of λn . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.4 Compare to Lasso and group Lasso . . . . . . . . . . . . . . . . . . 121
4.2.5 Disregard block structure . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.1 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Numerical study on
∥∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥∥
∞,F

. . . . . . . . . . . . . . . . . 133

V. Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

BIBLOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vi



LIST OF FIGURES

Figure

2.1 Probability of estimating the correct sparse set . . . . . . . . . . . . . . . . . . . . 20
3.1 Model I, Σ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Model I, Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3 Model II, Σ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Model II, Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.5 Model III, Σ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 Model III, Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.7 Model IV, Σ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.8 Model IV, Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.9 Model V, Σ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.10 Model V, Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.11 Rows corresponding to Model I to V, respectively; ΣX = Σ1 . . . . . . . . . . . . . 91
3.12 Rows corresponding to Model I to V, respectively; ΣX = Σ2 . . . . . . . . . . . . . 92
3.13 Model I, top two rows: Σ1, bottom two rows: Σ2. . . . . . . . . . . . . . . . . . . . 94
3.14 Model II, top two rows: Σ1, bottom two rows: Σ2. . . . . . . . . . . . . . . . . . . 95
3.15 Model III, top two rows: Σ1, bottom two rows: Σ2. . . . . . . . . . . . . . . . . . . 96
3.16 Model IV, top two rows: Σ1, bottom two rows: Σ2. . . . . . . . . . . . . . . . . . . 97
3.17 Model V, top two rows: Σ1, bottom two rows: Σ2. . . . . . . . . . . . . . . . . . . 98
4.1 Empirical probability of exact recovery against raw sample size vs. scaled sample

size, logarithmic sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2 Empirical probability of exact recovery against raw sample size vs. scaled sample

size, linear sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 The distribution of
∥∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥∥
∞,F

when s increases. . . . . . . . . . . . 134

vii



LIST OF TABLES

Table

2.1 Compare the performance of various SPCA algorithm under a wide range of set-
tings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Trade off between sample size and signal. nρ2 = 4000. . . . . . . . . . . . . . . . . 57
2.3 Performance when p increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Comparison between various SSIR methods. . . . . . . . . . . . . . . . . . . . . . . 100

viii



CHAPTER I

Introduction

1.1 Overview

We study various statistical methods for group sparsity, i.e. sparsity defined on

groups of coefficients and not on individuals. A typical example is multi-variate linear

regression Y = Xβ + ε where Y, ε ∈ Rn×D, X ∈ Rn×p and β ∈ Rp×D. If we know

that only a small subset of Xd’s are relevant in the model, then β has many zero rows,

or row-wise sparse. An interpretable estimator should ideally also be row-wise sparse,

so that it achieves variable selection simultaneously. One can simply regress each

dimension of the response variables separately, and make estimator of the columns

β·d sparse. Some well-studied estimators like the Lasso estimator or the Dantzig

selector can be used. The implementation of these estimators can be easily carried

out by `1 linear programming, and well-established packages are available. However,

without any ad hoc treatment, “common support” is not guaranteed, in which case

the variables selected are the union of the supports of all of the D eigenvectors.

Also, one needs to tune the D sub-problems individually, which adds complication

and may cause over-tuning.

Alternatively, the goal can be recovering the row-wise support directly. In this

regard, instead of running D Lasso regression, one can apply a group-Lasso penaliza-
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tion, β̂ = arg min 1
2n
‖Y −Xβ‖2

F + λ
∑p

j=1

∥∥βj·
∥∥

2
. By tuning λ, the elements in the

same row of β̂ will be zero or non-zero simultaneously. In regard to the group-wise

sparse assumption (that only a few variables Xi’s are relevant), this estimator seems

to be more suitable. However, generally speaking, the group sparsity assumption

presents more challenges both computationally and theoretically.

Many statistical problems have a group-wise sparse version. In linear regression,

two closely related topics are group Lasso (Yuan and Lin 2006, Nardi and Rinaldo

2008, Bach 2008, Huang and Zhang 2010) and sparse multivariate-response regression

(Karim Lounici and Tsybakov 2011, Meier et al. 2009, Obozinski et al. 2011, Negah-

ban et al. 2012, Liu and Zhang 2008). The fundamental idea behind these works is

to use some group-wise norm of the coefficients as the penalty so that coefficients

in the same group shrink to 0 simultaneously. For instance, in the principal compo-

nent analysis (PCA) literature, Johnstone and Lu (2009), Birnbaum et al. (2013),

Ma (2013) use thresholding to screen variables so that the resulting PC loadings

share the same sparsity. A lot of works on the other hand apply regularization-

based approaches to achieve sparsity, e.g. Jolliffe et al. (2003), Zou and Xue (2006),

Journée et al. (2010), Witten et al. (2009), Shen and Huang (2008), d’Aspremont

et al. (2005). It is common that PC’s are estimated sequentially so that common

support is not guaranteed, but usually the algorithm can be modified to achieve

common support. Techniques that “sparsify” PCA usually can also be applied to

other eigenvalue problems like generalized eigenvalue problem (GEP) and canonical

correlation analysis (CCA). In sliced inverse regression (SIR), recent development

also considered common support, e.g. Zhu et al. (2011), Lin et al. (2018), Tan et al.

(2017).
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1.2 Contribution

In this thesis, we investigate three topics: sparse PCA, sparse SIR and block-wise

penalized regression. Our main contribution is to demonstrate how to construct non-

asymptotic statistical theories for sparse estimators that assume group sparsity. The

proofs of all these results share two common elements: concentration inequalities and

union probability bounds, which are also the basis of most approaches in the sparse

estimation literature. When converted to asymptotic theories, our results are either

comparable or better than those in the literature.

Another contribution is the clarification of the proof structure. We present the

proofs in modules so that, with suitable modifications, they would work for different

model assumptions than those assumed in this work. Also, we can easily identify

the modules that are possibly not optimized to show the limitation of our proof

techniques.

Finally, we make some interesting observations from our numerical studies. For

sparse PCA, our simulations show that thresholding-based methods actually perform

as well as regularization-based methods, even though the ideas are naive. For sparse

SIR, we observe that the slice size is an important factor that affects the performance

of the approach.

1.3 Notation

1.3.1 Slicing

Since we deal with groups and blocks of elements a lot, we need to first set up a

notation system of slicing.

For vector v ∈ Rn, we use vi to denote its i-th element; for a subset of indices

I = {i1, ..., is} ⊆ {1, 2, ..., n}, vI is the sub-vector (vi1 , ..., vis). When there is a clear
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grouping of elements {1, 2, ..., n} = ]pj=1Gj, we may also use v[j] to denote vGj .

For matrix M ∈ Rn×m, we use two subscripts to indicate row index and column

index, respectively. For example, Mij is the element at the i-th row and the j-th

column, where one or both of the subscripts can refer to subsets; for example if

I = {1, 2}, then M1I =

(
M11 M12

)
, MI1 =



M11

M21


, and MII =



M11 M12

M21 M22


. If

we want to select all elements in one row/column or a subset of rows/columns, then

we use “ · ” to stand for full set, so for example, M1 · =

(
M1 · · · M1m

)
, M · I =




M11 M21

...
...

Mn1 Mn2




. When the matrix is partitioned in rows {1, 2, ..., n} = ]pj=1Gj, then

we denote M[j] = MGj · ; if it is partitioned in columns {1, 2, ...,m} = ]pj=1Hk, then

M[k] = M ·Hk . If the matrix is partitioned two ways, so that {1, 2, ..., n} = ]pj=1Gj

and {1, 2, ...,m} = ]lk=1Hk, then we use M[jk], M[j · ] and M[ · k] to indicate a single

block, row of blocks and column of blocks. We might also include several rows or

columns of blocks. For example, if I = {1, 2}, then M[II] =



M[11] M[12]

M[21] M[22]


.

1.3.2 Matrix and vector norms

For a vector v = (v1, ..., vp), we denote ‖v‖0 = #{i : vi 6= 0}, and ‖v‖q =

(
∑n

i=1 |vi|q)1/q for q > 0. Some common examples are ‖v‖2 =
√∑n

i=1 v
2
i and ‖v‖1 =

∑n
i=1 |vi|. If the elements of v are grouped into p groups {1, 2, ..., n} = ]pj=1Gj, then

we define ‖v‖p,q =
∥∥∥
(
‖vG1‖q , · · · ,

∥∥vGp
∥∥
q

)∥∥∥
p
. A common example is the group Lasso

penalty, ‖v‖1,2 =
∑p

j=1

∥∥vGj
∥∥

2
.

For a matrix M ∈ Rn×m, we denote by σmin (M), σmax (M) the minimal and max-

imal singular values of M . Denote the operator norm of M by ‖M‖op = max
‖Mv‖op
‖v‖op

,
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which is just σmax (M), but is used when M is a positive semi-definite matrix. Denote

Frobenius norm ‖F‖2
F =

∑
i,jM

2
ij, and nuclear norm ‖M‖∗ =

∑m∧n
d=1 σd(M), where

σd(M) is the d-th singular value of M . We use ‖M‖∞→∞ to denote operator norm

w.r.t. `∞ vector norm.

We use two subscripts to denote for group-wise or block-wise norm. The second

subscript indicates the norm applied to sub-groups/blocks; the first subscript indi-

cates the norm applied to the norms of sub-groups/blocks. For example, we use

‖M‖1,2 =
∑m

j=1 ‖Mj · ‖2 stands for the sum of row norms; if rows of M are divided

in to p groups {1, 2, ..., n} = ]pj=1Gj, then ‖M‖1,F =
∑p

j=1

∥∥MGj ·
∥∥

F
stands for the

sum of block norms.

1.3.3 Miscellaneous

Denote zero vector and one vector by 0n = (0, ..., 0) and 1n = (1, ..., 1), respec-

tively; let 0n×m,1n×m be n by m matrices with all zero and one elements, respec-

tively. The diagonal matrix with diagonal elements v = (v1, v2, ...) is denoted by

M = diag(v). The identity matrix of size p is denoted by In = diag(1n). Denote

the Kronecker product of two matrices by M1 ⊗M2.

For a vector v = (v1, ..., vn) and a c > 0, denote soft-thresholding operator by

T (v, c) = (sign(v1 − c)(v1 − c)+, ..., sign(vn − c)(vn − c)+)

and let T (M, c) be the element-wise soft-thresholding on matrix M .

We also set asymptotic notation of sequences. Let {an} and {bn} be two sequences

of numbers. We say an � bn if there exists C > 0 so that |an| > C|bn| when n is large

enough; if for any C > 0, |an| > C|bn| when n is large enough, then we say an � bn;

if there exists 0 < c < C so that c|bn| < |an| < C|bn| when n is large enough, then

an � bn; if bn � (�)an, then an � (≺)bn.



CHAPTER II

Principal Component Analysis with Group Sparsity

2.1 Introduction

2.1.1 Overview of Sparse PCA(SPCA)

PCA is widely applied for dimension reduction, which is especially useful for high-

dimensional data. The ordinary PCA is equivalent to eigenvalue decomposition and

singular value decomposition. The leading PC loadings of a data matrix X ∈ Rn×p

are just the leading right singular vectors, or leading eigenvectors of XTX/n. In the

rest of the work, we will use the terms: loadings, eigenvectors, leading directions

interchangeably.

There are two main reasons why a sparse version of PCA is desirable. The first

reason is interpretability. When p is large, the loadings are hard to interpret because

they are simply vectors full of small non-zero numbers. It is preferable to have sparse

loadings because it would be easier to determine which variables are important for

explaining the variability.

Another reason, which is more important in our opinion, is consistency. It is

well-known that sample eigenvectors are generally poor estimators of the population

eigenvectors when dimension is truly high. To be more specific, p/n has to con-

verge to 0 in order for the sample eigenvectors to be consistent. The inconsistency

phenomenon occurs not only when X are samples from multivariate Gaussian distri-

6
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bution, but also occurs for other model setups. Some regularization is thus needed

in order for PCA to be actually useful. Even if sparsity is not intended, a sparse

estimator may still be better than ordinary PCA.

In order to get sparse eigenvectors, there are two approaches: penalization and

thresholding. The penalization approach is to formulate PCA as some optimization

problem and then add a sparsity-inducing penalty (or constraint, which usually has

an equivalent penalization form). In the literature, a common approach is `1 penal-

ty/constraint as a relaxation of `0 constraint. For example, in an early work, Jolliffe

et al. (2003) propose ScotLass. To get the top eigenvector, it solves the following

optimization problem

maximize:
v∈Rp

vTXTXv

subject to: ‖v‖2 ≤ 1, ‖v‖1 ≤ τ .

This is a natural way to “sparsify” eigenvectors. Without the `1 sparsity con-

straint, the solution is exactly the top eigenvector. ScotLass is inspired by Lasso,

but the computation complexity is high because it is not convex. A lot of follow-up

works aim to provide efficient algorithms to approximately solve it. Basically, in-

stead of solving a non-convex optimization like in ScotLass, one can penalize some

equivalent forms that are still easy to compute after adding the `1 penalty.

The thresholding approach is to first screen the variables, obtain the eigenvectors

based on the included subset, and make the loadings of the excluded variables zero.

By thresholding, solving eigenvectors of a large matrix is totally avoided, so the

computation is usually much lighter then penalization-based approaches.

The easiest thresholding-based method is diagonal thresholding (DTSPCA) pro-

posed by Johnstone and Lu (2009). The idea is to exclude variables whose marginal

sample variances are small. This method is crude because the covariance informa-
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tion is not used. Some follow-up works proposed extra thresholding steps to improve

the performance and to achieve near-optimal error rate. Examples include augment-

ed SPCA (ASPCA) proposed by Birnbaum et al. (2013) and iterative thresholding

(ITSPCA) proposed by Ma (2013).

Various theoretical results have been derived. Zou et al. (2018) provided a review

on SPCA and a comprehensive list of references on the theoretical aspects of SPCA.

It is not always possible to exactly compare different theoretical results because they

are based on various model assumptions. Some typical technical differences are:

exact sparsity ‖v‖0 ≤ s versus approximate sparsity ‖v‖q ≤ s for some 0 < q < 1;

fixed rank D versus D diverging with sample size n; Gaussian distribution versus non-

Gaussian (typically sub-Gaussian) distribution; whether n or signal-to-noise ratio ρ

goes to infinity, and so on. There are three types of theories that can be of interest:

minimax lower bounds, upper bounds of estimation error and so-called computational

lower bounds. Essentially, the minimax error rate of the estimated eigenvectors is

s log(p/s)
nρ

, while the upper bound is of rate s log p
nρ

. A computational lower bound is the

minimal sample size for consistency. Even if we prove the upper bound of error is of

rate s log p
nρ

, having n � s log p
ρ

may not be enough for consistency, because sometimes

the error bound needs an extra sample size assumption to hold. Typically, it is

assumed s2 log p
nρ

= O(1), and several works have proved that n � s2−δ log p
ρ

is necessary.

2.1.2 Group Sparsity in PCA

Often, the top PC is not enough to represent the data. To get subsequent sparse

eigenvectors is less straight forward than getting the top sparse eigenvectors, espe-

cially for penalization-based methods. There are two potential choices that one can

make when constructing an algorithm.

The first choice, which is relevant to our main topic, is whether to control the
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sparsity of multiple eigenvectors separately or jointly. If V̂ = (v̂1, ..., v̂D) are the

estimated leading eigenvectors, then one may want to control common support

{k : v̂dk 6= 0 ∃d ≤ D}. We call this group-wise sparse PCA (GSPCA). Note that

thresholding-based approaches naturally achieve common support, so GSPCA is the

same as SPCA for thresholding; besides, if only the top PC is sought, then GSPCA

reduces to SPCA. Thus, group sparsity is non-trivial when using a penalization-

based approach to go beyond top PC. In the literature of SPCA, group sparsity is

rarely considered, so most penalized SPCA algorithms need to be modified to serve

as GSPCA algorithms.

The second choice, is whether the target of the algorithm is the actual eigenvec-

tors (v1, ...,vD) or the leading principal space (or eigen-space) V = span〈v1, ...,vD〉.

If we only care how much information is retained by the top D PC’s, then the

eigen-space is good enough, because span〈v1, ...,vD〉 = span〈v′1, ...,v′D〉 mean-

s (Xv1, ...XvD) and (Xv′1, ...,Xv′D) contain equivalent information. This is often

enough if the purpose is dimension reduction.

These two choices are connected with each other. If the individual eigenvectors

are of interest, and the goal is to estimate the actual eigenvectors, then it is quite

inevitable to use some sequential style algorithms. Typically, the idea is to first esti-

mate the top eigenvector v̂1; then when estimating the next eigenvector v̂2, one can

apply an extra restriction v̂T1 v̂2 = 0; another option is to obtain the top eigenvector

of X(Ip− v̂1v̂
T
1 ) as v̂2 = 0. Note that it is hard to control the estimated eigenvectors

to have common support with this type of algorithm,

If the individual eigenvectors are not of interest, and the goal is just to estimate

the leading eigen-space, then one can estimate all eigenvectors together by solving

one optimization. In that way it is easier to get common support. For example, with
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the same rationale as group Lasso, one may add ‖V ‖1,2 =
∑p

j=1 ‖Vj · ‖2 as penalty to

minV TV=Ip −tr
(
V TXTXV

)
. It is easy to see that without `1 penalty, the algorithm

does not even have a unique solution. Indeed, the objective is summation of the

variance of the leading PC’s; any orthonormal transformation V O where OTO = ID

will not change the objective at all. Thus, with penalty added, one should not

expect that estimator is close to the true eigenvectors, but only close to some linear

transformation of the eigenvectors. Thus, such algorithm is only valid if the target

is the eigen-space. For example, if we have p = 100 variables, but we want to reduce

to D = 3 using only s = 10 of them, then our goal falls into this category.

Note that if a thresholding-based approach is used, then naturally the estimated

vectors that share the same support, so the above differentiation is irrelevant.

2.1.3 Outline and setup

Here is the layout of this chapter. In section 2.2 we review some typical penalization-

based SPCA algorithms. We will modify these algorithms so the estimated PC

loadings share the same support, thus achieving the model selection purpose more

efficiently. In section 2.3 we will specify two thresholded SPCA algorithms, and in

section 2.4 we provide some non-asymptotic error bounds of the estimated leading

space using thresholded SPCA. These results are the foundation for the more compli-

cated SIR problem. Finally, in section 2.5 we run some numerical studies to compare

different SPCA algorithms.

Throughout this chapter, we assume that the data matrix X is generated from a

“fixed-design” spiked model, that is

X = USVT + ε ,

where U = (u1, ...,uD) ∈ Rn×D and V = (v1, ...,vD) ∈ Rp×D satisfies UTU
n

=
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VTV = ID. S = diag(σ1, ..., σD) are the population singular values. For conve-

nience, we denote Λ = S2, λd = σ2
d. Conceptually USVT is the low rank signal

matrix, contaminated by noise ε ∈ Rn×p which we assume to have i.i.d. rows,

εi · ∼ Norm(0,ΣE). The goal is to estimate the population leading principal space,

denoted by V = colspan〈V〉. For simplicity, throughout this work we assume that

1TnU = 0 so that we never need to worry about centering.

We make this model assumption so that it can be used in analysis of the sparse

sliced inverse regression (SSIR) in the next Chapter. Traditionally, U is assumted

to be standard Gaussian ensemble that is independent of ε. Here we instead assume

U to be a fixed matrix such that UTU/n = ID, which is actually more general, and

theory can be easily adapted to any random U using some conditional arguments.

We first assume ε to be i.i.d. Gaussian ensemble, that is ΣE = σ2
eIp; then we relax

this assumption to the non i.i.d. noise.

2.2 SPCA based on penalization

2.2.1 SPCA via regression formulation (SPCA-reg)

The first efficient SPCA algorithm was proposed by Zou and Xue (2006). It

was directly called SPCA in the original work, but to avoid ambiguity, we name it

SPCA-reg. Consider the “minimal residual variance” formulation of PCA, that is

minimize:
1

n

∥∥X(Ip − V V T )
∥∥2

F

subject to: V TV = ID .

Note that the optimal solution is not unique. The sample PC loading vectors V̂load is

one of the solutions; any right orthonormal transformations of V̂load are also solutions.

Obviously, we can introduce a duplicate argument U , and the above problem is
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equivalent to the following

minimize:
1

n

∥∥X(Ip − V UT )
∥∥2

F

subject to: UTU = ID, U = V .

Note that by removing the equality constraint U = V , the estimated leading space

will not change. More precisely, if (Û , V̂ ) is one solution of

minimize:
1

n

∥∥X(Ip − V UT )
∥∥2

F

subject to: UTU = ID .

then there exists an orthonormal matrix O ∈ RD×D, and some constant c1, ..., cD,

such that ÛO = V̂load, and V̂ = V̂loaddiag(c1, ..., cD)O. Therefore colspan〈V̂ 〉 =

colspan〈V̂load〉 is the sample leading space. It can also be proved that the estimated

leading space will not change by adding a ridge penalty to the objective function.

Remark II.1. In the original paper (Zou and Xue 2006, Theorem 3), the author

stated that columns of non-sparse-penalized V̂ are parallel to the columns of V̂load, i.e.,

V̂ = V̂loaddiag(c1, ..., cD) for some c1, ..., cD. Thus after getting the sparse-penalized

V̂ , they normalize by columns to get estimator of the actual PC loading vectors. This

is incorrect, as the optimization is not targeting the eigenvectors, but the linear space

spanned by them.

Since sparsity is desired, Zou and Xue (2006) proposed the following optimization

criterion

minimize:
U,V ∈Rp×D

1

n

∥∥(Ip − UV T )XT
∥∥2

F
+ λ1 ‖V ‖2

2 + λ2 ‖V ‖1

subject to: UTU = ID ,

and to solve this optimization problem, they use an alternating optimization algo-

rithm. Fixing U , solving V is equivalent to solving minV
1
n
‖XU −XV ‖2

F +λ1 ‖V ‖2 +

λ2 ‖V ‖1, which can be broken down to D elastic net regression problems. Fixing V ,
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solving U is equivalent to minUTU=ID −tr
(
V TXTXU

)
, which is an SVD problem.

Updating U and V alternatively until convergence, one will eventually get V̂ , whose

column span V̂ = colspan〈V̂〉 is an estimator of leading principal space V .

The algorithm is efficient because it separates the sparsity penalty from eigen-

solver. In SPCA-reg, one of the two steps is a regression and the other is an eigen-

solver, and sparsity is only applied to the regression problem. This “separation” is

a common feature of efficient SPCA algorithms.

In order to get a common support, we only need to change the penalty and

optimize the following instead

minimize:
U,V ∈Rp×D

1

n

∥∥(ID − UV T )XT
∥∥2

F
+ λ ‖V ‖1,2

subject to: UTU = ID .

This can be solved using Algorithm 1

Algorithm 1 GSPCA via regression (GSPCA-Reg)

1: Initialize V (0) ∈ Rp×D.
2: S = XTX/n.
3: For k = 0, 1, 2, ...,, repeat the following until convergence:
4: Normalization: Let Z(k+1) = SV (k), and suppose SVD of Z(k+1) = LSR. Then update U

by:
U (k+1) = LR

5: Group Lasso: Let Y (k+1) = XU (k+1); Get V (k+1) by solving:

(2.1) minimize:
1

n

∥∥∥Y (k+1) −XV
∥∥∥
2

F
+ λ ‖V ‖1,2

which can be solved by block coordinate descent.
6: V̂ = V (k), V̂ = colspan〈V (k)〉.

2.2.2 SPCA with soft-thresholded power method (SPCA-Power)

To get the top PC, Witten et al. (2009) proposed the following optimization

criterion

maximizeu∈Rn,v∈Rp : uTXv

subject to : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖v‖1 ≤ τ .
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For any fixed v, the optimal u is u = Xv/ ‖Xv‖2; if we take in the optimal u, then

the above criterion becomes ScotLass criterion. However, this criterion naturally

suggests an alternate optimization scheme. When fixing u, optimizing over v is to

find the minimal soft-threshold c on XTu such that

∥∥∥∥∥
T (XTu, c)∥∥(T (XTu, c)

∥∥
2

∥∥∥∥∥
1

≤ τ .

The left hand side is monotonic in c, so finding c is a one-dimensional nonlinear

problem, and is easy to compute.

To get subsequent loadings, Witten et al. (2009) proposed an sequential algorithm:

maximize:
uk∈Rn,vk∈Rp

uTkXvk

subject to: ‖uk‖2 ≤ 1, uk ⊥ u1, ..., uk−1

‖vk‖2 ≤ 1, ‖vk‖1 ≤ τ .

In order to get a common support, we can optimize over all eigenvectors together,

for instance

maximize:
U∈Rn,V ∈Rp

tr
(
UTXV

)

subject to: UTU = ID, ‖V ‖2
F ≤ D, ‖V ‖1,2 ≤ τ .

Note that ‖V ‖2
F ≤ D is quite a big relaxation of the orthonormal restriction

V TV = ID. With this relaxation, optimizing V with U fixed is easy to solve according

to the following lemma.

Lemma II.2. For W ∈ Rp×D, let w = (w1, ..., wp) such that wj = ‖Wj · ‖2. To solve

(2.2) max
‖V ‖2F≤D
‖V ‖1,2≤τ

tr
(
W TV

)
,

it is sufficient to find the soft threshold c such that

∥∥∥∥
T (w, c)

‖T (w, c)‖2

∥∥∥∥
1

=
τ√
D
,
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and then V̂ can be obtained by

V̂j · =
Wj ·

wj
× (wj − c)+

‖(wj − c)+‖2

×
√
D.

Optimizing U with V fixed is an SVD problem. In summary we get algorithm 2

which is a orthogonal iteration algorithm with an added soft thresholding.

Algorithm 2 GSPCA through soft-thresholded power method (GSPCA-Power)

1: Initialize V (0) ∈ Rp×D.
2: For k = 0, 1, 2, ...,, repeat the following until convergence:
3: SVD: Conduct SVD on XV (k) = LSR. Let

U (k) = LR

4: Soft thresholding: Let W = XTU (k+1), w = (w1, ..., wp) where wj = ‖Wj · ‖2. Solve for c

∥∥∥∥
T (w, c)

‖(T w, c)‖2

∥∥∥∥
1

=
τ√
D

Update V (k+1) so that V
(k+1)
j · =

Wj ·
wj
× (wj−c)+
‖(wj−c)+‖2

×
√
D

5: V̂ = V (k), V̂ = colspan〈V (k)〉.

2.2.3 SPCA via semidefinite programming (SPCA-SDP)

A clever SDP relaxation of SPCA was proposed by d’Aspremont et al. (2005). To

get the leading eigenvector, instead of optimizing over eigenvector v, they optimize

over F = vvT . The feasible set of F consists of rank-1 projection matrices. This is a

non-convex set, so the optimization over it is hard to compute. A convex relaxation

tr (F ) = 1 is then used instead.

To estimate subsequent PC’s, d’Aspremont et al. (2005) propose a sequential style

algorithm. If the goal is to estimate the leading principal space, then we can also solve

all eigenvectors together. Before relaxation and sparse penalization, the following

optimization gives leading eigen-space

maximize: : tr
(
SnV V

T
)

subject to: V V T is a rank D projection matrix .
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Relax the feasible set of F = V V T and we get

maximize: tr (SnF )

subject to: ‖F‖∗ ≤ D, ‖F‖op ≤ 1 .

Since F = V V T , where V is supposed to have a few non-zero rows, F is thus

sparse at least. We can add a sparse penalty

maximize: tr (SnF ) + λ ‖F‖1

subject to: ‖F‖∗ ≤ D, ‖F‖op ≤ 1 ,

which can be solved using ADMM similar to the SCCA algorithm proposed by Gao

et al. (2017). Specifically, the augmented Lagrangian is

Lη(F,G,H) = −tr (SnF ) + λ ‖F‖1 +∞1{‖G‖op > 1}+∞1{‖G‖∗ > D}

+ 〈H,F −G〉+
η

2
‖F −G‖2

F .

The ADMM scheme is to iteratively update F,G,H

F (t+1) = arg minLη(F (t), G(t), H(t)) ,(2.3)

G(t+1) = arg minLη(F (t+1), G(t), H(t)) ,(2.4)

H(t+1) = H(t) + η(F (t+1) −G(t+1)) .(2.5)

One of the key updating steps (2.3) is equivalent to solving

F (t+1) = arg min
η

2

∥∥∥∥F −G(t) +
1

η
(H(t) − Sn)

∥∥∥∥
2

F

+ λ ‖F‖1

whose solution is soft thresholding F (t+1) = T
(
G(t) − (H(t) − Sn)/η, λ/η

)
. Another

updating step (2.4) is equivalent to

G(t+1) = arg min
‖G‖∗≤D
‖G‖op≤1

∥∥G− F (t+1) −H(t)/η
∥∥2

F
.
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Let the SVD of F (t+1) + H(t)/η be LSR, where S = diag(s1, ..., sp). Then the

solution G(t+1) = LS′R, where S′ = diag(s′1, ..., s
′
p), is obtained by“capped soft

thresholding”, i.e. finding c so that s′j = 1 ∧ (sj − c) satisfies
∑p

j=1 s′j = D. The

algorithm is summarized in Algorithm 3.

