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ABSTRACT 

 

In many high-risk domains, such as aviation, driving, and space operations, safety 

depends greatly on the timely detection and correct identification of alarms. However, due to 

high levels of system complexity and coupling in those environments, a large number of alarms 

is sometimes triggered within a short period of time, a so-called alarm flood. Alarm floods pose a 

challenge for operators at various stages of information processing, including detection, 

identification and response selection. The detection of alarms during an alarm flood can be 

difficult due to masking effects. Masking occurs when one signal is obscured by the presence of 

another simultaneous or asynchronous stimulus. To date, various forms of simultaneous and 

asynchronous masking, such as change blindness and attentional blink, have been studied almost 

exclusively for only two stimuli and in single-task conditions. The effects of masking in the 

presence of a large number of signals and in multi-task environments are not well understood. 

Therefore, the goals of this dissertation were to (1) establish the relative contributions of 

simultaneous and asynchronous masking to missed and misdiagnosed visual and auditory alarms 

during routine operations and in an alarm flood, (2) identify the stimulus onset asynchronies 

(SOAs) at which masking effects are observed in demanding multitask environments, (3) 

investigate the impact of the number and temporal distribution of alarms on alarm detection and 

identification and (4) develop and test countermeasures to overcome observed performance 

breakdowns. To this end, a series of four experiments were conducted using a simulation of a 

drone-based package delivery service.  



 xiii 

Both simultaneous and asynchronous masking were observed, intramodally and 

crossmodally, for visual and auditory alarms. The SOA at which asynchronous masking was 

observed was longer (around 800ms) than reported in basic studies of the phenomenon. The 

effects of both simultaneous and asynchronous masking were stronger with an increase in the 

number of alarms; this increase was more pronounced for simultaneous masking. Simultaneous 

masking also had a stronger effect on auditory alarms, compared to visual alarms. In clusters of 4 

or 6 sequential alarms, the first and last alarms were more likely to be detected and correctly 

identified. During alarm floods, a speed-accuracy tradeoff was observed, i.e., the response time 

to alarms was shorter but the identification accuracy was lower, compared to routine operations. 

Finally, when the criticality of alarms was mapped to preattentive features of the alarm signal 

(color and pitch), the masking effects were alleviated, especially for clusters of 4 or 6 concurrent 

visual alarms. 

The findings from this dissertation contribute to a better understanding of the effects of 

two types of masking on the detection and identification of large numbers of critical signals in 

high workload multi-task environments. They help inform the development and expansion of 

models and theories of human perception and cognition and also highlight that results from basic 

research do not necessarily generalize to applied settings. From an applied perspective, the 

findings will provide guidance for the design and evaluation of alarms and alarm systems. 

Ultimately, the present research helps prevent catastrophic outcomes due to missed or 

misinterpreted alarms, and thus improves safety in many real-world environments.  
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Chapter 1  

Introduction 

 

In many complex data-rich domains, such as aviation and process control, system safety 

depends greatly on the timely detection and correct identification of alarms. However, 

accomplishing these tasks can be difficult due to the coupling and complexity of systems in these 

environments which can result in large numbers of alarms within a short period of time – a 

problem called an alarm flood (Perrow, 2011). Alarm floods have played a role in accidents such 

as the nuclear meltdown at the Three Mile Island Nuclear Generating Station (March 28, 1979, 

Dauphin County, Pennsylvania), the explosion and fire at a Texaco Refinery (July 24, 1994, 

Milford Haven, Wales), and the crash of Air France Flight 447 (June 1, 2009, Atlantic Ocean). 

An alarm flood is defined as more than 10 alarms in a 10-minute period, but this rate is often 

exceeded in real-world settings (EEMUA, 1999). For example, in the medical domain, there can 

be as many as 120 separate alarm devices in one operating room, many of which may sound at 

the same time (Sykes et al., 2011). In the Texaco Refinery explosion, the two operators had to 

respond to 275 alarms during the last 10.7 minutes before the explosion, or approximately one 

alarm every two seconds. As a result, the operators missed critical alarms that could have helped 

them diagnose and handle the problem (HSE, 1997). In the domain of cyber defense, the 

situation is even worse with analysts facing thousands of alarms per day (Ben-Asher & 

Gonzalez, 2015). 
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Perceptual and attentional limitations contribute to operators missing signals during an 

alarm flood, including change blindness, attentional blink and, more generally, masking. 

Masking is the process by which one stimulus is obscured by the presence of another stimulus 

(Enns, Di Lollo V, & Di Lollo, 2000). Masking can occur when two stimuli are spatially or 

temporally overlapping or contiguous (Breitmeyer & Öğmen, 2006). One example of temporal 

masking is change blindness which refers to the failure to detect even salient changes and events 

when these changes coincide with a transient or brief disruption in visual continuity (Lu, 2014; 

Rensink, 2002; Simons & Levin, 1997). Another form of temporal masking occurs with 

attentional blinks which represent an example of asynchronous masking. Attentional blinks 

involve the failure to detect the second of two target stimuli if both are presented in close 

temporal proximity (200-600ms apart, according to the basis literature in attention).  

The role and relative contributions of these masking effects to problems with alarm 

detection in real-world environments are not well understood. For one, almost all research on 

attentional blink and change blindness to date has focused exclusively on the detection and 

identification of just two stimuli. The vast majority of studies have examined the two phenomena 

in the visual modality only. And participants in these studies were most often responsible only 

for the one task of detecting target stimuli. In contrast, alarm floods in real-world domains 

involve exceedingly large numbers of signals which are presented in both the visual and the 

auditory channels, and operators in these domains tend to timeshare several tasks. During alarm 

floods, it is also important to consider the possibility of a serial position effect where the 

likelihood of detecting an alarm may depend on the nature and timing of surrounding alarms. 

The proposed research aims to address the above limitations in the literature to gain a better 
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understanding of the nature of, and reasons for breakdowns in alarm detection. It will also 

explore candidate techniques for overcoming the problem.   

One possible way of supporting operators during an alarm flood could be to increase 

bandwidth through the introduction of multimodal displays, i.e., interfaces that distribute 

information – in this case, alarms - across multiple sensory channels, including vision, audition 

and touch. These channels are partially independent of each other, and thus multimodal displays 

have been used to offload an overburdened modality and were shown to generate faster 

responses (Lu et al., 2013; Wickens & McCarley, 2007). However, the effectiveness of this 

approach depends on whether and to what extent the aforementioned masking phenomena affect 

not only intra-modal, but also cross-modal information processing. Specifically, little is known 

about the occurrence of attentional blinks and change blindness across non-visual modalities 

(e.g. Chun & Potter, 2001).  

Another way to improve alarm detection is to exploit top-down influences on attention 

capture and management. Specifically, alarm displays can be designed to support prioritization 

of alarm signals, so that the operators can choose to allocate more of their limited attentional 

resources to the detection and identification of the most critical alarms. One way to facilitate this 

prioritization is to map pre-attentive features of alarms, such as the color of visual alarms and the 

pitch of auditory alarms, to their urgency or criticality. This approach has been shown to improve 

the response time to alarms but very little is known about whether this method improves 

detection performance also (Nikolic, Orr, & Sarter, 2004; Politis, Brewster, & Pollick, 2014; 

Wickens, McCarley, & Steelman, 2009).  

In summary, the overall goal of the reported research is to gain a better understanding of 

the nature of, reasons for, and possible countermeasures to breakdowns in alarm detection when 
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operators are faced with large numbers of alarms over longer periods of time or during an alarm 

flood. Specifically, its objectives are: 

• To establish the relative contributions of simultaneous and asynchronous masking to 

missed and misdiagnosed visual and auditory alarms during routine operations and in an 

alarm flood 

• To identify the stimulus onset asynchronies (SOAs) at which masking effects are 

observed in demanding multitask environments 

• To investigate the impact of the number and temporal distribution of alarms on alarm 

detection and identification 

• To develop and test countermeasures to overcome observed performance breakdowns 

To this end, a series of four experiments were conducted using an unmanned aerial 

vehicle (UAV) control simulation. The tasks were designed to simulate those of a commercial 

drone-based package delivery system. Such a system will likely require operators to serve as 

supervisory controllers of multiple UAVs, each of which may experience problems and require 

operator interventions. The findings from the proposed work can be generalized to other 

similarly data-rich and attention-demanding application domains, such as cyber-defense, air 

traffic control, and industrial process control. 

 

Alarm displays and alarm floods 

In highly automated sociotechnical systems, one of the main responsibilities for operators 

is to monitor system health. Alarms are a means of assisting operators in this task by alerting 

them, in a data-driven fashion, to anomalies in the system. Alarm classification systems 

distinguish between alarms, alerts, and notifications, which differ with respect to the potential 
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results of a failure or delay in responding to the off-nominal event/condition (Sessa, 2013). 

Alarms tend to be associated with more severe consequences and require an immediate response 

while alerts do not (e.g., Grosdidier, Connor, Hollifield, & Kulkarni, 2003). Notifications present 

information that is even less safety-critical than that conveyed by alerts. Since this distinction is 

not critical for most of the reported research, we will use the word “alarm” to refer to all three 

types of indications for the remainder of this document, except for the last experiment, where the 

effect of alarm criticality will be discussed in detail.  

 Alarm detection and identification pose a challenge to operators because automated 

systems have become increasingly complex and coupled. As a result, a single anomaly can 

trigger a series of related alarms in a very short period of time and thus turn into an alarm flood 

(Perrow, 2011). Industrial standards define an alarm flood as the presentation of more than 10 

alarms in a 10-minute period (EEMUA, 1999). Such events have been shown to exceed the 

processing and response limits of human operators (e.g., Reising, Downs, & Bayn, 2004). Alarm 

floods were identified as a major contributor to disasters such as the Three Mile Island Nuclear 

Power Plant accident (1979) and the Texaco refinery explosion (1996). They can be expected to 

increase in frequency and severity due to the continued growth in digitalization and system 

complexity (Zwaga & Hoonhout, 1994). 

 A number of approaches have been explored to reduce the risks associated with alarm 

floods. Alarm rationalization is a data-mining method that detects statistical similarities among 

discrete occurrences of alarms, groups correlated alarms based on their degree of similarity and 

suppresses unnecessary alarms (Noda, Higuchi, Takai, & Nishitani, 2011). Alarm flood pattern 

recognition is another data-mining technique that tries to obtain common patterns from multiple 

alarm sequences by finding the optimal alignment between them, using criteria-based search 
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strategies (Vogel-Heuser, Schütz, & Folmer, 2015). Alarm causal analysis uses a combination of 

alarm log, process data, and connectivity analysis based on transfer entropy (the estimated 

amount of information transferred from one signal to another) to identify consequence alarms 

that originate from a shared anomaly and provide a causal inference suggestion (Rodrigo, 

Chioua, Hagglund, & Hollender, 2016). Alarm summary displays use alternative alarm 

presentations such as 3D visualization or timeline-based alarm trackers to combine the benefits 

of list-based displays with time series presentation of alarm information (Laberge, Bullemer, 

Tolsma, & Reising, 2014). Other approaches to the problem of alarm floods include suppressing 

nuisance alarms, smart removal of redundant alarms, alarm compression, and alarm screening 

(Costa, Cachulo, & Cortez, 2009; Kirschen & Wollenberg, 1992; Liu et al., 2003; Mora, 

Passariello, Carrault, & Le Pichon, 1993; Wollenberg, 1986). The aforementioned alarm 

configuration practices have been shown to effectively reduce the number of alarms and/or 

improve detection and response performance but they also share a limitation: by reducing the 

number of alarms presented to the operator, they risk hiding useful information from the operator 

if critical messages are misidentified as nuisance or unimportant alarms. 

 To avoid this problem, and as a possible complement to the above approaches, the 

present study aims to investigate the alarm flood problem from a different perspective. Its goal is 

to improve our understanding of human perceptual and attentional phenomena in the face of 

large numbers of stimuli and use this knowledge to improve alarm presentation and thus support 

reliable alarm detection and identification. 

 



 7 

Alarm detection 

Stanton & Stammer (1998) described seven stages involved in processing a visual alarm: 

detection, discrimination, identification, classification, recognition, scaling and ordering & 

sequencing (see Table 1.1).  

 

Table 1.1. Psychological processes and implications for the design of visual alarms 

(Stanton & Stammer, 1998) 

Psychological process Purpose of the process 

Detection Determining the presence of an alarm 

Discrimination Defining the differences between one alarm and another 

Identification Attributing a name or meaning to an alarm 

Classification Grouping the alarms with a similar purpose or function 

Recognition Knowing what an alarm purports to mean 

Scaling Assigning values to alarms 

Ordering & Sequencing Determining the relative order and priority of alarms 

 

Generally, an alarm system should be designed to support all seven stages. However, in 

the context of an alarm flood where the sheer number of alarms is likely to exceed the processing 

limits of the operators, the main concern is preventing failures at the early stages of detection, 

discrimination, and identification of critical alarms. In the remainder of this dissertation, two 

types of performance will be used to describe these early stages of alarm processing. Detection 

performance is concerned with whether any alarm has been detected and correspond to the first 

stage, alarm detection. Accuracy is concerned with whether a detected alarm is correctly 

identified, and thus relies on both the stages of discrimination and identification. 
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Success at these early stages requires sufficient availability and proper management of 

attentional resources (i.e., the pool or capacity of mental effort for attention; see Wickens, 2008). 

The allocation of visual attentional resources has been described by the NT-SEEV model, which 

was developed to predict the noticeability (N) of, and response time (T) to events (such as 

alarms), based on visual scan models for supervisory control and visual sampling (Steelman, 

McCarley, & Wickens, 2011; Wickens, Goh, Helleberg, Horrey, & Talleur, 2003; Wickens et al., 

2009; Wickens & McCarley, 2007). The model includes two bottom-up components: the salience 

(S) of the alarm (e.g., its brightness or hue contrasted against the background), and the effort (E) 

required to shift attention to the alarm (e.g., the amount of head movement). The other two 

components of the model are top-down factors: the operator’s expectancy (E) of the alarm (for 

the frequency of information appearing at a certain position) and the assigned value (V) of the 

alarm. The NT-SEEV model predicts that alarms are more likely to be noticed when 1) they have 

stronger contrast against the background, 2) they are expected to appear more frequently, 3) they 

are presented within the field of view and thus require less effort to notice, and 4) they are 

regarded as more valuable, i.e., important to the task at hand. The computational predictions of 

the NT-SEEV model were validated with empirical data (eye-tracking and performance data) 

from pilots in a high fidelity flight simulator (Wickens et al., 2009), showing a high correlation 

between the empirical results and model predictions. A number of other models have been 

proposed to describe the processes involved in detection/noticing performance (e.g. Itti, Koch, & 

Niebur, 1998; Le Meur, Le Callet, Barba, & Thoreau, 2006; Posner, Snyder, & Davidson, 1980; 

Stanton & Baber, 1995; Stanton, Booth, Stammers, & Stammers, 1992) but the NT-SEEV model 

is one of the most continually updated models that comprehensively incorporates both top-down 

and bottom-up factors influencing visual attention.  
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Masking and alarm detection during an alarm flood 

While the NT-SEEV model provides a comprehensive account of the processes involved 

in the detection of a single event, its application to the alarm flood problem is limited by some 

factors that it did not cover. Firstly, the NT-SEEV model has focused primarily on the detection 

of visual events, while a large number of alarms are presented in the auditory channel. Auditory 

alarms are widely used because they tend to be salient and omnidirectional (i.e., not requiring a 

specific spatial body/head/eye orientation. More importantly, the use of auditory signals can 

offload the already-overburdened visual channel by presenting information in a different sensory 

modality and thus reducing the competition for visual attentional resources (Wickens & 

McCarley, 2007). 

The NT-SEEV modal also does not explain problems experienced during an alarm flood 

which represents a much more complex multi-signal situation (Steelman et al., 2011). 

Importantly, during alarm floods, detection performance may be affected by masking among 

alarm signals (i.e., the process by which one stimulus is obscured by the presence of another 

stimulus). This was highlighted by a survey of operators from a chemical manufacturer, a 

confectionery company and a nuclear power plant which identified masking as the most 

frequently reported reason (nearly 50% of all cases) for missing an alarm (Stanton, 1993). 

Similarly, a 1995 analysis of the Aviation Safety Reporting System database identified missed 

alarms as a major contributor to aviation incidents (Bliss, Freeland, & Millard, 1999). Masking 

can happen when alarm signals appear either simultaneously or in close temporal proximity. 

These two types of masking effects are called simultaneous masking and asynchronous masking, 

respectively, and will be further discussed in the following sections. During alarm floods, it is 
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likely that operators experience both types of masking due to simultaneous and closely spaced 

alarms.  

Similar to visual alarms, the detection of auditory alarms can also be influenced by 

masking effects. The detection of auditory signals has been shown to be highly susceptible to 

simultaneous masking. For example, Bolton and colleagues have shown that nurses miss 

auditory alarms even when these alarms comply with industrial standards, a problem that has 

contributed to medical accidents (Bolton, Edworthy, & Boyd, 2018). Auditory simultaneous 

masking is especially strong when two or more auditory signals appear in the same spatial 

location (Carhart, Tillman, & Greetis, 1969; Doll, Hanna, & Russotti, 1992; Fastl & Zwicker, 

2006). These masking effects, unlike the other examples of masking as a result of attention or 

memory bottlenecks, are related to sensory receptors in the ear. These receptors are sensitive to 

the frequency of vibrations on the tympanic membrane and not capable of differentiating sounds 

that are highly similar in their base frequency (Bolton et al., 2018).  

Depending on task context, masking can happen both at the sensory stage and at later 

stages of information processing. It is therefore not always possible to identify, with certainty, 

the underlying mechanisms. However, the behavioral effects of these processes are the same: 

signals are more likely to be missed when presented in close temporal proximity. The following 

sections will give some examples of simultaneous and asynchronous masking effects and how 

they relate to attention limitations. 

 

Simultaneous masking: change blindness and enumeration limits 

Change blindness refers to an observer’s inability to notice changes in a visual scene 

when these changes coincide with a visual transient (Simons & Levin, 1997). This attention 
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deficit is striking due to the fact that even large, salient, and expected changes can go unnoticed. 

Change blindness has been identified as one reason for operators missing critical events (e.g., 

Curry, Meyer, & McKinney, 2006; Lee, Lee, & Boyle, 2007; Velichkovsky et al., 2002). 

Research to date suggests that change blindness is caused by the shortage of both visual short-

term memory and attentional resources (Simons & Rensink, 2005). The two most common 

paradigms used to trigger change blindness are “flicker” and “mudsplash”. In a “flicker” 

paradigm, the original and the changed scene are separated by a masking stimulus that 

completely blocks the view, e.g., a blank screen. In a “mudsplash” paradigm (see Figure 1.1), a 

few small, high contrast shapes are briefly spattered over the view, without covering the change 

(Lu, 2014; O’Regan, Rensink, & Clark, 1999; Simons & Rensink, 2005).  

 

 

Figure 1.1 The “mudsplash” paradigm (O’Regan et al., 1999) 

 

Change blindness was first and primarily studied in the visual modality but a small 

number of more recent studies demonstrated the existence of the phenomenon in the auditory and 

tactile modalities also. For example, change deafness was triggered using auditory masking. 

