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ABSTRACT

The problem of robotic mapping and localization is that of constructing a spatial model (the

map) of an environment and estimating positions of robots inside the map. The solution to

the problem is a fundamental requirement to enable mobile robots to operate autonomously

in their environments. It is relatively straightforward to solve the problem under certain

conditions with perfect sensors and unlimited computational power. The challenge arises

when a mobile robot needs mapping and localization available outside the restricted op-

erational envelope that is determined by scale, robustness and the amount of prior data

needed. In this thesis, we describe several methods that expand this operational envelope,

increasing the availability of position estimates to a robot. The idea of “high availability” is

common in other system design domains, and we extend that idea here to robot navigation

systems that must provide usable data in as a broad range of conditions as possible.

At the heart of mapping and localization is optimization. The computational complexity

of the optimization limits the scale of maps that can be built in most robot systems, which

limits the availability of those methods to relatively small environments. In this thesis, we

present a Simultaneous Localization and Mapping (SLAM) algorithm, AprilSAM, that can

rapidly estimate the maximum likelihood state for factor graph-based large-scale mapping.

The algorithm selects between a batch solver and an incremental solver intelligently to

balance the speed and the accuracy of the state estimation. As AprilSAM takes less running

time than state-of-the-art approaches to achieve the same online mapping performance, it

achieves high availability.

Performing global localization in a new environment often requires lots of preparations.

x



This limits the availability of algorithms only to familiar environments. Global Positioning

System (GPS) sometime could supply the positioning information immediately for outdoor

environment. For indoor environment, we propose a factor graph-based localization sys-

tem, FLAG, that provides global positioning based on floor plans. FLAG significantly re-

duces the amount of prior information required to perform indoor localization as it doesn’t

require sending robots into the environment for mapping.

Pose estimation in a prior map is a common online localization method for robot nav-

igation. The robustness of a localization system directly depends on the quality of the

prior map. A high-resolution map provides a detailed representation of the world, but it is

susceptible to feature aliasing since a sensor’s view is noisy and often ambiguous. Such

aliasing leads to poor localization performance which limits the availability of algorithms

in complex environments. In this thesis, we present a machine learning-based map opti-

mization algorithm, MOSS, that learns to adjust maps to support more robust localization.

MOSS achieves high availability by producing maps that support better localization than

the original full map.
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CHAPTER 1

Introduction

1.1 Motivation

Autonomous mobile robots are able to avoid obstacles by planning safe paths to reach the
desired destination. An accurate map is necessary for efficient planning, and following the
path safely requires the robot to be precisely localized. The solution of the mapping and
localization problem directly affects basic capabilities of autonomous robots. It is relatively
straightforward to solve the problem under certain conditions with perfect sensors and un-
limited computational power. The challenge arises when a mobile robot needs mapping
and localization available outside the restricted operational envelope. To make the solution
available in more conditions, we must first answers: What are the major factors that restrict

the availability of mapping and localization algorithms?
The first factor is scale. Lots of mapping and localization algorithms can work near

perfectly on robots like Roomba, in a small controlled environment, but they don’t work
well on autonomous vehicle that travel hundreds of miles across the country because the
problem rapidly becomes difficult when dealing with large numbers of observations. At the
heart of mapping and localization is optimization, and the optimization speed determines
the scale for real-time mapping operations. The computational cost of early Kalman filter-
based [15] grow quadratically. Though graph-based approaches [19] are able to deal with
larger number of observations, they still can’t scale up easily. This motivates us to develop
AprilSAM, a faster optimization algorithm that works for large-scale mapping. It selects
between a batch solver and an incremental solver intelligently to offer the trade-off between
the speed and the accuracy of the state estimation.

The second factor is the amount of prior data needed. Global localization is critical
for planning the paths of autonomous robots. Many existing navigation methods perform
localization as a pose estimation problem after building a map with the robot [54, 57, 82,
92]. But they require to acquire prior data to build the map, thus the conditions applicable

1



are limited. For example, they don’t work well for the application such as search and rescue
in which robots may be called upon to operate in a novel environment. GPS could supply
the position information when map is not built ahead for outdoor environments. However,
its performance significantly deteriorates indoors. This motivates us to develop Feature-
based Localization between Air and Ground (FLAG), an indoor localization system that
provides global positioning with a floor plan as prior map. It significantly reduces the
amount of prior data required for mapping and localization.

The last factor is robustness. A high-resolution map provides a detailed representation
of the world, but it is susceptible to feature aliasing since a sensor’s view is noisy and
often ambiguous. Such aliasing leads to poor localization performance. This limits the
availability of algorithms for many applications such as autonomous driving which requires
reliability. This motivates us to develop Map Optimization for Size and Saliency (MOSS), a
machine learning-based map optimization algorithm learns to adjust maps to support more
robust localization.

The major challenge of mapping and localization algorithm is to expand the operational
envelope that is determined by scale, robustness and the amount of prior data needed so
that they can be available in more conditions. In this thesis, we describe several methods
that expand this envelope, increasing the availability of position estimates to a robot. The
idea of “high availability” is common in other system design domains, and we extend that
idea here to robot navigation systems that must provide usable data in as broad a range of
conditions as possible.

2



Scale

RobustnessPrior data−1

AVAILABILITY

Figure 1.1: A condition envelope for mapping and localization. It is determined by scale,
robustness and the amount of prior data required. A mapping and localization algorithm
could be applied to more conditions if it is able to work robustly for large-scale places with
less required prior data.