Algorithm 3 SPCA through SDP relaxation (SPCA-SDP)

1: Initialize F (0), G(0) ∈ Rp×p, H(0) = 0p×p.
2: For k = 0, 1, 2, ...,, repeat the following until convergence:
3: W (t) = G(t) − (H(t) − Sn)/η
4: F (t+1) = T

(
W (t), λ/η

)
.

5: SVD: F (t+1) +H(t)/η = LSR.
6: G(t+1) = LS′R, where S′ is capped soft thresholding of S, i.e. find c so that s′j = 1 ∧ (sj − c)

satisfies
∑
j s′j = D.

7: H(t+1) = H(t) + η(F (t+1) −G(t+1)).
8: F̂ = (F̂ + F̂T )/2 (can be skipped because F (t) will already be symmetric).
9: V̂ is the leading D eigenvectors of F̂ .

Note that the estimated vectors do not have common support. In order to get

common support, we can modify the Algorithm 3. When updating F , we soft thresh-

old W (t) = G(t) − (H(t) − Sn)/η by rows/columns. More specifically, let the norm of

rows to be wj =
∥∥∥W (t)

j ·

∥∥∥
2
, and specify a threshold τ . Apply soft thresholding on the

rows W̃
(t)
j · = W

(t)
j ·

(wj−τ)+
wj

. The resulting matrix is row sparse but not symmetric. If

we symmetrize it by W̃ (t) ← (W̃ (t) +W̃ (t)T )/2, the result is no longer sparse row-wise

or column-wise. A practical fix is to let F
(t+1)
jk = W̃

(t)
jk if wj, wk > τ , or 0 otherwise.

Everything else is kept the same.

Algorithm 4 GSPCA through SDP relaxation (GSPCA-SDP)

1: Initialize F (0), G(0) ∈ Rp×p, H(0) = 0p×p.
2: For k = 0, 1, 2, ...,, repeat the following until convergence:

3: W (t) = G(t) − (H(t) − Sn)/η, and let wj =
∥∥∥W (t)

j ·

∥∥∥
2
.

4: Find the set Î = {j : wj > τ}; do soft thresholding by rows, W̃
(t)
j · =

(wj−τ)+
wj

W
(t)
j · .

5: F
(t+1)
jk = (W̃

(t)
jk + W̃

(t)
kj )/2 if j, k ∈ Î, or otherwise 0.

6: SVD: F (t+1) +H(t)/η = LSR.
7: G(t+1) = LS′R, where S′ is capped soft thresholding of S, s′j ≤ 1,

∑
j s′j = D.

8: H(t+1) = H(t) + η(F (t+1) −G(t+1)).
9: F̂ = (F̂ + F̂T )/2 (can be skipped because F (t) is already symmetric).

10: V̂ is the leading D eigenvectors of F̂ .
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2.3 SPCA based on thresholding

2.3.1 SPCA with diagonal thresholding (SPCA-DT)

Due to the inconsistency of regular PCA in high dimensions, a naive approach is

to first screen the variables, and run PCA on only the few “important” variables.

The screening criterion is inevitably dependent on the model. Recall that our model

assumption is a fixed-design spiked model, i.e.

(2.6) X = USVT + ε .

We measure the signal level of the j-th coordinate by ‖Vj · ‖2, and we want to

screen out those coordinates whose signals are zero or very small. For simplicity we

assume
∑

i uid = 0 for all d; also ε has i.i.d. rows of mean 0 Gaussian vectors. Thus

1TnX/n
a.s.→ 0, so S = XTX/n can be used as sample covariance. The j-th diagonal

element of S is given by Sjj = ‖USVj · + ε · j‖2
2. If the covariance of noise Σe is small

compared to S, then Sjj ≈ ‖USVj · ‖2
2 = VT

j ·S
2Vj · . If ‖Vj · ‖2 is close to 0, then Sjj

is also close to 0. Thus we can use the diagonal elements of XTX/n as a thresholding

criterion to screen the coordinates. This is called diagonal thresholding, and was

originally proposed by Johnstone and Lu (2009). The algorithm is summarized in

Algorithm 5.

Algorithm 5 SPCA with diagonal thresholding (SPCA-DT)

1: Given dimension D and threshold γ1.
2: S = XTX/n.
3: Î(γ1) = {j : Sjj > γ1}.

4: V̂ DT = (v̂DT1 , ..., v̂DTD ) are leading eigenvectors of

(
SÎ Î 0
0 0

)
.

The threshold is typically chosen to be of order γ1 = c1

√
log p
n

when working with

spiked-covariance model. This choice is sufficient to reliably exclude coordinates
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of zero or small signals. Note that when noise is small, the j-th diagonal Sjj ≈

VT
j ·S

2Vj · � ‖Vj · ‖2
2 if σ1, ..., σD are of constant order. Thus, a rough consequence

of such choice is that only those coordinates whose signal levels ‖Vj · ‖2 are of larger

order than O(log(p/n)1/4) can be reliably included. This is not good enough and

some improvement is needed. We need to point out that this choice works if the

noises are i.i.d., i.e. Σe = σ2
eIp; for general Σe, it is not justified.

It is important to conduct thresholding before solving for eigen-system; threshold-

ing the sample eigenvectors generally does not work because the perturbation error

increases too fast as p increases. Figure 2.1 shows the probability of getting the cor-

rect sparsity using pre-screening and ad hoc thresholding. The data are generated

from X = uvT + ε, where
∑

i ui = 0, ‖u‖2 = 1, v = (1, 0, 0, ..., 0), and ε ∈ Rn×p

has i.i.d. standard Gaussian entries. The correct sparse set is the first coordinate.

Using pre-screening, we need ‖X · 1‖2 ≥ maxj>1 ‖X · j‖2
2; using ad hoc thresholding,

we first calculate top right singular vector v̂, and require |v̂1| > maxj>1 |v̂j|. We

let n = 50, 100, ..., 400, and p = n/2 or p = 2n, and check the proportion of 2000

independent experiments, for which the true signal coordinate is successfully sepa-

rated from the noise coordinates. The results show that pre-screening works well

even when p > n; in fact p can be of exponential order to n when using Gaussian

noise. In contrast, ad hoc thresholding does not work. We essentially need v̂ to be

consistent, which will not occur in high dimensional case.

2.3.2 SPCA with augmented thresholding (SPCA-AT)

It was shown in both Birnbaum et al. (2013) (Theorem 4.1) and Ma (2013) (remark

after Theorem 3.3) that although principal subspace estimated by SPCA-DT can be

consistent, it is not rate optimal. The common argument is: in order to achieve

optimal error rate, we need to be able to differentiate a coordinate whose “signal” is



20

50 100 150 200 250 300 350 400

n

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f 
se

p
a
ra

ti
o
n

p=n/2

50 100 150 200 250 300 350 400

n

p=2n

pre-screen

ad hoc

Figure 2.1: Probability of estimating the correct sparse set

of order (log p/n)1/2 from those coordinates of zero or “small” signals, but SPCA-DT

can only differentiate signal levels of order (log p/n)1/4. Technical differences exist

regarding how sparsity or signal level is defined, and what is considered as “small”

signal, but the main proof techniques are always similar.

It is widely stated that DT is not ideal because only diagonal information is

used, so a common remedy is to run another screening that utilizes off-diagonal

information, in order to potentially includes more coordinates, especially those whose

signal levels are between the order of (log p/n)1/2 and (log p/n)1/4.

To motivate this improved coordinate screening, consider SV̂ for some estimator

V̂ of V. If the noise is small, and V̂ is a good estimate for V, then SV̂ ≈ VΛVTV =

VΛ. Then
∥∥∥[SV̂]j ·

∥∥∥
2

is close to 0 as long as
∥∥∥V̂j ·

∥∥∥
2

is close to 0. Thus, if we have

a good estimated sparse set Î to start with, we can let V̂ be the PC loading vectors

restricted to Î, and use
∥∥∥[SV̂]j ·

∥∥∥
2

as the criterion to do one more round of thresh-

olding. This method is proposed by Birnbaum et al. (2013) as augmented SPCA

(ASPCA); we denote it as SPCA-AT (augmented thresholding). The algorithm is

described in Algorithm 6.

Threshold of level γ2 = c2

√
log p
n

is recommended to ensure that zero coordinates

are correctly excluded. Intuitively, for those non-zero coordinates, Wj ≈ ΛVj · ,
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Algorithm 6 SPCA with augmented thresholding (SPCA-AT)

1: Given dimension D and threshold parameter γ1, γ2.
2: S = XTX/n.
3: Diagonal thresholding: Using SPCA-DT to obtain the initial subset:

Î = Î(γ1); V̂ = V̂ DT .

4: W = SV̂ ∈ Rp×D wj = ‖Wj · ‖2.

5: Augmented thresholding: Ĩ(Î , γ2) = {j 6∈ Î : wj > γ2} ∪ Î.

6: V̂ AT = (v̂AT1 , ..., v̂ATD ) are leading eigenvectors of

(
SĨ Ĩ 0
0 0

)
.

so ‖Wj · ‖2 � ‖Vj · ‖2 if σ1, ..., σD are of constant order. Therefore the threshold

can differentiate those coordinates whose signals are of order
√

log p
n

. This choice of

threshold applies to i.i.d. noise and need to be modified for general Σe.

2.4 Statistical property of SPCA-DT and SPCA-AT

2.4.1 Distance between linear subspaces

Our goal is to estimate the leading principal space V = colspan〈V〉 ⊆ Rp with

a sparse estimator V̂ = colspan〈V̂〉 that only use a small subset of variables, so an

immediate question is how to measure the difference between two subspaces.

Suppose that we have two sets of orthonormal bases V, V̂ ∈ Rp×D. When D = 1,

the subspace decides the basis vector v1, v̂1 uniquely up to sign (v1 and −v1 are

both basis of V). One measurement that makes sense for D = 1 is then

Distvec(V , V̂) = min{‖v1 − v̂1‖2 , ‖v1 + v̂1‖2} .

When D > 1 however orthonormal basis is only unique under orthonormal transfor-

mation, i.e. if V is an orthonormal basis of V , VO is also an orthonormal basis, for

any O ∈ RD×D s.t. OTO = ID. Thus, difference between two specific orthonormal

bases does not reflect the difference between the spaces. Therefore Distvec does not

make sense when D > 1.

A good distance should be invariant by orthornormal transformation. It can be
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based on so called principal angles or canonical angels. The principal angles

(θ1, ..., θD) ∈ [0, π/2] are recursively defined as

cos(θd) =
|uTd vd|

‖ud‖2 ‖vd‖2

,

where

ud, vd = arg max
u∈V,v∈V̂

|uTv|
‖u‖2 ‖v‖2

,

subject to

ud ⊥ u1, ..., ud−1, vd ⊥ v1, ..., vd−1 .

A more convenient but less intuitive definition of the same distance is that (cos(θ1), ..., cos(θD))

are singular values of VT V̂. In addition, we can define sin Θ(V , V̂) = diag(sin(θ1), ..., sin(θD)).

Generally, if sin Θ(V , V̂) is large, then the “difference” between V and V̂ is large.

There are several distance measurements. One distance measures “average angle”

in some sense, i.e.,

Distave(V , V̂)2 =
1

D

∥∥∥sin Θ(V , V̂)
∥∥∥

2

F
=

1

D

D∑

d=1

sin(θd)
2 .

This distance can also be derived from either difference between projection matrices

or inner product of the two bases. Note that projection matrix of a subspace is also

uniquely defined, PV = VVT , PV̂ = V̂V̂
T

. We have

‖PV − PV̂‖
2
F =

∥∥∥VVT − V̂V̂
T
∥∥∥

2

F

= tr
(
VVTVVT

)
+ tr

(
V̂V̂

T
V̂V̂

T
)
− 2tr

(
VVT V̂V̂

T
)

= 2D − 2
∥∥∥VT V̂

∥∥∥
2

F

= 2D − 2
D∑

d=1

cos(θd)
2 = 2

∥∥∥sin Θ(V , V̂)
∥∥∥

2

F
.

Another distance measures “maximal angle”,

Distmax(V , V̂) =
∥∥∥sin Θ(V , V̂)

∥∥∥
2

op
= sin(θD) .
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The maximal angle can also be derived from the inner product of two bases. We

have

cos(θD) = σmin(VT V̂) .

Thus we have the following proposition that summarizes the relationships between

principal angles, inner product and projection matrices.

Proposition II.3. For two linear subspaces V, V̂, let V and V̂ be any orthonormal

bases of these two subspaces. Then,

1.

Distave(V , V̂) =
1√
D

∥∥∥sin Θ(V , V̂)
∥∥∥

F
=

1√
2D
‖PV − PV̂‖F =

√
1−

∥∥∥VT V̂
∥∥∥

2

F
/D ;

2.

Distmax(V , V̂) =
∥∥∥sin Θ(V , V̂)

∥∥∥
op

=

√
1− σmin(VT V̂)2 ;

3. When D = 1, Distave = Distmax.

For convenience, sometimes we use Distvec(v, v̂),Distave(V, V̂),Distmax(V, V̂)

instead of Distvec(V , V̂),Distave(V , V̂),Distmax(V , V̂).

2.4.2 Single-spike and i.i.d. noise, D = 1, Σe = σ2
eIp

Here we first derive non-asymptotic statistical properties for the model with a

single-spike and i.i.d. noises. We can simplify the notations

(2.7) X = σuvT + ε ,

where u ∈ Rn, v ∈ Rp are two fixed vectors, s.t. ‖u‖2 =
√
n, ‖v‖2 = 1, and

εij ∼ Norm(0, σ2
e).

Assume that v = (v1, ...,vp) is sparse in `0 sense, and let the size of I0 = {j :

vj 6= 0} be |I0| = s. We want to screen out all coordinates whose signals vk are
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0, while keeping all the coordinates whose signals are large, i.e. |vk| > κ. Here κ

indicates the lower bound of the signal level in order to be differentiable from noise,

and we want it to be as small as possible.

Since D = 1, we aim to bound Distvec(V , V̂). For simplicity, we often write

‖v̂ − v‖2 directly, with the caveat that ±v̂ are usually not differentiable, and we

assume v̂ to be the one closer to v (angle smaller than π/2). Recall that the error

measure can be easily translated to the general distance measures; as explained

previously, when D = 1, Distmax = Distave =
√

1− cos θ2 ≤
√

2(1− cos θ) =

Distvec ≤
√

2Distave.

The basic idea of the proof is to find two small constants κ1 > κ2 > 0 and the

corresponding subsets I1 = {j : |vj| > κ1}, I2 = {j : |vj| > κ2}, so that with high

probability, the diagonal thresholding set Î satisfies I1 ⊆ Î ⊆ I0 and the augmented

thresholding set Ĩ satisfies I2 ⊆ Ĩ ⊆ I0. We will see that κ1 determines the “bias” of

DT estimator v̂DT while κ2 determines the “bias” of AT estimator v̂AT . The size of

I0, s, determines the “variance” of the estimator.

Theorem II.4. Assume the single-spike model with i.i.d. noises as in (2.7). Suppose

that there exists a constant 0 < δ < 1 and t1, t2, t3 > 0 such that t0 =
√

log p−log δ
n

∈

(0, 1/2), and

κ1 =
σe
σ

√
4t0 + 12t20 ,

κ2 = κ1 ∧ κ′2, κ′2 =
σ + σe + σe

√
s+t1√
n

σ
√

1− sκ2
1 − 2σe − σe 3

√
s+2t1+t2√

n

σe
σ

√
2 log p+ 2s log s+ t3√

n

satisfies κ2 > 0,
√
sκ1 < 1. Denote I1 = {j : |vj| > κ1}, I2 = {j : |vj| > κ2}. Then

using the following two thresholds

γ1 = σ2
e(1 + 2t0 + 2t20) ,

γ2 = σe

(
σ + σe + σe

√
s+ t1√
n

) √
2 log p+ 2s log s+ t3√

n
,
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we have,

1. with probability at least 1− δ, the DT estimated set Î = Î(γ1) satisfies

I1 ⊆ Î ⊆ I0 ;

2. With probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) the DT estimated

eigenvector v̂DT satisfies

∥∥v̂DT − v
∥∥

2
≤
√

2sκ1 +
4
√

2σe

σ
√

1− sκ2
1

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
1)

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
,

where v̂DT is the one between ±v̂DT that is closer to v;

3. With probability at least 1− δ − 2 exp(−t21/2)− exp(−t22/2)− 2 exp(−t23/2), the

AT estimated set Ĩ = Ĩ(γ2, Î(γ1)) satisfies

I2 ⊆ Ĩ ⊆ I0 ;

4. With probability at least 1− δ − 2 exp(−t21/2)− exp(−t22/2)− 2 exp(−t23/2) the

AT estimated eigenvector v̂AT satisfies

∥∥v̂AT − v
∥∥

2
≤
√

2sκ2 +
4
√

2σe

σ
√

1− sκ2
2

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
2)

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
,

where v̂AT is the one between ±v̂AT that is closer to v.

Proof. 1. Preparation:

Define the following random events

G1 : max
k∈Ic0

‖X · k‖2
2

n
< σ2

e(1 + 2t0 + 2t20) ,
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G2 : min
k∈I1

‖X · k‖2
2

n
> σ2

e(1 + 2t0 + 2t20) ,

G3 : σmax(ε · I0) ≤ σe(
√
n+
√
s+ t1) ,

G4 : σmin(ε · I0) ≥ σe(
√
n−
√
s− t1) ,

G5 :

∥∥∥∥
u√
n

T

ε · I0

∥∥∥∥
2

≤ σe(
√
s+ t2) ,

G6 : max
k∈Ic1 ,I1⊆I′⊆I0,k 6∈I′

∥∥∥εT· kû(I′)
∥∥∥

2
≤ σe(

√
2 log p+ 2s log s+ t3) ,

where in G6, we use σ̂(I), û(I) and v̂(I) to denote the top singular value, the top

left singular vector and the right singular vector of X · I for a subset of indices

I, respectively.

2. Diagonal thresholding set:

If G1 and G2 hold, then obviously, by setting γ1 = σ2
e(1 + 2t0 + 2t20), we have the

DT subset I1 ⊆ Î ⊆ I0. Therefore,

(2.8) P (I1 ⊆ Î ⊆ I0) ≥ 1− P (Gc1)− P (Gc2) .

3. From the DT set to the corresponding estimator:

Now we have a random set Î that is known to be sandwiched between I1 and

I0, and we want to analyze the error between the eigenvector restricted to Î and

the true eigenvector.

For any subset I, denote v̂(I) to be the top right singular vector of X · I . Thus

the DT estimator v̂DT =




v̂(Î)

0


. The triangular inequality gives

(2.9)
∥∥v̂DT − v

∥∥
2
≤
∥∥∥∥v̂

(Î) − vÎ
‖vÎ‖2

∥∥∥∥
2

+

∥∥∥∥∥∥∥




vÎ/ ‖vÎ‖2

0


− v

∥∥∥∥∥∥∥
2

.
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The first term is the variance term and the second term is the bias term. To

deal with the bias term, we have

(2.10)

∥∥∥∥∥∥∥




vÎ/ ‖vÎ‖2

0


− v

∥∥∥∥∥∥∥
2

≤

√∥∥∥∥
vÎ
‖vÎ‖2

− vÎ

∥∥∥∥
2

2

+ ‖vÎc‖
2
2

=
√

(1− ‖vÎ‖2)2 + ‖vÎc‖
2
2

≤
√

2 ‖vÎc‖2 ≤
√

2
∥∥vcI1

∥∥
2
.

The variance term can be dealt with using the perturbation bound of top eigen-

vector. Note that v̂Î is the top eigenvector of

(σuvT
Î

+ ε · Î)
T (σuvT

Î
+ ε · Î)/n = (σ2vÎv

T
Î

+ σ2
eI|Î|) + (M1 +MT

1 +M2) ,

where

M1 = σvÎu
Tε · Î/n ,

M2 = (εT· Îε
T
· Î/n− σ

2
eI|Î|) .

We can view M1 + MT
1 + M2 as the perturbation term; (σ2vÎv

T
Î

+ σ2
eI|Î|) is

the signal term whose leading eigenvector is
vÎ

‖vÎ‖2
, and the top two eigenvalues

are σ2 ‖vÎ‖
2
2 + σ2

e and σ2
e , respectively. Thus the eigenvalue gap is σ2 ‖vÎ‖

2
2 ≥

σ2 ‖vI1‖
2
2. By Davis-Kahan’s inequality (Lemma II.18), we have

(2.11)

∥∥∥∥v̂
(Î) − vÎ

‖vÎ‖2

∥∥∥∥
2

≤
2
√

2
∥∥M1 +MT

1 +M2

∥∥
op

σ2 ‖vI1‖
2
2

.

Now, to bound
∥∥M1 +MT

1 +M2

∥∥
op
≤ 2 ‖M1‖op + ‖M2‖op, we use G3, G4 and

G5. For M1, it is of rank 1, so

‖M1‖op = σ ‖vÎ‖2

∥∥uTε · Î
∥∥

2
/n .

Note that Î ⊆ I0, so
∥∥uTε · Î

∥∥
2
≤
∥∥uTε · I0

∥∥
2
. By G5,

(2.12) ‖M1‖op ≤ σσe ‖vÎ‖2 (
√
s+ t2)/

√
n .
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For M2, it is sub-block of (εT· I0ε
T
· I0/n − σ2

eIs), and the operator norm of the

sub-block is smaller than the whole matrix. Thus by G3,G4,

(2.13)

‖M2‖op ≤
∥∥εT· I0εT· I0/n− σ2

eIs
∥∥

op

≤ σ2
e max

{(
1 +

√
s

n
+

t1√
n

)2

− 1, 1−
(

1−
√
s

n
− t1√

n

)2
}

≤ σ2
e

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
.

Take (2.12) and (2.13) into (2.11), we get

(2.14)∥∥∥∥v̂
(Î) − vÎ

‖vÎ‖2

∥∥∥∥
2

≤ 4
√

2σe
σ ‖vI1‖2

(√
s

n
+

t2√
n

)
+

2
√

2σ2
e

σ2 ‖vI1‖
2
2

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
.

In summary, take 2.10 and 2.14 into 2.9 and use the fact that
∥∥vIc1

∥∥
2
≤
√
sκ1,

we have that, with probability at least 1−
∑

j=1,2,3,4,5 P (Gcj ),

∥∥v̂DT − v
∥∥

2
≤
√

2sκ1 +
4
√

2σe

σ
√

1− sκ2
1

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
1)

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
.

(2.15)

4. Second thresholded set:

For any k ≤ p and I ⊆ {1, 2, ..., p}, denote

∆kI = εT· kX · I/n ,

so that

∆kI v̂
(I) = σ̂(I)εT· kû

(I)/n ,

SkI = XT
· kX · I/n = σvk(σvT· I/n+ uTε · I/n) + ∆kI .

For l ∈ Ic0, we have SlÎ = ∆lÎ , and hence

(2.16) wl =
∣∣∣∆lÎ v̂

(Î)
∣∣∣ = σ̂(Î)

∣∣∣εT· kû(Î)
∣∣∣ /n .



29

For k ∈ I0\Î, we have

(2.17)

wk =

∣∣∣∣∣σvk

(
σ ‖vÎ‖2 ×

(
vÎ
‖vÎ‖

)T
v̂(Î) + uTε · Î v̂

(Î)/n

)
+ ∆kÎ v̂

(Î)

∣∣∣∣∣

≥ σvk

(
σ ‖vÎ‖2

∣∣∣∣∣

(
vÎ
‖vÎ‖

)T
v̂(Î)

∣∣∣∣∣−
∥∥uTε · Î/n

∥∥
2

)
− σ̂(Î)

∣∣∣εT· kû(Î)
∣∣∣ /n .

Since I1 ⊆ Î ⊆ I0,

(2.18) ‖vÎ‖2 ≥ ‖vI1‖2 ≥
√

1− sκ2
1 ,

and by G3 and G5, respectively, we have

σmax(εÎ) ≤ σmax(εI0) ≤ σe(
√
n+
√
s+ t1) ,

(2.19)
∥∥uTε · Î/

√
n
∥∥

2
≤
∥∥uTε · I0/

√
n
∥∥

2
≤ σe(

√
s+ t2) .

Since σ(Î), v̂(Î) are singular value and vector of M = σuvT
Î

plus perturbation

E = ε · Î , we can use Weyl’s inequality (Lemma II.15) and Wedin’s inequality

(Lemma II.16) to get

(2.20) σ̂(Î) ≤ σ
√
n ‖vÎ‖2 + σe(

√
n+
√
s+ t1) ,

∣∣∣∣∣

(
vÎ
‖vÎ‖

)T
v̂(Î)

∣∣∣∣∣ ≥ 1− 2
σe(
√
n+
√
s+ t1)

σ
√
n ‖vÎ‖2

,

‖vÎ‖2

∣∣∣∣∣

(
vÎ
‖vÎ‖

)T
v̂(Î)

∣∣∣∣∣ ≥ ‖vÎ‖2 − 2
σe(
√
n+
√
s+ t1)

σ
√
n

≥
√

1− sκ2
1 − 2

σe(
√
n+
√
s+ t1)

σ
√
n

.

(2.21)

Finally, since Î and any k 6∈ Î form a pair that satisfies the condition in G6, we

then have that for l ∈ Ic0 and k ∈ I0\Î,

(2.22)
∣∣∣εT· kû(Î)

∣∣∣ ,
∣∣∣εT· lû(Î)

∣∣∣ ≤ σe(
√

2 log p+ 2s log s+ t3) .
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Take all these ingredients (2.18)-(2.22) into (2.16) and (2.17), we have

(2.23) wl ≤ γ2, ∀l ∈ Ic0,

(2.24) wk ≥ σvk

(
σ
√

1− sκ2
1 − 2σe − σe

3
√
s+ 2t1 + t2√

n

)
− γ2,

(2.25) γ2 = σe

(
σ + σe + σe

√
s+ t1√
n

) √
2 log p+ 2s log s+ t3√

n
.

Therefore, if we let

κ′2 :=
σ + σe + σe

√
s+t1√
n

σ
√

1− sκ2
1 − 2σe − σe 3

√
s+2t1+t2√

n

2σe
σ

√
2 log p+ 2s log s+ t3√

n
,

then vk > κ′2 implies k ∈ Ĩ. Thus, with probability at least 1 −
∑6

j=1 P (Gcj ),

I2 ⊆ Ĩ ⊆ I0.

5. From the second set to the corresponding estimator:

We know that I2 ⊆ Ĩ ⊆ I0, where I2, I0 are two fixed sets. We can use the same

argument as in part 3 to conclude that, with probability at least 1−
∑6

j=1 P (Gcj ),

we have

(2.26)

∥∥v̂DT − v
∥∥

2
≤
√

2sκ2 +
4
√

2σe

σ
√

1− sκ2
2

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
2)

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]
.

6. Bound the probabilities:

The rest of the proof is to bound the probabilities of the random events Gc1, ...,Gc6.

For G1, note that for k ∈ Ic0, X · k = ε · k. Marginally ‖ε · k‖2
2 ∼ σ2

eχ
2
n. Thus by

Corollary II.11, we have

P

(
‖ε · k‖2

2

n
≥ σ2

e(1 + 2t0 + 2t20)

)
= P

(
χ2
n/n > 1 + 2t0 + 2t20

)
≤ exp(−t20n) ,
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and hence, by union bound, P (Gc1) ≤
∑

k∈Ic0 exp(−t20n) = (p− s)δ/p.

For G2, note that for k ∈ I1, X · k
σe
∼ Norm(µ, In), where µ = vkσ

σe
u, ‖µ‖2 =

√
nσvk
σe

. Then, by Lemma II.12,

P

(
‖X · k‖2

2

nσ2
e

≤
(

1 +
σ2v2

k

σ2
e

)
− 2

√
1 +

2σ2v2
k

σ2
e

t0

)
≤ exp(−t20n) .

Consider the function h(x) = (1 + x) − 2t0
√

1 + 2x, and notice that h(x) is

monotonically increasing on x > 2t20 − 0.5. By our assumption, 2t20 − 0.5 < 0,

so h(x) is increasing on x > 0. Now since k ∈ I1, by construction of I1, we have

σ2v2
k

σ2
e
> 4t0 + 12t20. Therefore

h

(
σ2v2

k

σ2
e

)
≥ h(4t0 + 12t20) ≥ 1 + 4t0 + 12t20 − 2t0

√
1 + 8t0 + 24t20

≥ 1 + 4t0 + 12t20 − 2t0(1 +
√

24t0)

= 1 + 2t0 + 2(6−
√

24)t20 ≥ 1 + 2t0 + 2t20 .

In summary, we have that for any k ∈ I1,

P

(
‖X · k‖2

2

n
≤ σ2

e(1 + 2t0 + 2t20)

)
≤ exp(−t20n) ,

and hence, by union bound, P (Gc2) ≤
∑

k∈I1 exp(−t20n) = s1δ/p. Thus P (Gc1) +

P (Gc2) ≤ δ.