When the onset of white noise (comparable to the “mudsplash” in visual stimuli) or silence 

(comparable to a “flicker” or blank white screen in visual stimuli ) coincided with the addition or 
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deletion of an auditory object to/from a complex auditory scene, the participants were prone to 

miss the change (Pavani & Turatto, 2008). Tactile change blindness can be triggered using a 

“flicker” paradigm, where a tactile mask is presented between the two tactile signals to be 

discriminated, or a “mudsplash” paradigm, where a tactile mask is presented concurrently with 

the change in a continuous tactile signal (Gallace, Tan, & Spence, 2007; Lu, 2014). Finally, 

crossmodal change blindness has been observed for visual-tactile modality pairs. Signals were 

presented either in the same modality (visual or tactile) or in different modalities (one visual and 

the other tactile). The “mudsplash” masks were either tactile or visual. Change blindness was 

observed for all stimulus-mask combinations (Auvray, Gallace, Tan, & Spence, 2007).  

Most empirical work and theory development on change blindness has focused on 

breakdowns in the detection of one or two targets in various modalities and modality 

combinations. However, research on enumeration (i.e., reporting the number of targets) shows 

that participants’ performance drops considerably when more than two targets are present. For 

example, enumeration studies have shown that, when the number of visual targets exceeds four, 

performance decreases dramatically (Atkinson, Campbell, & Francis, 1976; Kaufman, Lord, 

Reese, & Volkmann, 1949; Sathian et al., 1999). The enumeration mechanism was categorized 

into subitizing, which can enumerate numbers no greater than four by rapidly recognizing 

learned patterns, and counting, which is a slower but more accurate conscious enumeration 

process that is dominant when the number exceeded four (Mandler & Shebo, 1982; Revkin, 

Piazza, Izard, Cohen, & Dehaene, 2008). A similar limitation has been reported in the auditory 

modality where performance starts to deteriorate rapidly with more than two concurrent auditory 

stimuli (e.g. Camos & Tillmann, 2008; Kashino & Hirahara, 1996; ten Hoopen & Vos, 1979). 

These findings are highly relevant for alarm floods because during periods of high alarm 
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frequency, such as alarm floods, the number of alarms that are concurrent or in temporal 

proximity is very likely to exceed two. Therefore, the ability to detect and identify multiple 

alarms would be important for system safety. 

 

Asynchronous masking: attentional blink  

Masking effects are also observed when two stimuli are asynchronous and non-

overlapping. For example, attentional blink (AB) refers to the failure to accurately report the 

second of two target stimuli (T2) when both target stimuli (T1&T2) are presented in close 

temporal proximity (Dell’Acqua, Jolicœur, Sessa, & Turatto, 2006; Raymond, Shapiro, & Arnell, 

1992; Soto-Faraco et al., 2002). Attentional blink was first studied, and has been examined most 

thoroughly in the visual modality. In laboratory studies, the phenomenon is often triggered using 

the paradigm called rapid serial visual presentation (RSVP, see Figure 1.2) where a number of 

target stimuli (such as letters digits, words, or pictures) are presented sequentially, each for a 

brief period of time (from 6 to about 20 items per second; typically 10 items per second) 

(Broadbent & Broadbent, 1987; Raymond et al., 1992). The task for participants in these studies 

is to identify and report those stimuli (targets T1 and T2) that are different from other distractors 

(usually the targets are letters while distractors are numbers, or vice versa). In these experiments, 

an attentional blink occurred with an SOA (stimuli onset asynchrony) of 200-600ms, i.e., when 

T2 is displayed 200-600ms after T1 (Arnell & Jolicœur, 1999; Brehaut, Enns, & Di Lollo, 1999; 

Dell’Acqua et al., 2006; Dux & Marois, 2009; Raymond et al., 1992; Ward, Duncan, & Shapiro, 

1996). T2 is more likely to be missed if participants are required to report T1, compared to when 

they can ignore the first target.  
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Figure 1.2 Rapid serial visual presentation (RSVP) 

 

In early studies of visual attentional blink, both T1 and T2 were followed by distractors. 

T1 and T2 masking play different roles in bringing about an attentional blink: T1 masking 

introduces a delay in processing T2, while T2 masking interrupts the processing of T2 (Brehaut 

et al., 1999). However, more recent studies have demonstrated that an attentional blink occurs 

even when just a blank interval separates T1 and T2 (Nieuwenstein, Potter, & Theeuwes, 2009). 

The detection failure in these studies was explained by rapidly disengaging and re-engaging 

attention to the target, instead of the disruption being created by distractors.  

Recent studies have examined whether the attentional blink is a modality-specific or a 

supra-modal phenomenon (Arnell & Jolicœur, 1999; Potter, Chun, Banks, & Muckenhoupt, 

1998). Experiments on auditory attentional blink have used a method called rapid auditory 

presentation (RAP) which requires the participant to search for targets in a fast auditory stream 

of items (Arnell & Jolicœur, 1999). The findings from these studies are not consistent: some 

researchers succeeded in triggering an auditory attentional blink (e.g. Arnell & Jolicœur, 1999; 
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Duncan, Martens, & Ward, 1997; Goddard, Isaak, & Slawinski, 1997; Shen & Mondor, 2006), 

but some did not (e.g. Potter et al., 1998). The reason for these apparently contradictory findings 

is unclear.  

Only two studies have examined tactile attentional blinks (Dell’Acqua et al., 2006; 

Hillstrom, Shapiro, & Spence, 2002). In both studies, serially presented streams of vibration 

stimuli were presented to the fingertips, similar to the presentation of visual and auditory targets 

in the RSVP and RAP paradigms. Both experiments confirmed the existence of tactile attentional 

blinks by demonstrating a decrease in identification accuracy when the two targets were closer 

than 360ms in time.  

Based on the above findings, it appears that attentional blinks occur intramodally in all 

three sensory channels – vision, audition, and touch. As with change blindness, one unanswered 

question is whether attentional blink is observed crossmodally as well. Studies addressing this 

question have not yielded consistent results. Some studies observed visual-auditory attentional 

blinks (Arnell, 2006; Arnell & Jolicœur, 1999; Arnell & Larson, 2002; Van der Burg, Brederoo, 

Nieuwenstein, Theeuwes, & Olivers, 2010; Van Der Burg, Nieuwenstein, Theeuwes, & Olivers, 

2013), visual-tactile attentional blinks (Dell’Acqua, Turatto, & Jolicoeur, 2001; Soto-Faraco et 

al., 2002), as well as auditory-tactile attentional blinks (Dell’Acqua et al., 2001). Other 

experiments failed to produce the phenomenon. For example, Soto-Faraco and Spence (2002) 

observed no attentional blinks in their study while Martens, Kandula, & Duncan (2010) 

confirmed the presence of intramodal visual and auditory attentional blinks, but did not find 

crossmodal attentional blinks (see also Duncan et al., 1997; Hein, Parr, & Duncan, 2006).  

Similar to studies on simultaneous masking, most research on asynchronous masking 

focused on the interference between only two stimuli. Very little is known about asynchronous 
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masking between multiple stimuli in temporal proximity, the situation encountered during an 

alarm flood. One study examined how attentional blink contributes to the detection of multiple 

consecutive targets within close temporal proximity, using a simulated sonar display monitoring 

task (Boot, Becic, & Kramer, 2007). Participants were required to report the number of new 

targets appearing on the display. Detection performance decreased with an increase in the 

number of visual targets, and this performance decrement was even worse than predicted based 

on the attentional blink literature. The authors also reported that, in contrast to earlier work, the 

number of targets had a greater effect on detection performance than the SOA between targets.  

 

Research gaps 

While the above literature review suggests that difficulties with detecting alarms during 

an alarm flood result, in part, from masking effects such as change blindness and attentional 

blink, it is important to highlight aspects of earlier studies that may limit their applicability to 

complex dada-rich domains. Most change blindness and attentional blink experiments employed 

a single-task paradigm, involved low levels of workload, and included relatively simple stimuli 

and displays. Also, most of the studies to date involved search tasks whereas alarm detection is a 

noticing task. A search task involves a predefined target or some change that is expected and 

deliberately, in a top-down fashion, sought by the participant. In a noticing task, such as alarm 

detection during an alarm flood, the target, or at least its exact timing, is not expected or cannot 

be predicted by the participant, whose attention needs to be drawn largely in a bottom-up 

fashion.  

Another important difference between the experimental setup in the above studies and the 

alarm floods experienced in real-world settings is the number of stimuli/alarms. An alarm flood 
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is defined as more than 10 alarms per 10 min period, but can often exceed that (EEMUA, 1999). 

Therefore, it is not uncommon for two or more alarms to occur concurrently or sequentially in 

very close temporal proximity. In contrast, most studies on change blindness or attentional blink 

involve two targets only. Based on the studies reviewed earlier, people’s ability to report 

multiple concurrent or temporally close targets decreased with the number of targets (Boot et al., 

2007; Burr, Turi, & Anobile, 2010). Therefore, in order to improve alarm detection during 

periods of high alarm frequency, including alarm floods, the number of alarms in temporal 

proximity is a critical factor to consider.  

As reported, a small number of studies investigated the detection of multiple stimuli in 

close temporal proximity. However, participants in these studies were required only to report the 

number of targets, without identifying their nature. In the context of real-world alarms, the nature 

of an alarm may affect both detection and identification performance, since it relates to the 

expectancy and assigned value for the alarm. Therefore, in the proposed research, participants 

will be required to not only detect but also identify the alarms.  

Finally, a better understanding is needed of whether and how the serial position of a 

stimulus affects its likelihood of being detected. For example, previous research has shown that 

unexpected events (such as an alarm) can lead to surprise and startle, which has been shown to 

slow down the processing of the unexpected signal and hinder the ability to direct and divide 

attention properly (Barnett, Wong, Westley, Adderley, & Smith, 2012; Landman, Groen, van 

Paassen, Bronkhorst, & Mulder, 2017). Thus, an operator may perform worse for the first few 

alarms in an alarm flood. At the same time, the stress and workload induced by an alarm flood 

are likely to intensify over time as the operator tries to keep up with the pace of the signals being 

presented. This can result in an increase in operators’ mental arousal. Early on, this may have a 
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positive effect on performance because a medium level of arousal tends to lead to the best 

performance (Yerkes & Dodson, 1908). As stress and arousal increase further, however, 

performance may suffer during later stages of the alarm flood. Finally, the processing of the last 

alarm in a flood may benefit from the fact that there is no interference from subsequent signals. 

This line of research will gather empirical data on how serial position affects alarm detection and 

identification during alarm floods which is important because these data may inform the 

development of countermeasures to missing critical information. 

 

Supporting alarm detection in an alarm flood 

Understanding how alarm detection is affected by various attentional limitations, 

contextual factors and top-down influences is a prerequisite for achieving the final goal of the 

proposed research: the development of an effective countermeasure to missed or misidentified 

alarms in the context of periods of high alarm frequency, including alarm floods. As mentioned 

earlier, suppressing redundant and nuisance alarms can be beneficial, but filtering and 

eliminating alarms risks hiding potentially valuable information from the operator. Therefore, the 

proposed research aimed to develop a complementary solution using context-sensitive 

presentation of alarms to accommodate human information processing abilities and limitations. 

This solution is based on two design considerations: (1) real-time adjustment of the timing of 

alarm presentation to avoid temporal masking and (2) pre-attentive criticality mapping to support 

top-down prioritization of alarms.  

The adjustment of alarm timing is based on the findings from the earlier phases in this 

line of research. The first three studies have identified SOAs that need to be avoided in order to 

prevent breakdowns in detection performance and how the temporal distribution and the number 
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of alarms interact and affect alarm detection. An intelligent alarm management system would 

avoid these time intervals by delaying some alarms for a short period of time and thus avoid 

masking of other alarms. This approach can complement other alarm management techniques 

because masking can happen even with a relatively small number of alarms. 

Instead of suppressing alarms and hiding information from operators, alarm detection 

may be supported by helping operators classify and prioritize alarms and allocate their limited 

attentional resources accordingly. To this end, displays can be designed to map some pre-

attentive features to properties of the alarms. Preattentive processing is a stage of visual 

processing where simple features are coded spatially before focused attention is required for later 

stages of processing (Treisman, 1985). Similar stages of auditory processing also allow people to 

partition the auditory input to some extent (Alain & Arnott, 2000). The alarm features that can 

utilize these processing stages and help direct attention to certain alarms are called pre-attentive 

references. The preattentive signals should be designed to be noticed in parallel with the ongoing 

task, provide information about the significance and meaning, and allow for evaluation that does 

not require focused attention (Woods, 1995). Preattentive reference has been proposed as a 

means to support interruption management and improve situation awareness by presenting the 

potential interruption and providing partial information of the nature of the interruption that 

allows for peripheral access (Endsley, 1988; Sarter, 2005; Wickens et al., 2008). In the context of 

alarm displays, preattentive reference provides support for the identification of alarm signals in a 

way that can be processed peripherally and in parallel. This type of support is critical for 

operations during high alarm frequency periods, such as alarm floods, because the operator often 

cannot afford to process all the alarm signals with focused attention due to the sheer volume of 
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alarms as well as other ongoing tasks. Therefore, facilitating alarm processing at the preattentive 

stage is important in this context.  

A design approach called urgency mapping has been proposed and empirically validated 

as promising means of supporting preattentive reference in alarm signals. This approach 

manipulates the perceived urgency of alarm signals by changing features such as the base 

frequency, loudness, duration or inter-pulse interval of auditory alarms, the color, wording, or 

pulse rate of visual alarms, and the pulse rate of tactile alarms (Baldwin & Lewis, 2014; 

Guillaume, Drake, Rivenez, Pellieux, & Chastres, 2002; Kaufmann, Ohg, Risser, Geven, & 

Sefelin, 2008; Lewis & Baldwin, 2012; Sanderson, Eunice, Philippe, & Alexandra, 2006). Many 

of these features, including color, shape, size, location, pitch, and timber, have been shown to be 

preattentive features (Doll, 1993; Winkler, Sussman, Tervaniemi, Horváth, Ritter, & Näätänen, 

2003; Woods, 1995). They are assumed to be processed at the preattentive stage as they have 

been shown to be processed very quickly (i.e., within 200ms), before visual attention could have 

been engaged (Healey, Booth, & Enns, 1996). Such manipulation of perceived urgency has been 

shown to help drivers respond faster to more urgent warnings (Politis et al., 2014), and was also 

suggested to be beneficial in other domains such as medical alarms (Edworthy & Meredith, 

1994). Although urgency mapping has been shown to improve the speed of responses, little is 

known about whether it can also improve the detection of critical alarms during an alarm flood. 

However, a benefit in detection performance can be expected based on the contingent orienting 

hypothesis which states that attention is more likely to be captured by objects that possess 

properties for which attention is set (Folk, Remington, & Johnston, 1992). Contingent orienting 

utilizes a combination of the by two types of factors that affect attention allocation: goal-directed 

(top-down) factors and stimulus-driven (bottom-up) factors (Corbetta & Shulman, 2002). When 
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the operator is aware of certain preattentive features of the alarms and actively look for these 

features in the searching task, alarms possessing these features are more likely to be noticed and 

identified correctly. Based on these mechanisms of attention, it was expected that mapping 

preattentive features to the criticality of alarms would also improve detection and identification 

performance.  
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Chapter 2  

Establishing the SOA Range for Asynchronous Masking of 

Visual and Auditory Stimuli in Multitask Settings 

As discussed in the Introduction, attentional blink is an example of asynchronous 

masking that was observed in earlier studies when two stimuli were presented at SOAs ranging 

from 200 – 600ms. The phenomenon was reported intramodally for both visual and auditory 

stimuli, as well as crossmodally between the two sensory channels. Attentional blink and other 

forms of masking may account for observed failures to detect and identify alarms during alarm 

floods; however, to date, these phenomena have been studied almost exclusively in the context of 

very simple experimental settings involving only two and mostly visual stimuli. Also, most 

studies on attentional blink used the RSVP paradigm which differs from real-world alarm signals 

with respect to the duration and timing of stimuli. In RSVP, each stimulus is presented for 

around 100ms which is considerably shorter than the duration of most alarms which are typically 

longer than 500ms (FAA, 2009). With a longer the duration of the stimuli, the effects of masking 

are more complicated because, on one hand, the stimuli will overlap with a shorter SOA, leading 

to a bigger risk of simultaneous masking, but on the other hand, a longer stimulus duration 

increases the chance of it being consolidated into the working memory and thus being detected 

and identified properly. Finally, most studies on attentional blink do not require participants to 

perform any concurrent primary task(s) while trying to detect target stimuli in the RSVP 

sequence. Thus, these studies fail to capture the multitasking attentional demands on operators in 
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real-world workplaces. Based on limited empirical evidence (e.g., Ferris, Penfold, Hameed, & 

Sarter, 2006), the SOAs at which attentional blink is experienced in more complex and 

demanding environments appear to be longer. For example, in the Ferris et al. study, the error 

rate was reported to be higher with an SOA of 1000ms, compared to 500ms. Establishing the 

SOA range for asynchronous masking of visual and auditory stimuli in these contexts is 

important for being able to predict and counteract the failure to detect alarms in real-world 

settings. 

To this end, the study reported in this chapter investigates alarm detection in the context 

of an Unmanned Aerial Vehicle (UAV) simulation. The participants in the experiment played the 

role of a ground-based operator monitoring multiple autonomous package delivery drones (for an 

example of such a vehicle, see Figure 2.1). The drones flew predetermined paths to customer 

residences where they dropped a package on to a delivery pad placed on the ground by the 

customer. If no pad was detected, the package was not delivered. The drone then continued to the 

next delivery address or returned to the warehouse to pick up more packages. To be 

commercially viable, such an autonomous delivery system will require that one operator controls 

a fairly large number of drones, making it a Single-Operator-Multiple-Agent (SOMA) system. 

SOMA systems impose significant attentional demands on operators (Prinet, Terhune, & Sarter, 

2012), and they involve an increased risk of alarm floods in case multiple vehicles experience 

problems at the same time. Some of these problems may be interrelated, such as poor visibility in 

a region which can affect the ability of all vehicles in the area to locate their respective delivery 

pads. Autonomous package delivery is, therefore, an appropriate application domain for studying 

the detection and identification of alarms and establishing SOAs for asynchronous masking of 

visual and auditory signals in a demanding multi-task setting. 
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Figure 2.1 An autonomous package delivery drone (Amazon.com, Inc.) 

 

Based on a review of findings from previous studies, the following hypotheses were 

formulated: 

• H1: Due to masking, the detection rate and accuracy for the second alarm in an alarm pair 

will be lower, and the response time would be longer, compared to the first alarm and to 

alarms that occur by themselves;  

• H2: The effective SOA range for attentional blink in a multi-task environment will be 

longer than the 200 - 600ms range reported in earlier more basic research; 

• H3: Masking effects will be observed both intra- and crossmodally for visual and 

auditory alarms; 

• H4: Alarm floods will result in lower detection rates, identification accuracy and longer 

response times to alarms, compared to routine operations. 
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Method 

Participants 

The participants in this study were 26 students from the University of Michigan (16 

males and 6 females). The results from the first four subjects were excluded from the final 

analysis due to changes in the experiment setup. All of the participants were between 20 and 30 

years old (mean age = 24.35, SD = 2.50). They all reported normal or corrected-to-normal vision 

and normal hearing ability. Participants were consented before the experiment and received $25 

as compensation for their participation. The three participants who had the best performance 

received an additional award of $70, $40, and $20, respectively. This study was approved by the 

University of Michigan Institutional Review Board (UM IRB ID: HUM00125337). 