1.2 Thesis Contributions

This thesis focuses on developing high availability mapping and localization algorithms
that expanding the condition envelope. More specifically, we describe several contributions
for increasing mapping speed, improving localization accuracy, and reducing the amount
of prior information required for applying the algorithms. These contributions include:

• A SLAM algorithm, Real-time Smoothing and Mapping (AprilSAM), that takes less
optimization time than the state-of-the-art approaches to achieve the same mapping
performance. (Chapter 3)

• A factor graph-based localization system, FLAG, that provides global positioning in
novel indoor environments based on floor plans. (Chapter 4)

• A machine learning-based map optimization method, MOSS, that produces compact
maps supporting better localization than the original full map. (Chapter 5)

3



Figure 1.2: Robot applications. mapping and localization is essential for autonomous mo-
bile robots equipped with all kinds of sensors (Lidar, cameras, radars, etc).

1.3 Prior Work

SLAM algorithms are often used to build a map online [53]. It has been extensively stud-
ied by many researchers, serving as a central research topic for robotics for decades. Early
approaches were largely derived from the EKF (Extended Kalman Filter) [15] and it con-
tinues to be used in many applications [22, 50, 103]. The EKF, however, has consistency
issues [38] and computational and memory costs that grow quadratically with the state
size. The EIF(Extended Information Filter) [88] improves the costs, as do the many vari-
ants of SEIF(Sparse Extended Information Filter) [24, 95, 99]. New variants, offering not
only computational cost improvements but also interesting cost-versus-quality trade-offs,
continue to be developed. The mapping problem has also been approached by means of
Rao-Blackwellized particle filters [34, 65, 66].

Recently non-linear optimization [23, 40, 48] gain popularity because these methods
offer additional cost/quality trade-offs, and have incorporated ideas and techniques from
the machine learning and numerical computing community. The challenge is to extend the
state of the art by making these systems faster so that the algorithms are available to use in
larger environments with greater numbers of sensor observations. In Chapter 3, this thesis
presents a high availability SLAM system, AprilSAM with a fast incremental optimization
method for factor graph. Comparing to other state-of-art approaches, AprilSAM takes
much less optimiztion time to obtain equivalent performance of accuracy.

Global localization is critical for planning the paths of autonomous robots. Many ex-

4



isting navigation methods perform localization as a pose estimation problem after building
a map with the robot [54, 57, 82, 92]. AprilSAM presented in Chapter 3 can be employed
when robot is operating in unknown environment to build a map, however, it is not appli-
cable to the application such as search and rescue in which robots may be called upon to
operate in a novel environment. GPS could supply this position information when map is
not built ahead. However, its performance significantly deteriorates in the surrounding of
tall buildings and indoors. Since a new map can’t be built immediately, the only way to
solve this problem is to re-use existing map resources even though they were not designed
for robots at first place.

Early approaches [89, 98] used satellite images. Their key contribution is matching
images with strong view point changes by generating virtual affine views. Kim and Walter
[46] propose to learn feature matching between ground-level images and satellite image
directly using deep neural network. Instead of using satellite imagery, Torii et al. [97]
have matched a robot view with Street View panoramas by matching descriptors computed
directly on it. However, it only provides topological localization. Agarwal [1] extended
the work to be able to compute a full 6DOF metrical localization on the panoramic images.
Those methods that match images based on image feature descriptors are not applicable to
indoor applications. In Chapter 4, this thesis presents a high availability indoor localization
system, FLAG, that provides global positioning with a floor plan as prior map. It is the
first concrete step of making mapping and localization available for robots navigating or
planning path in a novel indoor environment. The novelty of the method is that it does not
require additional map building as floor plans already exist for indoor localization.

FLAG is not applicable to every scenario. The majority of existing global localiza-
tion systems are matching current observations to prior information inside a pre-built map.
Lots of previous research [28, 54, 55] focused on a dedicated map building process using
SLAM algorithms. For range-based sensors (e.g. Lidar), a popular map representation is
the occupancy grid map, which discretizes the mapped area into cells of equal size. A
high-resolution grid map provides a detailed representation of the world, but it is suscep-
tible to feature aliasing since a sensor’s view is noisy and often ambiguous. Such aliasing
leads to poor localization performance. This limits the availability of algorithms for many
applications such as autonomous driving which requires reliability. In Chapter 5, this the-
sis presents MOSS, a machine learning-based map optimization algorithm learns to adjust
maps to support more robust localization. Unlike existing mapping approaches [13, 14, 41]
focus primarily on controlling the cost-versus-quality trade-offs of online SLAM, this the-
sis seeks to optimize a map for achieving better localization performance.
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CHAPTER 2

Preliminaries

2.1 Probabilistic Formulation of Mapping and Localiza-
tion

Mapping can be seen as a process of building a consistent global coordinate system of the
world; and localization is to establish correspondence between map coordinate system and
the robot’s local coordinate system. The goal of mapping and localization is to estimate
the both world and robot’s states X given all observations Z. According to Bayes law, the
maximum likelihood solution is:

XML = arg max
x

P (X = x|Z = z)

= arg max
x

P (Z = z|X = x)
(2.1)

This could be solved in two different ways. The first is an Bayes filter based method
formulated as (2.2). The world and robot’s states are modeled as a probabilistic belief
bel(xt) and updated recursively based on bel(xt−1) and new observations.

b̄el(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

bel(xt) = ηp(zt|xt)b̄el(xt)
(2.2)

Where p(xt|ut, xt−1) is the motion model and p(zt|xt) is the measurement model.
Another solution is to take entire history into account with the assumption that obser-

vations are conditional independent given the states shown in (2.3).

XML = arg max
x

T∏
t=t0

P (Z = zt|X = xt) (2.3)
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If we assume motion model and measurement model being Gaussian distribution,

p(xt|ut, xt−1) ∼ N (xt − g(xt−1,ut)), R)

p(zt|xt) ∼ N (zt − h(xt), Q)
(2.4)

we can obtain XML by solving the the nonlinear least-squares problem

XML = arg min
x

∑
t

(‖zt − h(xt))‖2
Q + ‖xt − g(xt−1,ut)‖2

R)1
(2.5)

where zt is the observation with corresponding information matrix Q, xt are the states
involved in that observation, h(xt) is the measurement model, and g(xt−1,ut) is the motion
model with corresponding information matrix R.