For G3, we can simply use Lemma II.14 and get that

P (σmax (ε · I0) > σe(
√
n+
√
s+ t1)) ≤ exp(−t21/2) .

Similarly, we can prove that P (Gc4) ≤ exp(−t21/2).

For G5, notice that 1√
n
uTε · I0 ∼ Norm(0s, σ

2
eIs). Thus

∥∥∥ 1√
n
uTε · I0

∥∥∥
2

2
∼ σ2

eχ
2
s

and, by Corollary II.11,

P

(∥∥∥∥
1√
n

uTε · I0

∥∥∥∥
2

> σe(
√
s+ t2)

)
= P (

√
χ2
s >
√
s+ t2) ≤ exp(−t22/2) .
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To bound the probability of G6, consider a fixed k ∈ Ic1, and for this k, consider

a fixed set I1 ⊆ I ′ ⊆ I0 such that k 6∈ I ′. There are at most (p− s1) choices for

k and for each k, there are at most (s− s1)! choices for I ′ (if k ∈ I0, then only

(s− s1 − 1)! choices).

Fix this pair of (k, I ′), then û(I′) is a random unit-norm vector decided by ε · I′

and is independent of ε · k (since k 6∈ I ′, and Σe = σ2
eIp). If we condition on X · I′ ,

the distribution of ε · k will not change, but û(I′) becomes a constant vector and

thus û(I′)Tε · k

∣∣∣ X · I′ ∼ Norm(0, σ2
e). Since the conditional distribution does

not depend on X · I′ , we know the marginal distribution is also û(I′)Tε · k ∼

Norm(0, σ2
e). Thus

P
(∣∣∣εT· kû(I′)

∣∣∣ > σe
√

2 log p+ 2s log s) + t3

)

=P
(
|Z| >

√
2 log p+ 2s log s+ t3

)
.

Now we have no more than p × s! pairs of (k, I ′). By Sterling’s inequality

log(p× s!) ≤ log p+ s log p. Thus, by Lemma II.13,

P (Gc6) ≤ −2 exp(−t23/2) .

Note that for some values of (n, p, s, σe, σ); for example, if σ/σe < 2, then κ2 < 0

no matter how large n is. Otherwise, it is easy to use the result as a sample size

calculator. For given (p, s, σe, σ) and probability, we can solve for n such that the

differentiable signal levels κ1, κ2 and the error bound ‖v̂ − v‖2 are as small as needed.

The above theorem is very general and totally non-asymptotic, which makes it

hard to understand. Depending on the scale of the problem parameters (n, p, s, σe, σ),

one can choose proper values for δ, t1, t2, t3 and transform the non-asymptotic theory

into various asymptotic forms. The following corollary is an example.
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Corollary II.5. Denote ρ = σ2/σ2
e . Suppose ρ is large enough, and s log p

ρn
, s

2 log p
ρ2n

, s
2 log s
ρn
≤

c for some small enough c. Then, with probability 1− C ′ exp(−c′s)− C ′′p−c′′,

(2.27)
∥∥v̂AT − v

∥∥
2
≤ C

(√
s log p
√
nρ

+

√
s2 log s
√
nρ

)
.

for some constant C. Moreover, simultaneously the estimated sparse set ĨAT ex-

cludes all coordinates so that vk = 0 while includes all coordinates so that |vk| ≥

C̃
√

log p+s log s
nρ

for some C̃.

Proof. Let δ = 1/pα, then log p−log δ
n

= (1 + α) log p/n. Thus, we have

√
sκ1 =≤

√
s

ρ

(
2

(
log p− log δ

n

)1/4

+
√

12

(
log p− log δ

n

)1/2
)

≤ 2(1 + α)1/4

(
s2 log p

ρ2n

)1/4

+
√

12(1 + α)

(
s log p

ρn

)1/2

≤ 2((1 + α)c)1/4 +
√

12c(1 + α) =: c1 .

Let t1 = α1

√
s, t2 = α2

√
s, t3 = α3

√
log p+ s log s, then

κ2 ≤ κ′2 ≤
1 + 1√

ρ
+ (1 + α1)

√
s
nρ

√
1− ε21 − 2√

ρ
− (1 + 2α1 + α2)

√
s
nρ

2(
√

2 + α3)

√
log p+ s log s

nρ

≤
1 + 1√

ρ
+ (1 + α1)c

√
1− c2

1 − 2√
ρ
− (1 + 2α1 + α2)c

2(
√

2 + α3)

√
log p+ s log s

nρ

=: c′2

√
log p+ s log s

nρ
,

and hence

√
sκ2 ≤ c′2

(√
s log p

nρ
+

√
s2 log s

nρ

)
≤ 2c′2c =: c2 .
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Therefore,

∥∥∥v̂(AT ) − v
∥∥∥

2
≤
√

2sκ2 +
4
√

2σe

σ
√

1− sκ2
2

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
2)

[(
1 +

√
s

n
+

t1√
n

)2

− 1

]

≤

(
√

2c′2 +
4
√

2(1 + α2)√
1− c2

2

)(√
s log p

nρ
+

√
s2 log s

nρ

)

+
4
√

2(1 + α1)

1− c2
2

√
s

n

1

ρ
+

2
√

2(1 + α1)2

1− c2
2

s

nρ

=: c3

(√
s log p

nρ
+

√
s2 log s

nρ

)
+ c4

√
s

n

1

ρ
+ c5

s

nρ
.

Since we assume ρ to be large enough, 1
ρ

= O(1); also s log p
nρ

= O(1). Thus the last

two terms are both O(
√

s log p
nρ

) and hence there exists some constant C such that

∥∥∥v̂(AT ) − v
∥∥∥

2
≤ C

(√
s log p

nρ
+

√
s2 log s

nρ

)
.

For small enough c and large enough ρ, we can find α, α1, α2, α3, so that c1, c2 ∈

(0, 1). The probability is

1− p−α − 2 exp(−α2
1s/2)− exp(−α2

2s/2)− 2 exp(−α3(log p+ s log s)/2)

≥1− C ′ exp(−c′s)− C ′′p−c′

for some C ′, C ′′, c′, c′′. With this probability, we achieve κ2 ≤ C̃
√

log p+s log s
nρ

, and

∥∥v̂AT − v
∥∥

2
≤ C

(√
s log p
nρ

+
√

s2 log s
n

)
for some C, C̃. All these constants depend on

ρ, c.

If σ, σe, s are fixed while p increase with n, then SPCA-DT can differentiate signals

of rate (log p/n)1/4, while SPCA-AT can differentiate signals of rate (log p/n)1/2,

which matches the results in the literature. An example of such scenario is when

v = (vs, 0, ..., 0), where vs ∈ Rs is fixed, and p− s coordinates are completely noise.

It is still restrictive, and indeed in the PCA literature, the sparsity is often not in `0
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sense so that v is allowed to have many small non-zero elements. We assume exact

sparsity, but the proof we provide here is modular and by modifying some modules,

it can be applied to other models.

Remark II.6 (Technical bottleneck). There is a condition that s2 log s/nρ is bound-

ed, and a
√
s2 log s/n term in the error, which is not ideal. The extra s in the

asymptotic rate comes from G6, which is to bound maxk 6∈Î

∥∥∥εT· kû(Î)
∥∥∥

2
/n, where Î is

the DT subset and û(Î) is the top left singular vector of X · Î . This is achieved using

union bound of (p− s1)× (s− s1)! Gaussian tails, which is not tight.

The difficulty is due to the fact that Î is random, and ε · k, û
(Î) are correlated with

this random set; if Î is a constant set, then εT· kû
(Î) is a standard Gaussian variable,

so we only have at most p − s1 Gaussian tails to bound, and the extra term can be

avoided.

Another way to avoid the extra term is to use a sample splitting trick: randomly

split the sample into two halves, get the Î from one half, and run the second thresh-

olding on the other half. However, such approach is unnatural and artificial, and

practically not favorable since samples are not used efficiently.

In fact, it can be proved that given Î, ε · k is independent of û(Î) for any k 6∈ Î.

The problem is distribution of ε · k after conditioning is no longer normal, and hard

to characterize.

2.4.3 Single-spike and non-i.i.d. noises, D = 1, Σe 6= σ2
eIp

In this section we still assume the single-spike model

(2.28) X = σuvT + ε ,

but ε no longer has i.i.d. entries; instead we assume that rows of ε i.i.d. follow

Norm(0p,Σe). We are interested in this model because the PCA step in sliced
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inverse regression (SIR) does not have i.i.d. noise variables.

Similar to the i.i.d. case, we have the following theorem which shows that, with

high probability, SPCA-DT and SPCA-AT exclude all coordinates that have zero

signals while including all coordinates whose signals are above certain level.

Theorem II.7. Assume the single-spike model where the noise ε has i.i.d. rows

that follow Norm(0p,Σe), so that ‖Σe‖op ≤ σ2
e . Suppose that there exist constants

0 < δ < 1 and t1, t2, t3, t4 > 0 such that

t0 =

√
log p− log δ

n
,

κ1 =
2σe
σ

√
1 + 2t0 + 2t20 ,

κ2 = κ1 ∧ κ′2, κ′2 =
2σe
σ

√
2 log p+t3√

n
+ σe

σ

(
1 +

√
s+1+

√
2 log p+t4√
n

)2

√
1− sκ2

1 − 2σe
σ
− σe

σ
3
√
s+2t1+t2√

n

satisfies κ2 > 0,
√
sκ1 < 1. Denote I1 = {j : |vj| > κ1}, I2 = {j : |vj| > κ2}. Then

using the thresholds

γ1 = σ2
e(1 + 2t0 + 2t20) ,

γ2 = σeσ

√
2 log p+ t3√

n
+ σ2

e

(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

n
,

we have

1. with probability at least 1− δ, the DT estimated set Î satisfies

I1 ⊆ Î ⊆ I0 ;

2. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) the DT estimated

eigenvector v̂DT satisfies

∥∥v̂DT − v
∥∥

2
≤
√

2sκ1+
4
√

2σe

σ
√

1− sκ2
1

(√
s

n
+

t2√
n

)
+

2
√

2σ2
e

σ2(1− sκ2
1)

(
1 +

√
s

n
+

t1√
n

)2

,

where v̂DT is the one between ±v̂DT that is closer to v;
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3. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) − 2 exp(−t23/2) −

exp(−t24/2), the AT estimated set Ĩ satisfies

I2 ⊆ Ĩ ⊆ I0 ;

4. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) − 2 exp(−t23/2) −

exp(−t24/2), the AT estimated eigenvector v̂AT satisfies

∥∥v̂AT − v
∥∥

2
≤
√

2sκ2+
4
√

2σe

σ
√

1− sκ2
2

(√
s

n
+

t2√
n

)
+

2
√

2σ2
e

σ2(1− sκ2
2)

(
1 +

√
s

n
+

t1√
n

)2

,

where v̂AT is the one between ±v̂AT that is closer to v.

Proof. 1. Preparation:

Define the following random events

G1 : max
k∈Ic0

‖X · k‖2
2

n
< σ2

e(1 + 2t0 + 2t20)

G2 : min
k∈I1

‖X · k‖2
2

n
> σ2

e(1 + 2t0 + 2t20)

G3 : σmax(ε · I0) ≤ σe(
√
n+
√
s+ t1)

G4 : σmin(ε · I0) ≥ σe(
√
n−
√
s− t1)

G5 :

∥∥∥∥
uTε · I0√

n

∥∥∥∥
2

≤ σe(
√
s+ t2)

G6 : max
k∈Ic1

∣∣∣∣
uTε · k√

n

∣∣∣∣ ≤ σe(
√

2 log p+ t3)

G7 : max
k∈Ic1

∥∥εT· kε · I0
∥∥

2
≤ σ2

e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

Use σ̂(I), û(I) and v̂(I) to denote the top singular value, the top left singular

vector and the top right singular vector of X · I for a subset of indices I, respec-

tively.
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2. Diagonal thresholding set:

This part is the same as Theorem II.4. If G1 and G2 hold, then obviously, by

setting γ1 = σ2
e(1 + 2t0 + 2t20), we have the DT subset Î satisfies I1 ⊆ Î ⊆ I0.

Therefore

(2.29) P (I1 ⊆ Î ⊆ I0) ≥ 1− P (Gc1)− P (Gc2) .

3. From the DT set to the corresponding estimator:

This part is almost the same as Theorem II.4. Assume G1 to G5 all hold. We

still have

(2.30)
∥∥v̂DT − v

∥∥
2
≤
∥∥∥∥v̂

(Î) − vÎ
‖vÎ‖2

∥∥∥∥
2

+

∥∥∥∥∥∥∥




vÎ/ ‖vÎ‖2

0


− v

∥∥∥∥∥∥∥
2

.

The second term is the bias term that satisfies

(2.31)

∥∥∥∥∥∥∥




vÎ/ ‖vÎ‖2

0


− v

∥∥∥∥∥∥∥
2

≤
√

2
∥∥vcI1

∥∥

For the variance term, we still use a perturbation bound of top eigenvector with

a slightly different breakdown. Note that v̂Î is the top eigenvector of

(σuvT
Î

+ ε · Î)
T (σuvT

Î
+ ε · Î)/n = (σ2vÎv

T
Î

) + (M1 +MT
1 +M2)

where

M1 = σvÎu
Tε · Î/n

M2 = (εT· Îε
T
· Î/n) .

We can view M1+MT
1 +M2 as the perturbation term; σ2vÎv

T
Î

is the signal term,

whose leading eigenvector is
vÎ

‖vÎ‖2
and the top two eigenvalues are σ2 ‖vÎ‖

2
2
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and 0, so the eigenvalue gap is σ2 ‖vÎ‖
2
2 ≥ σ2 ‖vI1‖

2
2. Thus by Davis Kahan’s

inequality (Lemma II.18), we have

(2.32)

∥∥∥∥v̂
(Î) − vÎ

‖vÎ‖2

∥∥∥∥
2

≤
2
√

2
∥∥M1 +MT

1 +M2

∥∥
op

σ2 ‖vI1‖
2
2

.

Since M1 is of rank 1,

‖M1‖op = σ ‖vÎ‖2

∥∥uTεT· Î
∥∥

2
/n .

Note that Î ⊆ I0, so
∥∥∥uTεT· Î

∥∥∥
2
≤
∥∥uTεT· I0

∥∥
2
. By G5,

(2.33) ‖M1‖op ≤ σσe ‖vÎ‖2 (
√
s+ t2)/

√
n .

As a sub-block of εT· I0ε
T
· I0/n, M2 has operator norm smaller than that of the

whole matrix. Thus, by G3,

(2.34) ‖M2‖op ≤ σ2
e

(
1 +

√
s

n
+

t1√
n

)2

.

Substituting (2.33) and (2.34) into (2.32), we get
∥∥∥∥v̂

(Î) − vÎ
‖vÎ‖2

∥∥∥∥
2

≤ 4
√

2σe
σ ‖vI1‖2

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2 ‖vI1‖
2
2

(
1 +

√
s

n
+

t1√
n

)2

.

(2.35)

In summary, substituting (2.31) and (2.35) into (2.30), and using the fact that

∥∥vIc1
∥∥

2
≤
√
sκ1, we have that, with probability at least 1−

∑
j=1,2,3,4,5 P (Gcj ),

∥∥v̂DT − v
∥∥

2
≤
√

2sκ1 +
4
√

2σe

σ
√

1− sκ2
1

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
1)

(
1 +

√
s

n
+

t1√
n

)2

.

(2.36)

4. Second thresholded set:

For any k ≤ p and I ⊆ {1, 2, ..., p}, define

∆kI = εT· kX · I/n ,
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SkI = XT
· kX · I/n = σvk(σvTI /n+ uTε · I/n) + ∆kI .

Assume G1-G7 hold, then as, in Theorem II.4, we have for k ∈ I0 and l ∈ Ic0 that

(2.37) wl =
∣∣∣∆lÎ v̂

(Î)
∣∣∣ ,

wk =

∣∣∣∣∣σvk

(
σ ‖vÎ‖2 ×

(
vÎ
‖vÎ‖

)T
v̂(Î) + uTε · Î v̂

(Î)/n

)
+ ∆kÎ v̂

(Î)

∣∣∣∣∣(2.38)

≥ σvk

(
σ ‖vÎ‖2

∣∣∣∣∣

(
vÎ
‖vÎ‖

)T
v̂(Î)

∣∣∣∣∣−
∥∥uTε · Î/n

∥∥
2

)
−
∣∣∣∆kÎ v̂

(Î)
∣∣∣

≥ σvk

(
σ
√

1− sκ2
1 − 2σe − σe

3
√
s+ 2t1 + t2√

n

)
−
∣∣∣∆kÎ v̂

(Î)
∣∣∣ .

The noise term |∆kÎv
(Î)| will be bounded differently. Note that

∆kÎ =
σ

n
εT· kuvÎ +

1

n
ε · kε · Î .

Thus, since I1 ⊆ Î ⊆ I0, we have

|∆kÎ v̂
(Î)| ≤

∣∣∣σ
n
εT· ku

∣∣∣
∣∣vT

Î
v̂Î
∣∣+

∥∥∥∥
1

n
εT· kε · Î

∥∥∥∥
2

‖v̂Î‖2

≤ σ√
n

∣∣∣∣
εT· ku√
n

∣∣∣∣+

∥∥∥∥
1

n
εT· kε · I0

∥∥∥∥
2

.

By G6, the first term is bounded by σeσ(
√

2 log p + t3)/
√
n. By G7, the second

term above is bounded by σ2
e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2/n. Thus, if we let

γ2 = σeσ(
√

2 log p+ t3)/
√
n+ σ2

e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2/n ,

then

wl < γ2, l ∈ Ic0 ,

wk ≥ σvk

(
σ
√

1− sκ2
1 − 2σe − σe

3
√
s+ 2t1 + t2√

n

)
− γ2, k ∈ I0\Î .

If we let

κ′2 =
2γ2

σ
(
σ
√

1− sκ2
1 − 2σe − σe 3

√
s+2t1+t2√

n

)

=
2σe
σ

√
2 log p+t3√

n
+ σe

σ

(
1 +

√
s+1+

√
2 log p+t4√
n

)2

√
1− sκ2

1 − 2σe
σ
− σe

σ
3
√
s+2t1+t2√

n
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then vk > κ′2 implies wk > γ2. Thus, with probability at least 1−
∑

j≤7 P (Gcj ),

I2 ⊆ Ĩ ⊆ I0 .

5. From the second set to the corresponding estimator:

We know that I2 ⊆ Ĩ ⊆ I0, where I2, I0 are two fixed sets. We can use the

same argument as in part 3, and similar to (2.36), with probability at least

1−
∑7

j=1 P (Gcj ),

∥∥v̂AT − v
∥∥

2
≤
√

2sκ2 +
4
√

2σe

σ
√

1− sκ2
2

(√
s

n
+

t2√
n

)

+
2
√

2σ2
e

σ2(1− sκ2
2)

(
1 +

√
s

n
+

t1√
n

)2

.

(2.39)

6. Bound the probabilities:

The rest of the proof is to bound the probabilities of the random events Gc1, ...,Gc7.

For G1, note that for k ∈ Ic0, X · k = ε · k. Marginally ‖ε · k‖2
2 ∼ [Σe]kkχ

2
n. Also

note that ‖Σe‖op ≤ σ2
e implies [Σe]kk ≤ σ2

e . Thus, by Corollary II.11, we have

P

(
‖ε · k‖2

2

n
≥ σ2

e(1 + 2t0 + 2t20)

)
≤ P

(
χ2
n/n > 1 + 2t0 + 2t20

)
≤ exp(−t20n) ,

so by union bound P (Gc1) ≤
∑

k∈Ic0 exp(−t20n) = (p− s)δ/p.

For G2, note that for k ∈ I1, we have

‖X · k‖2 /
√
n ≥ ‖σvku‖2 /

√
n− ‖ε · k‖2 /

√
n

and ‖σvku‖2 /
√
n = σ|vk| ≥ 2σe

√
1 + 2t0 + 2t20. Thus

P

(
‖X · k‖2 /

√
n ≤ σe

√
1 + 2t0 + 2t20

)

≤P (‖ε · k‖2 /
√
n ≥ σe

√
1 + 2t0 + 2t20) ≤ exp(−t20n)

The last inequality is obtained using the same argument as that for k ∈ Ic0

above. Thus, by union bound, we have P (Gc2) ≤
∑

k∈I1 exp(−t20n) = s1δ/p,

Therefore P (Gc1) + P (Gc2) ≤ δ.
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For G3,G4, denote ε̃ = ε · I0 [Σe]
−1/2
I0I0

, then ε̃ is a i.i.d. Gaussian ensemble, so by

Lemma II.14,

P
(
σmax (ε̃) >

√
n+
√
s+ t1

)
≤ exp(−t21/2) .

We know that
∥∥∥[Σe]

1/2
I0I0

∥∥∥
op

= ‖[Σe]I0I0‖
1/2
op ≤ ‖Σe‖1/2

op ≤ σe, so σmax (ε) ≤

σeσmax (ε̃). Therefore

P
(
σmax (ε · I0) > σe(

√
n+
√
s+ t1)

)
≤ P

(
σmax (ε̃) >

√
n+
√
s+ t1

)
≤ exp(−t21/2) .

We can prove a similar inequality for G4.

For G5, notice that 1√
n
uT ε̃ ∼ Norm(0s, Is), and therefore

∥∥∥ 1√
n
uT ε̃

∥∥∥
2

2
∼ χ2

s. By

Corollary II.11,

P

(∥∥∥∥
1√
n

uT ε̃

∥∥∥∥
2

>
√
s+ t2

)
= P (

√
χ2
s >
√
s+ t2) ≤ exp(−t22/2) .

Since
∥∥∥ 1√

n
uTε · I0

∥∥∥
2
≤
∥∥∥ 1√

n
uT ε̃

∥∥∥
2
‖[Σe]I0I0‖op ≤ σe

∥∥∥ 1√
n
uT ε̃

∥∥∥
2
, we have

P

(∥∥∥∥
1√
n

uTε · I0

∥∥∥∥
2

> σe(
√
s+ t2)

)
≤ P

(∥∥∥∥
1√
n

uT ε̃

∥∥∥∥
2

>
√
s+ t2

)
≤ exp(−t22/2) .

For G6, notice that ∀k, uT ε · k√
n
∼ Norm(0, [Σe]kk) and [Σe]kk ≤ σ2

e . By Lemma

II.13,

P

(
max
k 6∈Ic1

∣∣∣∣
uTε · k√
nσe

∣∣∣∣ > (
√

2 log p− s1 + t3)

)
≤ P

(
max
k 6∈Ic1

∣∣∣∣∣
uTε · k√
n[Σe]kk

∣∣∣∣∣ >
√

2 log p+ t3

)

≤ 2 exp(−t23/2) .

For G7, note that εT· kε · I0 is a sub-block of εT· I0∪{k}ε · I0∪{k}, so

∥∥εT· kε · I0
∥∥

2
≤ σmax

(
ε · I0∪{k}

)2
.

If k ∈ I0, then I0 ∪ {k} = I0. This has been covered in G3, and we have

P
(
σmax (ε · I0) > σe(

√
n+
√
s+ 1 +

√
2 log p+ t4)

)

≤P
(
σmax (ε · I0) > σe(

√
n+
√
s+ t4)

)
≤ exp(−t24/2) .
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If k ∈ I1, then the set I0,k = I0∪{k} is of size s+1. Denote ε̃(k) = ε · I0,kΣ
−1/2
I0,kI0,k

.

We can prove that
∥∥∥Σ

1/2
I0,kI0,k

∥∥∥
op
≤ σe, so

σmax

(
ε · I0,k

)
≤ σeσmax

(
ε̃(k)
)
.

With the same proof as that for G3, we can prove that

P
(
σmax

(
ε · I0,k

)
≥ σe(

√
n+
√
s+ 1 +

√
2 log p+ t4)

)

≤P
(
σmax

(
ε̃(k)
)
≥ (
√
n+
√
s+ 1 +

√
2 log p+ t4)

)

≤ exp(−(
√

2 log p+ t4)2/2) ≤ exp(− log p− t24/2) = exp(−t24/2)/p .

Use union bound, we get

P

(
max
k∈Ic1

∥∥εT· kε · I0
∥∥

2
> σ2

e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

)

≤ p− s1

p
exp(−t24/2) ≤ exp(−t24)/2 .

Similar to the case of i.i.d. noises, we have the following asymptotic theory.

Corollary II.8. Denote ρ = σ2/σ2
e . Suppose ρ is large enough, and no less than

1, and that s log p
ρn

, s
√
s

ρn
,
√
s
ρ
≤ c for some small enough c, then with probability 1 −

C ′ exp(−c′s)− C ′′p−c′′,

(2.40)
∥∥v̂AT − v

∥∥
2
≤ C

(√
s

ρ
+
s
√
s

nρ
+

√
s log p

nρ

)

for some constant C,C ′, C ′′, c′, c′′. Moreover, simultaneously the estimated sparse set

ĨAT excludes all coordinates so that vk = 0 while includes all coordinates k such that

|vk| ≥ C̃
(

1
ρ

+ s
nρ

+
√

log p
nρ

)
for some C̃.

Proof. Let δ = p−α, then log δ = −α log p, so

κ1 ≤
1
√
ρ

(
1 +
√

2

√
log p− log δ

n

)
=

1
√
ρ

+
√

2(1 + α)

√
log p

nρ
,
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√
sκ1 ≤

√
s

ρ
+
√

2(1 + α)

√
s log p

nρ
≤ (1 +

√
2(1 + α))c =: c1 .

Let t1 = α1

√
s, t2 = α2

√
s, t3 = α3

√
log p, t4 = α4

√
log p, then

κ′2 ≤ 2

2
nρ

(n+ s+ 1 + (2 +
√
α4)2 log p) + (

√
2 + α3)

√
log p
nρ

√
1− ε21 − 2√

ρ
− (3 + 2α1 + α2)

√
s
nρ

.

The denominator is larger than
√

1− c2
1− 2√

ρ
−(3+2α1+α2)c, so it can be bounded

away from 0 if ρ is not too small while c is small enough (which further implies that

c′1 is small enough). The numerator is of rate O(1
ρ

+ 1
nρ

+ s
nρ

+ log p
nρ

+
√

log p
nρ

). As long

as s 6→ 0, the term 1
nρ

vanishes. Moreover, since we assume s log p
nρ

< c, together with

s 6→ 0 we have that log p
nρ

= O(1) so that log p
nρ

= O(
√

log p
nρ

). Thus,

κ2 ≤ κ′2 ≤ C̃

(
1

ρ
+

s

nρ
+

√
log p

nρ

)
,

for some constant C̃. Thus,

√
sκ2 ≤ C̃(2c+

√
c) =: c2 ,

and

∥∥v̂AT − v
∥∥

2
≤
√

2C̃

(√
s

ρ
+
s
√
s

nρ
+

√
s log p

nρ

)
+

2
√

2

(1− c2
2)ρ

(
1 + (1 + α1)

√
s

n

)2

+
4
√

2(1 + α2)√
ρ(1− c2

2)

√
s

n

≤
√

2C̃

(√
s

ρ
+
s
√
s

nρ
+

√
s log p

nρ

)
+

4
√

2

1− c2
2

1

ρ
+

4
√

2(1 + α2
1)

1− c2
2

s

nρ

+
4
√

2(1 + α2)√
(1− c2

2)

√
s

nρ

≤ C

(√
s

ρ
+
s
√
s

nρ
+

√
s log p

nρ

)
.

for some C. Since c is small enough, we can find α, α1, ..., α4 so that c1, c2 are also

small enough and lives in (0, 1). Hence the proof can proceed, and the probability

of the error bound is at least 1− C ′(−c′s)− C ′′p−c′′ , for some C ′, C ′′, c′, c′′.
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Although the i.i.d. case is a special case of the non-i.i.d. case, theoretically

speaking, there is a major difference. When comparing the error rates, we can see

that in i.i.d. case, the error (2.27) converges to 0 when either sample size n or signal

noise ratio ρ goes to infinity, while in non-i.i.d. case, (2.40) converges to 0 if ρ goes

to infinity, but does not converge to 0 if sample size n goes to infinity. This is not

surprising though, because the population covariance is σ2vvT + Σe, and the top

eigenvector of the population covariance is not always v for general Σe.

Similar to Corollary II.8, we can show that SPCA-DT can differentiate signals

of level κ1 � 1√
ρ
(1 +

√
log p
n

) from noise, and the final error is
∥∥v̂DT − v

∥∥
2
�
√

s
ρ

+
√

s log p
nρ

. As comparison, SPCA-AT can differentiate signals of level κ2 � 1
ρ

+ s
nρ

+
√

log p
nρ

, and the error is
∥∥v̂AT − v

∥∥
2
�
√
s
ρ

+ s
√
s

nρ
+
√

s log p
nρ

. As we have explained, ρ

needs to goes to infinity in order for either SPCA-AT or SPCA-DT to be consistent.

If ρ→∞, and moreover if s = O(n), then κ2 = O(κ1). If ρ→∞ but n = o(s), both

κ2 = O(κ1) and κ1 = O(κ2) are possible. The advantage of AT over DT is not as

clear as it is in the i.i.d. case.