 

Apparatus and tasks 

A simulation of an automated package delivery system was developed in The Human-

automation Interaction and Cognition (THInC) Laboratory. The experiment setup consisted of a 

computer with a keyboard, an optical mouse, a 23-inch LCD monitor, and a pair of stereo 

speakers. Simulated video feeds from eight drones were presented. In addition, a simple control 

panel was shown next to each video feed. The central window was used to display visual alarms 

for the various drones (see Figure 2.2).  

Participants were asked to perform two tasks: (1) delivery consent and (2) alarm 

detection. Delivery consent was required whenever a drone reached one of its destinations. The 

drone would follow predetermined flight paths to customer residences. Once it reached a 

delivery address, it hovered in midair. At that point, the brightness of the respective drone 

window increased to indicate to the participant the need to determine whether the customer had 
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placed a delivery pad (with the letter “H” on it) on the ground. If a delivery pad was present, the 

participant pressed the top button (a “target” symbol) next to the corresponding window to 

consent to the package delivery. If no delivery pad was detected, the participant would press the 

second button from the top (the same ‘target’ icon but with a line drawn across the icon) to 

cancel the delivery and make the drone proceed to the next customer. Once the participant had 

entered their response, the brightness of the window would return to its default lower setting. 

Throughout the scenario, alarms were presented whenever there was a temporary link 

loss between any of the drones and the ground control station. Alarms indicated the number of 

the affected drone (1-8). They were visual (the number flashed in the central alarm window on 

the screen) or auditory (synthesized speech announcing the drone number) in nature. Participants 

were required to detect the alarm and press one of two buttons next to the respective video 

feed(s). For visual alarms, they would press the third button from the top which showed an eye; 

the response to auditory alarms was to press the “ear” button at the bottom. The alarms were 

presented either as single alarms (to determine baseline detection performance) or in alarm pairs 

(two alarms that were presented in close temporal proximity, at 5 different SOAs). 

 

Figure 2.2 Interface of the UAV control simulation 
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Cross-modal matching 

A technique called cross-modal matching was employed in advance of the experiment. 

Cross-modal matching refers to “the process of an observer matching the apparent intensities of 

stimuli across two sensory modalities” (Colman, 2015). Cross-modal matching is important to 

avoid confounds in studies of multimodal processing, i.e., to ensure that any observed 

performance differences can be attributed to the modality per se, rather than other stimulus 

properties (such as salience). In this study, cross-modal matching was performed by presenting 

each participant with the visual alarm signals at preset brightness levels and asking them to use 

the keyboard arrow keys to adjust the volume of the corresponding auditory alarm signals to 

match the salience of both cues  (Pitts, Riggs, & Sarter, 2016).  

 

Experiment design and procedure 

The experiment employed a 5×4×3 fractional factorial design. The three independent 

variables, all varied within-subjects, were Stimuli Onset Asynchrony (SOA; the time between the 

onsets of two alarms in an alarm pair; 200, 600, 800, 1000, or 1200ms), modality pairs (visual-

visual, visual-auditory, auditory-visual, and auditory-auditory), and alarm presentation (single 

alarm or first or second alarm in an alarm pair). 

The experiment consisted of two 30-minute scenarios. Each scenario included 27 minutes 

of routine operations and a 3-minute alarm flood. During the routine period, the delivery consent 

task was presented once per minute (27 times), either by itself (7 times), followed by a single 

alarm (10 times) or by an alarm pair (10 times). The alarm flood started either 5 minutes or 25 

minutes into the scenario. During the 3-minute alarm flood, 30 single alarms and 30 alarm pairs 

were presented to the participant. The frequency of the delivery task was the same as during 
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routine operations. The order of alarms was randomized. A total of 30 delivery consent tasks 

were presented to participants in each scenario.  

Upon the participants’ arrival at the laboratory, they were given a printed standard IRB 

consent form that explained the purpose of the study and what participants would experience 

during the experiment. They were required to sign the form in order to participate in the study. 

Their chair was then adjusted so that the eyes were about 20 inches from the center of the screen. 

At that distance, the size of the visual alarms equaled 0.125 rad visual angle. Next, the 

participants were given instructions on the delivery consent task and the alarm monitoring task. 

They were told to give equal priority to both tasks. They then received two to three five-minute 

training sessions to familiarize themselves with the tasks until they reached an overall accuracy 

of 90% in the two tasks. Following the training sessions, the participant took a short break before 

starting the two 30-minute experiment sessions. The entire experiment lasted about 100 minutes. 

Each participant received $25 as compensation upon completion. As an incentive, the three 

participants with the best combined performance on the two tasks received a bonus of $70, $40, 

and $20, respectively. 

 

Dependent measures 

The three dependent measures in this study were detection rate, accuracy, and response 

time. Detection rate was defined as the percentage of alarms that the participant responded to, 

regardless of the correctness of the response. Accuracy was defined as the percentage of correct 

responses to the alarms, out of all responses. Response time was defined as the time elapsed from 

the onset of the alarm to the time the participant pressed one of the two buttons next to the video 

feed.  
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Results 

Detection rate and accuracy for visual and auditory alarms were analyzed separately 

using mixed model binary logistic regression. The two fixed effect factors were alarm position 

and SOA and the only random effect factor was subject ID. Sequential Bonferroni corrections 

were applied for multiple comparisons. A univariate analysis of variance (ANOVA) was 

conducted for the response time for all alarms including visual and auditory alarms. Alarm 

position, SOA, and modality were entered as fixed effect factors, but modality was later removed 

due to a lack of significance. Subject ID was included as a random effect factor, and Bonferroni 

corrections were again applied for multiple comparisons. For all analyses, only significant results 

(p < .05) are reported here. 

 

Detection rate  

Overall, alarm detection rates were significantly lower for visual alarms (92.5%), 

compared to auditory alarms (99.0%, 𝛸2 (df = 1) = 24.722, 𝑝 <  .05). The average detection 

rate for a visual alarm was 94.3% when it was presented as a single alarm, and 92.5% and 90.9% 

when it was the first or second alarm in an alarm pair, respectively. The difference between the 

detection rates for single visual alarms and second visual alarms in alarm pairs was statistically 

significant (90.9% versus 94.3%; 𝐹(2, 2482) =  3.097, 𝑝 = .045). An interaction between SOA 

and alarm position was observed such that the detection rate for the second alarm was lower 

when the SOA was 600, 1000 or 1200ms and higher when the SOA was 200ms. For auditory 

alarms, no significant difference was found between any of the alarm conditions/settings.  
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Figure 2.3 Visual alarm detection rates as a function of SOA and alarm position  

(*p < 0.05) 

 

Figure 2.4 Auditory alarm detection rates as a function of SOA and alarm position  

(*p < 0.05) 
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Accuracy 

Accuracy was lower for visual alarms, compared to auditory alarms (91.0% versus 

99.0%, respectively; 𝛸2(df = 1) = 77.45, 𝑝 < .001). The average accuracy for a visual alarm 

was 93.6% when it was presented as a single alarm, and 94.0% and 86.3% when it was the first 

or second alarm in an alarm pair, respectively. A main effect of alarm position was observed 

(𝐹(2, 2297) = 16.577, 𝑝 < .001), and post hoc tests revealed a significant difference between 

the detection rates for single visual alarms and the second visual alarm in alarm pairs (86.3% 

versus 93.6%, respectively). The effect of alarm position was moderated by the SOA such that 

detection rates were significantly lower only when the SOA was 600, 1000 or 1200ms. For 

auditory alarms, no significant difference was found between any conditions. 

 

Figure 2.5 Visual alarm accuracy as a function of SOA and alarm position  

(*p < 0.05) 
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Figure 2.6 Auditory alarm accuracy as a function of SOA and alarm position  

(*p < 0.05) 

 

Response time  

There was no significant difference between the response times to visual alarms and 

auditory alarms. However, a main effect of alarm position was observed (𝐹(1, 4356) = 94.781,

𝑝 < .001; see Figure 2.7). Response times to both alarms in an alarm pair were longer than 

those to single alarms, except at SOAs of 1200ms.  Post-hoc tests (with Bonferroni correction) 

revealed that this effect was more pronounced for the second alarm than the first alarm in an 

alarm pair (p < .001). A main effect of SOA was also observed, where the response time to all 

alarms was longer with a shorter SOA (𝐹(4, 4356) = 40.987, 𝑝 < .001). Finally, there was an 

interaction effect between SOA and alarm position, such that longer response times at short 

SOAs were observed more often for the second alarm (𝐹(4, 4356) = 14.788, 𝑝 < .001).  
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Figure 2.7 Response time as a function of SOA and alarm position 

(*p<0.05, asterisk alone indicates significant difference from single alarms) 

 

Alarm flood analysis 

During alarm floods, detection rates for any of the alarms did not differ from those during 

routine phases of the scenario (see Figure 2.8). Accuracy was slightly lower during alarm floods 

(94.7% versus 96.7%), but this difference was only marginally significant (𝐹(1, 4588) = 3.320,

𝑝 = .068). The average response time decreased by more than 200ms during the alarm floods, 

compared to routine periods (2160ms versus 2318ms; 𝐹(1, 4588) = 6.284, 𝑝 = .001). Finally, 

there was no difference between trials where the alarm flood occurred after 5 minutes and those 

where the alarm flood started after 25 minutes. 
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Figure 2.8 Performance metrics during routine periods vs. alarm floods  

(*p < .05) 

 

To identify possible performance changes over the course of the alarm floods, these were 

divided into an early phase (the first 25 alarms), a middle phase (the 30 alarms in the middle of 

an alarm flood), and a late phase (the last 25 alarms). The detection rates, accuracy and response 

times were compared across the three phases (see Figure 2.9). There was a significant main 

effect of phase on detection rate (F(2, 3809) = 7.136, p = .001) and response time (F(2, 3451) = 

13.067, p < .001) and a trend towards lower accuracy across the three phases (F(2, 3643) = 

2.096, p = .123). Detection rates were higher during the last two phases but did not differ 

between phase 2 and 3. Response times were significantly lower in the last phase, compared to 

the first two phases which did not differ.  
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Figure 2.9 Performance as a function of phases during the alarm flood 

 

Discussion  

Masking effects, such as attentional blink, have been shown to affect the detection of 

visual and auditory stimuli at SOAs of 200 – 600ms when using rapid serial visual or auditory 

presentation of short simple stimuli in single-task settings. Very few studies have examined, 

however, whether and at what SOAs these effects may be observed also with longer visual and 

auditory alarms in a more complex multi-task environment. The present study sought to fill this 

gap. 

Asynchronous masking was expected to result in decreased detection rates for the second 

alarm in alarm pairs. This hypothesis was partially confirmed by the results of the present study. 

Lower detection rates and accuracy were observed for second alarms but only when these were 

visual alarms, regardless of the modality of the preceding alarm. This finding is in agreement 

with results from an earlier empirical study that showed attentional blink affecting the detection 

of pairs of visual targets in a sonar display monitoring task (Boot, Becic, & Kramer, 2007). In 

the present study, the absence of masking effects for auditory alarms may be explained by the 

fact that there was no competition for auditory attentional resources. Both the detection of the 
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two types of visual targets (the delivery pads and the visual alarms) and the manual response 

required visual attention. As a result, a ceiling effect was observed for auditory alarms, with 

detection rates and accuracy well above 95% in all the cases. Visual alarms may have been 

missed more easily or misidentified also because participants started moving their eyes away 

from the center of the screen to locate the response buttons as soon as they detected a visual or 

auditory alarm. Therefore, if the second alarm in an alarm pair was a visual alarm, it appeared in 

peripheral vision. According to the NT-SEEV model, eccentricity requires increased effort to 

notice a signal and thus reduces its noticeability (Wickens, McCarley, & Steelman, 2009). 

Finally, a phenomenon called inattentional blindness may have contributed to the failure to 

detect the second, visual alarm. Inattentional blindness refers to the failure to notice an 

unexpected signal or event due to the engagement of attention on other aspects of the visual 

scene (in this case, the response button) (Mack & Rock, 1999).  

The fact that both visual and auditory alarms showed masking effects on the following 

visual alarm suggested potential crossmodal links in the processing of multimodal alarms. 

Similar crossmodal links have been observed in spatial attention. For example, a salient stimulus 

in one modality can orient attention in other modalities to the same location (Driver & Spence, 

1998; Spence & Driver, 2004). When a tactile cueing signal and a visual or auditory target 

appear in the same or similar location, participants’ response time to the target is significantly 

shorter than when they appear in opposite directions (Ho, Tan, & Spence, 2005). These results 

suggested a crossmodal link in orienting spatial attention. Similarly, results from the current 

study suggested that the attention resource required for the detection and identification of visual 

and auditory alarms are not entirely independent. This result is consistent with findings from 

previous studies that have shown that asynchronous masking occurs crossmodally, especially 
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when the second target is visual (Arnell & Larson, 2002). It suggests that the underlying 

mechanism is likely associated with some resource or process that is not totally modality 

specific. Some researchers explain attentional blink as a bottleneck of consolidating targets into 

working memory. This bottleneck has been suggested to be amodal (Arnell, 2006; Vogel, 

Woodman, & Luck, 2006).  

Response time was expected to be longer for the second alarm in an alarm pair, based on 

the results from previous attentional blink studies. According to these studies,  a delay in the 

consolidation of the second target is responsible for the longer response time  (e.g. Arnell, 2006). 

The current results show that the increase in response time to the second alarm was indeed 

largely proportional to the decrease in SOA. For example, the average response time was 

2285ms when the SOA was 1000ms, and it was 3016ms when the SOA was 200ms. The 

difference in response times closely matched the difference in SOA. This supports the claim of a 

consolidation bottleneck which suggests that the consolidation of the second alarm has to wait 

until that of the first alarm has finished (Vogel & Luck, 2002). Therefore, no matter when the 

second alarm was presented, it had to wait for the consolidation of the first to end. The response 

time to the second alarm therefore increased with a shorter SOA, while the sum of the response 

time and the SOA remained about the same. 

The expectation that the SOA at which asynchronous masking occurs would be longer in 

this study than the 200 – 600ms suggested by earlier more basic research on attentional blink was 

confirmed. Both the detection and identification of visual alarms were affected not only at an 

SOA of 600ms but also at SOAs as long as 1000 – 1200ms. This finding could be attributed to 

the longer time required to process the alarm signals due to increased task demands in this 

experiment. As mentioned above, it has been proposed that attentional blink occurs when a 
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second target is presented while the first target is still being consolidated from its perceptual 

representation into working memory. This consolidation process happens sequentially for each 

target. Thus, if the perceptual representation of the second target cannot outlast this consolidation 

bottleneck, it will not enter into working memory (Arnell, 2006; Vogel & Luck, 2002). It has 

been proposed that the speed of consolidating an item into working memory varies as a function 

of task complexity, from 50ms in a single-task paradigm to 500ms in a dual-task setting (Chun & 

Potter, 1995; Vogel et al., 2006). The consolidation bottleneck in the present study may have 

been even longer than 500ms due to the demanding nature of the tasks. This longer bottleneck 

may have prevented the detection of a second alarm signal even with  SOAs above 600ms 

(Arnell, 2006; Nieuwenstein, Potter, & Theeuwes, 2009). It should be noted that the masking 

effect was not as strong at an SOA of 800ms. The reason for this gap in the effective SOA range 

warrants further investigation.   

Although SOA did not affect the detection rate and accuracy for auditory alarms, there 

was a main effect of SOA on response times to both visual and auditory alarms. Participants 

were slower to respond to alarm pairs than to single alarms when the SOA was shorter than 

1200ms. This effect was more pronounced the shorter the SOA, especially for the second alarm 

in an alarm pair. These results are consistent with previous studies on so-called double 

stimulation tasks, where the participants were presented with one or two groups of lines and 

required to judge the length of the lines were. Results from these studies indicated that a shorter 

inter-stimuli interval (ISI, another metric used to quantify the time between two stimuli; ISI is 

essentially SOA minus the duration of the first stimuli) led to longer response time (for ISIs 

between 33 – 1000ms), but had no effect on accuracy (Aykin & Aykin, 1987; Aykin, Czaja, & 

Drury, 1986). In addition, in this experiment, response time did not differ significantly between 
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visual and auditory alarms, indicating that the speed of processing visual and auditory alarms, 

once detected, is similar. 

It was expected that detection and identification performance would decrease, and 

response times would increase during an alarm flood due to interference between a large number 

of alarms in a short period of time. However, the observed performance changes were very 

different. During alarm floods, the detection rate did not differ from that during routine periods, 

accuracy decreased slightly, and, surprisingly, the response time to alarms was significantly 

shorter. Thus, we did not see a net performance decrease, but rather a speed-accuracy tradeoff. A 

speed-accuracy tradeoff, i.e., an inverse relation between speed and accuracy, is observed when 

responses to a task are required to be both rapid and accurate, as in the present study. Speed-

accuracy tradeoffs have been observed with a wide range of tasks, including psychomotor tasks 

and visual search tasks (MacKenzie & Isokoski, 2008; Schlegel & Storm, 1983; Wickens, 

Hooey, Gore, Sebok, & Koenicke, 2009). The observation of this tradeoff has been explained as 

a result of limited mental resources and the fact that these tasks can only be processed serially 

(Drury, 1994), which also applies to the tasks used in the current study. 

A further breakdown of the alarm flood into three phases revealed performance changes 

over time. The detection rate increased, and response times became faster. These changes could 

be the result of participants investing more effort in the alarm detection task once they realized 

that they entered into an alarm flood. The performance improvements could also be explained by 

increased arousal due to the high pace of events during the alarm flood. According to previous 

studies on arousal, a certain level of mental workload is required to maintain attention and 

interest in order to achieve optimal arousal and performance (Matthews & Davies, 1998; Molloy 

& Parasuraman, 1996; Warm, Parasuraman, & Matthews, 2008; Wiener, Curry, & Faustina, 
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1984; Yerkes & Dodson, 1908). This finding is important as it suggests that operators need 

support especially during the early stage of an alarm flood to help them cope with possible startle 

effects and the transition from slow to fast operations. 
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Chapter 3  

Establishing the SOA Range for Asynchronous Masking of Visual 

and Auditory Stimuli in a High Workload Multitask Setting 

 

The experiment described in Chapter 2 demonstrated that asynchronous masking is a 

likely contributor to alarms being missed in demanding multi-task settings and during alarm 

floods. The detection rate and identification accuracy were lower for visual alarms that were 

presented following another visual or auditory alarm in close temporal proximity. The SOA 

range at which asynchronous masking was experienced was longer than the 200 – 600ms 

suggested by the basic literature on attentional blink, a specific case of asynchronous masking. 

The study involved limitations, however, which were associated with the design of the 

participants’ task. Specifically, participants were required to respond to an alarm by clicking on a 

button next to the window of the affected drone. This required a re-orientation of their gaze away 

from the center of the screen where visual alarms were presented. This may have interfered with 

the detection of visual, but not auditory alarms. Another related concern is that the alarm 

detection task, and the overall task set, were not sufficiently difficult. In particular, the detection 

rate and accuracy for auditory alarms were above 95% in all conditions. To address these 

limitations, and establish the role of masking in a context that is more representative of real-

world operations, the study reported in this chapter differed from the previous experiment in 

terms of: 
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1. Increased task demands to test the effects of asynchronous masking under high 

workload; 

2. Elimination of the need for forced re-orientation of gaze so that the detection of 

visual alarms would not be at a disadvantage 

Specifically, we changed the response mechanism to, and required classification of 

alarms. Participants were required to verbally report alarms, instead of clicking on a button. By 

using verbal responses, they were able to maintain their gaze and monitor the center of the screen 

for other visual alarms. The difficulty of the tasks was increased by introducing different types of 

alarms that were color-coded or differed with respect to the gender of the voice used to present 

the alarms. Participants had to verbally announce both the color/gender and the number of the 

affected drone. We also added an air traffic control monitoring task to introduce competing 

attentional demands in the auditory channel. 