2.2 Factor Graph Model

Though there are two major formulations of mapping and localization (see in Sec. 2.1), lots
of methods exist for solving this problem. In this thesis, we focus on developing algorithms
to achieve high availability based on factor graph [20, 58]. This section describes factor
graph and then moves on to geometrical and mathematical conventions.

2.2.1 Pose/Feature Graph

In a factor graph there are nodes for unknowns and probability factors defined on them.
The graph structure expresses which unknowns are involved in each factor. Mapping and
localization problems can be described in terms of a factor graph. The factor graph allows
us to specify a joint density as a product of probability factors similar as in (2.3). For
pose/feature graph, nodes are robot’s poses and landmark positions, and probability factors
are constraints among poses and landmarks. Pose is defined as the position and orientation
of a robot at a particular point in time. Over time, the continuous trajectory of the robot
is discretized into a set of poses. A constraint is represented as an edge in the pose graph.
Constraints can express virtually any type of information, including a full rigid-body trans-
formation (Sec. 2.2.3.1), or a range constraint and bearing constraint (Sec. 2.2.3.2), or a
position constraint (Sec. 2.2.3.3). In this thesis, we model the uncertainty of constraints as
Gaussian distribution. In other word, the probability of factors are represented by Gaus-
sian distribution. This thesis focuses on two-dimensional pose graphs and rigid-body con-
straints, due to their ubiquity and applicability to many mapping systems.

1‖X‖2Ω = XT ΩX
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Figure 2.1: Sample pose/feature graph. The robot trajectory is discretized into a series of
poses (cyan triangles) from which the robot observes landmarks (blue stars). Both poses
and landmarks are nodes in the graph. Graph edges represent constraints between the two
nodes, and squares represent the probability factors.
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2.2.2 Factor Graph Optimization

2.2.2.1 Chi Square Error

A factor f in the factor graph is a single constraint relates the state nodes x to some observed
quantity z. For a particular factor i that relates to state nodes x and observation zi , we write:

fi(x, zi) = Pi(zi|x) (2.6)

If we assume that each factor in the graph are statistically independent, then MAP
formulation in (2.1) becomes:

XML = arg max
x

∏
i

Pi(zi|x)

= arg max
x

∏
i

factori(x, zi)
(2.7)

When we model the uncertainty of factor i as Gaussian distribution with co-variance as
Σ = Ω−1, we will get:

XML = arg min
x

∑
i

‖zi − fi(x)‖2
Ω (2.8)

Note that f in the equation represents the measurement model.
The χ2 error for the factor graph is defined as:

χ2 =
∑
i

‖zi − fi(x)‖2
Ω (2.9)

The χ2 error gives us a means to compare different estimates, and it is a good measure in
that it is the quantity that the optimization algorithms are explicitly attempting to minimize.
However, keep in mind that The χ2 error is not necessarily a good measure of mapping
and localization quality because different state estimation distortions affect the χ2 error to
different degrees [74]. In practice, if we haveXopt, we can use metric ‖x−xopt‖ to evaluate
the mapping and localization quality. But we need to compute two different metrics so that
positions and rotations are considered separately since state vector having different units
(positions in meters and rotations in radians).

2.2.2.2 Linearization

The objective function in (2.8) is not generally linear in the state variables. Optimization
methods [4, 62, 94] can be applied here for minimizing the objective function. However, a
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serviceable approximation [25] can usually be obtained by linearizing the equations around
the current state estimate x0:

Fi = fi(x0)

Ji =
∂fi
∂x
|x0

fi(x) = Fi + Ji(x− x0)

(2.10)

Then we can write the χ2 error in terms of this linearization. First we write the residual
error of the constraint as ri = zi − fi(x0) = Zi − Fi. We also let δx = x − x0. These
substitutions allow us to rewrite 2.8 as:

χ2 ≈
∑
i

‖Jiδx − ri)‖2
Ω (2.11)

If we stack the Ji and ri matrices, and create a block-diagonal matrix from Ω matrices,
we can write:

χ2 ≈ ‖Jδx − r)‖2
Ω (2.12)

Where:

J =


· · · J1 · · ·
· · · J2 · · ·

...

 r =


r1

r2

...

 Ω =


Ω1

Ω2

. . .

 (2.13)

After linearization, the optimization becomes a linear least square problem, we can
differentiate 2.13 with respect to δx to find the value of δx that minimized the χ2 error:

∂χ2

∂δx
= 2JTQJδx − 2JQr = 0

(JTQJ)δx = JTQr

(2.14)

The value δx represents a change in the state variable that will minimize the χ2 error.
Due to the non-linearity of the constraints, computing δx will generally not reduce the error
to the global minimum in a single iteration: several iterations may be required in practice.
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2.2.2.3 Cholesky Decomposition

There are many ways to solve the linear equation in 2.13: 1) direct methods [96] like invert-
ing, Gaussian Elimination [87], QR factorization [35]; and 2) iterative methods like Jacobi
method [84], conjugate gradient descent [51]. Directly inverting JTQJ is impractical in
many cases. In this thesis, we use Cholesky decomposition [64] for solving linear equation
in 2.13.

Cholesky decomposition is commonly used to solve the normal equations ATAx =

AT b that characterize the least squares solution to the overdetermined linear system. Sup-
pose the goal is to solve linear equation Ax = b and A is positive definite, then A can
be factorized as A = RTR, where R is upper triangular matrix. Then RTRx = b will
be solved in two steps: 1) solve the lower triangular system RTy = b; 2) solve the upper
triangular system RTx = y.