The extra term s
√
s

nρ
actually looks unnatural. This term is incurred when bounding

∣∣∣∆kÎ v̂
(Î)
∣∣∣ in (2.38). The bound is crude and can possibly be more tight, but we have

not achieved that with current proof technique.

2.4.4 Multiple spikes D > 1

In this section, we consider the multiple-spike model

X = USV + ε ,

where UTU/n = VTV = ID, S = diag(σ1, ..., σD) and εi ·
i.i.d.∼ Norm(0p,Σe). This

is an extension of the single-spike model. The proof technique in Theorem II.7 can

be used to prove the following theorem.
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Theorem II.9. Consider the multiple-spike model X = USV+ε. Assume the noise

ε has i.i.d. rows drawn from Norm(0p,Σe), where ‖Σe‖op = σ2
e . Denote ρ = σD/σe

and ρ∗ = σ1/σD. Suppose that exist constants 0 < δ < 1 and t1, t2, t3, t4 > 0 such

that t0 =
√

log p−log δ
n

, and

κ1 =
2

ρ

√
1 + 2t0 + 2t20 ,

κ2 = κ1 ∧ κ′2, κ′2 =
2

ρ

ρ∗
√

2 log p+
√
D+t3√

n
+ 1

ρ

(
1 +

√
s+1+

√
2 log p+t4√
n

)2

1−
√
sκ1 − 2

ρ
− 1

ρ
(2+ρ∗)

√
s+ρ∗

√
D+2t1+ρ∗t2√
n

satisfies κ2 > 0,
√
sκ1 < 1. Denote I1 = {j : ‖Vj · ‖2 > κ1}, I2 = {j : ‖Vj · ‖2 > κ2}.

Then using thresholds

γ1 = σ2
e(1 + 2t0 + 2t20) ,

γ2 =
σeσ1(

√
2 log p+

√
D + t3)√

n
+ σ2

e

(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

n
,

we have

1. with probability at least 1− δ, the DT estimated set Î satisfies

I1 ⊆ Î ⊆ I0 ;

2. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) the estimated space

satisfies

Distave(V̂DT ,V) ≤
√
sκ1√
D

+
4
√

2σe
σD(1−

√
sκ1)2

(√
s

n
+

√
D

n
+

t2√
n

)

+
2
√

2σ2
e

σ2
D(1−

√
sκ1)2

(
1 +

√
s

n
+

t1√
n

)2

;

3. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) − 2 exp(−t23/2) −

exp(−t24/2), the AT estimated set Ĩ satisfies

I2 ⊆ Ĩ ⊆ I0 ;
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4. with probability at least 1 − δ − 2 exp(−t21/2) − exp(−t22/2) − 2 exp(−t23/2) −

exp(−t24/2) the AT estimated eigenvector v̂AT satisfies

Distave(V̂AT ,V) ≤
√
sκ2√
D

+
4
√

2σe
σD(1−

√
sκ2)2

(√
s

n
+

√
D

n
+

t2√
n

)

+
2
√

2σ2
e

σ2
D(1−

√
sκ2)2

(
1 +

√
s

n
+

t1√
n

)2

.

Proof. The proof is the same as the proof of Theorem II.7. We will emphasize all the

differences while omitting the parts that are shared between these two theorems.

1. Preparation:

For easy reference we define all random events that are used, even though only

event G2,G5,G6 are changed:

G1 : max
k∈Ic0

‖X · k‖2
2

n
=
‖ε · k‖2

2

n
< σ2

e(1 + 2t0 + 2t20) ,

G2 : min
k∈I1

‖X · k‖2
2

n
=

∥∥USVT
k · + ε · k

∥∥2

2

n
> σ2

e(1 + 2t0 + 2t20) ,

G3 : σmax(ε · I0) ≤ σe(
√
n+
√
s+ t1) ,

G4 : σmin(ε · I0) ≥ σe(
√
n−
√
s− t1) ,

G5 :

∥∥∥∥
UTε · I0√

n

∥∥∥∥
op

≤ σe(
√
s+
√
D + t2) ,

G6 : max
k∈Ic1

∥∥∥∥
UTε · k√

n

∥∥∥∥
op

≤ σe(
√

2 log p+
√
D + t3) ,

G7 : max
k∈Ic1

∥∥εT· kε · I0
∥∥

2
≤ σ2

e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2 .

Denote V̂
(I)

to be the top D right singular vectors of X · I for a generic set I

and hence, for example, V̂
(DT )

=




V̂
(Î)

0p−|Î|×D


 and V̂

(AT )
=




V̂
(Ĩ)

0p−|Ĩ|×D


.

2. Diagonal thresholding set:

This part is exactly the same in Theorem II.7, so we omit it.
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3. From the DT set to the corresponding estimator:

Since Distave is constant times Frobenius norm, triangular inequality applies.

Thus,

(2.41) Distave(V̂
DT
,V) ≤ Distave(V̂

(Î)
,VÎ · ) + Distave







VÎ ·

0


 ,V


 .

Here we use vectors instead of spaces in the arguments for notational conve-

nience. For example, Distave(V̂
DT
,V) = Distave(colspan〈V̂

DT
〉, colspan〈V〉).

For the second term of (2.41), which is the bias term, we have

(2.42)

Distave







VÎ

0


 ,V




2

= 1− 1

D

∥∥∥∥∥∥∥∥




VÎ

VÎc




T 


VÎ(V
T
Î
VÎ)

−1/2

0




∥∥∥∥∥∥∥∥

2

F

= 1− 1

D

∥∥(VT
Î
VÎ)

1/2
∥∥2

F
= 1−

tr
(
VT
Î
VÎ

)

D

=
‖VÎc‖

2
F

D
≤
√
sκ1√
D

.

For the first term of (2.41), which is the variance term, note that V̂
(Î)

is the top

eigenvectors of

(USVT
Î · + ε · Î)

T (USVT
Î · + ε · Î) = VÎ ·ΛVT

Î · +M1 +MT
1 +M2 ,

where

M1 = VÎ ·SUTε · Î/n ,

M2 = εT· Îε
T
· Î/n .

The signal matrix VÎ ·ΛVT
Î · is of rank D and M1 +MT

1 +M2 is the perturbation

term. Although VÎ · is not an orthonormal basis, it spans the same space as

the eigenvectors of VÎ ·ΛVT
Î · . By Davis Kahan’s inequality (Lemma II.19),

(2.43)

Distave(V̂
(Î)
,VÎ · ) =

1√
D

∥∥∥∥sin Θ(V̂
(Î)
,VÎ)

∥∥∥∥
F

≤
2
∥∥M1 +MT

1 +M2

∥∥
op

σmin (VÎ ·S)2 .
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For M1,

‖M1‖op ≤ ‖VÎ‖op ‖S‖op

∥∥UTεT· Î
∥∥

op
/n .

Note that Î ⊆ I0, so
∥∥∥UTεT· Î

∥∥∥
op
≤
∥∥UTεT· I0

∥∥
op

. Also ‖VÎ‖op ≤ 1, ‖S‖op ≤ σ1.

By G5

(2.44) ‖M1‖op ≤ σ1σe(
√
s+
√
D + t2)/

√
n .

As a sub-block of εT· I0ε
T
· I0/n, and M2 has operator norm smaller than that of

the whole matrix. Thus, by G3,

(2.45) ‖M2‖op ≤ σ2
e

(
1 +

√
s

n
+

t1√
n

)2

.

To bound σmin (VÎ ·S), first note that by Weyl’s inequality and the fact that

Î ⊆ I1, we have

σmin (VÎ · ) ≥ σmin (VI1 · ) = σmin


V −




0

VIc1 ·







≥ 1− σmax

(
VIc1 ·

)
≥ 1−

∥∥VIc1 ·
∥∥

F
≥ 1−

√
sκ1 ,

so

(2.46) σmin (VÎ ·S) ≥ σDσmin (VÎ) ≥ σD(1−
√
sκ1) .

Substituting (2.44), (2.45) and (2.46) into (2.43), we get

Distave(V̂
(Î)
,VÎ · ) ≤

4
√

2σe
σD(1−

√
sκ1)2

(√
s

n
+

√
D

n
+

t2√
n

)

+
2
√

2σ2
e

σ2
D(1−

√
sκ1)2

(
1 +

√
s

n
+

t1√
n

)2

.

(2.47)

In summary, substituting 2.42 and 2.47 into 2.41, we have, with probability at

least 1−
∑

j=1,2,3,4,5 P (Gcj ), that

Distave(V̂
DT
,V) ≤

√
sκ1√
D

+
4
√

2σe
σD(1−

√
sκ1)2

(√
s

n
+

√
D

n
+

t2√
n

)

+
2
√

2σ2
e

σ2
D(1−

√
sκ1)2

(
1 +

√
s

n
+

t1√
n

)2

.

(2.48)



50

4. Second thresholded set:

Assume G1-G7 hold. For any k ≤ p and I ⊆ {1, 2, ..., p}, denote

∆kI = εT· kX · I/n ,

SkI = XT
· kX · I/n = Vk ·S

2VT
I /n+ Vk ·SUTε · I/n+ ∆kI .

Then for k ∈ I0\Î and l ∈ Ic0, we have that

(2.49) wl =

∥∥∥∥∆lÎV̂
(Î)
∥∥∥∥

2

,

(2.50) wk ≥=

∥∥∥∥Vk ·S
2VT

Î
V̂

(Î)
∥∥∥∥

2

−
∥∥∥∥Vk ·S

UTε · Î
n

V̂
(Î)
∥∥∥∥−

∥∥∥∥∆lÎV̂
(Î)
∥∥∥∥

2

.

For the first term of (2.50), be aware that VÎ · is not an orthonormal basis, and

needs to be transformed. By Wedin’s inequality (Lemma II.17), we have

σmin

((
VÎ(V

T
Î
VÎ)

−1/2
)T

V̂
(Î)
)
≥ 1− 2σmax (ε · Î)

σmin

(
USVT

Î ·

) = 1− 2σmax (ε · Î)√
nσmin (VÎ ·S)

.

The last equality holds because U/
√
n is orthonormal. Since G3 holds, σmax (ε · Î) ≤

σmax (ε · I0) ≤ σe(
√
n +
√
s + t1). The denominator is bounded in (2.46) as

σmin (VÎ ·S) ≥ σD(1−
√
sκ1). Also note that σmin

(
S(VT

Î
VÎ)

1/2
)

= σmin (VÎ ·S).

Therefore,

(2.51)

1

n

∥∥∥∥Vk ·S
2VT

Î
V̂

(Î)
∥∥∥∥

2

≥‖Vk · ‖2 σmin (S)σmin

(
S(VT

Î
VÎ)

1/2
)
σmin

((
VÎ(V

T
Î
VÎ)

−1/2
)T

V̂
(Î)
)

≥σD ‖Vk · ‖2 σD(1−
√
sκ1)

(
1− 2(

√
n+
√
s+ t1)√

nσD(1−
√
sκ1)

)

=σD ‖Vk · ‖2

(
σD(1−

√
sκ1)− 2σe − 2σe

√
s+ t1√
n

)
.
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For the second term of (2.50), simply by G5, we have

(2.52)

∥∥∥∥Vk ·S
UTε · Î
n

V̂
(Î)
∥∥∥∥

2

≤ ‖Vk · ‖2 ‖S‖op

∥∥∥∥
UTε · Î
n

∥∥∥∥
op

∥∥∥∥V̂
(Î)
∥∥∥∥

op

≤ σ1

∥∥∥∥
UTε · I0
n

∥∥∥∥
op

‖Vk · ‖2

≤ σ1σe(
√
s+
√
D + t2) ‖Vk · ‖2 .

The third term of (2.50) and wl, l ∈ Ic0 can be treated together. We have

∆kÎ =
1

n
εT· kUSVÎ · +

1

n
ε · kε · Î .

With Î ⊆ I0,
∥∥∥∥∆kÎV̂

(Î)
∥∥∥∥

2

≤ 1

n

∥∥εT· kU
∥∥

2

∥∥∥∥SVÎ · V̂
(Î)
∥∥∥∥

op

+

∥∥∥∥
1

n
εT· kε · Î

∥∥∥∥
2

∥∥∥V̂Î

∥∥∥
op

≤ σ1√
n

∥∥∥∥
εT· kU√
n

∥∥∥∥
2

+

∥∥∥∥
1

n
εT· kε · I0

∥∥∥∥
2

.

By G6 and G7, we then have

(2.53)

∥∥∥∥∆kÎV̂
(Î)
∥∥∥∥

2

≤ σeσ1

√
2 log p+

√
D + t3√

n

+
σ2
e(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

n
.

Substituting (2.51), (2.52) and (2.53) into (2.49) and (2.50) and defining

γ2 =
σeσ1(

√
2 log p+

√
D + t3)√

n
+ σ2

e

(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

n
,

ρ = σD/σe ,

ρ∗ = σ1/σD ,

κ′2 =
2γ2

σD

(
σD(1−

√
sκ1)− 2σe − σe (2+ρ∗)

√
s+ρ∗

√
D+2t1+ρ∗t2√
n

)

=
2

ρ

ρ∗
√

2 log p+
√
D+t3√

n
+ 1

ρ

(
1 +

√
s+1+

√
2 log p+t4√
n

)2

1−
√
sκ1 − 2

ρ
− 1

ρ
(2+ρ∗)

√
s+ρ∗

√
D+2t1+ρ∗t2√
n

,

then

wl < γ2, l ∈ Ic0 ,
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wk ≥ γ2, k : vk > κ′2 .

Thus, with probability at least 1−
∑

j≤7 P (Gcj ),

I2 ⊆ Ĩ ⊆ I0 .

5. From the second set to the corresponding estimator:

We know that I2 ⊆ Ĩ ⊆ I0, where I2, I0 are two fixed sets. Using the same

argument as in part 3 and similar to (2.48), we have, with probability at least

1−
∑7

j=1 P (Gcj ), that

Distave(V̂
AT
,V) ≤

√
sκ2√
D

+
4
√

2σe
σD(1−

√
sκ2)2

(√
s

n
+

√
D

n
+

t2√
n

)

+
2
√

2σ2
e

σ2
D(1−

√
sκ2)2

(
1 +

√
s

n
+

t1√
n

)2

.

(2.54)

6. Bound the probabilities:

The events G1,G3,G4,G7 are exactly the same as in Theorem II.7. We only

address the other three events.

For G2, when k ∈ I1, we have

‖X · k‖2 /
√
n ≥

∥∥USVT
k ·
∥∥

2
/
√
n− ‖ε · k‖2 /

√
n ,

and ‖USVk · ‖2 /
√
n ≥ σD ‖Vk · ‖2 ≥ 2σe

√
1 + 2t0 + 2t20. Thus

P

(
‖X · k‖2 /

√
n ≤ σe

√
1 + 2t0 + 2t20

)

≤P
(
‖ε · k‖2 /

√
n ≥ σe

√
1 + 2t0 + 2t20

)
≤ exp(−t20n) .

By union bound, P (Gc2) ≤
∑

k∈I1 exp(−t20n) = s1δ/p.

For G5, denote ε̃ = ε · I0 [Σe]
−1/2
I0I0

, then ε̃ is i.i.d. standard Gaussian ensemble.

Consequently 1√
n
UT ε̃ ∈ RD×s also has i.i.d. standard Gaussian entries. Thus
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by Lemma II.14

P

(∥∥∥∥
1√
n

UT ε̃

∥∥∥∥
op

>
√
s+
√
D + t2

)
≤ exp(−t22/2) .

Since
∥∥∥ 1√

n
UTε · I0

∥∥∥
op
≤
∥∥∥ 1√

n
UT ε̃

∥∥∥
op
‖[Σe]I0I0‖op ≤ σe

∥∥∥ 1√
n
UT ε̃

∥∥∥
op

, we have

P

(∥∥∥∥
1√
n

UTε · I0

∥∥∥∥
op

> σe(
√
s+
√
D + t2)

)

≤P

(∥∥∥∥
1√
n

UT ε̃

∥∥∥∥
op

>
√
s+
√
D + t2

)
≤ exp(−t22/2) .

For G6, note that UT ε · k√
n
∼ Norm(0, [Σe]kkID) for all k; also note that [Σe]kk ≤

σ2
e . By Corollary II.11,

P

(∥∥∥∥
UTε · k√
nσe

∥∥∥∥
2

>
√
D +

√
2 log p+ t3

)

≤P

(∥∥∥∥∥
UTε · k√
n[Σe]kk

∥∥∥∥∥
2

>
√
D +

√
2 log p+ t3

)

≤ exp(−(
√

2 log p+ t3)2/2) ≤ exp(−t23/2)/p .

By union bound,

P

(
max
k 6∈I1

∥∥∥∥
UTε · k√
nσe

∥∥∥∥
2

>
√
D +

√
2 log p+ t3

)
≤ p− s1

p
exp(−t23/2) ≤ exp(−t23/2) .

The error bounds in Theorem II.9 and the error bounds in Theorem II.7 have the

same asymptotic rate as long as the rank D and the condition number ρ∗ = σ1/σD of

the low rank signal matrix are both of constant rate. The procedure of transforming

the theorem above to an asymptotic version will be almost the same that for D = 1,

so we omit it here.
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2.5 Simulation

In this section we provide some numerical results that compare various GSPCA

methods. Data are generated from the spiked-covariance model

X = ρ
D∑

d=1

udv
T
d + ε ,

where ud ∈ Rn and ε ∈ Rn×p have i.i.d. standard Gaussian entries. V = (v1, ...,vD) ∈

Rp×D are generated from the following three models, with model configuration pa-

rameters (n, p, ρ).

1. V Model 1: Single spike, equal signal levels. D = 1, s = 5, vS = 1√
s
(1, 1, .., 1)T ,

V = V(1) :=




vS

0p−s×1


.

2. V Model 2: Single spike, unequal signal levels. D = 1, s = 5, vS =

(0.8, 0.82, ...0.8s), vS = vS/ ‖vS‖2. V = V(2) :=




vS

0(p−s)×1


.

3. V Model 3: Two spikes, unequal signal levels. D = 2, s = 5, vS = (0.8, 0.82, ...0.8s),

vS = vS/ ‖vS‖2. V = V(3) :=






vS 0s

0s vS




0(p−2s)×2




.

All the methods we tested have penalty parameters. In order to avoid over-tuning,

for each method we only change one tuning parameter while keep others (if any)

fixed. We picked 20 values for the one chosen penalty parameter, so that the range

is usually wide enough to include the optimal tuning parameter. We check that by

calculating the mean errors from 200 independent runs, and see if the minimal error

is not from the largest or smallest penalty parameter values. That’s usually the case

in our experiments, which is specified below.
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For SPCA-DT, we vary γ1 = 1.2(−10,−9,...,9,10)
(

1 + 2
√

log(p/n) + 2 log(p/n)
)

. For

SPCA-AT, we fix γ1 and vary γ2 = 1.4(−15,−14,...,5) (σ2/n); the γ1 is chosen to be either

an ”optimal” value (which we get by checking the average results from SPCA-DT),

and then 2 times that value. For GSPCA-Reg, we vary λ = 1.2(−10,−9,...,10)/
√
n. For

GSPCA-Power we vary τ = (0.1, ..., 2) ‖V‖1,2 . For GSPCA-SDP we fix η = 2, and

vary λ = (2, 4, ..., 40)
√

log p/n. Finally as a bench mark, we use the built-in SPCA

method from the sklearn package in python, which does not get group sparsity; we

vary the tunning parameter α = (0.1, ..., 2)
√

log p.

In the first batch of experiments, we fix p = 300 and vary (n, ρ). We tested the

three right vectors V(1),V(2),V(3) and (n, ρ) = (40, 5), (160, 5), (10, 10), (40, 10), so

in total we have 12 configurations. For each configuration, we apply GSPCA-Reg,

GSPCA-Power, GSPCA-SDP, SPCA-DT, SPCA-AT(with the optimal and a larger

γ1), SPCA-python, each method having 20 tuning; we run 200 independent experi-

ments and calculate the average error Distave(V̂,V), so each method has 20 average

errors according to the 20 tuning parameter values, and we report the smallest av-

erage error. This is to mimic CV, and will tell us the potential performance of the

compared methods under proper tuning.

Table 2.1 shows the minimal mean errors of all methods and configurations.

Generally speaking for V(1), where non-zero coordinates have uniform signal lev-

el, GSPCA-SDP performs the best, and SPCA-AT has no advantage over SPCA-

DT; for V(2),V(3) where the signal levels are uneven, SPCA-AT performs the best.

From D = 1 to D = 2 (i.e. V(2) to V(3)), GSPCA-SDP deteriorates more than

thresholding-based methods; the sklearn built-in method does not seem to be affect-

ed, because the sparsity of V(3) is not actually by groups, so penalizing for group

sparsity has no advantage. As for computation, GSPCA-Power, GSPCA-SDP and
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V Model (n, ρ) Reg Python Power SDP DT AT AT
(optimial (large
γ1) γ1)

V(1) (40,5) 0.217 0.081 0.079 0.034 0.062 0.062 0.070
(160,5) 0.059 0.035 0.034 0.017 0.030 0.030 0.030
(10,10) 0.401 0.085 0.083 0.052 0.065 0.063 0.076
(40,10) 0.101 0.035 0.034 0.018 0.030 0.030 0.030

V(2) (40,5) 0.282 0.105 0.103 0.093 0.083 0.067 0.066
(160,5) 0.080 0.045 0.044 0.051 0.030 0.030 0.030
(10,10) 0.466 0.109 0.110 0.090 0.073 0.066 0.092
(40,10) 0.140 0.047 0.046 0.035 0.030 0.030 0.030

V(3) (40,5) 0.322 0.105 0.127 0.134 0.110 0.098 0.103
(160,5) 0.096 0.047 0.060 0.062 0.045 0.044 0.044
(10,10) 0.499 0.110 0.136 0.153 0.113 0.105 0.141
(40,10) 0.177 0.047 0.060 0.054 0.045 0.045 0.045

Table 2.1: Compare the performance of various SPCA algorithm under a wide range of settings.

GSPCA-DT/AT are all very efficient, while GSPCA-Reg and the sklearn method

are much less efficient. Despite that the tuning parameters are chosen heuristically,

we can still conclude that thresholding based SPCA methods achieve a good balance

between computation and accuracy and work for various models well.

It can also be observed that the larger signal noise ratio ρ is, the smaller sample

size n is needed to achieve the same error, and the error roughly depends on nρ2.

This is consistent to our theory. To see this more clearly, we ran a second batch of

experiments where we set n = 10, 40, 160, 640, 2560 and ρ =
√

4000/n, so that nρ2

is held constant. We can see a clear trade-off between ρ and n. If ρ is too small,

even n is very large the estimator is not consistent (see row ten in Table 2.2); on the

other hand, there is a limit that how small n can be for the theory to hold, so that

if n is simply too small, the error will also start to increase.

Finally, we run a third batch of experiments where we increase p and see how

different methods perform for high dimensional case. We compare GSPCA-Power,

GSPCA-SDP, SPCA-DT and SPCA-AT, and set (n, p) = (35, 150), (40, 300), (45, 600),

so that log p/n is almost constant (around 0.14). We test an additional model:
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V Model n Reg Python Power SDP DT AT AT
(optimial (large
γ1) γ1)

10 0.184 0.037 0.036 0.024 0.032 0.032 0.032
40 0.101 0.035 0.034 0.018 0.030 0.030 0.030

V(1) 160 0.059 0.035 0.034 0.017 0.030 0.030 0.030
640 0.043 0.036 0.035 0.017 0.031 0.031 0.031
2560 0.046 0.043 0.043 0.016 0.037 0.037 0.037
10 0.229 0.049 0.047 0.037 0.032 0.032 0.033
40 0.140 0.047 0.046 0.035 0.030 0.030 0.030

V(2) 160 0.080 0.045 0.044 0.051 0.030 0.030 0.030
640 0.059 0.049 0.047 0.091 0.032 0.032 0.031
2560 0.063 0.059 0.058 0.310 0.143 0.039 0.038

Table 2.2: Trade off between sample size and signal. nρ2 = 4000.

V Model (n,p) Power SDP DT AT AT
(optimial (large
γ1) γ1)

V(1) (35,150) 0.085 0.042 0.066 0.066 0.081
(40,300) 0.079 0.034 0.062 0.062 0.069
(45,600) 0.076 0.029 0.059 0.059 0.067

V(2) (35,150) 0.103 0.098 0.084 0.072 0.076
(40,300) 0.103 0.093 0.083 0.067 0.063
(45,600) 0.103 0.083 0.080 0.066 0.061

V(3) (35,150) 0.131 0.132 0.115 0.106 0.111
(40,300) 0.127 0.134 0.110 0.098 0.101
(45,600) 0.128 0.112 0.107 0.096 0.098

V(4) (35,150) 0.160 0.162 0.142 0.135 0.140
(40,300) 0.152 0.151 0.133 0.126 0.128
(45,600) 0.145 0.139 0.126 0.118 0.117

Table 2.3: Performance when p increases

• V Model 4: Multiple spikes, group sparsity. D = 3, vS = (0.8, 0.82, ...0.85),

vS = vS/ ‖vS‖2. V ∈ Rp×D such that for j = 1, 2, ..., 5, VIj · = vjOj, where

Ij = {(j − 1)D + 1, ..., jD}, and Oj ∈ RD×D is orthonormal.

The results are shown in Table 2.3. All these methods perform well as p increases,

and we can still see that thresholded SPCA methods perform better in the case well

non-zero covariates have uneven signal levels. Also AT is quite insensitive to the

choice of DT threshold (the errors from fixing γ1 to be the “optimal” value and a

large value are similar ).
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2.6 Auxiliary lemmas

Here we provide the auxiliary lemmas that are used in this chapter.

2.6.1 Exponential tail bounds

The first lemma is a tail bound of a quadratic form of mean zero Gaussian variables

proved by Laurent and Massart (2000).

Lemma II.10 (Laurent and Massart (2000)).

For Z1, ..., Zn
i.i.d.∼ Norm(0, 1), and σ1, ..., σn ∈ Rn

+, let W =
∑n

i=1 σ
2
iZ

2
i , and

a1 =
n∑

i=1

σ2
i , a

2
2 =

n∑

i=1

σ4
i , a∞ = max

i
σ2
i .

Then for any x > 0,

P
(
W > a1 + 2a2

√
x+ 2a∞x

2
)
≤ exp(−x) ,

P
(
W < a1 − 2a2

√
x
)
≤ exp(−x) .

An immediate corollary is a tail bound on chi-square distribution.

Corollary II.11 (Laurent and Massart (2000)).

P (
√
χ2
n/n ≥ 1 +

√
2t) ≤ P (χ2

n/n ≥ 1 + 2t+ 2t2) ≤ exp(−t2n) ,

P (χ2
n/n ≤ 1− 2t) ≤ exp(−t2n) .

The proof of Lemma II.10 is based on m.g.f. of chi-square distribution. The same

idea can be used to prove a tail bound for non-central chi-square distribution.

Lemma II.12.

If Z ∼ Norm(µ, In), where µ ∈ Rp, ‖µ‖2 = c and T = ‖Z‖2
2, then we have

P
(
T ≤ (c2 + n)− 2

√
2c2 + nx

)
≤ exp(−x2) ,

P
(
T ≥ c2 + n+ 4

√
c2/2 + n/4x+ 2x2

)
≤ exp(−x2) .
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Proof. The m.g.f. of non-central chi-square distribution gives

E[euT ] = exp

(
c2u

1− 2u

)
(1− 2u)−n/2, u < 1/2 ,

so

logE[euT ] =
c2u

1− 2u
− n

2
log(1− 2u)

= c2u

∞∑

k=0

(2u)k +
n

2

∞∑

k=1

(2u)k

k

= (c2 + n)u+ (2c2 + n)u2 +
∞∑

k=3

(
c2

2
+

n

2k

)
(2u)k .

Consider the left tail. For any t > 0 and u < 0,

P (T ≤ c2 + n− t) ≤ E[euT ]

eu(c2+n−t) .

Since u < 0,

logE[euT ] < (c2 + n)u+ (2c2 + n)u2 ,

and hence

logP (T ≤ c2 + n− t) ≤ (2c2 + n)u2 + ut ,

logP (T ≤ c2 + n− t) ≤ inf
u<0

(2c2 + n)u2 + ut = − t2

4(2c2 + n)
.

Let t = 2
√

2c2 + nx, and we prove the first part.

Now consider the right tail. For any t > 0 and 0 < u < 1/2

P (T ≥ c2 + n+ t) ≤ E[euT ]

eu(c2+n+t)
.

Since 0 < u < 1/2,

logE[euT ] ≤ (c2 + n)u+

(
c2

2
+
n

4

) ∞∑

k=2

(2u)k = (c2 + n)u+

(
c2

2
+
n

4

)
4u2

1− 2u
,

and thus we have

logP (T ≥ c2 + n+ t) ≤
(
c2

2
+
n

4

)
4u2

1− 2u
− ut ,
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logP (T ≥ c2 + n+ t) ≤ inf
0<u<1/2

(
c2

2
+
n

4

)
4u2

1− 2u
− ut .