 

Method 

Participants 

The participants in this study were 15 students recruited from the College of Engineering 

at the University of Michigan. The number of participants was determined by performing a 

statistical power analysis based on the results of the previous experiment. All participants were 

between 20 and 35 years old (mean = 24.2 years, SD = 3.4 years; 8 males and 7 females) and had 

not participated in the previous study reported in Chapter 2. They all reported normal or 

corrected-to-normal vision, normal color vision, and normal hearing ability. This study was 

approved by the University of Michigan Institutional Review Board (UM IRB: HUM00144319).  
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Apparatus and tasks 

The simulation used in this study was a modified version of the ground-based drone 

control system described in Chapter 2. It consisted of a computer with a keyboard, an optical 

mouse, a 23-inch LCD monitor, and a pair of stereo speakers. An audio recorder was added in 

this study to record the participants’ verbal responses to the visual and auditory alarms.  

During the experiment, participants were required to perform three tasks: delivery 

consent, alarm detection and identification, and air traffic control monitoring. Delivery consent 

was required whenever a drone reached a customer residence. The participant needed to search 

for the delivery pad with the letter “H” on it. Upon detection of the pad, s/he had to press the top 

button (with a “target” symbol) next to the corresponding drone window to give consent to the 

delivery of the package. If the pad was not present, the participant needed to click on the second 

button from the top (showing the same “target” symbol but with a line drawn across it) to cancel 

the delivery. The drone would then proceed to the next customer without dropping the package. 

In this study, the brightness of the drone window remained unchanged when the UAV reached a 

residence in order to increase the overall task difficulty.  

Throughout the experiment, visual and auditory alarms were presented whenever there 

was a temporary link loss between any of the drones and the ground control station. Visual 

alarms were presented in the central window of the screen, which was divided into a 3x3 grid 

(see Figure 3.1). The outer rectangles of the central alarm grid mapped spatially onto the eight 

drone windows. A visual alarm was displayed as a small red or blue box in the rectangle adjacent 

to the affected drone (see Figure 3.1 for an example of an alarm related to drone #8; the color 

coding is explained below). Auditory alarms were presented using a synthesized male or female 

voice.  
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Figure 3.1 Drone simulation interface  

(displaying a red visual alarm for drone 8; requiring the response “R8”) 

 

There were two categories of alarms which were defined by color (visual alarms) or the 

gender of the voice (auditory alarms). Type A alarms included red visual alarms and male voice 

auditory alarms for drones 1, 3, 6, 8, as well as blue visual alarms and female voice auditory 

alarms for drones 2, 4, 7, 9. Type B alarms included the remaining alarms (see Table 3.1). The 

two alarm categories required different responses.  For type A alarms, the participants were 

required to report the first letter of the alarm color or voice (“R” for red visual alarms, “B” for 

blue visual alarms, “M” for male voice auditory alarms, and “F” for female voice auditory 

alarms), followed by the number of the affected drone. For type B alarms, the required response 

was the reverse; participants had to report the number of the affected drone first, followed by the 

first letter of the color or voice of the alarm. This manipulation served to increase the difficulty 

of the alarm identification and response tasks. 
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Table 3.1 Alarm type as a function of drone number, modality, and color/voice 

 Drone number 

Alarm type 1 2 3 4 6 7 8 9 

Visual 

Red 
A B A B A B A B 

Visual 

Blue 
B A B A B A B A 

Auditory 

Male 
A B A B A B A B 

Auditory 

Female 
B A B A B A B A 

 

The third task required participants to monitor a continuous audio recording of air traffic 

control at the Detroit airport. They were monitoring for three pre-recorded messages containing 

their call sign “DOI51”. These messages were randomly distributed throughout the Detroit tower 

recording. To increase the difficulty of the task, another three messages were added that 

contained similar information but did not include the call sign “DOI51”. Whenever participants 

heard their call sign, they were required to press the space bar on the keyboard as quickly as 

possible. This task was introduced to create resource competition in the auditory channel, similar 

to the competing attentional demands of the delivery consent and the visual alarm monitoring 

tasks. 

 

Experiment design and procedure 

The experiment employed a 5×4×3 fractional factorial design. The three independent 

variables, all varied within subjects, were Stimuli Onset Asynchrony (SOA; the time between the 
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onsets of two alarms in an alarm pair; 200, 600, 800, 1000, or 1200ms), modality pairs (visual-

visual, visual-auditory, auditory-visual, or auditory-auditory) and alarm presentation (single 

alarm or first or second alarm in an alarm pair). 

The experiment consisted of three 20-minute scenarios, named early (alarm) flood, late 

(alarm) flood, and (alarm) flood only, respectively (see Figure 3.2). Each scenario included 17 

minutes of routine operations and a 3-minute alarm flood. The only difference between the early 

and late flood scenarios and the flood only scenario was that, in the latter, alarms were presented 

only during the 3-minute alarm flood. In each scenario, the delivery consent task was presented 

30 times (about once every 40 seconds). During routine operations in the early and late flood 

scenarios, 20 of the delivery consent tasks were followed by a single alarm (10 times) or an 

alarm pair (10 times). In the flood only scenario, no alarms were presented during routine 

operations. The alarm flood started 5, 10, or 15 minutes into the early flood, flood only, and late 

flood scenario, respectively. During the 3-minute alarm flood, 30 single alarms and 30 alarm 

pairs were presented to the participant. The order of alarms was randomized. Air traffic control 

messages were presented about once per minute throughout the scenario. 
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Figure 3.2 Three scenarios and the distribution of alarms 

 

Upon arrival at the laboratory, participants were asked to read and sign a printed consent 

form. Their chair was then adjusted so that their eyes were about 20 inches from the center of the 

screen. At this distance, the size of the visual alarms equaled 0.125 rad visual angle. Next, 

participants were given instructions for their three tasks, and they were told to give equal priority 

to all tasks. They then received four to five 5-minute training sessions to familiarize themselves 

with the tasks until they reached a combined accuracy of 90% or higher across all three tasks. 

Following the training sessions, the participant took a short break before starting the three 20-

minute experiment sessions. The order of the three sessions was counterbalanced between 

participants. Before each session, cross-modal matching was performed as in the previous 

experiment, by adjusting the volume of the auditory alarms to match the intensity of the visual 

alarms (Colman, 2015; Pitts, Riggs, & Sarter, 2016). The entire experiment lasted about 100 

minutes. Upon completion, each participant received $25 as compensation. As an incentive, the 
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three participants with the best combined performance on the three tasks received a bonus of 

$50, $30, and $20, respectively. 

 

Dependent measures 

The dependent measures in this study were detection rate and accuracy for the alarm 

monitoring task, accuracy and response time for the delivery consent task, and accuracy and 

response time for the air traffic control monitoring task. For the visual and auditory alarms, 

detection rate was defined as the percentage of alarms that the participant responded to, 

regardless of the accuracy of the response. Accuracy was defined as the percentage of correct 

responses to the alarms, out of all responses. For the delivery consent task, accuracy was defined 

as the percentage of correct responses (giving consent only when a delivery pad was present and 

rejecting when the delivery pad was absent), divided by all responses. Response time was 

defined as the time from when the drone reached the residency and stopped to when the 

participant pressed one of the two buttons next to the drone window. For the air traffic control 

monitoring task, accuracy was defined as the percentage of correct responses (only responding 

when the call sign “DOI51” was included in the message). Response time was defined as the 

time from the start of the call sign to the time when the space key was pressed. 

 

Results 

Mixed model binary logistic regression was used to analyze the detection rate and 

accuracy separately for visual and auditory alarms, with alarm position and SOA as fixed effect 

factors. The same model was also used to analyze the accuracy for the ATC monitoring task, 

with scenario and alarm frequency as fixed effect factors. In all the models mentioned above, 
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subject ID was included as a random effect factor and Sequential Bonferroni corrections were 

applied for multiple comparisons.  

Response time to the delivery consent task was analyzed using a univariate analysis of 

variance (ANOVA), with scenario and alarm frequency as fixed effect factors and subject ID as a 

random effect factor. Again, Bonferroni corrections were applied for multiple comparisons. For 

all analyses, the significance level was set at p < .05. Only significant results are reported here. 

 

Detection rate  

Alarm number (single alarms vs. alarm pairs) had a significant main effect on the 

detection of visual alarms (𝐹(1, 2233) = 42.254, 𝑝 < .001). Both the first and second visual 

alarms in an alarm pair were less likely to be detected by participants, compared to single alarms 

(59.5% and 63.8% vs. 74.7%, respectively). There was also a significant main effect of SOA on 

the detection of visual alarms (𝐹(4, 1475) = 4.863, 𝑝 = .001). The detection rate was lower 

when the SOA was 600 or 800ms (56.6% and 54.5%, respectively), compared to the other three 

SOAs (see Figure 3.3) which did not differ significantly from each other. There was no 

significant interaction between the two factors. 

Auditory alarms were also less likely to be detected when they were presented in alarm 

pairs than when they were presented as single alarms (see Figure 3.4; 63.9% vs. 82.3%; 

𝐹(1, 2263) = 83.287, 𝑝 < .001). In contrast to visual alarms, the position of an auditory alarm 

in an alarm pair had a significant effect on its likelihood of detection. Specifically, the second 

alarm in an alarm pair was more likely to be missed than the first alarm (59.2% vs.  68.8%; 

𝐹(1, 1505) = 17.628, 𝑝 < .001). SOA also had a significant effect on the detection rate for 

auditory alarms. When the SOA was 200, 800, or 1000ms, the detection rate was lower (57.1%, 
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56.6%, and 63.6%, respectively) than for the other two SOAs (𝐹(4, 1505) = 7.287, 𝑝 < .001). 

No significant interactions between the various factors were observed. 

 

Figure 3.3 Detection rates of visual alarms as a function of position and SOA 

(*p < .05 when compared with single alarms) 

 

Figure 3.4 Detection rates of auditory alarms as a function of position and SOA 

(*p < .05 when compared with single alarms) 



 60 

Accuracy 

Overall, the accuracy was higher for auditory alarms than for visual alarms (93.3% vs. 

77.6%; 𝐹(1, 3128) = 85.346, 𝑝 < .001). For visual alarms, accuracy did not differ 

significantly between singles and alarm pairs. Within alarm pairs, accuracy was affected by both 

SOA (𝐹(4, 926) = 4.731, 𝑝 = .001) and alarm presentation (𝐹(1, 926) = 13.609, 𝑝 < .001). 

Accuracy was higher at an SOA of 1200ms (86.7%), compared to all other SOAs (see Figure 

3.5). It was also higher for the second, as compared to the first alarm in an alarm pair. A 

significant interaction effect was observed between SOA and position (𝐹(4, 926) = 3.803, 𝑝 =

.004), such that accuracy was lower for the first visual alarms in an alarm pair when the SOA 

was 200, 600, or 1000ms, but higher for the second visual alarm at an SOA of 600 or 1200ms 

(see Figure 3.5), compared to single alarms. No significant effects of SOA or position were 

observed for auditory alarms (see Figure 3.6). 

 

Figure 3.5 Accuracy of visual alarms as a function of position and SOA 

 (*p < .05 when compared with single alarms) 
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Figure 3.6 Accuracy of auditory alarms as a function of position and SOA 

 (*p < .05 when compared with single alarms) 

 

Crossmodal effects  

Figure 3.7 and Figure 3.8 show a comparison of the detection rate and accuracy for first 

and second alarms, respectively, as a function of the modality of the preceding or the following 

alarm in an alarm pair. A significant difference between intra- and crossmodal pairs was 

observed only when the first alarm was a visual alarm. The detection rate and accuracy for these 

visual alarms were both lower when they were followed by an auditory alarm, compared to 

another visual alarm (𝐹(1, 748) = 3.998, 𝑝 = .046 and 𝐹(1, 456) = 4.192, 𝑝 = .041, 

respectively). 



 62 

 

Figure 3.7 Detection rate and accuracy of first alarms as a function of the modality of the 

following alarm  

 

Figure 3.8 Detection rate and accuracy of second alarms as a function of the modality of the 

preceding alarm 

 

Alarm flood analysis 

The overall detection rate for all alarms was significantly lower during alarm floods, 

compared to routine periods (64.6% vs. 98.7%; 𝐹(1, 4498) = 86.352, 𝑝 < .001). Accuracy was 

also significantly lower during alarm floods (85.0% vs. 90.1%; 𝐹(1, 3128) = 9.066, 𝑝 = .003; 

see Figure 3.9).  
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Figure 3.9 Detection rate and accuracy during alarm floods versus routine periods  

(*p < .05) 

 

Figure 3.10 and Figure 3.11 show the detection rate and accuracy for each of the 30 

single alarms and 30 alarm pairs as a function of their serial position in the alarm flood (for all 

three scenarios). Detection rate and accuracy were normalized by dividing the performance for 

each alarm or alarm pair by the average performance for all alarms/alarm pairs of the same type 

(e.g., the detection rate for a single visual alarm was divided by the average detection rate for all 

single visual alarms). The first and last alarms or alarm pairs during a flood were more likely to 

be detected than the rest of the alarms (a paired t-test between these two positions and other 

alarms yielded t(4048) = 5.551, p < .001). The first alarm or alarm pair in this study were either a 

single auditory or visual alarm, or an auditory alarm pair; the last one was either a single auditory 

alarm or a visual alarm pair. Accuracy was not affected by the serial position of the alarm. 
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Figure 3.10 Normalized detection rate of single alarms and alarm pairs as a function of serial 

position in an alarm flood 

 

 

Figure 3.11 Normalized accuracy of single alarms and alarm pairs as a function of serial position 

in an alarm flood 

 

Delivery consent task  

Across all scenarios, 98.7% responses to the delivery consent task were accurate. 

However, the response time to the delivery consent task varied as a function of workload (routine 

vs. flood) and flood scenario (early flood, late flood, flood only). Response times were longer 
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during alarm floods (𝐹(1, 1433) = 102.316, 𝑝 < .001), compared to routine operations. There 

was also a main effect of flood scenario (𝐹(2, 1433) = 4.949, 𝑝 = .007) and an interaction 

effect between workload and scenario (𝐹(2, 1433) = 7.342, 𝑝 = .001), such that response 

times were shorter during the alarm flood in late flood scenarios, compared to early flood and 

flood only scenarios (see Figure 3.12). 

 

 

Figure 3.12 Response time to delivery consent as a function of workload and scenario 

(*p < .05, main effects are not shown in the figure) 

 

Air traffic control monitoring task 

The detection rate for the air traffic control monitoring task was significantly lower 

during the alarm floods, compared to the routine periods (14.8% vs. 91.3%, respectively; 

𝛸2(1) = 522.209, 𝑝 < .001, see Figure 3.13). Since most of the target messages were missed 

during the floods, there was no sufficient data for an analysis of response time. 
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Figure 3.13 Accuracy of the air traffic control monitoring task as a function of workload and 

scenario 

 

Discussion 

The study reported in Chapter 2 demonstrated asynchronous masking effects for visual, 

but not for auditory alarms. This finding may have been the result of the particular 

implementation of the two types of alarms and the task set in the experiment. The current study 

therefore increased task difficulty overall and introduced an air traffic control monitoring task to 

create competition for auditory attentional resources and thus make the difficulty of alarm 

detection more comparable for the two modalities. 

As a result of these changes, the detection of both visual and auditory alarms was now 

affected by asynchronous masking. Unlike in the previous experiment, where only the second 

(visual) alarm in an alarm pair was affected by temporal masking, detection performance now 
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suffered for both the first and second visual and auditory alarms in an alarm pair. In other words, 

both forward masking (the masking stimulus precedes the target stimulus) and backward 

masking (the masking stimulus follows the target stimulus) were observed. Previous studies have 

shown that both forms of masking interrupt the processing of visual stimuli at very short SOAs, 

ranging from 0 – 200ms (Bachmann & Francis, 2013; Breitmeyer & Ogmen, 2000; Eriksen, 

1966; Ogmen, Breitmeyer, & Melvin, 2003). However, at SOAs shorter than 150ms, backward 

masking was shown to be more detrimental to noticing a visual stimulus than forward masking 

(Bachmann & Francis, 2013). In contrast, in the present study, the effects of forward and 

backward masking were nearly equally strong for visual alarms. This observation may be 

explained by earlier findings showing that the effect of backward masking decreases faster than 

forward masking as the SOA increases (Schiller, 1966). Thus, it can be expected that forward 

and backward masking may have comparable effects when the SOA is as long as it was in the 

current study. For auditory stimuli, it has been reported that forward masking has a stronger 

effect than backward masking (Elliott, 1962; Wilson & Carhart, 1971). This was confirmed in 

the current study.  

The effect of serial position in an alarm pair on the identification of visual alarms was 

also different from what was observed in the previous experiment. In that study, accuracy was 

lower for the second visual alarm in an alarm pair whereas results from the current study show 

the opposite effect, lower accuracy for the first visual alarm. This difference may be attributed to 

the different responses required in the two studies. In the first study, after noticing an alarm, 

participants moved their gaze away from the center of the screen to the response buttons next to 

the respective drone window; as a result, the second alarm was more likely to appear in their 

peripheral vision. The detection of the alarm was not necessarily affected as peripheral vision is 
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highly tuned to noticing onsets and luminance changes; however, reading the actual number of 

the affected drone was not possible in peripheral vision. In the current study, participants did not 

need to look at a specific location in order to make a response; they could continue to monitor 

the central window where the second alarm would appear. Thus, performance for the second 

alarm benefited once the participant had noticed the appearance of the first alarm and their visual 

attention was allocated to the central window. However, the first alarm may have suffered as a 

result of participants’ attention being focused on other tasks/windows at the time. In this study, 

the identification of an alarm required color perception which is rather poor in peripheral vision 

as it relies on regions of the retina where fewer cones (capable of color discrimination) are 

located (Wickens, Gordon, & Liu, 1998). Auditory alarms are omnidirectional; i.e., they do not 

require a particular eye or head orientation; as a result, position effects were not observed for 

these alarms.  

The comparison of intra- and cross-modal alarm pairs revealed a stronger backward 

masking effect for auditory alarms following a visual alarm, compared to intramodal visual-

visual masking. This effect was not observed with other modality pairs. It may be explained by 

the fact that auditory signals have an advantage in terms of storage in short-term memory. A 

large body of literature suggests that, in an immediate recall task, performance is consistently 

better with auditory signals, compared to visual ones. This difference is greatest for the most 

recent item (e.g. Conrad & Hull, 1968). This modality effect has been attributed to a special type 

of short term memory called the pre-categorical acoustic storage (PAS) (Crowder & Morton, 

1969). PAS stores information for the most recent item before recognition; its visual counterpart 

decays too fast to be utilized in a recall task (Craik, 1969). There is also evidence that 

crossmodal interference exists between PAS and other types of visual sensory memory. In a 
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visual-auditory alarm pair, it can be expected that the advantage of the second, auditory alarm at 

the pre-recognition stage may interfere with the storage of visual information and therefore 

reduce the detection rate and accuracy of the preceding visual alarm. This effect was observed 

only for V-A pairs but not A-V pairs because PAS has a very limited capacity and may store 

only the most recent piece of information (Frankish, 1985). 