Given a 3× 3 matrix A factorized to be RTR:

A = RTR =

R11 0 0

R12 R22 0

R13 R23 R33


R11 R12 R13

0 R22 R23

0 0 R33

 (2.15)

=

 R2
11 R11R12 R11R13

R12R11 R2
12 +R2

22 R12R13 +R22R23

R13R11 R13R12 +R23R22 R2
13 +R2

23 +R2
33

 (2.16)

We obtain the following:

R =


√
A11

A12

R11

A13

R11

0
√
A22 −R2

12
A23−R12R13

R22

0 0
√
A33 −R2

13 −R2
23

 (2.17)

Therefore we can get following formulae for the entries ofR (i is row index and j is the
column index). From (2.18) we can see that the whole Cholesky decomposition process is
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done row by row.

Ri,i =

√√√√Ai,i −
i−1∑
k=1

R2
k,i

Ri,j =
1

Ri,i

Ai,j − i−1∑
k=1

Rk,iRk,j

 j > i.

(2.18)

2.2.2.4 Variable Ordering for Cholesky Decomposition

Variable reordering is equivalent to row and column exchanges on a matrix. A good vari-
able reordering [5, 17, 31] helps increase the sparsity structure of the factorized matrix.
Different reordering techniques produce different sparsity structure, but all of them try to
find a permutation matrix P that minimize fill-in. Unfortunately, computing a reordering
which minimizes fill-in is NP-complete [105]. Agarwal and Olson [2] have presented a
comprehensive empirical analysis on different variable reordering methods. Note that dif-
ferent reordering techniques do not change the solution but just generate different sparsity
patterns. In this section, we will show how variable ordering affects the sparsity structure
of the factorized matrix.

Given a 5× 5 matrix A:

A =



X11 X12 X13 X14 X15

X12 X22 X23 0 0

X13 X23 X33 X34 0

X14 0 X34 X44 X45

X15 0 0 X45 X55


(2.19)

where Xij represents nonzero element at row i and column j.
We can obtain matrix R:

R =



X X X X X

X X X X

X X X

X X

X


(2.20)
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where X represents nonzero element. We permute matrix A using matrix P :

P =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0


(2.21)

Then we obtain matrix Ap = AP :

Ap =



X15 X14 X13 X12 X11

0 0 X23 X23 X12

0 X34 X33 X23 X13

X45 X44 X34 0 X14

X55 X45 0 0 X15


(2.22)

Final Rp will be:

Rp =



X X X

X X X

X X X

X X

X


(2.23)

Comparing (2.20) with (2.23), we can see that variable ordering does affect the sparsity
structure of factorized matrix.

2.2.2.5 Connection Between Factor Graph and Cholesky Decomposition

Fig.2.2 shows an example of pose graph. In the graph, blue triangles are poses and red
squares represent rigid body transformation constraint between two poses. We can get the
information matrix I = JTQJ in (2.14):

I =



X11 X12 X13 X14 X15

X12 X22 X23 0 0

X13 X23 X33 X34 0

X14 0 X34 X44 X45

X15 0 0 X45 X55


(2.24)
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Information matrix I encodes the factor graph structure. Comparing the graph structure
with the information matrix, we can see that if there exist factors between two poses, there
will be a corresponding nonzero element in the matrix. For example, pose 1 and pose 5 has
a factor between them, and there is a nonzero element X45 in the matrix I .

As shown in (2.18), the decomposition process is done row by row. Performing Cholesky
decomposition is same as eliminating node in the graph one by one following the vari-
able ordering.The variable ordering determines the sparsity of final factorized matrix. The
Cholesky factorized matrix R of I with the ordering as x1, x2, x3, x4, x5.

R =



X X X X X

X X X X

X X X

X X

X


(2.25)

When we first eliminate x1 in the pose graph, we induce several new connections: x2 and
x4, x2 and x5, and x3 and x5. These new connections will be reflected in matrix R as
nonzeros elements in the corresponding positions - R24, R25, R35.

If we arrange variable ordering as x5, x4, x3, x2, x1. When we first eliminate x5 in the
graph, we will not induce any new connections. So R13, R14 in final R matrix are all zeros:

R =



X X X

X X X

X X X

X X

X


(2.26)
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Figure 2.2: A pose graph. Cyan triangles are poses. Squares represent rigid body transfor-
mation constraint between two poses. The information matrix of this pose graph is shown
in (2.24).

2.2.3 Common Constraint Forms

2.2.3.1 Rigid Body Transformation Constraint

A 2-D rigid body transformation is parameterized by three values, two translations in x and
y, and a rotation θ. Those parameters can be used to compute a 3×3 transformation matrix
as:

Ta =

cos(θa) −sin(θa) xa

sin(θA) cos(θa) ya

0 0 1

 (2.27)

Suppose we can have a global coordinate frame G, then pose a can be parameterized
as ξga = [xga, yga, θga] which encodes the transformation information from local frame to
global frame. Based on sensor readings from IMU and wheel encoder or methods like scan
matching [71], we can obtain a measurement of the transformation ξab = [xab, yab, θab]

T

between pose a and pose b.
Connecting back to factor graph based optimization, the Fab = [x̂ab, ŷab, θ̂ab]

T will be:

x̂ab = cos(θa)(xb − xa) + sin(θa)(yb − ya) (2.28)

ŷab = −sin(θa)(xb − xa) + cos(θa)(yb − ya) (2.29)

θ̂ab = θb − θa (2.30)
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Global Frame(G)

pose a

pose b

Tab

Tgb

Tga

Figure 2.3: Coordinate transformations. Each robot pose represents a local coordinate
system which can be related to the global coordinate by a rigid-body transform. Two local
coordinate systems can also be related, e.g., Tgb = TgaTab . Point P , expressed with respect
to coordinate frame B, can be projected to coordinate frame A by TabP and to the global
coordinate frame by either TgbP or TgaTabP .