Refer to Lemma 8. in Birgé and Massart (1998), we have

P (T ≥ c2 + n+ 4
√
c2/2 + n/4x+ 2x2) ≤ exp{−x2} .

For completeness, proof is provided here. Denote c′ = c2/2 + n/4, and consider the

function h(u) = 4c′u2/(1− 2u)− ut. We have

h(u) =
c′

1− 2u
+

(
c′ +

t

2

)
(1− 2u)− 2c′ − t

2
,

inf
u∈(0,1/2)

h(u) = 2
√
c′(c′ + t/2)− 2c′ − t/2 .

If we let t = 4
√
c′x+ 2x2, then

inf
u∈(0,1/2)

h(u) = 2

√
c′(c′ + 2

√
c′x+ x2)− 2c′ − t/2 = 2

√
c′x− t/2 = −x2

which complete the proof.

The following lemma gives tail probability inequalities on Gaussian variable and

extreme value of Gaussian variables.

Lemma II.13.

If Z ∈ Norm(0, 1), then for any t > 0

P (Z > t) ≤ exp(−t2/2) .

If Z1, ..., Zp ∼ Norm(0, 1), then for any t > 0:

P

(
max
j=1,...,p

Zp >
√

2 log p+ t

)
≤ P

(
max
j=1,...,p

Zp >
√

2 log p+ t2
)
≤ exp(−t2/2) ,

P

(
max
j=1,...,p

|Zp| >
√

2 log p+ t

)
≤ P

(
max
j=1,...,p

|Zp| >
√

2 log p+ t2
)
≤ 2 exp(−t2/2) .
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The following is a concentration inequality on the extreme singular values of

Gaussian ensemble. See Vershynin (2010), where origin of such inequalities was

discussed.

Lemma II.14 (Vershynin (2010)).

If X ∈ Rn×p, such that its rows are i.i.d. from Norm(0,ΣX), where ΣX ∈ Rp×p.

Then with probability at least 1− exp(−t/2), we have

σmin(X) ≥
(√

n−√p−
√
t
)√

λmin(ΣX) ,

and with probability at least 1− exp(−t/2),

σmax(X) ≤
(√

n+
√
p+
√
t
)√

λmax(ΣX) .

Proof. Vershynin (2010) gives proof for ΣX = ID. For general positive definite matrix

ΣX , we know that XΣ
−1/2
X is i.i.d. Gaussian ensemble. The proof is simple Corollary

of the ΣX = ID case.

2.6.2 Eigenvalue and eigenvector perturbation

In this section, we discussed some classical results on eigenvalue and eigenvector

perturbation. Singular value and vector perturbation is also closely related.

Lemma II.15 (Weyl’s inequality). If X,E ∈ Rn×m, where n > m, X̂ = X +E. Let

σj, σ̂j be the j-th singular value of X, X̂, respectively. Then

|σj − σ̂j| ≤ σmax(E) .

Lemma II.16 (Wedin’s sin(Θ) theorem, 1-dim, (Li 1998)). If X = duvT and X̂ =

duvT + E. Let v, v̂ be the top right singular vector of X, X̂, respectively, and θ =

∠(v, ṽ) ∈ (0, π/2). Then

sin θ ≤ 2σmax (E)

d
,
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which implies that

vT v̂ = cos(θ) ≥ 1− 2σmax (E)

d
,

‖v − v̂‖2 = 2 sin(θ/2) ≤
√

2 sin θ .

Lemma II.17 (Wedin’s sin(Θ) theorem, D > 1). If X be of rank D, and its SVD

is given by X = USV , where S = (σ1, ..., σD). Also let X̂ = X +E, and Û , V̂ be the

top D left and right singular vectors of X̂, and σ̂d be the d-th singular values. Then

σmax

(
sin Θ(V, V̂ )

)
≤ 2σmax (E)

σD
,

which implies that

σmin

(
V T V̂

)
≥ 1− 2σmax (E)

σD
.

Proof. A typical Wedin’s inequality (Li 1998) is

max
{∥∥∥sin Θ(V, V̂ )

∥∥∥ ,
∥∥∥sin Θ(U, Û)

∥∥∥
}
≤

max{‖EV ‖ ,
∥∥UTE

∥∥}
δ

,

where δ is the “cross” singular value gap (σD−σ̂D+1)∨0 that involves both X,X+E.

Any unitarily invariant norm can be used. If we use operator norm (i.e. the top

singular value) in the inequality, then we get

sin(θD) ≤ σmax (E)

δ
,

because σmax (EV ) ≤ σmax (E)σmax (V ) = σmax (E) and σmax

(
UTE

)
≤ σmax (E)

similarly.

If σD < 2σmax (E), then σmax(E)
2σD

> 1, so sin(θD) ≤ σmax(E)
2σD

holds trivially.

If σD ≥ 2σmax (E), then note that i) σD+1 = 0, ii) by Weyl’s inequalty σ̂D+1 ≤

σD+1 +σmax (E) = σmax (E). We thus have σD ≤ 2σ̂D+1, so σD ≥ 2(σD− σ̂D+1) = 2δ.

Therefore, we still can conclude that sin(θD) ≤ 2σmax(E)
σD

.

Once we prove sin(θD) ≤ 2σmax(E)
σD

, σmin

(
V T V̂

)
= cos(θD) ≥ 1 − sin(θD) ≥ 1 −

2σmax(E)
σD

.
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Lemma II.18 (Davis-Kahan’s sin(Θ) theorem, 1-dim). Let Σ = d2vvT , Σ̂ = Σ+M ,

where M is a symmetric perturbation on Σ. Let v̂ be the top eigenvector of Σ̂, and

θ = ∠(v, ṽ). Then

sin θ ≤
2 ‖M‖op

d2
,

which further implies that

vT v̂ = cos(θ) ≥ 1−
2 ‖M‖op

d2
,

‖v − v̂‖2 = 2 sin(θ/2) ≤
√

2 sin θ .

Lemma II.19 (Davis-Kahan’s sin(Θ) theorem, D > 1). Let Σ is a symmetric

positive definite matrix of rank D, with eigen-decomposition Σ = V ΛV T , where

Λ = diag(λ1, ..., λD). Also let Σ̂ = Σ + M to be another SPD matrix, where V̂

are the top D eigenvectors of Σ̂ and λ̂d are the d-th eigenvalue. Then

∥∥∥sin Θ(V, V̂ )
∥∥∥

F
≤

2
√
D ‖M‖op

λD
.

Proof. A typical Davis-Kahan’s inequality is (Li 1998)

∥∥∥sin Θ(V, V̂ )
∥∥∥ ≤ ‖MV ‖

δ
,

where δ = (λD − λ̂D+1) ∨ 0, and any unitarily invariant norm can be used in it. If

we use Frobenius norm, then

∥∥∥sin Θ(V, V̂ )
∥∥∥

F
=

√√√√
D∑

d=1

sin(θd)2 ≤ ‖MV ‖F

δ
≤
‖V ‖F ‖M‖op

δ
=

√
D ‖M‖op

δ
.

If λD ≤ 2 ‖M‖op, then
∥∥∥sin Θ(V, V̂ )

∥∥∥
F
≤
√
D ≤ 2

√
D ‖M‖op /λD.

If λD > 2 ‖M‖op, then note that i) λD+1 = 0 ii) since Σ, Σ̂ are both SPD matrices, so

eigenvalues are also singular values, so by Weyl’s inequality λ̂D+1 ≤ λD+1 +‖M‖op =

‖M‖op. Thus λD > 2λ̂D+1 which implies λD < 2δ. Thus we still can conclude that
∥∥∥sin Θ(V, V̂ )

∥∥∥
F
≤ 2
√
D ‖M‖op /λD. Proof completed.



CHAPTER III

Sliced Inverse Regression with Group Sparsity

3.1 Introduction

In the previous chapter, we discussed sparse PCA, which is a typical unsuper-

vised dimension reduction method. Dimension reduction is also useful in super-

vised learning. If we have a response variable Y and high-dimensional predictors

X = (X1, ..., Xp), and a linear subspace S ⊆ RD so that Y ⊥ X
∣∣∣ PSX, then PSX

provides all the information in X for explaining Y . The space S is called an ef-

ficient dimension reduction (EDR) space. Obviously EDR is not unique, and it is

only meaningful to find a subspace that is as small as possible. Under mild condition

(Cook 1996), the intersection of all the EDR spaces is also a EDR space, which is then

the minimal dimension reduction space, and is called the central space. Methodology

that estimates the central space is known as sufficient dimension reduction (SDR).

Among all SDR approaches, sliced inverse regression (Li 1991) is probably the

most widely used one. Consider the multiple index model

(3.1) Y = f(Xβ1, ..., XβD, ε) ,

where β1, ..., βD are linearly independent and f is some unknown function. The noise

ε is independent of X. The goal is to estimate the central space, which in this case is

S = span〈β1, ..., βD〉. Note that the actual coefficients β1, ..., βD are not identifiable

64
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without knowing f .

Denote ΣX = cov(X) and for simplicity, throughout the work we assume that

E[X] = 0p, so we do not need to worry about centralization. The essential assump-

tion behind SIR is the linearity condition, which is

∀ ξ ∈ Rp, ∃ c1, ..., cD, s.t. E[ξTX|βT1 X, ..., βTDX] =
D∑

d=1

cdβ
T
dX .

This is an assumption on the distribution of X. By assuming the linearity condition,

one can prove that

m(y) := E[X|Y = y] ∈ ΣXspan〈β1, ..., βD〉 = ΣXS, ∀y ∈ R .

In SIR literature m(y) is called the central curve. The property of central curve

implies that

colspan〈cov(m(Y ))〉 ⊆ ΣXS .

If we further impose a coverage condition, that is,

(3.2) colspan〈cov(m(Y ))〉 = ΣXS ,

then S is the generalized eigenspace of cov(m(Y )) with respect to ΣX . In summary,

linearity condition and coverage condition together make it possible to pose estima-

tion of central space as a generalized eigenvalue problem (GEP). There are many

other inverse regression methods as SAVE in Cook (2000) and MAVE in Xia et al.

(2002), which are also based on similar thoughts. See Li (2007) for a more general

formulation of inverse regression based SDR methods.

Sliced inverse regression provides a simple way to construct an empirical version

of cov(m(Y )). Specifically, assume X ∈ Rn×p and Y, ε ∈ Rn be i.i.d. samples from

the multiple index model (3.1) and assume that E[X] = 0p. Divide the domain of Y
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into H disjoint intervals (δh, δh+1), h = 0, 1, ..., H − 1, and group the samples into H

slices according to the value of Y , that is, the h-th slice has samples with index

Gh = {i : Yi ∈ (δh, δh+1)} .

The h-th slice mean of X is denoted by

X̄
(h)

=
1

mh

∑

i∈Gh
Xi · ,

where mh = |Gh| is the h-th slice size. Then SIR estimates cov(m(Y )) by

M :=
H∑

h=1

mh

n
X̄

(h)
(X̄

(h)
)T .

In this work, instead of setting the division points δ1, ..., δH−1, we slice the samples

so that each slice has the same size. Let n = Hm, and m1 = ... = mH = m. Denote

X̄
(∗)

= (X̄
(1)
, ..., X̄

(H)
)T ∈ RH×p. Then M = 1

H
X̄

(∗)T
X̄

(∗)
.

Either specifying division points or specifying slice sizes, one can estimate the

central space by solving a GEP,

Mvd = λdΣXvd ,

where V = (v1, ...,vD) satisfies VTΣXV = ID. Usually ΣX is unknown, in which

case Σ̂X = XTX/n or some other estimator needs to be plugged in.

When ΣX = Ip, the GEP is replaced by a PCA problem. We have mentioned in

the previous chapter that PCA is inconsistent when p diverges too fast with n; thus

it is not surprising that SIR has the same issue. Indeed, Lin et al. (2015) shows under

their assumptions that SIR is inconsistent when p/n 6→ 0. Thus, just like PCA, in

order for SIR to be useful, some regularization is necessary and sparsity regularization

can be used to both stabilize the estimation and improve interpretability.

There are many works that integrate sparsity into SIR. Some of them use penaliza-

tion to get sparse estimators; see for example Zhong et al. (2005), Li and Nachtsheim
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(2006), Li (2007), Li and Yin (2008), Chen et al. (2010), Yu et al. (2013), Tan et al.

(2017), Lin et al. (2018). Others use thresholding to pre-screen the variables; see

for example Jiang and Liu (2014), Yin and Hilafu (2015), Lin et al. (2015). Most of

these works discuss sparse SIR algorithms without providing any statistical proper-

ties. Jiang and Liu (2014), Chen et al. (2010), Lin et al. (2015) provides asymptotic

theories, which are not particularly useful when dimension is high. Recently Tan

et al. (2017) and Lin et al. (2018) both propose algorithms that numerically work

well and also provide theoretical results that are non-asymptotic. Basically, the dis-

tance between the true SDR space and the estimated space is often proved to be of

rate s log p
nλ

, where λ is some model parameter that measures signal magnitude. Lin

et al. (2018) require n = o(
√
p), while Tan et al. (2017) require n = O(s2 log p/λ),

and we can improve the sample size requirement.

3.2 Sparse SIR methods

In this section, we introduce some interesting SSIR methodologies. Similar to

SPCA, Sparse SIR (SSIR) can also be achieved by either regularization or thresh-

olding. The first method is so called “natural estimator” proposed by Tan et al.

(2017). Secondly, we discuss an SSIR method based on Lasso proposed by Lin et al.

(2018). Both methods use some penalization to induce sparsity. In addition, a third

SSIR method based on thresholding is introduced, which has been proposed by Lin

et al. (2015) but extended here. Finally, we introduce the “refinement” that has been

utilized to improve the regularized estimators in Tan et al. (2017), which can also be

applied to thresholded estimators.
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3.2.1 SSIR using SPCA-SDP

Recall that the dimension reduction space can be obtained by solving the following

generalized eigen-system

Mvd = λdΣXvd , vdΣXvd′ = 1{d = d′} .

where M = X̄
(∗)T

X̄
(∗)
/H is the matrix to be decomposed, ΣX is the kernel, and

V = (v1, ...,vD) is orthonormal w.r.t. the kernel, VTΣXV = ID. When ΣX is

unknown, it can be replaced by Σ̂X = XTX/n. To get a sparse estimator of V,

one can formulate the GEP into an optimization problem with a sparsity penalty.

Depending on the chosen optimization formulation and sparsity penalty, there can

be different sparse GEP(SGEP) algorithms. One example is the “natural estimator”

in Tan et al. (2017), which is a generalization of SPCA-SDP (Algorithm 3).

For simplicity, we assume ΣX ,Σ
−1
X are known; in case they are unknown, we can

always replace them with suitable estimates. Consider the following optimization

problem

minimize:
V ∈Rp×D

− tr
(
V TMV

)
+ ρ ‖V ‖1,2

subject to: V TΣXV = ID .

Notice the similarity between the above optimization criterion and ScotLass, except

that instead of `1 norm constraint, we use group norm penalty. Like ScotLass, it

cannot be solved efficiently, and needs to be relaxed.

The main difficulty of SGEP is the constraint V TΣXV = ID, which is more

complex than the orthonormal constraint V TV = ID in SPCA. As the result, many

efficient relaxations that work for SPCA no longer work for SGEP. The reason is that

the coordinate system under which V is sparse is different from the coordinate system

where V is orthonormal (there is a linear transformation with Σ
1/2
X in between).
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Tan et al. (2017) use the SDP relaxation. Instead of optimizing the generalized

eigenvectors V , they optimize over F = V V T , which should also be sparse

minimize:
F∈Rp×p

− tr (MF ) + ρ ‖F‖1

subject to:
∥∥∥Σ

1/2
X FΣ

1/2
X

∥∥∥
op
≤ 1,

∥∥∥Σ
1/2
X FΣ

1/2
X

∥∥∥
∗
≤ D .

To solve the above algorithm, ADMM can be used. The above optimization is

equivalent to

minimize:
F,G∈Rp×p

− tr (MF ) + ρ ‖F‖1 +∞1{‖G‖op > 1}+∞1{‖G‖∗ > D}

subject to: Σ
1/2
X FΣ

1/2
X −G = 0 ,

and the augmented Lagrangian is

Lη(F,G,H) = −tr (MF ) + ρ ‖F‖1 +∞1{‖G‖op > 1}+∞1{‖G‖∗ > D}

+ 〈H,Σ1/2
X FΣ

1/2
X −G〉+

η

2

∥∥∥Σ
1/2
X FΣ

1/2
X −G

∥∥∥
2

F
.

The ADMM scheme is then iteratively updating F,G,H as

F (t+1) = arg minLη(F (t), G(t), H(t)) ,(3.3)

G(t+1) = arg minLη(F (t+1), G(t), H(t)) .

H(t+1) = H(t) + η(Σ
1/2
X F (t+1)Σ

1/2
X −G

(t+1)) .

When ΣX = Ip, the algorithm is SPCA-SDP; when ΣX 6= Ip, solving (3.3) is

not easy. Tan et al. (2017) follow the proposal by Gao et al. (2017) where some

general convex optimization solver called TFOCS is used to solve (3.3), but it is not

as efficient as SPCA-SDP.

Another difficulty is that Σ
−1/2
X needs to be computed in advance when solving

(3.3). This is by itself a hard estimation problem when p is large. The author use
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pseudo-inverse, which empirically works quite well, but not well justified because

pseudo-inverse may not be “close” to the true inverse. It is not easy to circumvent

such complex computation or matrix inversion.

Algorithm 7 SSIR through SDP relaxation (SSIR-SDP)

1: Initialize F (0), G(0) ∈ Rp×p, H(0) = 0p×p.
2: For k = 0, 1, 2, ...,, repeat the following until convergence:
3: Solving F (t+1) = arg minLη(F (t), G(t), H(t)) using TFOCS solver.
4: F (t+1) = F (t+1) + F (t+1)T /2

5: SVD: Σ
1/2
X F (t+1)Σ

1/2
X +H(t)/η = LSR.

6: G(t+1) = LS′R, where S′ is capped soft thresholding of S, s′j ≤ 1,
∑
j s′j = D.

7: H(t+1) = H(t) + η(Σ
1/2
X F (t+1)Σ

1/2
X −G(t+1)).

8: Ŝ is the leading D-dimensional eigen-space of F̂ .

3.2.2 SSIR via Lasso

Another existing algorithm is called SIR-Lasso, proposed by Lin et al. (2018).

Recall that the central space is given by

S = Σ−1
X colspan〈cov(E[X|Y ])〉 .

Let J ∈ Rn×H so that Jih = 1 if Yi is in the h-th slice and Jih = 0 otherwise.

Then X̄
(∗)

= 1
m

JTX, so M = 1
m2H

XTJJTX. Replace cov(E[X|Y ]) by M and ΣX by

Σ̂X = XTX/n. Consider the regular eigen-decomposition of M,

Mη = ηΞ, ηTη = ID, Ξ = diag(ξ1, ..., ξd) .

so that colspan〈η〉 estimates colspan〈cov(E[X|Y ])〉. Thus S can be estimated by

colspan〈Σ̂−1
X η〉. Notice that

Σ̂−1
X η =

1

m
(XTX)−1XTJJTXηΞ−1 .

This is the least squares estimator of linear regression with predictor X and multi-

variate response ỹ = 1
m

JJTXη̂Ξ̂
−1

. To get a sparse estimator, we can then penalize

the multivariate regression problem. Lin et al. (2018) use Lasso regression for each
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response variable separately. If we want the estimated eigenvectors to have common

support, then the Lasso penalty can be replaced by a group Lasso penalty. The

criterion then becomes

min
B∈Rp×D

1

2n
‖ỹ −XB‖2

F + λ

p∑

j=1

‖Bj · ‖2 .

SSIR-Lasso circumvents estimation of Σ−1
X , and to our knowledge it is the only

SSIR algorithm in the literature that achieves this. Empirically, the performance is

satisfactory when D = 1. However when formulating SSIR into a multivariate linear

regression, there are several approximations made in the process, which makes the

justification less intuitive.

3.2.3 Thresholding-based SSIR

When ΣX = Ip, SSIR can be solved by using SPCA-DT or SPCA-AT on X̄
(∗)

directly. The algorithms need to be adapted in order to work for general ΣX . The

idea of the adaption follows the work on sparse CCA proposed by Chen et al. (2013).

Let M,ΣX ∈ Rp×p be two symmetric matrices, and moreover M is positive

semidefinite and ΣX is positive definite. We want to solve the generalized eigen-

system of M w.r.t. ΣX , i.e.,

MV = ΣXVΛ, VTΣXV = ID .

If M is nearly rank D, i.e. the generalized eigenvalues beyond the D-th one are

nearly 0, then we have

(3.4) Σ−1
X MΣ−1

X ≈ VΛVT

(3.5) Σ−1
X MV ≈ VΛ
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Note that (3.4) is not an eigen-decomposition; the actual eigen-decomposition is

Σ
−1/2
X MΣ

−1/2
X = (Σ

1/2
X V)Λ(Σ

1/2
X V)T , and 3.4 can be derived from that.

If we assume that the row support of V, S = {j : Vj · 6= 0}, is a small set.

Then the r.h.s. of (3.4) has only a small non-zero block (rows and columns both in

S), and the r.h.s. of (3.5) has row support S. This motivates the following SGEP

algorithm, which is very similar to SPCA-AT. If we plug in M = X̄
(∗)T

X̄
(∗)
/H, and

some estimator Σ̂X and Θ̂X of cov(X) and cov(X)−1, then the algorithm is an SSIR

algorithm

Algorithm 8 SGEP via thresholding; also SSIR-DT and SSIR-AT

1: Input M, Σ̂X , Θ̂X , dimension D, threshold γ1, γ2
2: Calculate W = Θ̂XMΘ̂X .
3: Diagonal thresholding: Using diagonal thresholding on W

Î = Wjj ≥ γ1

4: DT estimator: Calculate the leading D eigenvectors of [Σ̂X ]
−1/2
Î Î

MÎ Î [Σ̂X ]
−1/2
Î Î

to be V̂raw.

V̂Î · = [Σ̂X ]
−1/2
Î Î

Vraw, and zero padding V̂Îc · = 0.

5: Calculate W̃ = Θ̂XMV
6: Extra thresholding:

Ĩ(Î , γ2) = {j 6∈ Î :
∥∥∥W̃j ·

∥∥∥
2
> γ2} ∪ Î

7: Two stage estimator: Calculate the leading D eigenvectors of [Σ̂X ]
−1/2
Ĩ Ĩ

MĨ Ĩ [Σ̂X ]
−1/2
Ĩ Ĩ

to be

Ṽraw. ṼĨ · = [Σ̂X ]
−1/2
Ĩ Ĩ

Vraw, and zero padding ṼĨc · = 0.

8: V̂ is the SSIR-DT estimator and Ṽ is the SSIR-AT estimator.

3.2.4 Idea of refinement

In this section, we introduce a refinement technique that can be applied to any

estimated generalized eigenvectors. This technique was inherited from the Sparse

CCA algorithm proposed by Gao et al. (2017); Tan et al. (2017) apply it on the

“natural estimator” which has been discussed in section 3.2.1. In some sense, the

fundamental idea of this refinement is similar to SSIR-Lasso. The main difference

is that in SSIR-Lasso, regular eigenvectors of cov(E[X|Y ]) is refined instead of the

generalized eigenvectors.
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Recall that

E[cov(X|Y )]V = ΣXVΛ ,

and hence

E[XE[X|Y ]T ]V = E[X(VTm(Y ))T ] = E[XXT ]VΛ .

Therefore, VΛ solves the multivariate linear regression where VTm(Y ) is the mul-

tivariate response and X is the predictor. The response has V in it, and thus an

initial estimator V̂ needs to be plugged in.

Let J ∈ Rn×n so that Ji,j = 1/mh if Yi,Yj are both in the h-th slice, and Ji,j = 0

otherwise. Then the i-th row of JX is X̄
(h)

, so JX are approximately samples of

E[X|Y ]. Thus

min
U∈Rp×D

1

n

∥∥∥JXV̂ −XU
∥∥∥

2

F
+ λ ‖U‖1,2

gives a sparse estimator of VΛ. Note that VΛ and V have the same column span,

and the same row sparsity. Therefore the optimal solution of the criterion above also

estimates central space.

If the initial estimator is the “natural estimator”, then we get the “refined SSIR”

estimator in Tan et al. (2017). However we can also use thresholded SSIR as the

initial estimator. Simulation results show that the refinement can drastically improve

the thresholded estimator.

3.3 Statistical property

In this section, we provide some non-asymptotic theory on the statistical consis-

tency of thresholded SSIR estimators when D = 1 and ΣX = Ip.

In some early works of SIR, theories are based on decent estimators of the covari-

ance of central curve cov(E[X|Y ]). If sample size is sufficiently large, we can have

both sufficient number H of slices and also slices of large enough size m, so that M is
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close to cov(E[X|Y ]) indeed. However, this never occurs in high dimensional setting

where sample size is limited. In this section, we will show that the performance

of SIR does not rely on M being close to cov(E[X|Y ]) either; what is important

is instead that slice means X̄
(1)
, ..., X̄

(H)
approximately span the same space as the

column span of cov(E[X|Y ]). This can be achieved as long as the slice size m is

large; slice number H does not have to be large.

3.3.1 Special case: Gaussian linear model

To reinforce the understanding, we start with a simple model. Assume Gaussian

linear model with ΣX = Ip, i.e.,

(3.6) Y = f(Xβ, ε) = XTβ + ε .

The inverse model can be written as

X = Y c + U ,

where Y ∼ Norm(0, ‖β‖2
2 + σ2), c = β

‖β‖22+σ2 , U ∼ Norm(0p,ΣU) where ΣU =

Ip − ββT

‖β‖22+σ2 , and Y is independent of U . The samples can be written as

Y = Xβ + ε ⇔ X = YcT + U .

Since Y and U are independent, the data can be equivalently generated by first

sampling Y and U independently according to their marginal distributions, and

then calculating X using the inverse model.

Recall that we have n = Hm samples, and are dividing them into H slices evenly

according to the order of Yi’s. We use X̄
(h)

to denote the h-th slice mean of X,

and X̄
(∗)

to denote the collection of the H slice means. Use the same notation rule

for other random variables/vectors. Then we have the slice-level aggregated inverse
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model

(3.7) X̄
(∗)

= Ȳ
(∗)

cT + Ū
(∗)
.

Since we assume ΣX = Ip andD = 1, SSIR is just SPCA on X̄
(∗)

. If β̂DT , β̂AT ∈ Rp

are the leading PC loadings of X̄
(∗)

estimated by SPCA-DT and SPCA-AT, then

span〈β̂DT 〉, span〈β̂AT 〉 are estimators of central space.

Note that the inverse model consists of two parts: a rank 1 signal Ȳ
(∗)

cT =

‖β‖2Ȳ
(∗)

‖β‖22+σ2

βT

‖β‖2
, whose right singular vector is parallel to our target β; and a noise Ū

(∗)
,

which in this special case is independent of the rank 1 signal. Thus the the inverse

model is almost a single-spike model (2.28), except that now the left singular vector

is random.

To study the statistical property of the SSIR-DT/SSIR-AT estimator under Gaus-

sian linear model is essentially the same as studying the property of SPCA-DT/SPCA-

AT. It can be easily done by conditioning on Y and applying Theorem II.7 directly.

A crucial quantity in the theory of SPCA is the signal-to-noise ratio (of the inverse

model, not the Gaussian linear model). Therefore, we need to first understand the

magnitude of the signal part and noise part.

For the noise part, Ū
(∗)

has i.i.d. rows following Norm(0,ΣU/m). Thus the scale

of the noise is 1/
√
m. It is small when slices are large and it converges to 0 as m

diverges. The number of slices does not influence this property.

On the other hand the signal part is of rank 1 even if H = 2 (if H = 1, then since

we assume E[X] = 0, X̄
(∗)

and Ȳ
(∗)

are both close to 0, so the rank 1 signal degen-

erates to rank 0). The scale of the signal depends on
∥∥∥Ȳ(∗)

∥∥∥
2
, whose distribution is

described as follows.

Definition III.1. For H,m, let n = Hm and suppose Z1, ..., Zn
i.i.d.∼ Norm(0, 1).
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Let the ordered statistics be Z(1), ..., Z(n) and

Z̄(h) =
1

m

hm∑

j=(h−1)m+1

Z(j) .

W 2 =
1

H

H∑

h=1

Z̄(h)2 .

Then Ω(H,m) denotes the distribution of W .

The distribution Ω(H,m) does not have a simple analytical form, but as long as we

have more than two slices, the distribution is bounded away from 0. See remark below

for some discussion. Obviously, with only two slices, M is not close to cov(m(Y )) no

matter how big m is; yet according to the theory of SPCA, SSIR-DT and SSIR-AT

can both be consistent.

Remark III.2. For fixed H, as m→∞, we have

Ω(H,m)
d→

√√√√ 1

H

H∑

h=1

E
[
Z
∣∣∣ Z ∈

(
Φ−1

(
h− 1

H

)
,Φ−1

(
h

H

))]2

.