The alarm floods in this study greatly undermined participants’ ability to perform their 

three tasks. The detection rate for alarms plummeted from 98.7% to 64.6%. Response times to 

delivery consent requests almost doubled (see Figure 3.12), and nearly all air traffic control 

messages with the call sign “DOI51” were missed (see Figure 3.13). These performance 

decrements indicate a strong competition for attentional resources. For the delivery consent task, 

this competition resulted in increased response times because the drone waited until the 

participant responded. On the other hand, the (auditory) air traffic control messages were 

transient and had to be noticed immediately. These messages were more likely to be missed than 

auditory alarms because they were embedded in a stream of very similar (in terms of acoustic 

characteristics such as pitch and timbre) ATC messages and thus less salient than the auditory 

alarms (Huang & Elhilali, 2017; Shinn-Cunningham, 2008).  

A breakdown of the detection rate for alarms and alarm pairs as a function of their 

position in an alarm flood (see Figure 3.10 and Figure 3.11) showed that the first and last 

alarms/alarm pairs were more likely to be noticed, while the detection rate for the remaining 

alarms fluctuated throughout the flood, with no clear upward or downward trend. To explain this 

finding, it is helpful to distinguish between the detection and the reporting of a signal. The first 

alarm/alarm pair probably benefited from the fact that it was a salient signal against the ‘quiet’ 

routine phase of the scenario and thus captured attention reliably. It did not interfere with, or was 
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masked by other alarm signals. Thus, it was indeed more likely to be detected. The last 

alarm/alarm pair in a flood may have shown better performance not because it was more likely to 

be detected than alarms in the middle of the flood but because its reporting was not interfered 

with by other, subsequent alarms. Although response times were not measured in the current 

study, results from the experiment reported in Chapter 2 indicate that the average response time 

to an alarm was around 2.5 seconds. Thus, there could be a potential overlap between the 

response to one alarm and the presentation of the following alarm.  

One explanation for the poor and decreasing performance throughout the flood may be 

high levels of stress which were building up as more and more alarms were presented. Stress is  

known to be associated with a reduced capacity of working memory and a reduced ability to 

sustain attention – two cognitive processes required for signal detection and reporting (Hancock, 

1989; Matthews, 1996; Matthews & Campbell, 1999; Stokes & Raby, 1989). 
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Chapter 4  

Simultaneous and Asynchronous Masking between 

Multiple Visual and Auditory Stimuli  

 

The experiments reported in Chapters 2 and 3 established the effects of asynchronous 

masking on the detection of single visual and auditory alarms and alarm pairs in multitasking 

conditions. Detection rate was shown to be lower for pairs of alarms presented in temporal 

proximity, compared to single alarms. Both forward and backward masking were observed but 

only in high workload conditions. These masking effects occurred at SOA’s that were 

significantly longer (up to 1200ms) than the 200 – 600ms range suggested by basic research on 

masking effects, such as attentional blink. Based on the findings from the last two experiments, a 

fixed SOA of 800ms was chosen for the next two studies because this SOA resulted in the lowest 

detection rates for both visual and auditory alarms. 

Given that one of the main goals of this line of research is to examine and support the 

detection and identification of alarms in an alarm flood, which is defined as more than 10 alarms 

in a 10-minute period, the experiment reported in this chapter was designed to study masking 

effects when more than two alarms are presented. To date, very few studies have examined this 

question. Boot, Becic, & Kramer (2007) studied the detection of up to 4 visual targets in a radar 

monitoring task, with SOAs ranging from 0 to 300ms. They reported main effects of both SOA 

and the number of targets in temporal proximity. Detection performance was worse with more 
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targets and at shorter SOAs. An interaction effect between SOA and the number of targets was 

also reported, such that the effect of SOA on target detection became more pronounced with an 

increase in the number of targets. Note that, in that study, participants were asked to report the 

total number of targets but they did not have to identify or discriminate between targets.  

The present study went beyond earlier research in that it examined the effect of masking 

on both the detection and identification of multiple alarms. Specifically, it investigated the role 

of both asynchronous (which was the focus of the two previous experiments) and simultaneous 

masking (which becomes more likely with the large numbers of alarms in an alarm flood) in the 

presence of up to 6 alarms and during an alarm flood. Simultaneous masking is experienced 

when two stimuli overlap temporally and thus reduce each other’s detectability. An example of 

simultaneous masking is change blindness where observers fail to notice even large changes to 

objects or scenes when these changes coincide with a brief visual disruption (Simons & Levin, 

1997). This phenomenon has been observed intramodally for both visual and auditory stimuli, as 

well as crossmodally between simultaneous signals in the two sensory channels (Auvray, 

Gallace, Tan, & Spence, 2007; Gallace, Tan, & Spence, 2006). In fact, auditory stimuli are even 

more susceptible to simultaneous masking – referred to as change deafness – than visual signals 

because auditory masking happens at both the attention level and the acoustic level (Carhart, 

Tillman, & Greetis, 1969; Doll, Hanna, & Russotti, 1992; Fastl & Zwicker, 2006). During an 

alarm flood, multiple alarm signals that appear simultaneously can be viewed as “transients” 

masking each other. For example, when two visual alarms appear at the same time, one alarm 

can be the “transient” and the other can be the “change” to be noticed or vice versa. In this way, 

simultaneous presentation of alarms increases the risk of missing alarms even when they are 

expected.  
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In addition to findings from change blindness studies, research on enumeration (i.e., 

reporting the number of targets presented) also suggests that people’s ability to detect and report 

multiple concurrent targets is limited (Atkinson, Campbell, & Francis, 1976). Specifically, 

studies have shown that, when the number of simultaneous targets exceeds four, it becomes 

much more difficult for the observer to report the correct number of targets. The ability to 

rapidly recognize (and report the number of) four or fewer targets is called subitizing, while 

reporting larger numbers of targets relies on counting (slower) or estimation (less accurate) 

(Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). When the targets are presented rapidly, the 

observer is forced to estimate the number and, as a result, their report accuracy will decrease. 

The ability to enumerate is highly related to the detection and reporting of multiple concurrent 

alarms.  

The goals of the current study are: 

1. To compare the detection and identification of multiple visual and auditory alarms 

that are presented concurrently or in close temporal proximity; 

2. To investigate the effect of the number of alarms on their detection and identification; 

3. For alarms that are presented in close temporal proximity (but not simultaneously), to 

establish the effect of their serial position on their detection and identification. 

The following hypotheses were generated based on findings from previous studies: 

1. Alarm detection and identification will suffer more with concurrent alarms than with 

sequential alarms. This effect is expected to be even more pronounced for auditory 

alarms. 

2. Alarm detection and identification will deteriorate as the number of alarms increases. 

This effect will be stronger for concurrent alarms. 
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3. The first and last alarm in an alarm flood is more likely to be detected and correctly 

identified than other alarms in the same sequence.  

 

Method 

Participants 

The participants in this study were 15 students recruited from the College of Engineering 

at the University of Michigan. The required number of participants was determined by 

performing a statistical power analysis based on the results of the previous experiment. The 

participants were between 20 to 35 years old (mean age = 23.7 years, SD = 3.1 years; 11 males 

and 4 females) and had self-reported normal or corrected-to-normal vision. They were also 

required to have self-reported normal hearing ability and color vision and could not have 

participated in the experiments reported in Chapter 2 and 3. This study was approved by the 

University of Michigan Institutional Review Board (UM IRB: HUM00144319). 

 

Apparatus and tasks 

The apparatus used in the current study was similar to that used in Chapter 3, which 

consisted of a computer with a 23-inch LCD monitor, a pair of stereo speakers, a mouse, a 

keyboard, and an audio recorder. A set of driving pedals (part of the Logitech® MOMO® Racing 

suite) was added to the setup. 

Participants were required to perform three tasks in the context of a package delivery 

scenario: delivery consent, alarm monitoring, and air traffic control monitoring. The delivery 

consent task was the same as in Chapter 3. The delivery drones hovered in mid-air whenever 

they reached a customer residence. Participants were required to search the corresponding video 
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feed for a delivery pad with the letter “H” on it. If the pad was present, participants had to push 

the confirm button at the top (with a target symbol on it; see Figure 4.1) to give consent to the 

delivery; else, they were instructed to push the cancel button below (with a target symbol and a 

line across it).  

 

Figure 4.1 Simulation interface  

(displaying a red visual alarm for drone 8; required response: R8) 

 

The alarm monitoring task was different from the one described in Chapter 3 in order to 

include concurrent alarms. Visual alarms were presented in the center of the screen as red (R223, 

G25, B7; HSL: 5, 94%, 45%), green (R75, G223, B7; HSL: 101, 94%, 45%), or blue (R7, G136, 

B223; HSL: 204, 94%, 45%; same saturation and brightness) squares in the small grid cell 

closest to the affected drone. Auditory alarms consisted of a male, female, or children’s voice 

stating the number of the affected drone. These colors and voices were chosen to ensure that they 

were equivalent in salience but also easily differentiable from each other. Upon detection of a 

visual or auditory alarms, the participants were required to press the space key on the keyboard 
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as soon as possible (to record response time) and then verbally report the type of alarm (R for 

red, B for blue, G for green; M for male, F for female, and K for kid), followed by the number of 

the drone. The alarms were presented either as single alarms or as groups of multiple alarms 

(alarm clusters) that appeared either concurrently or closely spaced in time. Table 4.1 shows all 

combinations of alarms in this experiment. Note that, for auditory alarms, the number of 

concurrent alarms was limited to two because extensive pilot testing with various types of 

auditory signals showed that it was impossible for participants to detect and differentiate more 

than two auditory alarms.  

Table 4.1 Types of alarm clusters  

Number 

of 

alarms 

Visual Auditory Cross-modal 

 Concurrent Sequential Concurrent Sequential Concurrent Sequential 

2 Included Included Included Included 1V+1A 
1V1A or 

1A1V 

4 Included Included 
 

Included 
  

6 Included Included Included 

 

The air traffic control (ATC) monitoring task was slightly modified also. The ATC 

recording and the call sign “DOI51” were the same as in Chapter 3; however, the required 

response was different. Instead of pressing the space key, participants were required to press the 

foot pedal as soon as possible when they noticed the call sign. This change was made to avoid 

confusion between the responses to alarms and call signs, while still allowing us to record the 

response time to both events without requiring participants to look away from the screen. 

 

 



 78 

Experiment design and procedure 

The experiment employed a 4×2×2 fractional factorial design. The three factors were 

cluster size (single, 2, 4, and 6), cluster type (concurrent and sequential), and modality (visual 

and auditory).  

Similar to Chapter 3, the current experiment included three 20-minute scenarios, which 

were the early flood, late flood, and flood only scenarios. The early flood and late flood 

scenarios consisted of 17 minutes of low alarm frequency periods and a 3-minute alarm flood 

(high alarm frequency). The alarm flood scenario consisted of 17 minutes without any alarms 

and the 3-minute alarm flood. A total of 15 alarm clusters or single alarms (including one of each 

possible alarm cluster listed in Table 4.1, one single visual alarm, and one single auditory alarm) 

were presented during the low alarm frequency periods of the early and late flood scenarios. 

During each alarm flood, a total of 30 alarm clusters or single alarms (two of each possible item) 

were presented. The delivery consent task was presented about once every 40 seconds in each 

scenario, for a total of 30 times. The air traffic control target message “DOI51” was presented 

about once every minute throughout each scenario, totaling 20 times. 

Upon arrival in the laboratory, participants were consented and received instructions on 

all three tasks. After reading the instructions, they received four or five 5-minute training 

sessions to familiarize themselves with the tasks. They needed to achieve a combined accuracy 

of 90% in the three tasks in order to continue their participation. After the training, the 

participant completed three 20-minute scenarios, with optional 5-minute breaks between two 

scenarios. Cross-modal matching was performed before each session using the same method as 

described in Chapter 3. At the end of the experiment, participants completed a debriefing 

questionnaire asking them to estimate their own task performance, rate task difficulties, and 
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provide any other feedback they wanted to share. Each participant received $25 compensation, 

and the three participants with the best combined performance in the three tasks received an 

additional $50, $30, and $20, respectively. The entire experiment lasted about 100 minutes. 

 

Dependent measures 

The dependent measures for the delivery consent task were accuracy and response time. 

Accuracy was defined as the percentage of correct responses out of all responses. Response time 

was the time from when the delivery address was reached to when the participant pushed the 

‘target’ or ‘no target’ button. For the alarm monitoring tasks, detection rate, accuracy, and 

response time were measured. Detection rate was measured at the cluster level, defined as the 

number of detected alarms, divided by all alarms in the cluster. Response time was also 

measured at the cluster level, as the time from the onset of the alarm cluster/single alarm to the 

time when the participant first pressed the space key. Accuracy was defined at the alarm level, as 

the percentage of correctly reported alarms out of all alarms. The dependent measures for the air 

traffic control monitoring task were detection rate and response time. Detection rate was defined 

as the percentage of detected call signs, out of all call signs presented. Response time was 

defined as the time from the presentation of the call sign to the time when the foot pedal was 

pushed.  

 

Results 

 The analyses of detection rate and accuracy for visual and auditory alarms were 

conducted separately using mixed model binary logistic regression. Univariate analysis of 

variance (ANOVA) was used to analyze the response time for visual and auditory alarms. In all 
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the analyses, cluster type and cluster size were included as fixed effect factors and subject ID 

was included as a random effect factor; multiple comparisons were corrected with sequential 

Bonferroni procedures; the significance level was set at p < .05 and only significant results are 

reported here. 

 

Detection rate  

As shown in Figure 4.2, the detection rate for visual alarms in an alarm cluster decreased 

significantly as the number of alarms in the cluster increased (𝐹(3, 833) = 13.888, 𝑝 < .001). 

There was no significant difference in detection performance between concurrent and sequential 

clusters, but an interaction between cluster type and cluster size was observed. The detection rate 

dropped significantly more when the size of the cluster reached 6 concurrent, as compared to 6 

sequential alarms (𝐹(2, 833) = 3.312, 𝑝 = .037). The detection rate for auditory alarms (see 

Figure 4.3) also decreased with two concurrent auditory alarms (𝐹(1, 595) = 16.530, 𝑝 < .001) 

and as the number of sequential alarms in an alarm cluster increased (𝐹(3, 595) = 9.813, 𝑝 <

.001), compared to single auditory alarms. 
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Figure 4.2 Detection rates of visual alarms as a function of cluster type and size 

(*p < .05 compared to single alarms) 

 

Figure 4.3 Detection rates of auditory alarms as a function of cluster type and size  

(*p < .05 compared to single alarms) 
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Accuracy 

As shown in Figure 4.4, the accuracy for visual alarms decreased as a function of cluster 

size. This effect was more pronounced for concurrent alarms, compared to sequentially presented 

alarm signals. A further breakdown of accuracy for individual alarms in sequential visual alarm 

clusters shows that accuracy was significantly affected by cluster size (𝐹(2, 678) = 3.562, 𝑝 =

.029; see Figure 4.5), such that accuracy decreased as the number of alarms in a cluster 

increased. In clusters that included 6 sequential visual alarms, accuracy was higher for the first 

and last alarms in a cluster, compared to all other positions (t(718) = 3.422, p < .001).  

 

Figure 4.4 Accuracy of visual alarms as a function of cluster type and size  
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Figure 4.5 Accuracy of visual alarms as a function of cluster size and alarm position  

 

For auditory alarms, accuracy also decreased with an increase in cluster size (see    

Figure 4.6 and Figure 4.7). The lowest accuracy was observed for two concurrent auditory 

alarms. A further breakdown of individual auditory alarms in sequential clusters revealed a 

significant main effect of cluster size (𝐹(2, 678) = 10.736, 𝑝 < .001), such that accuracy was 

lower for clusters that had more alarms. In alarm clusters with 4 or 6 alarms, the first and last 

alarm signals showed the highest accuracy (t(1198) = 6.502, p < .001). 
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Figure 4.6 Accuracy of auditory alarms as a function of cluster type and size  

 

Figure 4.7 Accuracy of auditory alarms as a function of cluster size and alarm position  

 

Response time 

The response time to visual alarms in a cluster increased with cluster size (see Figure 

4.8; 𝐹(3, 677) = 6.139, 𝑝 = .001). This effect was more pronounced for concurrent alarm 

clusters than for sequential ones (𝐹(2, 677) = 4.768, 𝑝 = .017). The response time to auditory 
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alarms in clusters was affected only by the type of cluster. Specifically, the response time to 

concurrent alarm clusters was significantly longer than to sequential ones overall (𝐹(1, 677) =

5.261, 𝑝 = .038). Pairwise comparisons between each group of sequential alarm clusters showed 

that the response time to the 6-alarm clusters was significantly longer than to the 2- and 4-alarm 

clusters.  

 

Figure 4.8 Response time to visual alarms as a function of cluster type and size  

(*p < .05, compared to single alarms) 
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Figure 4.9 Response time to auditory alarms as a function of cluster type and size 

 

Subjective ratings 

Participants were asked to estimate the percentage of alarms they had detected and 

reported correctly, detected but reported incorrectly, and missed. Their estimates are compared to 

their actual performance in Figure 4.10 which shows that they underestimated both their 

detection rate and accuracy. 

 

Figure 4.10 Estimated and actual performance of the alarm monitoring task 
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Participants also rated the difficulty of detecting different types of alarm clusters. 

Concurrent visual alarms were rated as being equally or slightly more difficult to detect than 

sequential visual alarms. The difficulty rating of sequential auditory alarm cluster increased the 

most rapidly in the three types of alarm clusters. However, overall speaking, the ratings did not 

differ significantly between the three types. The size of the cluster seemed to play a dominant 

role. Concurrent auditory pairs were rated as a lot more difficult than other 2-alarm clusters, but 

not as difficult as the 5- and 6-alarm clusters. 

 

Crossmodal alarms 

There were three different types of crossmodal alarm clusters, all of which consisted of 

two alarms: concurrent visual-auditory, sequential visual-auditory, or sequential auditory-visual. 

Neither detection rate, accuracy nor response time differed significantly for the three types of 

alarm clusters. The detection rates for these three types of alarm clusters were 95.8%, 95.0%, and 

94.2%, respectively. Accuracy was 91.7%, 91.3%, and 90.0%, respectively. And the response 

times to theses alarm clusters were 1037.3ms, 944.9ms, and 1008.9ms, respectively. However, 

participants’ difficulty ratings were much higher for crossmodal (4.00, 3.13, and 3.47 

respectively), compared to intramodal pairs (all of which were between 1 and 2, except for 

concurrent auditory pairs which were rated 4.80).  

 

Alarm flood analysis 

 A comparison of three performance metrics between the low alarm frequency periods 

and the alarm floods is shown in Figure 4.11. The detection rate was slightly lower during alarm 
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floods, but the difference was not significant (𝐹(1, 1798) = 1.519, 𝑝 = .218). However, 

accuracy was significantly lower during the alarm floods (𝐹(1, 5518) = 23.947, 𝑝 < .001), and 

response time was significantly shorter (𝐹(1, 1798) = 13.710, 𝑝 < .001). A detailed analysis of 

each alarm cluster was conducted to reveal the change of performance during the alarm flood, as 

shown in Figure 4.12. The performance metric used was a normalized final report rate. The final 

report rate was calculated as the percentage of alarms that were both detected and correctly 

identified. This metric was then averaged by each type of alarm cluster, and this average 

performance was used to normalize the performance of each alarm cluster in the alarm flood. 