And rab will be:

rab = ξab − Fab (2.31)

The Jacobian matrix is:

dx = xb − xa, dy = yb − ya
c = cos(θa), s = sin(θa)

Jab =
∂Fab

∂(ξa, ξb)

=

−c −s −s ∗ dx + c ∗ dy c s 0

s −c −c ∗ dx − s ∗ dy −s c 0

0 0 −1 0 0 1


(2.32)

Constraints are uncertain quantities, having arisen from noisy sensor observations. This
uncertainty can be represented as a probability distribution over the parameters of the rigid-
body transformation. We assume that the probability distribution can be well-approximated
as a multi-variate Gaussian distribution. This common approximation is motivated both by
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the quality of fit and by the computational conveniences that result. This distribution can
be written in terms of the parameters of the rigid-body transformation:

Σ =

Σxx Σxy Σxθ

Σyx Σyy Σyθ

Σθx Σθy Σθθ

 (2.33)

2.2.3.2 Distance and Bearing Constraint

Different types of sensors produce different types of geometrical information. Monocular
cameras can only measure the bearing to a feature. Various radio-frequency and acoustic
sensors are capable of measuring the range between a feature and the robot, but cannot
determine the bearing. A lidar, can measure both bearing and distance of features with
respect to the robot. Assume the distance and bearing measurement observed from pose a
to landmark l are γal = [ral, φal]. Connecting back to factor graph based optimization, the
Fal = [r̂al, φ̂al]

T will be:

r̂al =
√

(xa − xl)2 + (ya − yl)2 (2.34)

φ̂al = arctan2(ya − yl, xa − xl)− θa (2.35)

And ral will be:

ral = γal − Fal (2.36)

Then Jacobian matrix is:

dx = xa − xl
dy = yb − yl
φg = arctan2(dy, dx)

Jal =

 dx
r̂al

dy
r̂al

0 − dx
r̂al

− dy
r̂al

− dy
(1+φ2g)d2x

dy
(1+φ2g)d2x

−1 1
(1+φ2g)dx

− 1
(1+φ2g)dx


(2.37)

The uncertainty of ranging and bearing measurements can be represented by a Gaussian
distribution:

Σ =

[
Σrr Σrφ

Σφr Σφφ

]
(2.38)

17



2.2.3.3 Position Constraint

GPS (Global Position System) can provide position information directly. Assume the po-
sition measurement observed for pose a is in global coordinate frame ηga = [xpos, ypos].
Connecting back to factor graph based optimization, the Fga = [x̂pos, ŷpos] will be:

x̂pos = xa

ŷpos = yb
(2.39)

And the ra will be:

rga = ηga − Fga (2.40)

Then the Jacobian matrix is:

Jga =

[
1 0

0 1

]
(2.41)

The uncertainty of position measurements can be represented by a Gaussian distribution:

Σ =

[
Σposxposx Σposxposy

Σposyposx Σposyposy

]
(2.42)
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CHAPTER 3

AprilSAM: Real-time Smoothing and Mapping

3.1 Introduction

Simultaneous localization and mapping (SLAM) [6, 12, 21] is often used to build a map
online. Computational complexity limits the scale of maps that can be built in most robot
systems, which limits the availability of those methods to relatively small environments.
A SLAM solution should be both fast and accurate; speed ultimately determines the size
of the environment that the robot can operate in within real-time performance constraints,
while numerical accuracy is important for generating high-quality maps and position es-
timates. In this chapter, we propose a real-time SLAM system, AprilSAM, that uses a
new variable reordering algorithm coupled with fast incremental Cholesky factorization to
improve system accuracy while maintaining real-time performance.

Smoothing methods formulate SLAM as a nonlinear least squares problem, which they
solve to convergence by linearizing at a current estimate. Early smoothing methods (e.g.√

SAM [19]) employ a batch update at every step, making them too slow for real-time
usage in large-scale maps. Incremental approaches such as iSAM [42] and iSAM2 [43] try
to avoid batch updates, instead solving the least squares problem incrementally.

iSAM [42] uses matrix factorization for incremental updates and periodically performs
batch updates. Because errors can accumulate without the linearization point being up-
dated, iSAM’s batch update does not guarantee that the nonlinear optimization converges
to the optimal solution. Variable ordering has a large effect on performance as well: the
computational cost of an incremental update can vary by an order of magnitude depending
on the order in which variables are marginalized.

iSAM2 [43] introduces the Bayes tree to achieve incremental variable re-ordering and
fluid re-linearization, eliminating the need for periodic batch updates. iSAM2 primarily
focuses on improving running time, trading off some solution accuracy. Although iSAM2
elegantly connects matrix factorization with graphical model inference, implementing the

19



Figure 3.1: Cost-Accuracy trade-off for iSAM, iSAM2 and AprilSAM. All three algorithms
have free parameters that trade off accuracy versus computational costs. The plot above
shows the performance of these algorithms as the free parameter is varied. AprilSAM
achieves the lowest absolute error and does so with generally lower computational times
than both iSAM-GTSAM and iSAM2-GTSAM. However, iSAM2-GTSAM is faster for
low-accuracy applications. Note that the relationship between the varied parameters and
the cumulative time and χ2 error is non-monotonic.

Bayes tree is complex.
In this chapter, we present a SLAM algorithm based on fast incremental Cholesky fac-

torization, which we call AprilSAM. Many of AprilSAM’s core steps can be implemented
easily using standard sparse linear systems libraries, which both eases implementation and
allows highly optimized libraries to be used. In spite of this simplicity, AprilSAM achieves
state-of-the-art performance with highly accurate solutions.

The effectual contributions of AprilSAM are:

• Better absolute error than either iSAM or iSAM2 on benchmark datasets and

• Generally lower error for a given amount of computation time.

The technical contributions enabling these results include:

• A dynamic variable ordering algorithm that lowers the amount of computation ex-
pected in subsequent incremental updates,

• An algorithm that provides criterion for selecting between incremental and batch
updates, and
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• A partial backsolve method that reduces the amount of computation involved in the
incremental Cholesky decomposition.