The right hand side is a constant (decided by H not m), and reach minimum when

H = 2, where Ω(2,m)
d→ E[Z|Z > 0]. Thus, as long as H ≥ 2, a variable from

Ω(H,m) tends to be bounded away from 0. It can be easily proved that the rank

1 signal is of strength σmax

(
Ȳ

(∗)
cT
)
∼ 1√

1+(σ/‖β‖2)2
Ω(H,m), so it is also bounded

away from 0 as long as σ/ ‖β‖2 = O(1).

Note that the variance of the slice means is smaller than the variance of the orig-

inal samples. Therefore, as n→∞, Ω(m,H) should not exceed sample variance too

much regardless of the trade-off between m and H. Therefore, intuitively, Ω(m,H)

has the same rate as a constant.

The statistical property of SSIR-DT/AT under Gaussian linear model when X ∼

Norm(0p, Ip) is provided in the following theorem.
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Theorem III.3. Suppose that the data are generated from Gaussian linear model,

Y = Xβ + ε ,

where X ∈ Rn×p such that Xij
i.i.d.∼ Norm(0, 1) and ε ∈ Rn such that εi

i.i.d.∼

Norm(0, σ2). Without loss of generality let ‖β‖2 = 1. Assume n = Hm, where

P (Ω(H,m) < c1) ≤ δ1, and denote ρ2 =
c21

1+σ2 . Denote I0 = {j : βj 6= 0} and

s = |I0|.

Let I1 = {j : |βj| > κ1}, I2 = {j : |βj| > κ2}, where

t0 =

√
log p− log δ2

n
,

κ1 =
2

ρ

√
1 + 2t0 + 2t20 ,

κ2 = κ1 ∧ κ′2, κ′2 =
2

ρ

√
2 log p+t3√

n
+ 1

ρ

(
1√
m

+
√
s+1+

√
2 log p+t4√
n

)2

√
1− sκ2

1 − 2
ρ
√
m
− 1

ρ
3
√
s+2t1+t2√

n

.

Assume that we can find constants 0 < δ2 < 1 and t1, t2, t3, t4 > 0, such that κ2 > 0,

√
sκ1 < 1. Then use SPCA-DT/AT on X̄

(∗)
with the following thresholds

γ1 = (1 + 2t0 + 2t20) ,

γ2 =
1

ρ

√
2 log p+ t3√

n
+

(
√
n+
√
s+ 1 +

√
2 log p+ t4)2

n
,

we have

1. with probability at least 1− δ1 − δ2, the DT-estimated set Î satisfies

I1 ⊆ Î ⊆ I0 ;

2. with probability at least 1−δ1−δ2−2 exp(−t21/2)−exp(−t22/2) the DT-estimated

eigenvector β̂DT satisfies

∥∥∥β̂DT − β
∥∥∥

2
≤
√

2sκ1 +
4
√

2

ρ
√

1− sκ2
1

(√
s

n
+

t2√
n

)

+
2
√

2

ρ2(1− sκ2
1)

(√
1

m
+

√
s

n
+

t1√
n

)2

,
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where β̂DT is the one between ±β̂DT that is closer to β;

3. with probability at least 1−δ1−δ2−2 exp(−t21/2)−exp(−t22/2)−2 exp(−t23/2)−

exp(−t24/2), the AT-estimated set Ĩ satisfies

I2 ⊆ Ĩ ⊆ I0 ;

4. with probability at least 1−δ1−δ2−2 exp(−t21/2)−exp(−t22/2)−2 exp(−t23/2)−

exp(−t24/2) the AT-estimated eigenvector β̂AT satisfies

∥∥∥β̂AT − β
∥∥∥

2
≤
√

2sκ2 +
4
√

2

ρ
√

1− sκ2
2

(√
s

n
+

t2√
n

)

+
2
√

2

ρ2(1− sκ2
2)

(√
1

m
+

√
s

n
+

t1√
n

)2

,

where β̂AT is the one between ±β̂AT that is closer to β.

Proof. Denote Z̄
(∗)

= 1√
1+σ2 Ȳ

(∗)
. Consider the slice-level inverse model

X̄
(∗)

= Ȳ
(∗)

cT + Ū
(∗)

=

∥∥∥Z̄(∗)
∥∥∥

2√
H
√

1 + σ2

√
HZ̄

(∗)
∥∥∥Z̄(∗)

∥∥∥
2

βT + Ū
(∗)
.

If we condition on Y, then Z̄
(∗)

is a constant vector. Conditionally, the inverse model

becomes exactly the model in Theorem II.7. We have the following correspondence
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between model components and problem parameters:

Theorem III.3⇐ Theorem II.7

√
H

Z̄
(∗)

∥∥∥Z̄(∗)
∥∥∥

2

⇐ u

β ⇐ v

U⇐ ε

H ⇐ n

Ip − ββT

1+σ2

m
⇐ Σe

1

m
⇐ σe

1√
1 + σ2

∥∥∥Z̄(∗)
∥∥∥

2√
H
⇐ σ

Denote the event E =

{
1√

1+σ2

∥∥∥Z̄(∗)
∥∥∥
2√

H
≥ ρ

}
, and it is measurable w.r.t. Y. Since∥∥∥Z̄(∗)

∥∥∥
2√

H
∼ Ω(H,m), by our assumption P (Ec) ≤ δ1, so ρ is a high probability lower

bound of the magnitude of the low rank signal. Then we can use a conditional

argument so that all the results in Theorem II.7 still hold, with δ1 subtracted from

the probability.

For example, by the first part of Theorem II.7, we have

P
(
I1 6⊆ Î or Î 6⊆ I0

∣∣∣ Y
)

1{E} ≤ δ2 ,

and hence

P
(
I1 6⊆ Î or Î 6⊆ I0

)

≤P
(
I1 6⊆ Î or Î 6⊆ I0, E

)
+ P (Ec)

≤
∫

E
P
(
I1 6⊆ Î or Î 6⊆ I0|Y

)
dPY + P (Ec)

≤δ2 + δ1 ,
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P
(
I1 ⊆ Î ⊆ I0

)
≥ 1− δ1 − δ2 .

The probability of the other three events can be bounded similarly.

Corollary III.4. Apply sparse SSIR-AT on independent Gaussian linear model.

Assume σ2/ ‖β‖2
2 < c1, (H,m) satisfies that P (Ω(H,m) ≤ c2) ≤ δ for some constant

c1, c2, so that
c22

1+c21
m is large enough. Assume s

m
, s
√
s

n
, s log p

n
≤ c for some small

enough constant c. Then for some constant C,C ′, C ′′, c′, c′′, with probability at least

1− δ − C ′ exp(−c′s)− C ′′p−c′′,

(3.8)
∥∥∥β̂AT − β

∥∥∥
2
≤ C

(√
s log p

n
+

√
s

m
+
s
√
s

n

)
.

Moreover, simultaneously the estimated sparse set Ĩ excludes all zero coordinates

βk = 0 and includes all coordinates so that |βk| ≥ C̃

(
1
m

+ s
n

+
√

log p
n

)
for some C̃.

Remark III.5 (Comparison with the Lasso). There are various theoretical results

for the Lasso. For example, in Wainwright (2009a), it is shown that the Lasso can

recover the support of β if n � s log(p−s) and βmin := min{|βi| : βi 6= 0} �
√

log p/n;

moreover,
∥∥∥β̂ − β

∥∥∥
∞

= O(log p/n), so
∥∥∥β̂ − β

∥∥∥
2

= O(s log p/n). Comparing to that

result, we have an extra term of rate s
√
s/n which is hard to avoid with current

proof technique. Another example is provided by Zhou (2009), where the author also

proved that
∥∥∥β̂ − β

∥∥∥
2

2
= O(s log p/n) with a relaxed βmin condition. This is a possible

direction of future work.

3.3.2 General model, D = 1, ΣX = Ip

In this section we still assume that X ∼ Norm(0, Ip) and D = 1, but relax the

Gaussian linear model into the single index model

Y = f(XTβ, ε) ,
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where we assume X ∼ Norm(0, Ip), and WLOG ‖β‖2 = 1. The inverse model is

X = m(Y ) + U ,

where m(Y ) = E[X|Y ] is the central curve and U = X − E[X|Y ] is the residual.

There are three major differences between the general case and the Gaussian linear

model case. First, we still have m(y) = cyβ for some cy (because m(y) ∈ span〈β〉

by linearity condition, see section 3.1); however there is no easy analytical form

of cy in terms of y (under the Gaussian linear model, cy = y

‖β‖22+σ2 ). Second, U

is not independent of Y , so when we use inverse model to generate data, we need

to first generate Y1, ...,Yn, and then generate U1, ...,Un accordingly. Third, The

distribution of U is hard to characterize in general.

Denote U |Y = y ∼ FU,y. With m(y) and FU,y, the data X,Y can be equivalently

generated as follows

• Generate i.i.d. samples Y1, ...,Yn from the distribution of f(Z, ε), where Z ∼

Norm(0, 1).

• Calculate the central curve evaluated at the sample Y’s, i.e. m(Y1), ...,m(Yn).

• Generate the residuals U1, ...,Un, so that Ui follows FU,Yi
.

• Xi = m(Yi) + Ui.

We can still express the inverse model as single-spike model (2.28). To achieve

this, denote the projection matrices Pβ = ββT and P⊥β = Ip − Pβ, and notice that

m(Y ) and U can be decomposed as

m(Y ) = PβE[X|Y ] = E[βTX|Y ]β ,

U = X −m(Y ) = Pβ(X −m(Y )) + P⊥β X = (βTU)β + P⊥β X .
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Let g(y) = E[XTβ|Y = y] = m(y)Tβ. Also the conditional distribution βTU
∣∣∣ Y =

y is denoted by FE,y. This is also the conditional distribution of Z−E[Z|f(Z, ε) = y]

given f(Z, ε) = y. We can then express the population inverse model into

X = (g(Y ) + EY )β + P⊥β X ,

where given Y , EY is generated from FE,Y . Again we get a low-rank signal plus

a perturbation. g(Y ), EY are decided by Xβ, ε, so they are independent of P⊥β X.

Thus, to generate the sample, we can first generate Y , then generate EY according to

Y , and then generate a multivariate Gaussian vector whose covariance matrix is P⊥β

to be “P⊥β X”, and calculate X according to the inverse model. The sample version

is

Xi · = (gi + Ei)β + Xi ·P
⊥
β ,

where gi = m(Yi), and Ei|Yi follows FE,Yi
. Slice level aggregation gives

(3.9) X̄
(∗)

= (ḡ(∗) + Ē
(∗)

)β + X̄
(∗)
P⊥β .

where ḡ(∗) and Ē
(∗)

are within-slice means of g(Yi)’s and Ei’s, respectively. The

“noise” part X̄
(∗)
P⊥β has i.i.d. rows following Norm(0p, P

⊥
β /m).

The statistical property of SSIR-DT/AT applied to single index model is similar

to that applied to Gaussian linear model, and Theorem III.3 can be adapted with

one change. Instead of conditioning on Y, we now need to condition on Xβ, ε. With

the conditioning, ḡ(∗), Ē
(∗)

are both constant vectors. Just like in GLM, we need

to have a high-probability lower bound of the magnitude of the signal part in the

inverse model, which in this case is decided by
∥∥∥ḡ(∗) + Ē

(∗)
∥∥∥

2
/
√
H. To achieve this,

we make the following assumption on (f, ε,H,m).
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Assumption III.6. Let Z ∼ Norm(0, 1), g(y) = E[Z
∣∣∣ f(Z, ε) = y], and let FE,y

be the conditional distribution Z − E[Z
∣∣∣ f(Z, ε) = y]

∣∣∣ f(Z, ε) = y. Let n = Hm.

We say that (f, ε,H,m) ∈ C(c1, c2, p1, p2) if the following two inequalities holds:

• With Y1, ...,Yn being i.i.d. samples of f(Z, ε), calculate gi = g(Y(i)), divide

them into H slices and denote the vector of within-slice means by ḡ(∗) ∈ RH .

Then

P

(∥∥ḡ(∗)∥∥
2√

H
< c1

)
≤ p1 .

• For any n sorted numbers y1 < y2, ..., < yn, let Ei ∼ FE,yi. Denote Ē
(∗) ∈ RH

to be the within-slice means of Ei’s. Then

P




∥∥∥Ē(∗)
∥∥∥

2√
H

>
c2√
m


 ≤ p2 .

Assumption III.6 is obviously posed for technical reason. It is hard to check

whether the assumption holds for most (f, ε,H,m), but the assumption can be un-

derstood intuitively.

The first part of the assumption is essentially to assume that inverse regression

curve is not “flat”. We know that some functions f are problematic; for example if

f(x, ε) = x2 + ε, then E[Z|Z2 + ε] = 0, so g is always 0. This assumption eliminates

that.

The second part is made on “variance”. There is no straightforward analysis, but

generally speaking the more variant f(Z, ε) is from some deterministic function f(Z)

the larger
∥∥∥Ē(∗)

∥∥∥
2

is, so that the constants in the assumption is worse. Some special

cases to help understanding: 1) if f(Z, ε) = f(Z), where f is strictly monotonic,

then
∥∥∥Ē(∗)

∥∥∥
2

= 0; 2) if f(Z, ε) = Z+ε, where ε ∼ Norm(0, σ2), then Ē
(∗)

has entries

i.i.d. following Norm(0, (1− 1
1+σ2 )/m), so the smaller σ2 is the better.
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With the above assumptions we can state the following theorem on consistency

of sparse SIR.

Theorem III.7. Suppose that data are generated from single index model,

Yi = f(XT
i β, εi) ,

where X ∈ Rn×p such that Xij
i.i.d.∼ Norm(0, 1). Without loss of generality, let

‖β‖2 = 1. Assume that (H,m, f, ε) ∈ C(c1, c2, δ1, δ2) defined in Assumption III.6,

and denote ρ = c1 − c2/
√
m. Then all the results in Theorem III.3 holds.

3.3.3 Discussions

We compare our theory with that in Tan et al. (2017). Their results generalize to

D > 1 and ΣX 6= Ip; we only proved theory for D = 1 and ΣX = Ip, but potentially

this can also be generalized. We also make different assumptions. In Tan et al. (2017),

Y is categorical with H values, and FE,yh is Norm(0,Σh); in our work, we assume

X ∼ Norm(0, Ip), but FE,yh can be some general distribution. Their assumption

almost implies our assumption, except that they assume conditional distribution

to be Gaussian while we assume marginal distribution to be Gaussian. Another

difference is that they directly make the generalized eigenvalues of cov(E[X|Y ]) w.r.t.

cov(X) parameters, and assume that the minimal non-zero generalized eigenvalue

is bounded away from 0. This is actually a form of coverage assumption, that is:

Σ−1
X colspan〈m(Y1), ...,m(Yn)〉 is not a subset of S but equals S. If some generalized

eigenvalue is close to zero, than the corresponding eigenvector will not be covered by

that space. In our work, the assumption on Ω(H,m) in Theorem III.3 and part 1 of

Assumption III.6 in Theorem III.7 are imposed for this purpose.

As for the error bounds of the final estimator, Tan et al. (2017) provided a lower
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bound

C
s log(p/s)

n
, assuming

s log(p/s)

n
≤ c ,

and an upper bound

C
s log p

n
, assuming

s2 log p

n
≤ c .

We only provide an upper bound. If we fix H as what they did, then our upper

bound is

C

(
s log p

n
+
s3

n2

)
, assuming

s
√
s

n
,
s log p

n
≤ c .

Since s
√
s

n
, s log p

n
= O( s

2 log p
n

), our assumption on (n, p, s) is less demanding asymp-

totically. The extra term in the error, s3

n2 , is not always of smaller rate than s log p
n

;

however, if we do assume Tan’s sample size requirement that s2 log p
n

= O(1), then

s3

n2 = s
n
× s2

n
= O( s

n
) = O( s log p

n
). Thus, our theory is slightly better than theirs

asymptotically.

3.4 Simulation on SSIR-DT/AT

In this section, we run numerical study to compare different versions of thresh-

olding based methods, to check whether our theoretical results are correct, and to

see the performance of those methods in the problem regime for which we have not

developed any theory (D > 1, Σ 6= Ip and refinement).

3.4.1 Asymptotic rate of sample size

The purpose of the first batch of experiments is to see how sample size n scales

with dimension p. We generate data from the following Y models:

• Model I: D = 1, Y = Xβ1 + sin(Xβ) + ε, β1 = (bs,0p−s).

• Model II: D = 1, Y = (Xβ1)3 + ε, β1 = (bs,0p−s).
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• Model III: D = 2, Y = (Xβ1) exp(Xβ2) + ε, (β1, β2) =




bs 0s

0s bs

0p−2s 0p−2s




.

• Model IV: D = 2, Y = (Xβ1) + exp(Xβ2) + ε, (β1, β2) =




bs 0s

0s bs

0p−2s 0p−2s




.

• Model V: D = 2, Y = (Xβ1)(1+Xβ1+Xβ2)+ε, (β1, β2) =




bs 0s

0s bs

0p−2s 0p−2s




.

where X ∼ Norm(0,ΣX), and we tested two different ΣX : Σ1 = Ip and Σ2 such that

[Σ2]ij = 0.3|i−j|. For the purpose of this experiment, we assume that ΣX is known.

We fix the variance of noise ε ∼ Norm(0, 0.32), s = 30, and bs = κ(0.8, 0.82, ..., 0.8s),

where κ is chosen so that ‖bs‖2 = 1.

We ran four different methods based on thresholding: SSIR-DT, SSIR-AT, and

SSIR-DT/AT with refinement (SSIR-DT-ref, SSIR-AT-ref). We use H = 8D slices.

All these methods have tuning parameter(s), and we only vary one of them. For DT,

we set γ1 = (0.05, 0.1, ..., 1)×
√

1.5 log p+H/2
n

; for AT, we fix γ1 = 0.5
√

1.5 log p+H/2
n

, and

set γ2 = (0.2, 0.4, ..., 4) × log p/n; for DT+ref, we fix γ1 = 0.3
√

1.5 log p+H/2
n

, and set

the tuning parameter in the refinement by λ = (0.1, ..., 2)
√

log p/n; for AT-ref, we

fix γ1 = 0.5
√

1.5 log p+H/2
n

, γ2 = 2 log p/n and set λ = (0.1, ..., 2)
√

log p/n. The scale

of γ1, γ2 are set according to the theory, and the scale of λ is what appear in the

literature. The constants are not carefully picked, and in fact there is not one good

constant that works for all model settings.
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When fixing one model setup (Y ∼ X model and ΣX model), we vary p =

150, 300, 600, 1200 and a range of n. For each (n, p) combination, we generate 200

independent data sets, and run the 4 methods each under 20 tuning parameters. We

calculate the average Distave and take the minimum among the 20 tuning parameters,

so that each method gives one minimal average error. We plot the error against raw

sample size n and scaled sample size n/ log p in Figure 2.1 to 2.10. Each figure has

8 panels, corresponding to 4 methods, and x-axis being raw or scaled n. Each panel

has 4 curves, corresponding to 4 different p.
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Figure 3.1: Model I, Σ1

One can see that before scaling, the curves from larger p are above the curves from

smaller p, but after scaling, either the curves overlap or the curves from smaller p

shift above those curves from larger p. This means that with other model parameter

fixed and p increasing, n � log p is sufficient to keep the error not increasing.

Another observation is that refinement actually improves the results significantly.

To see this better, we can rearrange the curves and plot together the curves from

different methods but same model setups. See Figure 2.11 and 2.12.
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Figure 3.2: Model I, Σ2
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Figure 3.3: Model II, Σ1
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Figure 3.4: Model II, Σ2
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Figure 3.5: Model III, Σ1
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Figure 3.6: Model III, Σ2
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Figure 3.7: Model IV, Σ1
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Figure 3.8: Model IV, Σ2
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Figure 3.9: Model V, Σ1
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Figure 3.10: Model V, Σ2
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Figure 3.11: Rows corresponding to Model I to V, respectively; ΣX = Σ1
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Figure 3.12: Rows corresponding to Model I to V, respectively; ΣX = Σ2
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We have three observations. First, for all 5 models, improvement from refinement

is obvious. Second, it seems that in many cases, the errors after refinement are not

substantially affected by the initial estimators. Finally, the errors do not increase

dramatically even when p increases rapidly, which means that thresholding effectively

stabilizes the estimation.

3.4.2 Choice of slice number H

Another interesting question is how the number of slices in SIR affects the re-

sults. To investigate the impact of slice number H, we fix p = 600, and vary

n = 500, 700, 1000, 1400 and for a specific n we then vary H as integer part of

(3, 4, 6, 8, 12, 16, 24, 32, 40, 48, 56, 64) × n/500. When tuning γ1, we use the base
√

1.5 log p+H/4
n

instead of
√

1.5 log p+H/2
n

, to mitigate the impact of large H on the range

of tuning parameters.

The results are shown in Figure 2.13-2.17. We can see that having a lot of small

slices is worse than having a few large slices. Look at the plots where x-axis is

H/n (meaning that the results are aligned according to the slice size m = n/H),

one can see that the optimal choices of H also get aligned, and under the tested

settings (Y vs X models, ΣX , and parameters like σ, p) usually it is better to have

at least 50 samples per slice, and definitely not less than 25 samples per slice (because

optimal H/n is always around 0.02 to 0.04), even if keeping that slice size means that

we only have very few slices. In fact, in the literature, usually H is considered as

fixed parameter and pick a small value in application. Here, we provide systematic

experiments to justify that choice of small H (most of time in the range of 8-20),

because the errors increase rapidly when over-slicing, but are stable when under-

slicing.
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Figure 3.13: Model I, top two rows: Σ1, bottom two rows: Σ2.
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Figure 3.14: Model II, top two rows: Σ1, bottom two rows: Σ2.
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Figure 3.15: Model III, top two rows: Σ1, bottom two rows: Σ2.
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Figure 3.16: Model IV, top two rows: Σ1, bottom two rows: Σ2.
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Figure 3.17: Model V, top two rows: Σ1, bottom two rows: Σ2.
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3.5 Comparison of SSIR methods

In this section we compare SSIR-DT/AT with SSIR-SDP. For all methods, we run

both with and without refinement. Simulation data are generated from Model I - IV

with ΣX = Ip, and (n, p) = (100, 150), (200, 300), (400, 600). For SSIR-DT/AT, we

first assume ΣX is known; we use “*” to indicate the oracle version that true covari-

ance is in use. We then plug in XTX/n and its pseudo-inverse into the algorithm.

Similarly as previous simulation, we only tune one parameter for each method. For

DT, we set γ1 = (0.05, 0.1, ..., 1)
√

D(1.5 log p+H/2)
n

; for AT, we fix γ1 = 0.5
√

D(1.5 log p+H/2)
n

and set γ2 = 0.5× 1.4(−10,...,10) 2D log p
n

; for DT-ref, we fix γ1 = 0.5
√

D(1.5 log p+H/2)
n

and

set the tuning parameter in refinement λ = 0.5× 1.4(−10,...,10)
√

D log p
n

; for AT-ref, we

fix γ1 = 0.5
√

D(1.5 log p+H/2)
n

, γ2 = D log p
n

, and set λ = 0.5 × 1.4(−10,...,10)
√

D log p
n

. For

SSIR-SDP, we set ρ = (0.1, ..., 1)
√

log p
n

, and for SSIR-SDP-ref we fix ρ = 0.5
√

log p
n

and set λ = (0.1, ..., 2)
√

log p
n

.

We get the minimal mean error from 200 independent runs of each method un-

der each model configuration by tuning the one parameter. Results are shown in

the following table. When (n, p) = (100, 150), SSIR-SDP performs better; the er-

rors of SSIR-DT/AT are too large, so that after refinement the error is still much

larger than SSIR-SDP. When (n, p) get larger, the errors of thresholded estimators

shrinks rapidly, and after refinement, it is quite similar to SSIR-SDP. This shows

that (i) thresholding-based methods require larger (n, p) to start converging than

SSIR-SDP does; (ii) refinement can drastically improve the performance; and (iii)

sample covariance and its pseudo-inverse are not good estimators of the covariance

and precision matrix, so when p is large, the difference between using true covariance

and estimated covariance becomes substantial.
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Model (n,p) DT* AT* DT-ref* AT-ref* DT AT DT-ref AT-ref SDP SDP-ref
I (100,150) 0.607 0.662 0.327 0.328 0.677 0.482 0.382 0.353 0.172 0.174

(200,300) 0.314 0.296 0.095 0.097 0.555 0.222 0.193 0.184 0.136 0.136
(400,600) 0.175 0.144 0.095 0.091 0.295 0.064 0.077 0.072 0.080 0.080

II (100,150) 0.537 0.564 0.184 0.189 0.533 0.303 0.284 0.242 0.081 0.085
(200,300) 0.363 0.305 0.078 0.074 0.342 0.078 0.110 0.092 0.065 0.065
(400,600) 0.209 0.152 0.041 0.037 0.209 0.025 0.045 0.037 0.033 0.033

III (100,150) 0.732 0.797 0.656 0.661 0.903 0.956 0.785 0.785 0.375 0.362
(200,300) 0.443 0.365 0.236 0.232 0.660 0.561 0.406 0.405 0.182 0.179
(400,600) 0.158 0.185 0.141 0.137 0.464 0.408 0.446 0.429 0.155 0.119

IV (100,150) 0.783 0.819 0.710 0.712 0.913 0.959 0.786 0.786 0.531 0.534
(200,300) 0.585 0.594 0.517 0.516 0.735 0.685 0.619 0.619 0.393 0.393
(400,600) 0.141 0.154 0.130 0.122 0.447 0.424 0.395 0.394 0.172 0.129

Table 3.1: Comparison between various SSIR methods.

We also want to mention that the result can be quite sensitive to tuning parame-

ters. We can see that the error of DT/AT/DT-ref/AT-ref is sometimes much worse

than their counterparts using the true covariance matrix. This is not surprising, but

the error can be much smaller by tuning all available parameters (recall that we only

tune one parameter). In practice, since thresholding-based methods run much faster

than SSIR-SDP, it is feasible computationally.

In summary, SSIR-SDP performs consistently better, but it is more complex com-

putationally than thresholding-based method. Thresholded estimator with refine-

ment potentially can have similar performance as SSIR-SDP, but (n, p) cannot be

too small and we need better estimators of covariance and precision matrices than

sample covariance and its pseudo-inverse.



CHAPTER IV

Regression with Block Sparsity

4.1 Introduction

Linear regression is the most basic tool for studying how one random variable

(response) is influenced by other random variables (predictors). Sometimes instead

of random variables, one would be more interested in the relationship between more

complicated random objects, like random vectors or random functions. Consider a

linear model with multivariate response and grouped predictors, i.e.,

Y = XB + E =

p∑

k=1

X[k]B[k] + E ,

where Y,E ∈ Rn×Dy , X[k] ∈ Rn×Dk andB[k] = RDk×Dy . When p is large, like ordinary

regression, model selection becomes a important aspect of statistical modeling. It is

desirable to identify those X[k]’s that contribute to Y ; also the ordinary estimator is

not stable, and restricting to a small subset of predictors improves stability.

Given that group structure is known, it is preferable that B̂ is sparse in the sense

that the subset Ŝ = {k : B̂[k] 6= 0Dk×Dy} is small. We call this block sparsity. One

can easily achieve block sparsity by adding a block norm penalty, that is:

(4.1) B̂ = arg min
B[k]∈RDk×Dy

1

2n

∥∥∥∥∥Y −
p∑

k=1

X[k]B[k]

∥∥∥∥∥

2

F

+ λn

p∑

k=1

∥∥B[k]

∥∥
F
,

Ŝ = {k : B̂[k] 6= 0Dk×Dy} .

101
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Obviously, this estimator is an extension of Lasso estimator: when D1 = ... =

Dp = Dy = 1, the penalty function reduces to `1 norm. Statistical property of Lasso

estimator has been widely studied under different contexts. Knight and Fu (2000)

provide asymptotic distribution of Lasso estimator; Greenshtein and Ritov (2004)

prove the consistency of prediction under mild condition. To prove the consistency

of model selection, i.e. P (Ŝ ≈ S) → 1, there are essentially two techniques. One

technique is to use some irrepresentable-type condition and prove exact sparsity re-

cover. Zhao and Yu (2006) and Meinshausen and Bühlmann (2006) prove model

selection consistency under fixed design and random design, respectively. Wain-

wright (2009a) provide a proof that is more non-asymptotic, although the proof still

requires n and p to be large enough, without specifying how large they need to be.

Another contribution of that paper is to provide necessary conditions of model s-

election consistency, and compare the sample size required for consistency with an

information-theoretic bound Wainwright (2009b). Another technique is to prove ora-

cle inequality under some sparse eigenvalue or restricted eigenvalue conditions. This

is closely related to the Danztig selector. The idea is to bound the coefficient estima-

tion error in `2 norm or some other norm; if the `2 norm error is bounded, then there

are not too many large coefficients being missed. This is called approximate sparsity

recovery and is more realistic when there are a lot of small but non-zero coefficients.