The best performance was observed with the last alarm cluster and the worst performance was 

observed with clusters 7 and 8. 

 

Figure 4.11 Performance comparison between alarm floods and low alarm frequency periods 
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Figure 4.12 Normalized alarm report performance as a function of cluster position in alarm flood 

  

Discussion 

The current study was based on and expanded on the research reported in Chapters 2 and 

3 which focused on asynchronous masking effects on the detection of single alarms and alarm 

pairs. In this experiment, concurrent alarms were introduced to study the effect of simultaneous 

masking, and the number of alarms in temporal proximity was increased from two to six. These 

changes were made to investigate performance in a context more representative of an alarm 

flood. 

The results from this study indicate that the detection rate and accuracy for visual alarms 

decreased as the number of alarms in a cluster increased. As expected, this performance 

decrement was more pronounced with concurrent alarms than with sequential ones. This finding 

is in agreement with the few studies that, to date, have compared synchronous and asynchronous 

masking. For example, Beanland & Pammer (2012) investigated attentional blink (asynchronous) 

and inattentional blindness (the failure to notice unexpected visual targets when attention is 
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engaged with other targets; synchronous) in two experiments. Although the tasks in these studies 

were not entirely equivalent in nature, the authors reported detection rates of 26% for the 

inattentional blindness task and 62% for the attentional blink task. This suggests a much stronger 

performance effect of simultaneous masking. A more equivalent comparison was made by Boot 

et al. (2007) who examined various numbers of targets and SOA’s in the context of a target 

detection task using a simulated radar monitoring interface. They reported lower detection rates 

with simultaneous targets than with sequential targets, especially when the number of targets 

exceeded three.  Detection rates in their study were comparable for pairs of targets with SOA’s 

ranging from 0 to 300ms. Similarly, in the present study, participants’ performance deteriorated 

rapidly with an increase in cluster size for concurrent visual alarm clusters; however, their 

performance was very similar for concurrent and sequential alarm clusters when the cluster size 

was small (2 alarms). One possible explanation for these findings is that two visual alarms are 

processed as one visual stimulus, thus avoiding or reducing competition for attentional resources 

(Akyürek & Hommel, 2005; Shapiro, Schmitz, Martens, Hommel, & Schnitzler, 2006). For 4-

alarm clusters, the detection rate remained similar, but accuracy was lower for concurrent alarms. 

This result is consistent with findings from studies on enumeration of targets. As mentioned 

earlier, these studies have shown that it is possible for people to report the number of targets very 

quickly when that number is no greater than four (Mandler & Shebo, 1982; Revkin et al., 2008). 

This ability, termed subitizing as opposed to counting, has been likened to the recognition of 

figural patterns that contain small numbers of targets (Von Glasersfeld, 1982). Since subitizing is 

based on processing targets as one figural pattern, it does not support the identification and 

differentiation of multiple alarm signals. As a result, the detection rate for 4-alarm concurrent 

visual alarm clusters was comparable to that for sequential alarm clusters because the 
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participants could quickly subitize the number of alarms, but the accuracy for 4-alarm concurrent 

visual alarm clusters was lower than for sequential alarm clusters because subitizing does not 

support identification. 

One difference between the visual and auditory modalities that was observed in this study 

was that both detection rate and accuracy were higher for auditory alarms in case of 2-alarm 

clusters but decreased more rapidly with an increase in cluster size for sequential auditory alarm 

clusters, compared to visual ones. There are two possible explanations for this modality 

difference. It could result from the smaller capacity of the auditory working memory, compared 

to visual working memory (Saults & Cowan, 2007), and/or it could be attributed to the increased 

interference between the auditory presentation of the stimulus and the required verbal response. 

Generally, there is a tendency toward better performance when stimulus and response are 

compatible, i.e., share the same processing code (Wickens, Vidulich, & Sandry-Garza, 1984). 

However, this benefit may disappear due to the temporal overlap between stimulus and response 

when the number of alarms increases.  

The auditory concurrent alarm clusters led to the worst performance – an average 

detection rate of only 67.5% – amongst all cluster types, even though these clusters consisted of 

only two alarms. As mentioned before, auditory alarms are more susceptible to simultaneous 

masking because their detection suffers not only due to attentional limitations, but also because 

of acoustic interference between different sounds, at the sensory stage. Unlike visual perception 

which can attend to spatially independent objects at the same time, auditory perception relies on 

receptors that are highly sensitive to differences in frequency (Bolton, Edworthy, & Boyd, 2018; 

Greenwood, 1971). The alarm signals used in the current study were close in their base 

frequency and identical in their duration; as a result, the simultaneous masking effect was very 
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strong. Similar problems could arise in many application domains (such as medicine) where 

auditory displays or alarms are widely used but not necessarily well coordinated as they are 

associated with systems that are developed by different companies (Momtahan, Hetu, & Tansley, 

1993).  

Interestingly, despite their poor detection performance, participants did not assign a very 

high difficulty rating to the detection of two concurrent auditory alarms. In fact, it was rated as 

being easier than the detection of 6-alarm sequential auditory clusters (4.80 vs. 7.07) even 

though performance contradicted these perceptions (67.5% vs. 82.5%). This suggests that 

participants’ ratings were based on the perceived effort required to perform the task, rather than 

its actual difficulty. Since participants did not receive feedback on their performance throughout 

the experiment, they were not aware of the fact that they had actually missed many of the 

concurrent auditory alarm pairs.  

Participants overestimated the difficulty of detecting alarms in crossmodal alarm pairs. 

Performance was actually comparable to intramodal visual pairs but participants were less 

comfortable with crossmodal pairs, especially concurrent ones. This result seems to contradict 

MRT which predicts that processing information in different sensory modalities reduces 

interference and (perceived) task difficulty and workload. For other alarm clusters (concurrent 

visual, sequential visual, and sequential auditory), participants’ difficulty ratings were largely 

proportional to the size of the cluster and did not differ much even though performance did. 

Taken together, these findings suggest that subjective ratings should not be used as a basis for 

alarm design because system safety should always be the priority of alarm system design. Some 

other studies have similarly reported dissociation between subjective preference and performance 
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due to various reasons, including familiarity, excitement, comfort, and effort (Andre & Wickens, 

1995).  

For both visual and auditory alarms, the response time was longer with larger alarm 

clusters and also increased more rapidly with concurrent alarm clusters. Because response time 

was measured at the cluster level, the response time to a cluster is essentially the response time to 

the first alarm in the cluster. The processing of the following or other concurrent alarm signals 

delayed the response. Note that this effect was different from the delay effects observed in 

Chapter 2, where the manual response required the participant to look at the button to be pushed. 

In the current study, the response was made by pressing the space key, and participants were 

instructed to rest their left hand on the space key at all times. Participants could respond to the 

first alarm while processing subsequent alarms because it did not require a re-orientation of their 

gaze. Therefore, the delay observed in this study is likely the result of cognitive interference, 

rather than a motoric or oculomotor constraint. This delay was not reported in previous studies as 

they did not ask participants to respond as quickly as possible (Beanland & Pammer, 2012; Boot 

et al., 2007). However, this delay is worrisome when viewed not in absolute terms (e.g., 821ms 

for single visual alarms versus 1314ms for six concurrent visual alarms) but as a 60% increase in 

response time. In real-world environments where operators multitask more complex tasks, 

absolute response times tend to be longer, and a 60% increase can result in operationally relevant 

delays.   

For clusters consisting of 4 or 6 sequential alarms, the first and last alarms were reported 

more accurately than other alarms in the same cluster. This was true for both visual and auditory 

alarms. These results are consistent with the pattern observed in free recall tasks, where subjects 

are presented with a series of items and required to recall the items, regardless of the order of 
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presentation. Items closer to the beginning or the end of the sequence are more likely to be 

recalled. These effects were termed the primacy effect and the recency effect, respectively 

(Murdock Jr, 1962). The primacy effect was explained as a result of covert rehearsal of the items 

in the sequence. The closer an item is to the beginning of the sequence, the more it gets rehearsed 

and possibly enters long-term memory. Therefore, the first items in a sequence are more likely to 

be recalled (Fischler, Rundus, & Atkinson, 1970; Laming, 2010). The recency effect was 

attributed to the fact that these items had just entered into short-term memory and were thus 

more accessible (Tzeng, 1973). There were two ways in which the participants reported a cluster 

of multiple alarms: report immediately after each alarm or wait until the end to avoid reporting 

during the cluster. In the first way, the report of one alarm overlapped and interfered with the 

presentation of the following alarms, thus giving the early alarms an advantage because they 

were less affected by such interference. In the second way, the early alarms had a similar 

advantage as those in the free recall studies because they were rehearsed more. The advantage of 

the last alarm was also comparable to that in the free recall studies because it was the last item to 

enter the short-term memory and therefore easier to retrieve. Therefore, in larger clusters, 

attention is not the only resource that limited report accuracy. The capacity of short-term 

memory could also play an important role in this process.  

Finally, the comparison between alarm floods and routine operations yielded results that 

were mostly consistent with those from Chapters 2 and 3. During the alarm floods, the detection 

rate was slightly, but not significantly lower; accuracy was lower, and response times were 

shorter. These results confirm that participants change their response strategy when exposed to 

very large numbers of alarms in close temporal proximity, leading to a speed-accuracy tradeoff. 

To keep up with the pace of the alarm flood, they sped up their responses, but this was achieved 
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at the cost of accuracy. This strategy could lead to potentially catastrophic misdiagnoses of 

critical alarms during an alarm flood in a real-world setting.  

The performance changes during the alarm floods differed from those seen in the study 

reported in Chapter 3. The advantage of the last alarm/alarm cluster was still observed, but the 

first alarm cluster did not show better detection performance. This difference is possibly due to 

the increase in the number of alarms in each cluster (specifically, in all three scenarios, the 

second alarm cluster was a cluster of 6 alarms) and, as a result, the rapidly increased interference 

between alarms. Therefore, the first alarms did not benefit from a lower level of stress and 

interference between alarm clusters because the difficulty of the task was different. On the 

contrary, the performance for the first alarm in the flood only scenario was much lower 

compared to the other alarms. Participants might be surprised by the onset of the alarm flood in 

the flood only scenario because there were no other alarms in the entire scenario. Previous 

research has also shown that unexpected events can lead to surprised or even startled reactions, 

which can slow down the processing of unexpected signals and even hinder the ability to direct 

attention properly (Barnett, Wong, Westley, Adderley, & Smith, 2012; Landman, Groen, van 

Paassen, Bronkhorst, & Mulder, 2017). This was not observed in the previous study because the 

first alarm to appear in the alarm flood only scenario was a single visual alarm in the previous 

study, while a pair of concurrent auditory alarm was the first to appear in the current study. The 

difficulty of detecting concurrent auditory alarms have been shown to be much higher than a 

single alarm. When the participant was least prepared, the steep increase of difficulty resulted in 

strong surprising or startling effects rather than performance benefits. 

It should be noticed that in all three scenarios, as well as in the previous study, 

performance was the lowest for alarms or alarm clusters that appeared about 40 – 50s into the 
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alarm floods. In the current experiment, these were the 7th – 8th alarm clusters out of all 30 

alarms or alarm clusters; in the previous experiment, they were the 14th – 16th alarms or alarm 

pairs. Initially, participants probably tried to cope with the demands associated with the alarm 

flood. However, this was difficult because of the unexpected sudden onset of the alarm flood 

which meant that they were not mentally ready. Their stress level continued to increase as they 

realized that they failed to keep up with the pace of the alarms. At about 40 to 50 seconds into 

the alarm flood, participants’ arousal level had likely increased and they may also have invested 

more effort into the task at this point, leading to better performance. Similar to what has been 

discussed in Chapter 2, an appropriate level of arousal (neither too high or too low)is required to 

achieve optimal performance (Matthews & Davies, 1998; Molloy & Parasuraman, 1996; Warm, 

Parasuraman, & Matthews, 2008; Wiener, Curry, & Faustina, 1984; Yerkes & Dodson, 1908).  

The findings from the studies reported in Chapters 2-4 highlight the importance of 

avoiding certain temporal patterns in alarm presentation. An SOA of 800ms was shown to be 

particularly detrimental to detection performance. The simultaneous presentation of six visual 

alarms also resulted in an increased risk of missed alarms. And concurrent auditory alarms were 

very difficult to detect and identify.  Intelligent alarm systems should be designed with these 

challenges in mind. Such a human-centered design approach can complement previous efforts 

which have focused on adjusting the threshold of alarms (the value at which alarms are 

triggered) based on the context of system operations (Pollard, 2010; Schmid et al., 2017; Welch, 

2011). These systems are “adaptive” to the state of the system but not to the cognitive limitations 

of the human operator. 
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Chapter 5  

The Effects of Masking on the Detection and Identification of 

Alarms: Summary of Findings from Experiments 1 – 3  

Chapters 2 to 4 reported three studies that aimed to establish the effects of various factors 

– SOA, the number of alarms, and the serial position of an alarm – on alarm detection and 

identification during periods of low and high alarm frequency (routine operations vs. alarm 

floods). Specifically, the three experiments were carried out with the following goals in mind: 

the first two studies examined whether asynchronous masking is experienced with single and 

pairs of visual and auditory alarms presented in a multi-task setting. They also established the 

SOAs at which such masking is experienced. The third study investigated both simultaneous and 

asynchronous masking of visual and auditory alarm signals as a function of the number and 

serial position of alarms in clusters of up to 6 sequential alarms.  

 

Experiments 1 and 2: Asynchronous masking of single or pairs of alarms in multi-task 

settings 

The main findings of experiment 1 were: 

• Asynchronous masking was observed for visual but not auditory alarms  

• Only forward masking was observed 
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• The effective SOAs included 600, 1000, and 1200ms, with 1000ms leading to the 

worst detection and identification performance 

Main findings from the second study which included a secondary auditory task and a 

different response mechanism that did not require reorientation of gaze were: 

• Asynchronous masking was now observed for both visual and auditory alarms 

• SOAs of 600 and 800ms led to the worst detection performance for visual alarms 

• The worst performance for auditory alarms was observed with SOAs of 200, 800, 

and 1000ms 

In the following studies, only one SOA – 800ms – was used to induce performance 

breakdowns because this SOA led to the worst detection performance for both visual and 

auditory alarms under high workload.  

 

Experiment 3: Simultaneous versus asynchronous masking and serial position of alarms 

This study included alarm clusters that consisted of up to 6 alarms.  

• For both concurrent and sequential visual alarm clusters, masking was stronger as 

the number of alarms increased. This effect was most pronounced with 6 

concurrent visual alarms 

• The same effects were observed for auditory alarm clusters; however, note that 

only single and pairs of concurrent auditory alarms were employed 

• Response times to visual alarms were longer with an increase in the number of 

alarms. This effect was again stronger with concurrent, compared to sequential 

alarms 

• The response time to auditory alarms was not affected 
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• For clusters consisting of 4 or 6 sequential alarms, identification accuracy was the 

highest for the first and last alarms in the sequence. This effect was observed for 

both visual and auditory alarms 

 

Performance during alarm floods 

In all three studies, alarm signals were presented in either low alarm frequency periods 

(routine operations) or as part of an alarm flood. Each alarm flood lasted three minutes and 

included 90 alarms (30 single alarms and 30 alarm pairs) in the first two studies and 92 alarms in 

the third study (including single alarms and clusters of 2 – 6 alarms).  

• Overall, when compared to the low alarm frequency periods, alarm floods 

resulted in lower or comparable detection rates, lower accuracy, and shorter 

response times 

• Performance of concurrent tasks suffered during alarm floods: response time to 

the delivery consent task nearly doubled, and over 90% of the messages with the 

call sign “DOI51” were missed 

• In all three studies, the worst performance was observed with alarms that were 

presented about 40 – 50 seconds into the alarm flood. Towards the end of the 

alarm floods, a consistent improvement in alarm detection and identification was 

observed.  
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Chapter 6  

Improving Alarm Detection and Identification through 

Preattentive Criticality Mapping  

The effects of simultaneous and asynchronous masking on alarm detection and 

identification have been described and discussed in Chapters 2 – 4 and summarized in Chapter 5. 

The three experiments reported in those chapters showed that detection and identification are 

greatly affected by the temporal distribution of alarm signals. Alarms that are closely spaced in 

time are less likely to be detected and correctly identified due to asynchronous masking. Alarms 

presented concurrently suffer from simultaneous masking. Both masking effects become stronger 

with an increase in the number of alarms in temporal proximity. These effects were observed for 

both visual and auditory alarms. These results informed the design of alarm displays by 

suggesting avoiding certain temporal distributions of alarm signals. For example, an adaptive 

alarm display may briefly delay an alarm or change the modality in which it is presented to 

support operators in noticing and identifying signals when faced with a high frequency of alarms, 

such as during an alarm flood. When multiple alarms are to be presented in temporal proximity, 

the order of presentation could also play a role in the probability of detection and identification. 

Results from previous chapters have shown, for example, that between two alarms, auditory 

forward masking is likely stronger than backward masking. When more than two alarms are 

presented in a sequence, the first and last alarms are more likely to be detected and correctly 

identified. These effects should be considered carefully when the proposed adaptive alarm 
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display is to delay the presentation of some alarms. For example, if two auditory alarms were to 

be presented at the same time, the less critical one should be delayed so that the more critical one 

is more likely to be detected. Such an adaptive design has been indirectly demonstrated as an 

effective countermeasure to the masking problem by the performance differences observed with 

different temporal distributions.  

The next and final study in this line of research aims to improve alarm detection and 

identification in a different approach. Two main approaches have been proposed to resolve the 

conflict between the high demand of alarm floods and the limited perceptual and cognitive 

abilities of the operators: (1) reduce the number of alarm signals or (2) increase the bandwidth of 

alarm processing.  

Many studies on alarm management have adopted the former approach and attempted to 

reduce the number of alarms by eliminating false alarms (alarms that are triggered when there is 

no actual underlying problem or emergency) and/or nuisance alarms (alarms that are redundant 

or have little operational value). For example, Oberli and colleagues (1999) developed a fuzzy 

logic-based expert system (one that is able to work with incomplete or noisy information) that 

combined several patient vital signs to reduce the number of alarms in operating rooms. 

Traditional alarm systems generate alarms whenever any one of the vital signs exceeds a critical 

threshold, whereas the proposed expert system integrated data from several sensors and only 

generated an alarm when a meaningful combination of signs suggested an actual common 

problem. The judgment was made based on historical data and medical knowledge. The expert 

system was able to reduce the percentage of false alarms from 75% to 1%. Another approach to 

reducing the number of nuisance alarms is to adjust the alarm limit depending on the context of 

the alarms. For example, customizing alarm settings to each patient can significantly reduce the 
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number of nuisance alarms in a medical context (Graham & Cvach, 2010). Zhu and colleagues 

(2014) proposed automated alarm limit adjustments based on Bayesian estimation from the 

previous states of the system in order to reduce alarm floods in the context of chemical 

processes. A number of methods have also been developed to detect and suppress nuisance or 

chattering alarms (repeated and rapid transitions between alarms and normal states), including 

data mining methods to identify the correlation between alarm-related events and statistical 

methods to reconfigure alarm settings dynamically when system state changes (Burnell & 

Dicken, 1997; Noda, Higuchi, Takai, & Nishitani, 2011; Srinivasan, Liu, Lim, Tan, & Ho, 2004; 

Wang & Chen, 2013). 