3.2 Related Work

There has been much progress over the past decade to develop online SLAM solutions,
much of which has been devoted to speeding up or avoiding altogether the batch updates of
smoothing algorithms. We focus our review of related work on these types of approaches.
For a more general overview of SLAM research, please refer to a recent survey (e.g. [11,
12]).

Kaess et al. [42] propose iSAM, an incremental smoothing and mapping algorithm that
incrementally updates the QR factorization of the smoothing information matrix. To avoid
unnecessary fill-in and accumulation of error, iSAM performs periodic variable re-ordering
and re-linearization.

AprilSAM builds upon the foundational ideas of iSAM with some novel changes that
lead to greater efficiency and higher accuracy. Although incremental updates are effec-
tive much of the time, a batch update is often necessary for the system to converge to the
optimal solution. iSAM’s periodic batch update does not account for accumulated state
changes, leading to high-error solutions when a linearization point differs from the optimal
solution. In this chapter, we provide an algorithm that adaptively selects between incre-
mental and batch updates (see Sec. 3.4.4). Additionally, iSAM’s incremental updates can
become inefficient due to poor variable ordering, especially in the case of large loop clo-
sures. We propose a variable ordering algorithm that reduces the amount of computation
needed for subsequent incremental updates (see Sec. 3.4.3). Finally, the QR factorization
employed by iSAM induces more nonzero elements during the factorization process than
the Cholesky factorization does, leading to slower computations (see Sec. 3.3). Motivated
by this observation, we utilize an incremental Cholesky factorization rather than iSAM’s
QR factorization.

Kaess et al. [43] evolve the original iSAM to propose iSAM2, which achieves improve-
ments in efficiency through incremental variable re-ordering and fluid re-linearization,
eliminating the need for periodic batch steps. iSAM2 introduces the Bayes tree, a novel
data structure for sparse nonlinear incremental optimization. Though iSAM2 elegantly
connects matrix factorization with graphical model inference through the Bayes tree, its
implementation is complex. in this chapter, we present an incremental Cholesky factoriza-
tion approach that can be implemented easily with standard sparse linear systems libraries,
which eases implementation and allows highly optimized libraries to be used. iSAM2’s
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fluid re-linearization and incremental re-ordering are used primarily to improve its running
time, trading off some solution accuracy. As we show in Sec. 3.5, AprilSAM yields solu-
tions with lower absolute error as well as generally lower error given equivalent running
time.

Polok et al. [81] present an incremental block Cholesky factorization for solving non-
linear least square problems. Their algorithm maintains both the smoothing information
matrix and the factorization matrix while AprilSAM only keeps the latter one. Polok uses
CCOLAMD [17] to order variables, which only considers the most recently accessed vari-
ables. However, we observe that computing variable orderings is hardly a bottleneck in
this incremental process. Matrix reconstruction and the partial Cholesky decomposition
take most of time, and their running time depends on variable ordering. in this chapter, we
propose a variable ordering algorithm for batch updates that anticipates possible upcom-
ing loop closures. As we show in Sec. 3.5, this allows for faster incremental updates in
subsequent steps.

Ni and Dellaert [69], Ni et al. [70] propose a novel batch algorithm for SLAM problems
that distributes the workload in a hierarchical manner. They show how the original SLAM
graph can be partitioned recursively into multiple-level submaps using the nested dissection
algorithm [93], which leads to a cluster tree. By employing the nested dissection algorithm,
their method greatly minimizes the dependencies between two subtrees, and the original
SLAM graph can be optimized using a bottom-up inference along the corresponding cluster
tree. In this thesis, we do not explicitly apply the nested dissection algorithm to generate the
cluster tree structure. Instead, we apply a min-heap based ordering method to allow faster
incremental updates for large loop closures. Loop closures increase the connection degrees
of nodes in a pose-graph, so they tend to be the separator point in the nested dissection
algorithm. Our proposed algorithm also leverages this natural cluster tree structure, which
only requires the update of a partial matrix in incremental factorization.

3.3 Problem Statement

In this section, we formulate Pose-SLAM as a least squares problem. Our goal is to estimate
the robot states X given rigid transformation observations Z. According to Bayes law, the
maximum likelihood solution is:

XML = arg max
x

P (X = x|Z = z)

= arg max
x

P (Z = z|X = x)
(3.1)
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If we assume a Gaussian measurement model, we can obtain XML by solving the the
nonlinear least-squares problem

XML = arg min
x

∑
k

‖zk − h(xik,xjk)‖
2
Ωk

(3.2)

where zk is the kth rigid transformation observation with corresponding information matrix
Ωk, xik and xjk are the nodes involved in that observation, and h(xik,xjk) is the expected
rigid transformation based on the measurement model.

We linearize h as

h(xik,xjk) ≈ h(µik,µjk) +
[
J ikk (µik) J jkk (µjk)

] [δxik
δxjk

]
(3.3)

where µik is the current estimate for node xik, and

J ikk (µik) =
δh(xik,xjk)

δxik
|xik=µik (3.4)

with analogous definitions for µjk and J jkk (µjk). Applying this linearization to (3.2), we
obtain the least squares formulation

δX = arg min
δx

‖Aδx − b‖2 (3.5)

where A = Ω
1
2J and b = Ω

1
2 (z − h(µi, µj)).

Many methods exist to solve (3.5), with the most common direct approach being matrix
factorization. In iSAM [42], Kaess solves the linear system using QR factorization as

QRδx = b (3.6)

where A = QR. In contrast, we utilize the following Cholesky factorization to solve (3.5)
by solving the two triangular matrix equation

RTRδx = b∗ (3.7)

where A∗ = ATA = RTR and b∗ = AT b.
Both factorization methods (Cholesky [30] and QR [27]) compute the same matrix R.