We refer to Candes and Tao (2007), Bickel et al. (2009), Zhou (2009) and reference

therein for theoretical results and proof techniques of this type and van de Geer and

Bühlmann (2009) for a discussion on the comparison between different variants of

irrepresentable conditions and restricted eigenvalue conditions.

There have also been a lot of works on sparse regression that consider groups of

coefficients. For example, if Dy = 1, but Dk > 1, k ≤ p, (4.1) becomes group Lasso
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estimator. Asymptotic theory of group Lasso has been studied by Bach (2008), Nardi

and Rinaldo (2008) which work only if n is large compared to p. Huang and Zhang

(2010), Meier et al. (2009) also provide some statistical properties, but they have

made some assumptions on the design that are suitable for their specific problems.

If Dy > 1, but Dk = 1, k ≤ p, then (4.1) becomes an estimator of multivariate (re-

sponse) regression, where predictors share common support. Obozinski et al. (2011)

use irrepresentable condition and Karim Lounici and Tsybakov (2011) us restrict-

ed eigenvalue condition to prove statistical consistency of this etimator. Obozinski

et al. (2011) actually follows Wainwright (2009a) closely, and they suffer the same

drawback that it is not specified how large (n, p, s) need to be for in their theorems.

There are also works to unify all the theories, because the proof techniques for Lasso

and group Lasso are similar, see for example Zhao et al. (2009), Negahban et al.

(2012).

In this chapter, we prove model selection consistency of the block-penalized re-

gression under random design in a non-asymptotic way. It is not hard to transform

a non-asymptotic theory to an asymptotic one, and also not hard to adapt the proof

to work for fixed-design setting. Note that Lasso and group Lasso are special cases

of block Lasso, and our theoretical results are comparable to the theories for Lasso

and group Lasso in the literature asymptotically. Our proof combines various proof

techniques and is modular, so that it is easily understandable. In addition, we pro-

vide a lower bound on the penalty parameter, which is also purely non-asymptotic

and obtained using a new proof technique.
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4.2 Statistical consistency

4.2.1 Notation

Recall that for Σ ∈ Rm×m, X ∈ Rn×m, B ∈ Rm×Dy where the m coordinates are

divided into p groups {1, 2, ...,m} = ]pk=1Gk, |Gk| = Dk. We denote Σ[jk] = ΣGjGk ,

X[k] = X ·Gk and B[k] = BGk · . Also in the bracket, we can use a set instead of a

number to indicate a set of row groups or column groups.

Also we define the following norms that use Frobenius norm of sub-blocks as basic

units. For example.

‖B‖1,F =
∑

k

∥∥B[k]

∥∥
F
,

‖B‖∞,F = max
k

∥∥B[k]

∥∥
F
,

‖Σ‖∞→∞,F = max
k

max
B:‖B‖∞,F≤1

∥∥[ΣB][k]

∥∥
F
.

4.2.2 Exact sparsity recovery

Recall the linear model

Y = XB + E =

p∑

k=1

X[k]B[k] + E .

Assume that the rows of X and E are i.i.d. samples from multivariate normal

distributions that have 0 means and covariance matrices Σ and ΣE, respectively.

Let S = {k : B[k] 6= 0} be the block-wise sparse set of group indices that have non-

zero coefficients. The total number of groups p can be large compared with n, but

we assume S to be of size s = |S|, which is small.

Here we provide some sufficient conditions for the block-penalized estimator de-

fined in (4.1) to exactly recovery the sparse subset, i.e. P (Ŝ = S) → 1. Such

consistency in sparsity has been studied thoroughly for the classical Lasso regres-

sion, and the theoretical results provided below extends that. It has been widely
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known that for Lasso to achieve exact sparsity recovery, some irrepresentable con-

dition is both sufficient and necessary. We define irrepresentable condition for our

problem as follows.

Assumption IV.1. We say Σ satisfies (group-wise) irrespresentable condition if

there exists γ > 0, such that

(4.2) max
k∈Sc

{∥∥∥∥∥
∑

k′∈S
[Σ[ScS](Σ[SS])

−1][kk′]U[k′]

∥∥∥∥∥
F

}
≤ 1− γ

for any U[k′] ∈ RDk′×Dy such that ‖U[k′]‖F ≤ 1.

Remark IV.2. Note that [Σ[ScS](Σ[SS])
−1][kk′] is the the coefficients of X[k′] in the

regression of X[k] to X[Sc]. Therefore, the assumption, like other irrepresentable

conditions in the literature, is to assume that the “irrelevant variables” X[S
c] is not

too correlated with X[S].

In classical regression, i.e. Dk = 1 for all k and Dy = 1, the above assumption

reduces to uniform irrepresentable condition for Lasso. We emphasize that here the

assumption is made on the covariance matrix Σ, so it is under the random-design

framework, as in Meinshausen and Bühlmann (2006), Wainwright (2009a). Zhao

and Yu (2006) use similar condition under the fixed-design framework where the

assumption is made on the Gram matrix Σn = XTX/n instead. Generally speaking,

proofs under random-design framework involve more technicalities than those under

the fixed-design framework.

Even for classical Lasso regression, there are many variants of the irrepresentable

conditions and the uniform irrepresentable condition is just one of them. When

D = 1, U[k]’s are scalars, and the uniform irrepresentable condition is basically to

require that the inequality holds for any Uk ∈ [−1, 1]. However, more common-

ly the inequality is only required to hold when Uk = sign(βk), where βk’s are the
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true regression coefficients. The assumption is then called the strong irrepresentable

condition and is actually weaker than the uniform irrepresentable condition. Since

here U[k]’s are matrices, there is no easy definition of a sign function, and hence

it is natural to adapt the uniform condition and the inequality is required to hold

for ‖U[k]‖F ≤ 1. Some other options can result in weaker assumptions; e.g. i)

‖U[k]‖F = 1, ii) ‖U[k]‖F ≤ 1 and 〈U[k], B[k]〉 ≥ 0.

The condition can actually be satisfied. For example, if A ∈ Rp×p satisfies the

uniform irrepresentable condition for classic Lasso, then for any positive definite

matrix B ∈ RD×D, Σ = B⊗A satisfies the group-wise irrepresentable condition. The

most favorable case is identity matrix Σ = cIpD, where the assumption is satisfied

with γ = 1.

We use the well-known proof technique called the primal-dual witness (PDW)

construction, described in the following proposition

Proposition IV.3. For a subset S ⊆ {1, 2, ..., p}, consider B̃ such that

(4.3) B̃[S] = arg min
B∈RDk×Dy ,k∈S

1

2n

∥∥∥∥∥Y −
∑

k∈S
X[k]B[k]

∥∥∥∥∥

2

F

+ λn
∑

k∈S

∥∥B[k]

∥∥
F
,

and B̃[k′] = 0Dk′×Dy for k′ ∈ Sc.

1. Denote the residual of the restricted problem by R̃ = Y−X[S]B̃[S]. If ‖R̃T
X[k′]‖F <

λn for all k′ ∈ Sc, then B̃ is also a solution of the non-restricted problem (4.1).

2. Moreover, if XT
[S]X[S] is not singular, then B̃ is the unique solution.

Proof. Let the objective function of the restricted and non-restricted problem be

h1(B[S]) =
1

2n

∥∥∥∥∥Y −
∑

k∈S
X[k]B[k]

∥∥∥∥∥

2

F

+ λn
∑

k∈S

∥∥B[k]

∥∥
F
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and

h2(B[S], B[Sc]) =
1

2n

∥∥∥∥∥Y −
∑

k∈S
X[k]B[k] −

∑

k′∈Sc
X[k′]B[k′]

∥∥∥∥∥

2

F

+ λn
∑

k∈S

∥∥B[k]

∥∥
F

+ λn
∑

k′∈S

∥∥B[k′]

∥∥
F
,

respectively. For any optimal solution B̃[S] of arg minh1(B[S]), by first-order optimal-

ity condition of sub-differentiable convex function, we know that the sub-gradient of

h1 at B̃[S], denoted by ∂h1|B̃[S]
, includes zero. To prove that the zero-padded ma-

trix B̃ is a minimal solution of arg minh2, by first-order optimality condition again,

we only need to show that 0 ∈ ∂h2|(B̃[S],0). Since h2(B[S],0) = h1(B[S]) for any

B[S] ∈ RDS×Dy , we have
[
∂h2|(B̃[S],0)

]
[S]

= ∂h1|B̃[S]
.

We need to emphasize that sub-gradient is a set of matrices, not a single matrix;

the equality above means that the two sets are the same. We already know that

0 ∈ ∂h1|B̃[S]
. To show that 0 ∈ ∂h2|(B̃[S],0), we only need to show that

0 ∈
[
∂h2|(B̃[S],0)

]
[Sc]

,

or equivalently

0 ∈
[
∂h2|(B̃[S],0)

]
[k′]

∀k′ ∈ Sc .

Note that

[
∂h2|(B̃[S],0)

]
[k′]

=

{
1

n
XT

[k′]R̃ + λnU : U ∈ RDk′×Dy , ‖U‖F ≤ 1

}
.

Since
∥∥∥R̃T

X[k′]/n
∥∥∥

F
< λn, we have 0 ∈

[
∂h2|(B̃[S],0)

]
[k′]

, which finish the proof.

To prove uniqueness, first notice that even if the minimizer of h2 is not unique,

the prediction XB̃ is unique. This is because if we have two distinct minimizers B̃(1)

and B̃(2), then letting B̃(3) = (B̃(1) + B̃(2))/2, we have

2h2(B̃(3)) ≤ h2(B̃(2)) + h2(B̃(1))
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due to convexity. Since h2(B̃(1)) and h2(B̃(2)) are already minimal, the equality must

hold; and since h2 is the sum of two convex functions, the equality has to hold for

each convex function. Therefore,

∥∥∥Y −XB̃(1)
∥∥∥

2

F
+
∥∥∥Y −XB̃(2)

∥∥∥
2

F
= 2

∥∥∥Y −XB̃(3)
∥∥∥

2

F
.

This is only possible if XB̃(1) = XB̃(2) (because ‖Y − Z‖F , as a function of Z, is

strictly convex). Thus the residual R̃ is also unique. This means that the condition

1
n

∥∥∥R̃T
X[k′]

∥∥∥
F
< λn holds for any minimal solution B̃ of h2, which implies that

B̃[k′] = 0 for any minimal solution. In conclusion any minimizer of h2 is supported

on S, so they are also minimizers of h1, padded with zeros.

If further XT
[S]X[S] is not singular, then h1(B[S]) is the sum of a strictly convex

function (the quadratic loss) and a convex function (the penalty), so the optimal

solution of h1, i.e., B̃[S], is unique. Thus, the minimizer of h2 is also unique.

With the proposition, proving sparsity recovery is equivalent to proving the following

two events

(4.4) B̃[k] 6= 0 for k ∈ S ,

(4.5) ‖R̃T
X[k]‖F < λn for all k ∈ Sc .

The first event means no type I error or no false negatives, i.e. if a group of

predictors has non-zero coefficients, it is included in Ŝ; the second event means

no type II error or no false positives, i.e. all groups of predictors that have zero

coefficients are excluded from Ŝ. If both events occur, then the sparse model is

exactly recovered.

Thus, our main theorem is divided into two parts accordingly. On one hand, we need
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the penalty parameter λn to be sufficiently large compared with the noise, so that

(4.5) holds with large probability; on the other hand, since the penalty also causes

bias, we need λn to be not too large compared with the signal level, so that (4.4)

holds with large probability.

The following theorem provides sufficient conditions for exact sparsity recovery.

Theorem IV.4. Let Dmax = maxk{Dk}∨Dy, and DS =
∑

k∈S Dk, βmin = min{‖B[k]‖F :

k ∈ S}. We make the following assumptions:

1. Assumption IV.1 with constant γ;

2. Regularity condition on the distribution of X,E: Σ[SS] is non-singular,

and after proper scaling, σmax(Σ[kk]) ≤ 1 for any k ∈ S, σ2
S = σmin(Σ[SS]) > 0,

θ∞ =
∥∥∥Σ−1

[SS]

∥∥∥
∞→∞,F

, and σ2
E = σmax(ΣE);

3. Condition on the problem size parameters: there exist absolute constant

δ, t, C2 > 0, 0 < C1 < 1, such that

(4.6)
√
n ≥

√
s(
√
Dmax +

√
2 log(p− s)− 2 log δ)

(γ/2)C2σ[S]

,

(4.7)

√
DS ∨Dmax√

n
+ t < C1 ,

(4.8)

√
DS ∨Dmax√

n
+ t <

C2√
s
.

Under these assumptions, we have the following sparsity recovery properties:

1. By choosing tuning parameter as

(4.9) λn =
(1 + C1)σE

γ/2

Dmax +
√

2 log(p− s)− 2 log δ√
n

,

we have

P{Ŝ ⊆ S} ≥ 1− 4 exp(−t2n/2)− 2δ .
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2. Moreover, if

(4.10)

βmin ≥
σE

σS(1− C1)

(Dmax +
√

2 log s− 2 log δ)√
n

+

(
θ∞ +

(2− C1)C2

(1− C1)2

)
λn ,

then the restricted problem (4.3) satisfies

P
(
Ŝ ⊇ S

)
≥ 1− 4 exp(−t2n/2)− 3δ .

If p > 2s, then (4.10) can be replaced by

(4.10’) βmin ≥
(

γ/2

σS(1− C2
1)

+ θ∞ +
(2− C1)C2

(1− C1)2

)
λn .

3. With (4.9) and (4.10), we have:

P
(
Ŝ = S

)
≥ 1− 4 exp(−t2n/2)− 3δ .

Proof. We divide the proof into 3 parts. For notational simplicity, we assume D1 =

... = Dp = DY = D. The proof for unequal group sizes is not very different.

• Bounding the deviation of XT
[S]X[S]/n from Σ[SS] :

Let Z = X[S]Σ
−1/2
[SS] . Then Z is an n by sD independent Gaussian ensemble, so

(4.11)

∥∥∥(XT
[S]X[S]/n)−1 − Σ−1

[SS]

∥∥∥
op

=
∥∥∥Σ
−1/2
[SS]

(
(ZTZ/n)−1 − IsD

)
Σ
−1/2
[SS]

∥∥∥
op

≤
∥∥∥Σ
−1/2
[SS]

∥∥∥
2

op

∥∥(ZTZ/n)−1 − IsD
∥∥

op

=
1

σ2
S

∣∣∣∣
1

σmin(ZTZ/n)
− 1

∣∣∣∣ ,

(4.12)
∥∥(XT

[S]X[S]/n)−1
∥∥

op
≤ 1

σ2
Sσmin(ZTZ/n)

.
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By Lemma II.14, for any t > 0, with probability at most 2 exp(−t2n/2), the

event

A =

{∣∣∣∣
√
σmin(ZTZ/n)− 1

∣∣∣∣ >
√
sD√
n

+ t

}
,

Holds. By our assumption, we can find 0 < C1 < 1 and C2 > 0, such that

√
sD√
n

+ t < C1 ∧
C2√
s
.

Note that if |u− 1| ≤ c < 1, then

∣∣∣∣
1

u2
− 1

∣∣∣∣ = |1− u|
∣∣∣∣
1

u
+

1

u2

∣∣∣∣ ≤
(2− c)
(1− c)2

|1− u| .

Using this inequality, we have that event Ac implies

(4.13) σmin(ZTZ/n) ≥ (1− C1)2 ,

(4.14) |1/σmin(ZTZ/n)− 1| ≤ 2− C1

(1− C1)2

C2√
s
.

Combining (4.11) and (4.14), and combining (4.12) and (4.13), we have that Ac

implies

(4.15)
∥∥(XT

[S]X[S]/n)−1
∥∥

op
≤ 1

σ2
S(1− C1)2

,

(4.16)
∥∥∥(XT

[S]X[S]/n)−1 − Σ−1
[SS]

∥∥∥
op
≤ (2− C1)C2

σ2
S(1− C1)2

1√
s
.

Later we will frequently condition on X and exclude A. Inequality (4.15) is used

in both parts of the theorem; inequality (4.16) is used in bounding a specific

term in the second part of theorem.

• Part one of the theorem:

To prove the first part of the theorem, we use the irrepresentable condition.
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Since B̃[S] minimizes (4.3), the sub-gradient of (4.3) at B̃[S] has to include 0.

Thus we can find B̌[k] ∈ RDk×Dy for k ∈ S satisfying





B̌[k] = B̃[k]/
∥∥∥B̃[k]

∥∥∥
F

B̃[k] 6= 0

∥∥B̌[k]

∥∥
F
≤ 1 B̃[k] = 0

such that

XT
[k]R̃

n
= λnB̌[k] ,

where the residual is R̃ = Y −X[S]B̃[S].

To utilize the random design irrepresentable condition, write the population

regression model of X[k′], k
′ ∈ Sc on X[S] as

(4.17) X[k′] = X[S](Σ[SS])
−1Σ[Sk′] + V[k′] .

With Gaussian assumption, V[k′]’s are independent of X[S]. Thus

XT
[k′]R̃ = Σ[k′S]Σ

−1
[SS]X

T
[S]R̃ + VT

[k′]R̃

= nλnΣ[k′S]Σ
−1
[SS]B̌[S] + VT

[k′]R̃ .

Therefore,

∥∥∥∥∥
XT

[k′]R̃

n

∥∥∥∥∥
F

≤ λn

∥∥∥Σ[k′S]Σ
−1
[SS]B̌[S]

∥∥∥
F

+

∥∥∥∥∥
VT

[k′]R̃

n

∥∥∥∥∥
F

.

By Proposition IV.3, we only need to prove that, with high probability,

max
k′∈Sc

∥∥∥∥∥
XT

[k′]R̃

n

∥∥∥∥∥
F

≤ λn .

Using irrepresentable condition, it is then enough to prove that, with high prob-

ability,

max
k′∈Sc

∥∥∥∥∥
VT

[k′]R̃

n

∥∥∥∥∥
F

< γλn .
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Thus, we need to make λn large enough so that it bounds the quantity on the

left with high probability. Note that

R̃ = Y −X[S]B̃[S] = X[S](B[S] − B̃[S]) + E

Let P[S] = X[S](X
T
[S]X[S])

−1XT
[S], the projection matrix onto the columns of X[S];

and let P⊥[S] = In − P[S]. Then

R̃ = P[S]R̃ + P⊥[S]R̃ = X[S](X
T
[S]X[S])

−1X[S]R̃ + P⊥[S]E

= nλnX[S](X
T
[S]X[S])

−1B̌[S] + P⊥[S]E .

Denote H =
√
nX[S](X

T
[S]X[S])

−1B̌[S]. Then

VT
[k′]R̃

n
=

VT
[k′]H√
n

λn +
VT

[k′]P
⊥
[S]E

n
.

Note that H is decided by X[S],E. Thus it is independent of V[k′] for any

k′ ∈ Sc. Although H does not have i.i.d. rows, by conditioning on X[S],E, the

concentration of VT
[k′]H is described by (4.20) in Lemma IV.8

P
(∥∥VT

[k′]H
∥∥

F
> (
√
D +

√
2t2) ‖H‖F

∣∣∣ X,E
)
≤ exp(−t2)

To bound ‖H‖F, we have

HTH = B̌T
[S](X

T
[S]X[S]/n)−1B̌[S] ,

hence

‖H‖2
F ≤

∥∥B̌[S]

∥∥2

F

∥∥(XT
[S]X[S]/n)−1

∥∥
op
.

We know that
∥∥B̌[S]

∥∥2

F
=
∑

k∈S
∥∥B̌[k]

∥∥2

F
≤ s. Also, from the definition of A, we

have

P

(∥∥(XT
[S]X[S]/n)−1

∥∥
op
>

1

(1− C1)2σ2
S

)
< 2 exp(−t2n/2) .
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Therefore, in summary, we have

P

(
∀k′ ∈ Sc,

∥∥VT
[k′]H

∥∥
F
>

√
s(
√
D +

√
2t2)

(1− C1)σS

)

≤ 2 exp(−t2n/2) + (p− s) exp(−t2) .

On the other hand, P⊥ is decided by X[S], so P⊥, E and V[k′] are mutually

independent. Also note that σmax(var(V[k′])) ≤ σmax(var(X[k′])) = 1. We can

use (4.19) in Lemma IV.8

P
(√

n
∥∥VT

[k′]P
⊥E/n

∥∥
F
> (D +

√
2t2)

∥∥P⊥E/
√
n
∥∥

op

∣∣∣X,E
)
≤ exp(−t2) .

By Lemma II.14

P
(∥∥E/√n

∥∥
op
> (1 +

√
D/n+ t)σE

)
≤ 2 exp(−t2n/2) .

Since
∥∥P⊥E/

√
n
∥∥

op
≤ ‖E/

√
n‖op,

P
(∥∥P⊥E/

√
n
∥∥

op
> (1 + C1)σE

)
≤ 2 exp(−t2n/2) .

Therefore,

P
(
∀k′ ∈ Sc,

√
n
∥∥VT

[k′]P
⊥E/n

∥∥
F
> (1 + C1)σE(D +

√
2t2)

)

≤2 exp(−t2n/2) + (p− s) exp(−t2) .

In summary, letting t2 = log((p− s)/δ) and assuming

√
n ≥

√
s(
√
D +

√
2 log(p− s)− 2 log δ)

(γ/2)(1− C1)σS
.

we can select

λn =
(1 + C1)σE(D +

√
2 log(p− s)− 2 log δ)

(γ/2)
√
n

,

such that

max
k′∈Sc

VT
[k′]R̃

n
< γλn
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with probability at least

1− 4 exp(−t2n/2)− 2δ .

• Part two of the theorem:

Recall that XT
[k]R̃ = nλnB̌[k], and R̃ = Y−X[S]B̃[S]. Since Σ[SS] is non-singular,

with probability one, XT
[S]X[S] is invertible. We then have

B̃[S] = (XT
[S]X[S])

−1(XT
[S]Y − nλnB̌[S]) ,

and hence

(4.18)

B̃[S] −B[S]

=(XT
[S]X[S]/n)−1(XT

[S]E/n− λnB̌[S])

=(XT
[S]X[S])

−1(XT
[S]E)− λnΣ−1

[SS]B̌[S] + λn

(
(XT

[S]X[S]/n)−1 − Σ−1
[SS]

)
B̌[S] .

The goal is to prove that B̃[k] 6= 0 for all k ∈ S. It is sufficient to prove that
∥∥∥B̃[k] −B[k]

∥∥∥
F
<
∥∥B[k]

∥∥
F

for all k ∈ S, or to prove that the max block norm of

B̃[S]−B[S] is smaller than βmin = mink∈S
∥∥B[k]

∥∥
F
. The strategy is to bound the

max block norm of these three parts separately.

To bound the first term, denote J[k] =




0D×D

...

ID

...

0D×D




, H[k] = X[S](X
T
[S]X[S]/n)−1J[k].

Then the k-th block in the first term is

[
(XT

[S]X[S])
−1(XT

[S]E)
]

[k]
=

1

n
HT

[k]E .
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Note that

HT
[k]H[k]/n = JT[k](X

T
[S]X[S]/n)−1J[k] .

Thus for any k ∈ {1, ..., s}, we have
∥∥∥HT

[k]H[k]/n
∥∥∥

op
≤
∥∥(XT

[S]X[S]/n)−1
∥∥

op
.

Thus, we can condition on X, exclude A, and use Lemma IV.8 to get

P

(
n
∥∥HT

[k]E/n
∥∥2

F
>

σ2
E

σ2
S(1− C1)2

(D +
√

2t3)2

)
≤ 2 exp(−nt2/2) + exp(−t3) .

When bounding maxk∈S n
∥∥∥HT

[k]E/n
∥∥∥

2

F
, we can use Bonferroni bound and mul-

tiply the probability above by s. However, the 2 exp(−t2n/2) term is the proba-

bility bound of A, and we do not need to count the probability repeatedly when

taking sum of the probabilities of sub-events. Therefore,

P

(∥∥(XT
[S]X[S])

−1X[S]E
∥∥
∞,F >

σE
σS(1− c3)

(D +
√

2t3)√
n

)

≤ 2 exp(−nt2/2) + s exp(−t3) .

The second term is addressed by our assumption

∥∥∥λnΣ−1
[SS]B̌[S]

∥∥∥
∞,F
≤
∥∥∥Σ−1

[SS]

∥∥∥
∞→∞,F

λn = θ∞λn

For the third term, since we restrict to Ac, from (4.16)

∥∥∥λn
(

(XT
[S]X/n)− Σ−1

[SS]

)
B̌[S]

∥∥∥
∞,F

≤
∥∥∥λn

(
(XT

[S]X/n)− Σ−1
[SS]

)
B̌[S]

∥∥∥
F

≤λn
∥∥∥(XT

[S]X/n)− Σ−1
[SS]

∥∥∥
op

∥∥B̌[S]

∥∥
F

≤(2− C1)C2

(1− C1)2
λn

In summary, letting t3 = log(s/δ), for any λn the probability of

∥∥∥B̃[S] −B[S]

∥∥∥
∞,F
≥ σE
σS(1− C1)

(D +
√

2 log s− 2 log δ)√
n

+

(
θ∞ +

(2− C1)C2

(1− C1)2

)
λn
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is at most

2 exp(−nt2/2) + δ .

To prove part 3, we just need to use union bound and take sum of the probabilities

in the first two parts. Note that 4 exp(−t2n/2) in part 1 includes the probability

of A, which is where the 2 exp(−t2n/2) in part 2 is from, so we do not count that

probability twice.

The above theorem is non-asymptotic and all the constants can be pre-specified.

Moreover the high probability bound holds for any combination of (n, p, s,D) as long

as it satisfies (4.6)-(4.8).

Remark IV.5 (Remarks on the assumptions). In Theorem IV.4 we made two

extra sets of assumptions besides the irrepresentable condition.

The first set of assumptions are regularity conditions on the distribution of X

and E. First, we assume that X is properly scaled so that each group X[k] has

a covariance matrix whose operator norm is 1. With such assumption, B[k]’s are

comparable across different k’s; without such assumption, it is not reasonable to

use an equal λn to penalize all groups. It might be more natural to assume that

each individual coordinate is of unit variance because normalization is done within

single columns in practice. We did not explore that direction. Second, we assume

that the true predictors X[S] are not singular; otherwise, the coefficients B[S] are not

unique. Once assuming non-singularity, the operator norm of Σ−1
[SS] w.r.t. Frobenius

norm (σ−2
S ) and max block norm (θ∞) are well defined and present in the final non-

asymptotic bound.

The second set of assumptions specify the problem size regime to which the theory

applies. We have three requirements on (n, p, s,D). The first requirement (4.6) is
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used when applying the irrepresentable condition; the second requirement (4.7) is

used to bound σmin(XT
[S]X[S]/n) away from 0; the third requirement (4.8) is used

when bounding the max block norm of B̃[S] − B[S]; None of these requirements are

asymptotic.

The non-asymptotic results can be easily modified to an asymptotic one. The

following corollary gives an example.

Corollary IV.6. If

lim inf
n

s2D + s log p+ D2+log p
β2
min

> C̄

for some large enough constant C̄, then there exists λn so that Ŝ satisfies P (Ŝ =

S)→ 1.

If βmin � 1/
√
s, then it is sufficient to have

lim inf
n

s2D + sD2 + s log p
> C̄

Note that the third sample size assumption (4.8) may not be necessary. In the

proof, we need this requirement to make the deviation XT
[S]X[S]/n−Σ[SS] smaller, so

that the Frobenius norm of ((XT
[S]X[S]/n)−1−Σ−1

[SS])B̌[S] is bounded by constant (B̌[S]

is defined in the proof of Theorem IV.4); however, what we actually need is that the

max block norm of it is be bounded. These two norms can have a ratio of as large

as
√
s, which is why there is an extra

√
s on the r.h.s. of (4.8). If we can get rid

of this assumption, then the asymptotic sample size requirement can be simplified

to n � sD2 + s log p. We have a dedicated simulation to show that very likely we

can avoid the extra term (see Appendix 4.5), and numerical study also validates this

conjecture.
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4.2.3 Lower bound of λn

Two things are revealed in Theorem IV.4: the choice of λn and the correspond-

ing βmin condition. These are also two important aspects in sparsity recovery of

classical Lasso regression.

A smaller λn is preferred because then the bias is smaller and consequently the βmin

can be smaller. According to Theorem IV.4, it is sufficient to choose λn � Dmax+
√

log p√
n

.

In the following theorem, we prove in a specific case that the asymptotic rate of this

λn is necessary; smaller λn might cause non-diminishing probability of false inclusion.

Theorem IV.7 (Lower bound on λn). Assume that D1 = D2 = ... = Dp = Dy = D,

and cov(X[S]) = IsD×sD, and cov(E) = σ2ID×D. If n
sD
∧ ( n

D
− s) ≥ 1 + c1 > 1, and

if p − s is not too small (e.g. larger than 7). Then exist constants C3, C4, C5 such

that the following holds: if

λn ≤
C3(D +

√
C4 log(p− s))√
n

,

then

P (Ŝ 6⊆ S) ≥ C5 > 0.