A different approach to support alarm detection and identification is to increase the 

bandwidth of information processing. This can be accomplished, for example, through the use of 

multimodal alarm displays, i.e., displays that present alarms via several different sensory 

channels. The development of multimodal displays is motivated by Multiple Resource Theory 

(MRT). MRT posits that partially independent pools of attentional resources are associated with 

three dimensions of information processing: processing stage (perception/cognition/responding), 

modality (visual/auditory/tactile), and processing code (spatial/verbal). Tasks that draw from 

different pools of resources (e.g., tasks that involve the processing of visual versus auditory 

information) can be better performed in parallel as resource competition and interference are 

minimized or eliminated (Wickens, 2008). Other benefits of distributing information across 

different modalities are reduced workload and increased bandwidth of information processing 

(e.g., Ferris, Penfold, Hameed, & Sarter, 2006; Giang et al., 2010; Nikolic, Sklar, & Sarter, 

1998).  



 105 

Information processing can be facilitated also by supporting preattentive reference, i.e., 

the processing of (alarm) signals that occurs before attentional selection  (Treisman, 1985; 

Woods, 1995). For example, ambient displays are a type of preattentive reference. They present 

subtle changes in features of a continuous display, such as its brightness or pitch (Streitz et al., 

2003; Wisneski et al., 1998). These changes can be processed without requiring focused 

attention, “in the background of awareness”. Ambient displays have been used, for example, to 

support the monitoring of patient vital signs by changing the appearance of tools and decorative 

items in nurses’ working environment (Tentori, Segura, & Favela, 2009). Ambient displays, 

however, are designed to present changes in continuous variables, rather than for presenting 

discrete alarm signals. 

A more appropriate technique for supporting preattentive processing in the context of 

alarms is urgency mapping. Studies to date have shown that the perceived urgency of alarm 

signals can be manipulated by changing features such as the color, wording, or pulse rate of 

visual alarms; the base frequency, loudness, duration or pulse rate of auditory alarms; and the 

pulse rate of tactile alarms (Baldwin & Lewis, 2014; Guillaume, Drake, Rivenez, Pellieux, & 

Chastres, 2002; Kaufmann, Ohg, Risser, Geven, & Sefelin, 2008; Lewis & Baldwin, 2012; 

Sanderson, Eunice, Philippe, & Alexandra, 2006). Mapping the perceived urgency of an alarm to 

the actual urgency of the underlying event helps operators attend selectively and respond faster 

to more critical alarms (Chancey, Brill, Sitz, Schmuntzsch, & Bliss, 2014; Edworthy & 

Meredith, 1994; Politis, Brewster, & Pollick, 2014; Suied, Susini, & McAdams, 2008). 

While there is an abundance of evidence that proper mapping of alarm urgency improves 

response time, it is not clear whether such mapping also improves the detection of alarms. To 

date, most studies on the benefits of urgency mapping measured response time only because 
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participants in these experiments were not required to multitask or cope with large numbers of 

alarms; alarms were therefore not likely to be missed (e.g., Guillaume et al., 2002; Haas & 

Edworthy, 1996; Mondor & Finley, 2003; Suied et al., 2008). Limited evidence from a study 

requiring participants to perform a cognitively demanding primary task shows that high urgency 

alarms (associated with red signals) were more likely to be reported than low urgency alarms 

(color-coded in green) (Bliss, Gilson, & Deaton, 1995). In this study, responses to high urgency 

alarms were also more accurate than to low urgency alarms. These findings may be explained by 

the interaction of two different factors directing attention: goal-directed (top-down) factors and 

stimulus-driven (bottom-up) factors (Corbetta & Shulman, 2002; Oliva, Torralba, Castelhano, & 

Henderson, 2003). The contingent orienting hypothesis (Folk, Remington, & Johnston, 1992) 

postulates that stimulus-driven attention capture is contingent on attentional control settings 

(goal-directed attention control). In other words, a signal (such as an alarm) is more likely to 

involuntarily capture attention if its features match those the observer is looking for. In the case 

of preattentive urgency mapping of alarms, the operator is tuned to certain features (e.g., they are 

aware that red alarms are more important; a top-down influence), and the alarms are designed to 

possess those features (a bottom-up influence). Preattentive mapping not only helps increase the 

bandwidth of information processing, but also facilitates prioritization of the alarm signals based 

on their importance. The prioritization of alarm signals is important because it is likely that 

operators will not be able to respond to all alarms during an alarm flood and therefore have to 

make decisions about which alarms they should attend to.  
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Method 

Participants 

The participants in this study were 15 students recruited from the College of Engineering 

at the University of Michigan. The number of participants in this study was determined based on 

a statistical power analysis using the results from the previous experiment. All participants were 

between 20 and 35 years old (mean = 22.47 years, SD = 1.96 years; 7 males and 8 females) and 

had not participated in the previous studies reported in Chapters 2, 3, and 4. They all reported 

normal or corrected-to-normal vision, normal color vision, and normal hearing ability. This study 

was approved by the University of Michigan Institutional Review Board (exempt and not 

regulated; UM IRB: HUM00156091).  

 

Apparatus and tasks 

The simulation used in this study was the same ground-based drone control system 

described in Chapter 4. It consisted of a computer with a keyboard, an optical mouse, a 23-inch 

LCD monitor, a pair of stereo speakers, a set of driving pedals, and an audio recorder. During the 

experiment, participants were required to perform the same three tasks as in the previous studies: 

(1) delivery consent, (2) alarm detection and identification, and (3) air traffic control monitoring.  
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Figure 6.1 Drone simulation interface  

(displaying a high criticality visual alarm for drone 9, motor K; requiring the response “9K”) 

 

Participants were informed that each drone had six motors denoted with different letters 

(B, J, K for visual alarms; X, Y, or Z for auditory alarms) and that visual or auditory alarms 

would be presented when one or more of the motors was not functioning correctly. The alarms 

were presented in one of three ways: control, scored, or mapped. Participants were randomly 

assigned to one of three groups, and each group of participants was exposed to only one of the 

three methods of alarm presentation. Note that, in contrast to much of the earlier literature in this 

area, a distinction is made in this study between criticality and urgency where criticality – the 

focus in this experiment – is defined as the severity of the outcome should an alarm be missed 

whereas urgency is defined as the time available to respond to the alarm.  
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In the control group, visual alarms were presented in the central window of the screen as 

a grey letter referring to one of the drone’s motors (B, J, or K; see Figure 6.1 for an example of a 

visual alarm for the motor K in drone 9). Auditory alarms were presented using a synthesized 

female voice that read the number of the drone, followed by the letter of the motor (X, Y, or Z). 

The voice was accompanied by a 440Hz pure tone (middle C note). No criticality information 

was provided. In the scored group, the alarm presentations were the same as in the control group, 

but participants were told in advance of the experiment that the motors performed different 

functions and were therefore not equally important for the safety of flight. Table 6.1 shows the 

criticality levels associated with the different motors. Participants were informed that the 

criticality of an alarm determined the associated performance score and thus how much incentive 

they would receive at the end of the experiment (for detailed scores, see Table 6.1). Notice that 

each motor corresponded to exactly one level of criticality, so the letter alone was sufficient to 

determine the criticality of an alarm. The letters were chosen based on two criteria: all the letters 

were visually and acoustically distinct from each other, and criticality increased with alphabetic 

order. In the mapped group, the alarms were not only assigned different criticalities, but also 

displayed in different colors (note that all visual alarms were equal in brightness and saturation 

and differed only with respect to hue) or accompanied by different tones (auditory alarms; see 

Table 6.1). The three auditory frequencies were selected to ensure that the differences between 

the low, medium, and high pitch were perceived to be equal (Houtsma, 1995). Participants in all 

three groups were required to press the space key on the keyboard as soon as they detected an 

alarm, and then verbally report the number of the affected drone first, followed by the letter of 

the affected drone. In the scored and mapped groups, participants were reminded and encouraged 

to prioritize the more critical alarms.  
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Table 6.1 Alarm criticality in the scored and mapped scenarios 

 

Visual Auditory 

Criticality Drone Color (if mapped) Drone Pitch (if mapped) 

Low (1 point) B Green X Low (220 Hz)  

Medium (3 points) J Orange Y Med (440 Hz) 

High (5 points) K Red Z High (880 Hz) 

 

The air traffic control monitoring task was the same as in Chapter 4. Participants listened 

to the air traffic control recording and monitor for messages containing their call sign “DOI51”. 

Participants were required to press the driving pedal as quickly as possible whenever they heard 

their call sign.  

 

Experiment design and procedure 

The experiment employed a 3×3 fractional factorial design. The two independent 

variables were alarm presentation and alarm criticality. Alarm presentation (control, scored, and 

mapped) was varied between subjects to avoid confusion. Alarm criticality (low, medium, high) 

was varied within subjects. All alarms in the control group were treated as medium criticality for 

the purpose of the analysis. 

The experiment consisted of two 20-minute scenarios, named ‘mixed alarm frequency’ 

(Mixed) and ‘alarm flood only’ (Flood), respectively. The Mixed scenario included two low 

alarm frequency periods (minutes 0 – 14 and minutes 18 – 20) and one high alarm frequency 

period (minutes 15 – 17). Each type of alarm cluster shown in Table 6.2 (in addition to single 
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visual and auditory alarms) was presented once during the low frequency periods and twice 

during the high alarm frequency period. In the Flood scenario, alarms were presented only during 

the alarm flood (minutes 10 – 12), when each type of cluster and single alarm were presented 

twice. The order of the alarms and alarm clusters was randomized. A total of 92 alarms were 

presented in each alarm flood, and 46 alarms were presented in the low alarm frequency period 

of each mixed alarm frequency trial.  

 

Table 6.2 Alarm cluster compositions 

Cluster 

size 
Visual Auditory Cross-modal 

 Concurrent Sequential Concurrent Sequential Concurrent Sequential 

2 Included Included Included Included 1V+1A 
1V1A or 

1A1V 

4 Included Included 

 

Included  

6 Included Included Included   

 

In both scenarios, the delivery consent task was presented 30 times (about once every 40 

seconds). The air traffic control task was presented about once per minute throughout the 

scenario (a total of 20 times), including the messages that included their call sign and distractor 

messages. 

Upon arrival at the laboratory, participants were asked to read and sign a printed consent 

form. Their chair was then adjusted so that their eyes were about 20 inches from the center of the 

screen. At this distance, the size of the visual alarms equaled 0.125 rad visual angle. Next, 

participants were given instructions for their three tasks, and they were told to give equal priority 
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to all tasks. They then received four to five 5-minute training sessions to familiarize themselves 

with the tasks until they achieved a combined accuracy of 90% or higher in the three tasks. 

Following the training sessions, the participant took a short break before starting the three 20-

minute experiment sessions. Before each session, cross-modal matching was performed by 

adjusting the volume of the auditory alarms to match the intensity of the visual alarms (Colman, 

2015; Pitts, Riggs, & Sarter, 2016). The entire experiment lasted about 100 minutes. Upon 

completion, each participant received $25 as compensation. As an incentive, the three 

participants with the best combined performance on the three tasks received a bonus of $50, $30, 

and $20, respectively. 

 

Dependent measures 

The dependent measures in this study were detection rate, accuracy, and monitoring score 

for the alarm monitoring task, accuracy and response time for the delivery consent task, and 

accuracy and response time for the air traffic control monitoring task.  

For the visual and auditory alarms, detection rate was defined as the percentage of alarms 

that the participant responded to, regardless of the accuracy of the response. Accuracy was 

defined as the percentage of correct responses to the alarms. Monitoring score was defined as the 

assigned score of the correctly reported alarms, aggregated over the entire scenario. 

For the delivery consent task, accuracy was defined as the percentage of correct 

responses (giving consent only when a delivery pad was present and rejecting when the delivery 

pad was absent), divided by all responses. Response time was defined as the time from when the 

drone reached the residency and stopped to when the participant pressed one of the two buttons 

next to the drone window.  
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For the air traffic control monitoring task, accuracy was defined as the percentage of 

correct responses (only responding when the call sign “DOI51” was included in the message). 

Response time was defined as the time from the start of the call sign to the time when the space 

key was pressed. 

 

 

Results 

 For the alarm monitoring task, detection rate and accuracy for alarms were analyzed with 

mixed model binary logistic regression, and response time was analyzed using univariate 

analyses of variance (ANOVA). These analyses were conducted separately for visual and 

auditory alarms. In all these analyses, the fixed effect factors were alarm presentation and alarm 

criticality, and the random effect factor was subject ID. Sequential Bonferroni corrections were 

applied for multiple comparisons. Alarm performance scores were also analyzed with univariate 

analyses of variance (ANOVA) but, in this case, with alarm frequency and alarm presentation as 

the two fixed effect factors. 

For the delivery consent and air traffic control monitoring tasks, response times were 

analyzed with univariate analyses of variance (ANOVA). The accuracy for the ATC monitoring 

task was analyzed with mixed model binary logistic regression. In these analyses, the fixed effect 

factors were alarm frequency and alarm presentation, and the random effect factor was subject 

ID. The accuracy for delivery consent tasks was not analyzed because no mistakes were made. 

For all three tasks, only significant results (p < .05) are reported here. 
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Detection rate  

Alarm criticality had a significant effect on the detection rate for visual alarms 

(𝐹(2, 2091) = 3.280;  𝑝 = .038; see Figure 6.2). Post-hoc tests (with Bonferroni correction) 

revealed a significant difference between low and medium as well as low and high criticality 

alarms. No significant interaction was found. The detection rate for auditory alarms was not 

significantly affected by alarm criticality or alarm presentation (see Figure 6.3). 

 

 

Figure 6.2 Detection rates of visual alarms as a function of alarm presentation and criticality  

(*p < .05) 
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Figure 6.3 Detection rates of auditory alarms as a function of alarm presentation and criticality 

 (*p < .05) 

 

Accuracy 

The accuracy for visual alarms was significantly affected by both alarm presentation 

(𝐹(2, 2091) = 24.182;  𝑝 < .001) and alarm criticality (𝐹(2, 2091) = 4.782;   𝑝 < .001; see 

Figure 6.4). There was also a marginally significant interaction between these two factors 

(𝐹(4, 2091) = 2.004, 𝑝 = .091), such that accuracy for visual alarms differed significantly only 

between low- and medium-criticality alarms and low- and high-criticality alarms (but not 

between medium and high criticality) in the mapped group. The accuracy for auditory alarms 

was affected only by alarm presentation (𝐹(2, 1341) = 6.598;  𝑝 = .001). Accuracy was higher 

for the scored and mapped groups, compared to the control group (see Figure 6.5).  
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Figure 6.4 Accuracy of visual alarms as a function of alarm presentation and criticality  

(*p < .05) 

 

Figure 6.5 Accuracy of auditory alarms as a function of alarm presentation and criticality  

(*p < .05) 
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Response time 

The response times to visual and auditory alarms were not affected by alarm presentation 

nor by alarm criticality (see Figure 6.6 and Figure 6.7, respectively).  

 

 

Figure 6.6 Response time to visual alarms as a function of alarm presentation and criticality 

 

Figure 6.7 Response time to auditory alarms as a function of alarm presentation and criticality 
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Alarm Monitoring Score 

The average scores on the alarm monitoring task were higher when the alarm frequency 

was low (𝐹(1, 2760) = 6.731, 𝑝 = .013; see Figure 6.8). Alarm presentation also had a 

significant effect on the average score (𝐹(2, 2760) = 7.259, 𝑝 = .002) which was higher for 

the mapped group, compared to both the scored and the control groups.  

 

 

Figure 6.8 Average alarm score as a function of alarm frequency and alarm presentation 

 

Figure 6.9 and Figure 6.10 show the average monitoring score for each alarm cluster or 

single alarm as a function of alarm presentation for the mixed and the flood scenario, 

respectively. The scores were normalized by dividing each score by the average score of the 

same type of clusters or single alarms (e.g., the score for a particular cluster consisting of two 

concurrent visual alarms was divided by the average score for all concurrent two visual alarm 

clusters). This normalization served to determine the relative difference between scores 
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regardless of the difficulty of each type of cluster. Alarm clusters for which the normalized 

scores differed by more than 0.5 between the three types of alarm presentation are listed in Table 

6.3.  

 

 

Figure 6.9 Normalized average score as a function of cluster position in high alarm density 

periods (Mixed) 

 

Figure 6.10 Normalized average score as a function of cluster position (Flood) 

Table 6.3 Alarm clusters most affected by alarm presentation 

Scenario Cluster # Modality 
Cluster 

type 
Cluster size Difference 

Mixed 

1 Visual Concurrent 4 .78 

8 Visual Concurrent 6 .97 

21 Visual Concurrent 6 1.20 

27 Auditory Concurrent 2 .62 
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29 Visual Concurrent 4 .85 

Flood 

2 Visual Concurrent 6 .81 

5 Visual Concurrent 2 1.51 

7 Auditory Concurrent 2 .73 

26 Visual Concurrent 4 .63 

 

It is interesting to note that the above alarm clusters are all concurrent clusters and that 

the visual alarm clusters consist of more than two signals (except for cluster 5 in the Flood 

scenario). For all clusters, the score was highest with the mapped alarm presentation. Figure 

6.11 shows a comparison of the normalized average scores for the alarm clusters that were most 

affected, as a function of alarm presentation. A one-way ANOVA revealed significant main 

effects of alarm presentation (𝐹(2, 720) = 10.494, 𝑝 < .001) and cluster type (𝐹(2, 720) =

12.839, 𝑝 = .019).  

 

Figure 6.11 Normalized average score of selected clusters 

(4VC-4 visual concurrent, 6VC-6 visual concurrent, 2AC- 2 auditory concurrent) 
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Delivery consent task  

Overall, the response times to the delivery consent task were longer during the high alarm 

frequency periods (2125ms vs. 1514ms; (𝐹(1, 1182) = 35.039, 𝑝 < .001)). An interaction 

between alarm presentation and frequency was observed, such that the response time was shorter 

in the mapped group compared to the other two groups (𝐹(2, 1182) = 3.054, 𝑝 = .048).  

 

Figure 6.12 Response time to delivery consent as a function of alarm presentation and frequency 

 

Air traffic control monitoring task 

The response time for the air traffic control monitoring task was not affected by either 

factor. Accuracy was significantly lower during the high alarm frequency periods, compared to 

the low alarm frequency periods (70.3% vs. 90.2%; 𝐹(1 , 1194) = 47.003, 𝑝 < .001). No 

interaction was observed. 
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Figure 6.13 Response time for the ATC monitoring task as a function of alarm presentation and 

frequency 

 

 

Figure 6.14 Accuracy for the ATC monitoring as a function of alarm presentation and frequency 

 

Subjective rating 

Participants were asked to rate, on a 1 – 10 scale, how much each design helped them 

determine the importance of an alarm. For the visual alarms, the color mapping (mean = 7.40, 
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SD = 1.96) was rated as much more important than the letters (mean = 4.17, SD = 1.57). For the 

auditory alarms, the pitch mapping (mean = 6.20, SD = 2.56) was also rated as more important 

than the letters (mean = 5.33, SD = 2.69). The difference between the two visual features was 

greater than that between two auditory features. Participants were also asked to rate the impact of 

each feature on their final performance. The rating was again higher for the color mapping (mean 

= 7.40, SD = 1.96) than for the visual letters (mean = 6.00, SD = 1.10). However, the pitch 

mapping (mean = 5.80, SD = 2.48) was rated lower than the auditory letters (mean = 6.60, SD = 

1.74). 