Proof. Note that the residual of the oracle problem (4.3), R̃, only depends on

X[k], k ∈ S and E; thus it is independent of X[k′], k
′ ∈ Sc. Thus, for any con-

stant c > 0,

P
(
∃k′ ∈ Sc,

∥∥∥XT
[k′]R̃/n

∥∥∥
F
> λn

)

=E
[
P
(
∃k′ ∈ Sc,

∥∥∥XT
[k′]R̃/n

∥∥∥
F
> λn

∣∣∣ R̃
)]

≥E
[
P
(
∃k′ ∈ Sc,

∥∥∥XT
[k′]R̃/n

∥∥∥
F
> λn

∣∣∣ R̃
)

1
{
σmin(R̃

T
R̃/n) > c

}]

Let X
(d)
[k′] be the d-th column of X[k′]. Then

∥∥∥XT
[k′]R̃

∥∥∥
2

F
=

D∑

d=1

∥∥∥R̃T
X

(d)
[k′]

∥∥∥
2

2
.
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By our assumption, the entries of XSc are i.i.d. standard normal and independent

of R̃. Thus, by conditioning,

R̃
T
X

(d)
[k′]

∣∣∣ R̃ ∼ Norm(0D, R̃
T
R̃) .

If σmin(R̃
T
R̃/n) > c, meaning that R̃

T
R̃/n � cID, then

∥∥∥R̃T
X

(d)
[k′]

∥∥∥
2

2
are stochastically

larger than cnχ2
D, and independent across d’s. Thus,

∥∥∥XT
[k′]R̃

∥∥∥
2

F
is stochastically

larger than cnχ2
D2 , and hence

P
(∥∥∥XT

[k′]R̃/n
∥∥∥

F
> λn

∣∣∣ R̃
)

1
{
σmin(R̃

T
R̃/n) > c

}

≥P
(
χ2
D2 > nλ2

n/c
)
1
{
σmin(R̃

T
R̃/n) > c

}
.

Therefore,

E
[
P
(
∃k′ ∈ Sc,

∥∥∥XT
[k′]R̃/n

∥∥∥
F
> λn

∣∣∣ R̃
)

1
{
σmin(R̃

T
R̃/n) > c

}]

≥E

[(
1−

∏

k′∈Sc
P
(∥∥∥XT

[k′]R̃/n
∥∥∥

F
> λn

∣∣∣ R̃
))

1
{
σmin(R̃

T
R̃/n) > c

}]

≥
(

1− P
(
χ2
D2 ≤ nλ2

n/c
)p−s)

P
(
σmin(R̃

T
R̃/n) > c

)
.

We can bound the first term using Lemma IV.9. If log(p − s) > (z0α1)2, and

λn <
√
c(D+
√
α−1
1 log(p−s))√
n

, then 1−P
(
χ2
D2 ≤ nλ2

n/c
)p−s ≥ 1−(1− α2

p−s)
p−s ≥ 1−e−α2 >

0. Here z0, α1, α2 are absolute constants defined in Lemma IV.9.

We then bound the second term using Lemma IV.10. Let P⊥[S] be the orthogonal

projection matrix onto the columns of X[S], i.e.

P⊥[S] = In −X[S](X
T
[S]X[S])

−1XT
[S] .

Then we have:

R̃
T
R̃ � YTP⊥[S]Y = ETP⊥[S]E .

With probability one, P⊥[S] has rank n− sD. Thus,

ETP⊥[S]E
d
= σ2Z̃

T
Z̃ ,



121

where Z̃ is a n−sD by D Gaussian ensemble, each element follows Norm(0, 1) i.i.d..

Thus

P (σmin(R̃
T
R̃/n) > c) ≥ P

(
σmin

(
Z̃
T
Z̃

n− sD

)
>

cn

σ2(n− sD)

)
.

We have assumed that n − sD > (1 + c1)D, and n/sD > 1/(1 + c1). Let c =

c1σ2

2(1+c1)

(
1−

√
1

1+c1

)2

, then by Lemma IV.10,

P

(
σmin

(
Z̃
T
Z̃

n− sD

)
>

cn

σ2(n− sD)

)
≥ P

(
σmin

(
Z̃
T
Z̃

n− sD

)
≥ 1

2

(
1−

√
1

1 + c1

)2
)

≥ α4 .

In summary, choose C3 =
√

c1σ2

2(1+c1)

(
1−

√
1

1+c1

)
, C4 = 1/α1, and C5 = α4(1 −

exp(−α2)), the theorem has been proved.

Here we only prove the lower bound for the case where the predictors and the

noise are both i.i.d. This is the analytically most tractable case, for which we can

provide a non-asymptotic bound: if the problem-related constants c1, σ
2 are fixed, all

the constants in the theorem can be specified, and we do not make vague requirement

like “(n, p, s,D) is large enough”. It is enough to prove a special case since we are

dealing with lower bound here. The lower bound will hold as long as this simple case

is included in the problem universe.

4.2.4 Compare to Lasso and group Lasso

In the literature, a typical choice of λn for classic Lasso regression is λn �
√

log p√
n

;

our choice is λn � D+
√

log p√
n

. Asymptotically, this choice is the same as Lasso when

D = 1 or D = O(1).

This choice of λn also resembles the choice for group Lasso in the literature.

Karim Lounici and Tsybakov (2011) use λn �
√
D+
√

log p√
n

for a group Lasso problem

with p groups, each of size D. We group D2 parameters in one block, so we have
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D replacing
√
D. In the proof, we can see that λn is a high probability concentra-

tion bound, and it turns out that the dimension D is additive in the bound, not

multiplicative.

As for the βmin condition, for Lasso, Wainwright (2009a) proved that it is sufficient

to have βmin � λn ∨
√

log s/n, as long as n/s log(p − s) > C ′1(1 + C ′2/sλ
2
n); if

λn �
√

log p/n, then it is sufficient to have βmin � λn as long as n � s log p. For

our block-penalized regression, we have proved that it is enough to have βmin � λn,

as long as n � s2D ∨ s log p. Fixing D, our βmin condition matches that for Lasso

asymptotically, but the sample size requirement s2 + s log p can exceed s log p if

s � log p. However, we conjecture that the s2 term is artificial and can be reduced

to s. If the conjecture is correct, then we have a fully non-asymptotic theory that

achieve the same rate as Lasso when fixing D, but can also deal with diverging D.

4.2.5 Disregard block structure

Even if the sparsity is block-wise, one can still neglect the block structure, and

simply run D traditional Lasso regression to get element-wise sparse estimator. If

all these Lasso regression achieves exact sparsity recovery element-wise, then overall

the block-wise sparsity is also recovered exactly.

The comparison between these two approaches depends on the sparse structure

of B. For example, we have the following three scenarios

1. B = βmin

D
1sD×D, so that each block is a matrix where all entries are uniformly

βmin/D.

If we disregard the block structure, we then have D regressions, with s′ = sD,

p′ = pD and β′min = βmin/D. For one of the regression to have no false inclusion,

we need n′ � s′ log p′ and λ′n �
√

log(p′/n); for all regressions to have no false
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inclusion, we need n′ � s′ log(p′D) and λ′n �
√

log(p′D)/n. This is because

log p′ come from union of p′ events, and with D regressions, we have p′ × D

events. Similarly, in order to achieve no false exclusion, for one regression it

is sufficient to have n′ � s′ log(s′), and then β′min � λ′n; for all D regressions

to have no false exclusion the, we need to change the sufficient condition to

n′ � s′ log(s′D) instead of s′ log(s′) and β′min � λ′n. In summary, a sufficient

sample size is n′ � sD log(pD2) ∨ D2 log(pD2)

β2
min

.

2. B = βmin√
D

[ID, ID, ..., ID]T , so that each block is a diagonal matrix with diagonal

elements being βmin/
√
D.

The corresponding sparse level of Lasso is s′ = s; dimension is p′ = pD; β′min =

βmin/
√
D. Similar as before, a sufficient sample size is n′ � s log(pD2)∨D log(pD2)

β2
min

.

3. B = βmin√
s

[..., ed1kd2k , ...]
T , where ed1d2 is a matrix whose (d1, d2)-th element is 1,

and other elements are 0.

The performance of using D Lasso regression depends on the positions of the

non-zero elements in B. Suppose that the positions are chosen randomly. Then

a sufficient sample size is n′ � s log(pD2)/D ∨ log(pD2)

β2
min

.

If D is fixed, then all these rates are the same with the one we conjecture, that

is s(D + log p) ∨ D+log p
β2
min

(the one we actually proved has s2D in it, which can be

worse). However, when D diverges, the conclusions vary by cases. In the first

case, block-wise penalty is more effective, as the sparsity actually present in blocks;

in the second case, block-wise penalty is more effective in general, unless sD �

s log(pD2) +D log(pD2)/β2
min, which can hold if D is very large; in the third case, it

is better to ignore group structure, as the true model is indeed element-wise sparse,

i.e., only a few entries (in this case only one entry) are non-zero in each non-zero
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block.

4.3 Numerical study

Our theory suggests λn � D+
√

log p√
n

, and for the probability of exact recovery to

converge to 1, we have proved that it is enough to have sample size n � s2D +

s log p+ D2+log p
β2
min

, although our conjecture is we only need n � sD+ s log p+ D2+log p
β2
min

.

We check the rate by running the following simulation. Data are generated by the

following model:

X = (X1·,X2·, ...,Xn·)
T , Xi·

i.i.d.∼ Norm(0pD,Σ) ,

E = (E1·,E2·, ...,En·)
T , Ei·

i.i.d.∼ Norm(0D, σ
2
EID , )

Y = XB + E = X[S]B[S] + E ,

where B ∈ RpD×D is the coefficient matrix and BSc = 0(p−s)D×D.

We consider different generative models:

1. Independent covariates Σ = IpD; coefficients B[k] = 1√
sD

1D×D, for k ∈ S.

2. Independent covariates Σ = IpD; coefficients B[k] = 1√
sD

ID, for k ∈ S.

3. Independent covariates Σ = IpD; random coefficients B∗[k] ∈ RD×D having i.i.d.

Gaussian entries and B[k] = 1√
s

B∗
[k]∥∥∥B∗[k]∥∥∥F .

4. Dependent covariates Σ = (Ip/4⊗M4×4)⊗ID whereM4×4 =




1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1




;

coefficients B[k] = 1√
sD

1D×D, for k ∈ S.
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Throughout this study, we fix D = 3. For each of the above models, we try different

combinations of (s, p); S are s indices randomly selected from {1, 2, ..., p}. For each

combination of (s, p), we try various sample sizes n and check the proportion of

500 independent runs where exact recovery Ŝ = S holds. We want to see how the

empirical probabilities change with n. Penalty parameter is set to λn = 0.5(D +

√
3 log p)/

√
n.

For (s, p), we tested two sequences:

• Logarithmic sparsity: (s, p) = (4, 32), (5, 64), (6, 128), (7, 256), (8, 512);

• Linear sparsity: (s, p) = (2, 32), (4, 64), (8, 128), (16, 256), (32, 512).

The results are summarized in the Figure 4.1 and Figure 4.2. Each generative model

and sparsity type has one plot corresponding to it and each plot has two panels: the

upper panel shows how the probabilities change against raw sample size n, while the

lower panel shows the probabilities against scaled sample size n′ = n/(sD2 + s log p).
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(d) Model 4

Figure 4.1: Empirical probability of exact recovery against raw sample size vs. scaled sample size,
logarithmic sparsity
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Figure 4.2: Empirical probability of exact recovery against raw sample size vs. scaled sample size,
linear sparsity
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As s and p increase, the sample size n needed for the probability to get close to 1

also increases; however under all circumstances, the curves converge to 1 almost at

the same scaled sample size n′. This validates our conjecture that when βmin � 1/
√
s,

sample size needed for exact recover is of rate s(D2 + log p), not sD2 + s2D+ s log p.

Note that in the experiments, the tuning parameter λn = 0.5(D +
√

3 log p)/
√
n

is different from the theory. The constant multiplier 0.5 is picked arbitrarily rather

than using (1 + C1)σE/(γ/2) (when Σ = IpD, it is something larger but close to 1),

and we replace 2(log(p − s) − log δ) with 3 log p. The asymptotic conclusion is not

affected.

4.4 Appendix

4.4.1 Auxiliary lemmas

We first derive a concentration bound regarding the cross product of two inde-

pendent random matrices. This is used when bounding the cross product of the

predictors and the noises.

Lemma IV.8 (Bounding the Frobenius norm of cross product of two random ma-

trices).

Suppose that we have two matrices X ∈ Rn×Dx and Y ∈ Rn×Dy . Assume Dx∧Dy
n
≤ C,

for some constant 0 < C < 1. Denote W = XTY/n.

1. If X is a fixed matrix, and let Σn
X = XTX/n. Moreover, Y is a random matrix,

such that rows of Y are i.i.d. Gaussian vectors, Yi
i.i.d.∼ Norm(0,ΣY ). Then

with probability at least 1− exp(−t),

(4.19)
√
n‖W‖F ≤

√
‖Σn

X‖op ‖ΣY ‖op(
√
DxDy +

√
2t) ,

(4.20) n‖W‖F ≤ ‖X‖F

√
‖ΣY ‖op(

√
Dy +

√
2t) .
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2. If X,Y are two random matrices, where rows of Y are i.i.d. Gaussian vectors

Yi
i.i.d.∼ Norm(0,ΣY ). Then for any c > 0:

P
(√

n‖W‖F ≤ c
√
‖ΣY ‖op(

√
DxDy +

√
2t)
)

≥ 1− P (
∥∥XTX/n

∥∥
op
> c2)− exp(−t) .

Moreover, if rows of X are also i.i.d. Gaussian vectors, Xi
i.i.d.∼ Norm(0,ΣX).

Then with probability at least 1− 2 exp(−s/2)− exp(−t),

√
n‖W‖F ≤

(
1 +

√
Dx ∧Dy

n
+

s√
n

)√
‖ΣX‖op ‖ΣY ‖op(

√
DxDy +

√
2t) .

Proof. 1. First assume ΣY = IDy , so that Y has i.i.d. entries following standard

Gaussian. We have

‖W‖2
F =

1

n2

Dy∑

j=1

∥∥XTY · j
∥∥2

2
.

Note that XTY · j/
√
n ∼ Norm(0,Σn

X), and these random vectors are inde-

pendent across j. Let the eigenvalues of Σn
X to be vx1 ≥ ... ≥ vxDx . Then

vx1 = ‖Σn
X‖op,

∑
d vxd = ‖X‖2

F /n. If Zjd
i.i.d.∼ Norm(0, 1), we have

∥∥XTY · j
∥∥2

2

d
=

Dx∑

d=1

vxdZ
2
jd .

Thus,

‖W‖2
F

d
=

1

n

Dy∑

j=1

Dx∑

d=1

vxdZ
2
jd .

This will give us a chi-square like quantity. Use the bound in Laurent and

Massart (2000), we get

P


n ‖W‖2

F −Dy

∑

d

vxd ≥ 2

√
Dy

∑

d

v2
xdt+ 2 max

d
vxdt


 ≤ exp(−t) .

Note the two following inequality

Dy

∑

d

vxd + 2

√
Dy

∑

d

v2
xdt+ 2 max

d
vxdt ≤ (

√
DyDx +

√
2t)2vx1 ,
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Dy

∑

d

vxd + 2

√
Dy

∑

d

v2
xdt+ 2 max

d
vxdt ≤ (

√
Dy +

√
2t)2

∑

d

vxd .

Thus the event can be simplified to

P
(
n ‖W‖2

F ≥ (
√
DyDx +

√
2t)2vx1

)
≤ exp(−t) ,

P

(
n ‖W‖2

F ≥ (
√
Dy +

√
2t)2

∑

d

vxd

)
≤ exp(−t) .

Note that vx1 = ‖Σn
X‖op, and

∑
d vxd = n ‖X‖2

F. The proof is completed.

In general, if ΣY 6= IDy , then Y
d
= ZΣ

1/2
Y , where Z is independent Gaussian

ensemble. Then
∥∥XTY

∥∥
F

=
∥∥∥XTZΣ

1/2
Y

∥∥∥
F
≤ ‖ΣY ‖1/2

op

∥∥XTZ
∥∥

F
. Proof achieved

by multiplying both sides with ‖ΣY ‖1/2
op

2. Let Σn
X = XTX/n. Since X and Y are independent, we have

P
(√

n ‖W‖F ≥ c
√
‖ΣY ‖op(

√
DxDy +

√
2t)
)

=E
[
P
(√

n ‖W‖F ≥ c
√
‖ΣY ‖op(

√
DxDy +

√
2t)|X

)]

=E
[
P
(√

n ‖W‖F ≥ c
√
‖ΣY ‖op(

√
DxDy +

√
2t)|X

)
1{‖Σn

X‖op ≥ c2}
]

+E
[
P
(√

n ‖W‖F ≥
√
‖Σn

X‖op ‖ΣY ‖op(
√
DxDy +

√
2t)|X

)
1{‖Σn

X‖op < c2}
]

≤P (‖Σn
X‖op ≥ c2) + exp(−t) .

The first term is bounded because probability is always smaller or equal to 1;

the second term is bounded because when conditioning on X, the distribution

of Y does not change, so we can use the high probability bound achieved in the

first part.

By Lemma II.14

P
(
‖Σn

X‖op > (1 +
√
Dx/n+ s/

√
n)2 ‖ΣX‖op

)
≤ 2 exp(−s2/2) .
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Combine these probabilities, we get with at least probability 1−2 exp(−s2/2)−

exp(−t) that

√
n‖W‖F ≤ (1 +

√
Dx/n+ s/

√
n)
√
‖ΣX‖op ‖ΣY ‖op(

√
DxDy +

√
2t) .

If Dx > Dy, we can exchange X with Y and obtain the same bound with Dy

and Dx exchanged. This explains the Dx ∧Dy term in the final bound.

Here are some extra lemmas that are used when providing lower bound results.

Lemma IV.9 (Lower bound on chi-square tail). Denote H(d, z) = P(χ2
d ≥ (

√
d +

z)2), then exists absolute constants α1, α2, z0 (e.g. α1 = 1.362, α2 = 0.392, z0 = 2.1)

such that, for any z > z0,

H(d, z) ≥ α2 exp{−α1z
2} .

Proof. Define

H(d, z) = P(χ2
d ≥ (

√
d+ z)2) = P (

√
χ2
d −
√
d ≥ z) .

Consider Yd =
√
X −

√
d, where X ∼ χ2

d. Then p.d.f. of Y is

fd(y) =
1

2
d
2 Γ
(
d
2

)(y +
√
d)d−1 exp

{
−(y +

√
d)2

2

}
.

We compare it with the density of Norm(0, 1/2)

f(y) =
1√
π
e−y

2

.

This is because when d → ∞,
√
d(χ2

d/d − 1) → Norm(0, 2), so by the δ-method,

Yd =
√
d(
√
χ2
d/d− 1)

d→ Norm(0, 1/2).
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We claim that exists some constant z0, such that as long as z > z0, fd(z) > f(z)

holds for all d. To prove this claim, consider

hd(z) = log(fd(z))− log(f(z))

= (d− 1) log(z +
√
d) +

z2

2
−
√
dz − d

2
− (

d

2
− 1) log 2− log Γ(

d

2
)

= (d− 1) log

(
1 +

z√
d

)
+
z2

2
−
√
dz − 1

6d
− Cd

,

where

C ′d = log Γ(
d

2
) +

d

2
− d

2
log(

d

2
) +

1

2
log(

d/2

2π
) ,

Cd = C ′d −
1

6d
.

Note that

∂hd(y)

∂z
=

d− 1

z +
√
d

+ z −
√
d =

z2 − 1

z +
√
d
.

Thus, hd(z) is increasing in z when z > 1. Using the inequality that log(1 + x) >

1/(x+ 0.5) for x > 0, we have

hd(z) ≥ (d− 1)
1

√
d
z

+ 1
2

+
z2

2
−
√
dz − 1

6d
− Cd

=
z3 − 4z

2(2
√
d+ z)

− 1

6d
− Cd .

We can prove that Cd < 0 for any d ≥ 2 (using the Taylor expansion of log-gamma

function). Thus let z0 = 2.1

hd(2.1) ≥ 0.861

2(2
√
d+ 2.1)

− 1

6d
.

It is easy to show that the r.h.s. is larger than 0 if d ≥ 2. Thus hd(2.1) > 0. By

monotonicity of hd(z), we have for any d ≥ 2 that hd(z) ≥ hd(2.1) > 0, which proves

the claim.

With this claim, we have established that as long as d ≥ 2, z ≥ 2.1

H(d, z) ≥ 1− Φ(
√

2z) .
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A famous inequality is

1− Φ(x) ≥ x

1 + x2
φ(x) ,

where Φ, φ are c.d.f. and p.d.f. of standard normal, respectively. Thus,

∂ log Φ(−x)

∂x
=

φ(x)

Φ(−x)
≤ x(1 + 1/x2) .

Substituting in x =
√

2z, and using the fact z ≥ 2.1, we can find C so that 1+1/x2 ≤

2C. As an example, let C = 0.625. Then

∂ log Φ(−x)

∂x
≤ 2Cx =

∂Cx2

∂x
,

and hence Cx2 + log Φ(−x) is a increasing function, so Cx2 + log Φ(−x) > C ′ where

C ′ is Cx2 + log Φ(−x) evaluated at 2.1
√

2. Therefore, if z > 2.1, then we have

1− Φ(
√

2z) ≥ exp(C ′ − 2Cz2) ≥ 0.369e−1.25z2 .

If d = 1, H(d, z) = P (χ2
1 ≥ (1 + z)2) = 1−Φ(1 + z). Use a similar proof, and set

C = 0.625, C ′ is Cx2 + log Φ(−x) evaluated at 1 + 2.1. If z > 2.1, we get

1− Φ(1 + z) ≥ exp(C ′ − 2Cz2) ≥ 0.392e−0.625(1+z)2 ≥ 0.392e−1.362z2 .

Note that the constants C,C ′ can be changed, but they are connected. The

smaller C is, the smaller C ′ is.

Lemma IV.10 (Lower bound on the minimal eigenvalue of the Gram matrix).

If Z ∈ RN×M such that Zij
i.i.d.∼ Norm(0, 1), and suppose N > N0, M/N ≤ ρ,

0 < ρ < 1. If (1−√ρ)2N0 > log 2, then

P (σmin(ZTZ/m) > α3) > α4

for some positive constants α3, α4.
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Proof. By Lemma II.14,

2 exp(−CN0) ≥ P


σmin(ZTZ/N) ≤

(
1−
√
M√
N
−
√
CN0√
N

)2



≥ P
(
σmin(ZTZ/N) ≤ (1−√ρ−

√
C)2
)
.

In order to avoid meaningless bound, we need
√
ρ+
√
C < 1 and 2 exp(−CN0) < 1.

Such C can be found given the condition that (1−√ρ)2N0 > log 2. Then we can let

α3 = (1−√ρ−
√
C)2 and α4 = 1− 2 exp(−CN0).

4.5 Numerical study on
∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥
∞,F

For simplicity, assume D1 = ...Dp = Dy = D. We require in (4.8) that there

exists constant C2, t so that
√
s2D/n + t

√
s < C2. From the proof, this is used to

bound
∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥
∞,F from above. As pointed out in the end of Remark

IV.5, we believe that this requirement is not necessary, and n � sD is enough.

When D = 1, the tighter rate can be proved using Levy’s lemma on spherical

concentration Ledoux (2005). The technique is used in Wainwright (2009a) for Lasso.

When D = 1, with high probability B̌[S] is the true sign of βS when λ is in the

neighbourhood of 0; thus when increasing λ from 0, B̌[S] stays constant until λ passes

some threshold. When D > 1 however, B̌[S] is random and hard to characterize.

Although we do not have the proof, numerical results do show that n � sD is

enough, and here is our experiment. We fix D = 3, and vary s = 2, 4, 8, 16, 32. Note

that the quantity of interest only involves the regression restricted to S, so p is not

relevant. For a specific s, we let n = 3sD. X is generated so that the rows i.i.d. follow

Norm(0sD,Σ[SS]), E is generated so that the rows i.i.d. follow Norm(0D, 0.5
2ID).

The linear coefficients B = 1sD×D, and response is calculated using linear model

Y = XB + E. For the covariance matrix Σ[SS], we tested (i) an independent design
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Σ[SS] = IsD, (ii) a dependent design Σ[SS] = M ⊗ ID, where M is a s by s matrix

so that Mkk = 1 for k = 1, ..., s, M2l−1,2l = M2l,2l−1 = 0.5 for l = 1..., s/2 and all

other entries being 0. Once data are generated, we compute the block penalized

Lasso estimator B̂[S], normalize each sub-block of B̂ to get B̌[S], and then calculate

the quantity of interest W =
∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥
∞,F . For each covariance model

and each (s, n = 3Ds) configuration, we generate 5000 independent data sets. The

empirical distributions of W are given in Figure 4.3.
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Figure 4.3: The distribution of
∥∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥∥
∞,F

when s increases.

The first row corresponds to λn = 0.1 for all choices of s while the second row

corresponds to λn = 0.1/
√
s/2, so that λn, as suggested by the theory, decreases as

n increases. The plots on the left are results from identity covariance while on the

right are those from non-identity covariance. Note that the values of λn are specified

arbitrarily; the purpose of this experiment is to check whether the correlation between

(XT
[S]X[S])

−1 and B̌[S] causes W to be unbounded, so it is fine as long as λn is so
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large that B̂ has too many zero blocks.

On the first row, clearly, the right tails of the distributions shrink rapidly as (s, n)

increases; thus, if we want to check e.g. P (
∥∥(XT

[S]X[S]/n)−1B̌[S]

∥∥
∞,F < c) for c = 3,

the probabilities actually shrink to 0. On the second row, although the modes shift

right, the tails still shrink, so if we let c = 4, the probabilities still shrink to 0.



CHAPTER V

Future Research Directions

The current work has several limitations and leaves some open questions that

need to be addressed in the future.

First of all, for thresholded SIR, theoretical results are provided only for the case

where the rank D = 1 and the covariance of predictors ΣX = Ip. The results of

thresholded PCA when D > 1 might be used to develop some analogous results

for thresholded SIR when D > 1 and ΣX = Ip. For general ΣX , SIR is related

to a generalized eigenvalue problem which is more similar to canonical correlation

analysis; in that case, some plug-in estimator of the precision matrix Σ−1
X is inevitable.

We can incorporate existing results on the property of the precision matrix estimator

that is applied, but it is also interesting to discover an alternative approach to address

the plug-in estimator more “organically”.

Secondly, there are some practical issues that are not covered in this work. For ex-

ample, a crucial aspect of dimension reduction is the estimation of rank D. Through-

out this thesis, we assume D is known, which is rarely the case in reality. There are

different criterions to decide the rank and it is interesting to compare their perfor-

mances in SIR. Another possible future direction is to use some weighted norms

instead of un-weighted `-2 norm or Frobenius norm. In practice, it is often unclear

136
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how to scale the variables so that the coefficients in one group are equally important.

Finally, we have identified several limitations in the current proof techniques that

result in some unsatisfactory terms in the error bounds or the sample size require-

ments. The difficulties in resolving these terms are usually the dependency between

some random objects that are hard to characterize. This can lead to some deep

theoretical researches which has not been accomplished.
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M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method

for sparse principal component analysis. Journal of Machine Learning Research,

11:517–553, 2010.



140

S. v. d. G. Karim Lounici, Massimiliano Pontil and A. B. Tsybakov. Oracle in-

equalities and optimal inference under group sparsity. The Annals of Statistics, 39:

2164–2204, 2011.

K. Knight and W. Fu. Asymptotics for lasso-type estimators. The Annals of Statis-

tics, 28.5:1356–1378, 2000.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model

selection. The Annals of Statistics, 28:1302–1338, 2000.

M. Ledoux. The concentration of measure phenomenon. American Mathematical

Soc., 2005.

K.-C. Li. Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association, 86.414:316–327, 1991.

L. Li. Sparse sufficient dimension reduction. Biometrika, 94.3:603–613, 2007.

L. Li and C. J. Nachtsheim. Sparse sliced inverse regression. Technometrics, 48.4:

503–510, 2006.

L. Li and X. Yin. Sliced inverse regression with regularizations. Biometrika, 64:

124–131, 2008.

R.-C. Li. Relative perturbation theory: Ii. eigenspace and singular subspace varia-

tions. SIAM Journal on Matrix Analysis and Applications, 20.2:471–492, 1998.

Q. Lin, Z. Zhao, and J. S. Liu. On consistency and sparsity for sliced inverse regres-

sion in high dimensions. arXiv preprint, arXiv:1507.03895, 2015.

Q. Lin, Z. Zhao, and J. S. Liu. Sparse sliced inverse regression via lasso. Journal of

the American Statistical Association, just-accepted, 2018.



141

H. Liu and J. Zhang. On the `1 − `q regularized regression. arXiv:0802.1517, 2008.

Z. Ma. Sparse principal component analysis and iterative thresholding. The Annals

of Statistics, 41.2:772–801, 2013.
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