 

Discussion 

The goal of this study was to facilitate the detection and identification of alarm signals 

using criticality mapping. Two preattentive features, color and pitch, were implemented for 

visual and auditory alarms, respectively. It was expected that both detection and identification 

performance would improve, especially for alarms of high criticality. To ensure this effect was 

due to the criticality mapping of the alarms, another group (the scored group) was informed 

about alarm criticality per se in advance of the experiment but this alarm property was not 

mapped to any preattentive features of the alarm signal itself.  

The performance for visual alarms was largely consistent with expectations. In the 

mapped group, both detection rate and accuracy for medium and high criticality alarms were 

greatly improved, compared to the control group. Participants were clearly able to prioritize the 

more critical alarms. This performance gain for medium and high criticality alarms was not 

achieved at a cost to low criticality alarms. In fact, the detection rate for low criticality alarms 

remained the same, and accuracy even improved with preattentive mapping. The observed 
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improvements in accuracy may be partially attributed to the use of redundant color coding in the 

mapped group. In the control and scored groups, alarms could be identified only by the letter of 

the motor while, in the mapped group, color also identified the alarm, regardless of its criticality. 

It has been suggested that color is the best feature for encoding nominal (but not quantitative) 

information, compared to shape and size, and that color encoded information supports rapid 

processing (Christ, 1975; Nowell, Schulman, & Hix, 2002). This redundant encoding of 

information is useful only after an alarm has been detected. Therefore, the low criticality alarms 

benefitted from the color mapping in terms of accuracy but not detection rate.  

Another piece of evidence that the observed benefits were attributable to preattentive 

mapping, rather than alarm criticality per se, is that no significant performance benefits were 

observed for the scored group. Compared to the control group, the detection rate for the scored 

group was the same and accuracy was only slightly improved. These results indicate that 

knowledge of criticality per se did not help participants prioritize highly critical alarms even 

though they were instructed to do so. The need to respond to alarms as quickly as possible may 

have led to this outcome. In the debriefing questionnaire, some participants mentioned that they 

“did not pay much attention to this (criticality)” or “paid more attention to the fact that an alarm 

had been detected rather than the importance of that alarm”. In the scored group, the participants 

had to consciously determine the criticality of an alarm, which was very difficult under time 

pressure. It required activation of a learned rule (the relation between letters and criticality) 

which is much more effortful than relying on the intuitive mapping between color and criticality 

(intuitive in the sense of following convention).  

In the mapped condition, performance of the delivery consent and air traffic monitoring 

tasks did not suffer, compared to the control group. In fact, response times to the delivery 
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consent task were faster in the mapped group, compared to both the control and the scored 

groups. This also suggests that the mapped alarm features were processed at a preattentive level, 

thus freeing up attentional resources and supporting multitasking (see Woods, 1995). 

The results for using criticality mapping of auditory alarms were different. The detection 

rate of auditory alarms was not affected by alarm presentation or criticality. Accuracy was, in 

general, slightly higher in both the scored and mapped groups, compared to the control group, 

but there was no difference between alarms of different criticality. Also, in the subjective ratings, 

the use of pitch mapping was rated as less useful than the color mapping. These results suggest 

that pitch may not be a good candidate for preattentive criticality mapping when it requires 

absolute judgments of pitch levels. The absolute judgment of pitch is known to require training 

and experience, and it also depends on innate abilities (Wickens, Hollands, Banbury, & 

Parasuraman, 2015). Another factor that may have contributed to difficulties with making pitch 

judgments is that, in this study, the pure-pitch tone and the voice were two distinct auditory 

objects, whereas the color coding was a feature of the letter itself and thus part of the same 

object. This explanation is suggested by the fact that different features of the same object have 

been shown to be easier to process in parallel in both the visual and auditory modalities (Shinn-

Cunningham, 2008; Treisman, Kahneman, & Burkell, 1983). Further investigation is needed to 

determine whether other auditory features, such as tempo or gender, could yield better results for 

preattentive criticality mapping. It should be noticed that two other acoustic features – the tempo 

and pitch of the voice – has been tested and ruled out in the piloting phase of this experiment. 

Tempo is perceived to be closely associated with urgency rather than criticality. It also affects 

the discriminability of the signal and makes the faster (more critical) alarms less audible. Pitch of 

the voice is more difficult to manipulate because a major change in the pitch of the voice 
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changes the perceived identity of the voice and elicits different cultural and emotional reactions 

from different people.  

Most previous studies on alarm urgency mapping observed faster response times to more 

urgent alarms (e.g., Baldwin & Lewis, 2014; Haas & Edworthy, 1996; Suied et al., 2008). In 

contrast, in this study, response times to both visual and auditory alarms were not affected by 

alarm presentation or alarm criticality. This discrepancy may be explained by two differences 

between the current study and earlier work: the mapped property and the required tasks. Previous 

studies mapped preattentive features to the urgency of the alarms, whereas the current study 

mapped those features to the criticality of the alarms. Recall that, in most studies, the term 

“urgency” refers to both the severity of the outcome if an alarm is not properly handled and also 

to the need to respond to the alarm as quickly as possible. In this study, in contrast, participants 

in the scored and mapped groups were told that different motors (indicated by different alarms) 

were of different importance for the flight task, but the time available to respond to these alarms 

was the same. Therefore, participants were not motivated to respond faster to more critical 

alarms. The second difference between the current experiment and previous studies is that the 

current study required multitasking which resulted in very high workload and strong competition 

for mental resources, while previous studies usually employed a single task only. All three 

groups of participants in the present experiment were motivated to minimize their response time 

to alarms simply because of the need to perform the other two tasks. The criticality of the alarms 

provided very little additional incentive.  

Overall, average alarm monitoring scores were higher for the mapped group, compared to 

the scored group and the control group, during both low and high alarm frequency periods. This 

finding confirms that preattentive mapping improves alarm detection and identification under 
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high and low workload conditions. The clusters that benefited the most from preattentive 

mapping consisted of 4 or 6 concurrent alarms. These are the same types of alarm clusters that 

showed the worst performance in the experiment described in Chapter 4. In combination, these 

findings suggest that preattentive reference is more beneficial when parallel processing is needed 

and the competition for short term memory and attentional resources is strong. They are also 

consistent with previous studies that found preattentive processing to be useful for rapid visual 

target detection and numerical estimation (e.g., Healey, Booth, & Enns, 1996). These studies  

showed that, when participants were presented with a large set of items and required to rapidly 

estimate the percentage of items with a certain feature, they were able to do so within as little as 

105ms, which is much faster than the engagement of visual attention (suggested to be no less 

than 200ms).  

This experiment developed and tested preattentive criticality mapping as a 

countermeasure to observed breakdowns in alarm detection and identification due to 

simultaneous and sequential masking. The color of visual alarms and the pitch of auditory 

alarms, respectively, were mapped to the criticality of alarms. This mapping improved detection 

and identification performance for visual alarms of medium- and high-criticality, without 

affecting performance for low-criticality alarms. These benefits were most pronounced with 

clusters of 4 or 6 concurrent visual alarms, which had been shown to suffer the most from 

masking effects. The observed benefits of preattentive mapping suggest that the identification of 

alarm signals can precede and affect their detection, a reversal of the first two stages in the 

seven-stage model of alarm processing proposed by Stanton & Stammer (1998) and introduced 

in Chapter 1. However, the effect of pitch mapping for auditory alarms was much less 

pronounced compared to the color mapping for visual alarms. To sum up, the proposed design 
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serves as a useful countermeasure to reduce the risk of missed and misdiagnosed alarms due to 

masking, but a more effective mapping feature for auditory alarms remains to be explored.  
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Chapter 7  

General Discussion and Conclusions 

The safe operation of highly automated sociotechnical systems depends greatly on 

operators’ ability to detect, identify, and respond to alarms in a timely and accurate fashion. One 

major challenge for alarm management is an alarm flood which happens when a large number of 

alarms are presented in a short period of time and exceed the operators’ perceptual and 

attentional capabilities. An alarm flood is defined by industrial standards as more than 10 alarms 

in a 10-minute period (EEMUA, 1999), but this limit is often exceeded, as illustrated by 

accidents such as the Three Mile Island nuclear disaster (Rogovin, 1979) and the Texaco 

Refinery explosion (HSE, 1997). In these accidents, the failure to detect and identify critical 

alarms and subsequently diagnose the problem has been identified as a major contributor. While 

research abounds on methods to reduce the number of unnecessary and unwarranted alarms, such 

as false alarms and nuisance alarms (e.g. Burnell & Dicken, 1997; Edworthy, 2013; Laberge, 

Bullemer, Tolsma, & Reising, 2014), less is known about the role of perceptual and attentional 

limitations in the detection and identification of valid alarms. 

One such limitation is masking. Masking refers to the situation where one stimulus is 

obscured by the presence of another stimulus when they are simultaneous or sequential in close 

temporal proximity (Breitmeyer & Öğmen, 2006; Enns, Di Lollo V, & Di Lollo, 2000). Previous 

research has shown that both types of masking can lead to missing even expected signals or 

events. For example, change blindness is an example of simultaneous masking where observers 
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fail to notice even large changes to objects or scenes when these changes coincide with a brief 

visual disruption (Simons & Levin, 1997). Attentional blink is an example of asynchronous 

masking which is experienced when two signals are presented in very close temporal proximity 

and observers miss the second signal (Shapiro, Raymond, & Arnell, 1997). Most studies on 

masking were conducted in a single-task setting (the single task being the detection of the target 

stimuli) and examined the interaction between only two signals. In contrast, operators in real-

world environments are usually required to multitask and have to cope with larger numbers of 

alarm signals which creates competition for mental resources. As a result, it is not clear that the 

findings from this basic research can inform the design of safe and effective alarm systems. For 

example, limited empirical evidence suggests that, in a more complex environment, the SOA at 

which asynchronous masking is experienced may be longer than the 200 – 600ms window 

suggested by basic research on attentional blink (Boot, Becic, & Kramer, 2007; Ferris, Penfold, 

Hameed, & Sarter, 2006). The first phase of this line of research therefore studied the detection 

of single and multiple visual and auditory alarms in a demanding multitask setting and, based on 

the results from the early experiments, examined the effectiveness of preattentive criticality 

mapping to better support operators in alarm detection and identification. Specifically, the goals 

of this dissertation were to: 

1. Establish the SOA range at which asynchronous masking is experienced in a 

multitasking, high workload environment; 

2. Compare the effects of simultaneous and asynchronous masking on alarm detection 

and identification; 

3. Investigate how alarm detection and identification performance changes as a function 

of the number of alarms and the serial position of each alarm; 
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4. Develop and test a countermeasure to masking and the resulting failure to detect and 

identify alarms. 

In order to achieve these goals, a series of 4 experiments was conducted in the context of 

a simulated automated package delivery system. Chapters 2 and 3 describe two studies on the 

effect of asynchronous masking on alarm detection and identification in low and high workload 

settings. In both studies, asynchronous masking was observed with SOAs of 800 – 1000ms, 

which was longer than the 200 – 600ms range suggested by basic attentional blink literature 

(Shapiro et al., 1997). This was consistent with previous studies that suggested “task and domain 

complexity can alter the occurrence and magnitude” of such effects (Ferris et al., 2006). In low 

workload conditions, asynchronous masking was observed only with visual alarms and forward 

masking, regardless of the modality of the preceding alarm. When workload increased, both 

forward and backward masking were observed, with both visual and auditory alarms.   

Chapter 4 reports a study that addresses goals 2 and 3 of this line of research. Here, not 

only asynchronous but also simultaneous alarm presentation was included. The latter becomes 

more likely, the larger the number of (possible) alarms in a system. The number of alarms in a 

concurrent alarm cluster, and the number of alarms in temporal proximity (in a sequential alarm 

cluster) was increased to include 2, 4, and 6 alarms. For both visual and auditory alarms, 

detection and identification performance decreased as the number of alarms in a cluster 

increased. This effect was stronger with concurrent alarms than sequential alarms, for both visual 

and auditory alarm clusters. These findings were consistent with other studies that reported a 

similar interaction effect between the timing and number of targets to be detected (Boot et al., 

2007). For concurrent visual alarms, performance deteriorated significantly when the number of 

alarms reached 6; in contrast, for auditory alarms, performance breakdowns were observed with 
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only 2 concurrent alarms. In clusters of 4 or 6 sequential visual or auditory alarms, accuracy was 

higher for the first and last alarms, compared to alarms presented in the middle. This serial 

position effect may be explained as a result of the interference between the response to one alarm 

and the presentation of a following alarm. The first alarms had an advantage because their 

presentation was affected less by the response to the preceding alarms. The performance benefit 

for the last alarm was a result of the fact that it is the last to enter short-term memory and not 

interfered by any following alarms, making it easier to retrieve (Laming, 2010). 

The studies described in Chapters 2 to 4 included low alarm frequency periods (routine 

operation) and high alarm frequency periods (alarm floods). A speed-accuracy tradeoff was 

observed during alarm floods. Also, during alarm floods, they were able to maintain similar 

detection performance (compared to that in low alarm frequency periods) under low-to-moderate 

workload (Chapter 2 and 4) but missed more alarms when workload was high (as in Chapter 3). 

A more detailed analysis of performance as a function of serial position in an alarm flood 

revealed that performance deteriorated approximately 40 – 50s into the flood. At that point, 

participants seemed to suffer the most from the surprising effect from the onset of the alarm 

floods and the resulting increased interference and stress. Beyond that point, they were able to 

adjust to the pace of events and may have invested more effort in the task which was reflected by 

a slight improvement in performance.  

The last experiment addressed the fourth goal of this dissertation – the development and 

testing of a countermeasure to observed breakdowns in alarm detection and identification. 

Specifically, the criticality of alarms was mapped to the color or pitch of the signal to allow 

faster, preattentive processing of the alarm signals. Detection and identification performance 

improved for medium- and high-criticality alarms, without negatively affecting the high 
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performance for low-criticality alarms. While the present study does not prove that these benefits 

were the result of preattentive processing, color and pitch were employed for indicating 

criticality based on earlier studies suggesting that these two features are processed before 

engagement of selective attention (Treisman, 1985; Woods, 1995). Also, the fact that 

performance of the delivery consent and air traffic monitoring tasks did not suffer, and even 

slightly improved for one task in the mapped condition provides indirect evidence that the 

criticality information was processed preattentively. Compared to other studies on the mapping 

of alarm urgency, where the response time to alarms was usually the concern (e.g. Baldwin & 

Lewis, 2014; Edworthy, 1994), the current study did not yield a benefit in response time because 

the preattentive features were mapped to criticality but not urgency. This result highlighted how 

similar display designs could yield different performance benefits when the context is different. 

Such a mapping technique was shown to be most effective with 4 or 6 concurrent visual alarms, 

which suffer the most from masking effects. Therefore, the proposed design serves as a useful 

countermeasure to reduce the risk of missed and misdiagnosed alarms due to masking. 

 

Intellectual merits and broader impacts 

The findings from this dissertation contribute to a better understanding of the effects of 

different types of masking on the detection and identification of critical signals in high workload 

multi-task environments. They highlight that results from basic research on phenomena like 

attentional blink and change blindness do not necessarily generalize to applied settings but need 

to be re-examined instead, taking into consideration differences in tasks and signals. The results 

from this line of research also inform the development and expansion of models and theories 

such as MRT (Wickens, 2008), NT-SEEV (Wickens, McCarley, & Steelman, 2009), crossmodal 
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links in attention (Driver & Spence, 1998), and top-down vs. bottom-up factors directing 

attention (Corbetta & Shulman, 2002; Oliva, Torralba, Castelhano, & Henderson, 2003). For 

example, results from this dissertation confirmed that some factors already used in the NT-SEEV 

model, such as visual eccentricity (related to the “effort” component of NT-SEEV) and criticality 

(related to the “value” component of NT-SEEV), affect alarm detection and identification also in 

multi-task and multi-alarm settings. At the same time, findings from this line of research suggest 

additional factors to be included in the model to account for noticing in the context of multiple 

signals, such as the number of alarms and their temporal distribution. While this dissertation 

focused primarily on the detection and identification of alarms, most of its findings related to 

masking generalize to the detection of other types of signals, such as targets in radar surveillance 

or cybersecurity. Finally, a countermeasure to breakdowns in alarm detection and identification 

based on preattentive reference and contingent orienting was also developed, tested, and proven 

to be effective.  

From an applied perspective, the findings will provide guidance for the design and 

evaluation of alarms and alarm systems in data-rich high-risk domains, such as aerospace, cyber 

defense, medicine, and process control. Even though there is an abundance of alarm design 

guidelines and standards, most of these guidelines focus on ensuring the noticeability and 

usefulness of individual alarms by prescribing their desirable salience and informativeness (Russ 

et al., 2014; Wogalter, Conzola, & Smith-Jackson, 2002). Little guidance is available on how to 

create effective alarm systems that consider the interaction between multiple alarms, especially 

during an alarm flood. As complex systems become more digitized (e.g. power plants), 

automated (e.g. manufacturing), and autonomous (e.g. aviation or driving), the number of alarms 

and the scale and complexity of alarm systems are inevitably increasing. There is an increased 
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risk of alarm floods which tax human perceptual and attentional processes and abilities. The 

present research helps prevent that missed or misinterpreted alarms contribute to catastrophic 

outcomes, and thus improves safety in many real-world environments. 

 

Future work 

As with all research, this dissertation answers a number of important questions but also 

raises new ones that suggest directions for future work. First, only the early stages of alarm 

handling – detection and identification – were examined in this line of research. Later stages, 

such as information integration, diagnosis and response selection, are equally critical. The 

cognitive processes involved in these tasks need to be studied in more detail and supported 

through technologies that support rule and knowledge activation as well as decision making. 

As mentioned earlier, adaptive alarm displays could be developed that adjust the 

temporal distribution of alarms to avoid masking. Another interesting approach could be to 

develop an adaptive system based on information about the operator. For example, eye-tracking 

and other physiological measures have been widely used to detect changes in the mental state of 

a person, such as fatigue, stress, or attention narrowing (Horng, Chen, Chang, & Fan, 2004; 

Prinet, 2016; Stankovic, Aitken, & Clark, 2014). These changes are likely to affect alarm 

detection and interpretation. Dynamic changes in signal salience and means of focusing or 

broadening attention may need to be developed. Finally, the use of non-traditional channels for 

alarm presentation, such as tactile signals, should be explored. These signals, in combination 

with visual and auditory alarms, could be used to create an alarm system that consists of well-

coordinated alarms, alerts and notifications, each with its appropriate representation.  
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Finally, as alarm management systems become smarter and more autonomous, it is 

important to consider the system and the human operator as a collaborative team. When an alarm 

flood occurs, the system should support the interpretation and diagnosis of the problem not only 

by means of providing recommendations and aids but also offering explanations and 

justifications for the recommendations provided. These explanations can increase the 

transparency of the system, enable the user to decide whether to trust the system’s suggestions, 

and improve the acceptance of such systems and, ultimately, system performance and safety 

(Mercado et al., 2016; Sinha & Swearingen, 2002).  
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APPENDIX A Debriefing Form for Experiments 1 and 2 
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APPENDIX B Debriefing Form for Experiment 3 
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APPENDIX C Debriefing Form for Experiment 4 
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