In the GraphSLAM problem, however, QR factorization induces many more non-zero ele-

23



0 1 2 3 4 99

Figure 3.2: A factor graph containing 100 (x, y, θ) nodes, each of which is connected to
the three nodes ahead of itself.

ments during this computation than Cholesky factorization does, slowing down the sparse
matrix math involved in the computation. GraphSLAM problems have more factors than
nodes, makingA (used by QR) a tall matrix andATA (used by Cholesky) a relatively small
square matrix.

We tested both factorization methods on the graph shown in Fig.3.2. This graph has 100
(x, y, θ) nodes, each of which is connected to the three nodes ahead of itself. In Fig.3.3, we
show the number of nonzero elements at each process step for QR factorization using the
Householder method and for Cholesky factorization. Even though the number of nonzero
elements is equal at the end of process, the QR factorization induces more nonzero elements
at each step, leading to longer computation time.

Motivated by this observation, we utilize an incremental Cholesky factorization ap-
proach instead of the incremental QR factorization of Kaess et al. [42]. QR is expected
to produce more accurate results due to its lower condition number, but intuitively, SLAM
graphs usually aren’t that poorly conditioned. Observations don’t vary by 7 orders of mag-
nitude in certainty. The numerical results bear out that stability is not affecting accuracy.
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Figure 3.3: The number of nonzero elements at each step of the matrix factorization for the
graph shown in Fig.3.2. QR factorization induces more nonzero elements than Cholesky
during the factorization process, leading to slower computations.

3.4 Approach

In this section, we present AprilSAM, the incremental SLAM algorithm shown in Alg. 3.1.
AprilSAM updatesR and y incrementally, a process we describe in Sec. 3.4.1 and Sec. 3.4.2.
Each time AprilSAM performs a batch update, we apply a dynamic re-ordering algorithm
as described in Sec. 3.4.3. The algorithm AprilSAM uses to select between batch and in-
cremental updates is listed in Sec. 3.4.4.

Moving forward, we make a small notational update for the sake of clarity, dropping
the * from A and b. That is, A∗ and b∗ become A and b, respectively.
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Algorithm 3.1 AprilSAM
1: function APRILSAM(Graph G, NewFactors f, R, y, NLT , δT , ∆T )
2: G← AUGMENTGRAPH(G, f )
3: (R, y)← INCREMENTALUPDATE(G)
4: δx ←BACKWARDSUBSTITUTE(R, y)
5: L← ∅ . Set of nodes to be linearized
6: for all nodes xi ∈ G do
7: xi ← xi + δxi
8: if δxi ≥ δT then
9: L← L ∪ xi

10: nlc ←COUNTPOSSIBLELOOPCLOSURENODES(G)
11: if RUNTIME(incremental) ×nlc ≥ RUNTIME(batch) or |L| ≥ NLT or ‖δx‖ ≥ ∆T

then
12: for all nodes xi ∈ G do
13: UPDATELINEARIZATIONPOINT(xi)
14: (R, y)← BATCHUPDATE(G)
15: δx ←BACKWARDSUBSTITUTE(R, y)
16: for all nodes xi ∈ G do
17: xi ← xi + δxi
18: end function

3.4.1 Incremental Cholesky Decomposition

Whereas Polok et al. [81] maintains both the information matrix A and the factorization
matrix R, our algorithm only requires the latter. Recall the forms of these two matrices:

A =

[
A00 A01

A10 A11

]
(3.8)

R =

[
R00 R01

0 R11

]
(3.9)

An intermediate matrix Rin of the decomposition process has the form

Rin =

[
R00 R01

0 Ain11

]
(3.10)

where Ain11 is the filled-in version of submatrix A11 resulting from the partial factorization.
Given the completed factorization R, we can compute Ain11 as

Ain11 = RT
11R11 (3.11)

26



This in turn allows us to reconstruct the intermediate matrix Rin.
Let Ã be the evolved version of A following the addition of new information. This

update only affects a portion A11 of the information matrix, with corresponding effects to
R11 in the factorization. That is, the new information matrix Ã and its factorization matrix
R̃ have the forms:

Ã =

[
A00 A01

A10 A11 + Anew

]
R̃ =

[
R00 R01

0 R̃11

]
(3.12)

Because Ã = R̃T R̃, we can express the updated portion of the information matrix as

R̃T
11R̃11 = Ain11 + Anew (3.13)

Applying (3.11), we can re-write (3.13) in terms of only the previous factorization matrix
R and the new information Anew. That is,

R̃T
11R̃11 = RT

11R11 + Anew (3.14)

In Fig.3.4, we show an example of a batch update. By ordering nodes c and f at the
end of matrix, we separate the graph into small clusters. This cluster structure accelerates
the incremental update process.

Fig.3.5 shows an example of adding an odometry edge. Since the new node g is only
connected to node f , only columns f and g of R will be changed.

Fig.3.6 shows an example of adding a loop closure. The new node g is connected to
nodes f and b. Due to the cluster structure, nodes d and e are separated with loop closure
node b, and those columns of R are not changed.

3.4.2 Solving the Triangular Matrix Equations

The Cholesky factorization of (3.7) can be used to solve for δx by successive forward and
backward substitution. Namely, we solve RTy = b by forward substitution and use the
result to solve Rδx = y by backward substitution. As we argued in the previous section,
only a portion of R and b change when performing an incremental update. We now show
that we do not need to maintain b and solve the first equation every step. Instead, we can
update y incrementally and only solve the second equation, Rδx = y.
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Figure 3.4: An example of a batch update with min-heap based ordering. By ordering node
c and node f at the end of the matrix, the graph is separated into small clusters. This cluster
structure allows for faster incremental updates as shown in Fig.3.5 and Fig.3.6
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Figure 3.5: An example of adding an odometry edge. Since the new node g is only con-
nected to node f , only columns f and g of R will be changed. The red crosses represent
the reconstructed portion of intermediate matrix Ain plus the new information Anew, as
detailed in (3.13). The red crosses represent the modified portion of R. No other elements
are changed.
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Figure 3.6: An example of adding a loop closure. The new node g is connected to nodes f
and b. Due to the cluster structure, nodes d and e are separated by loop closure node b, so
the corresponding columns of R are not changed.
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Recall the forms of RT , y, and b:

RTy = b[
RT

00 0

RT
01 RT

11

][
y00

y10

]
=

[
b00

b10

]
(3.15)

When information is added, only a portion of the RHS changes. That is,

b̃ =

[
b̃00

b̃10

]
=

[
b00

b10 + bnew

]
(3.16)

From (3.15), we obtain the equation for the affected portion of b:

b10 = RT
01y00 +RT

11y10 (3.17)

Applying (3.16), we write the corresponding equation for the modified portion of b̃ as

b̃10 = R̃T
01ỹ00 + R̃T

11ỹ10

b10 + bnew = RT
01y00 + R̃T

11ỹ10

(3.18)

Finally, substituting the value of b10 from (3.17), we obtain an update step that allows us to
solve y incrementally:

R̃T
11ỹ10 = RT

11y10 + bnew (3.19)

In Fig.3.7, we mark the affected portions of the matrix and vectors as red. Similar to
the update of R in the incremental Cholesky decomposition, we only need to maintain y
and reconstruct and solve for the affected portion each time. In this case, we do not need
to re-calculate parts of y that are not changed.

3.4.3 Min-heap based Ordering

in this chapter, we present a min-heap based node ordering algorithm based on BHAMD [2].
Compared to the original BHAMD algorithm, this ordering has less non-zero fill-ins be-
cause it continually checks the scores of a removed node’s neighbors and adds them back
to correct list. This prevents the case in which a node with large initial score remains in the
list even when its score is reduced because of node removal.

In addition, in this min-heap based algorithm, the score of a node not only depends on
its connection degree but also its distance to the most recently added node. We can predict
which nodes may be included in upcoming loop closures based on connections between
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Figure 3.7: Incremental update of y. Since only nodes b and f are connected to the newly
added node g, in the residual vector b, only b, f , and g will change. When we solve this
linear system, we only need to solve b, c, f , and g in the y due to the parallel triangular
structure. We mark the affected elements in red.

nodes and the radius at which loop closures are considered. Our ordering algorithm will
order these nodes at the end of the matrix automatically based on their score.

Alg. 3.2 details the ordering algorithm. We begin by adding lists to the min-heap, where
each list is associated with a possible node score. We then add each node to the proper list
based on its score.

At each iteration, we extract from the heap the list that is associated with the minimum
node score. We consider each node from this list in turn, along with its neighbors. Nodes
whose score is no larger than the current minimum score are eliminated. Nodes with larger
scores are moved to the list associated with that score.

The score of a node is given by

score =

N + 1
r
, r < RT

n, else
(3.20)

where r is the distance to the most recently added node, RT is the threshold inside of which
loop closures are considered, n is the connection degree of the node, and N is the number
of nodes in the graph.
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Algorithm 3.2 Min-heap Ordering Procedure
1: Create a set of lists where each list is associated with a score and contains nodes having

same scores.
2: Add all lists into a min heap: MH.
3: while MH is not empty do bestList = getMinList from MH minScore = MH.getMinKey
4: for each node nd in bestList do
5: if nd.score ≤ minScore then
6: remove nd
7: Update nd’s score.
8: for each node nnd in nd’s neighbors do
9: if nnd.score ≤ minScore then

10: push it back into the bestList
11: else
12: push it back into the correct list
13: else
14: push it back into the correct list

3.4.4 Incremental update vs. Batch update

Re-linearization in a batch update can reduce system error, but batch updates are typically
more computationally expensive than incremental updates. iSAM attempts to handle this
dilemma by performing batch updates at regular intervals. In contrast, AprilSAM performs
batch updates when one of three conditions is met (see also in Alg. 3.1):

1. AprilSAM tracks nodes that have changed significantly in a set L = {xi : δxi > δT}.
If enough nodes have undergone significant changes (i.e. |L| > NLT ), AprilSAM
performs a batch update.

2. AprilSAM performs a batch update if the norm of the total state changes becomes
too large (i.e. ‖δx‖ > ∆T ). Since the SLAM nonlinear least square problem involves
repeatedly solving linear equations, this condition keeps the current solution from
diverging too far from the optimal solution.

3. Due to the cost associated with reconstructing RT
11R11 in (3.14), incremental updates

may actually take more time than batch updates when a large loop closure happens.
This is especially true for poor variable orderings. In such a case, a batch update
could save time by ordering variables involved in possible loop closures at the end,
making subsequent incremental updates much faster. When the estimated time to
execute an incremental update (i.e. the running time of the previous incremental
update multiplied by the number of nodes involved in possible loop closures) is larger
than the running time of the most recent batch update, AprilSAM chooses to perform
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a batch update.

3.5 Evaluation

In this section, we evaluate AprilSAM on real-world benchmark datasets. We compare
AprilSAM’s performance to that of iSAM [42] and iSAM2 [43], which represents the cur-
rent state-of-the-art. We also evaluate several variants of AprilSAM to gain greater insight
into its performance.

3.5.1 Methodology
√

SAM-Chol performs a batch update every step using the Cholesky decomposition, pro-
viding us with a performance baseline against which to compare the incremental approaches.
We introduce here several variants of AprilSAM used in the evaluation to isolate each com-
ponent of the system:

• AprilSAM-FullSolve removes from AprilSAM the mechanism for reducing the com-
putation involved in solving the triangular matrix equations (Sec. 3.4.2), instead solv-
ing the full set of equations each time.

• AprilSAM-Periodic removes from AprilSAM the algorithm for selecting between in-
cremental and batch updates (Sec. 3.4.4), instead performing batch updates periodi-
cally.

• AprilSAM-NoPredictiveOrder is the same as AprilSAM-Periodic, but replaces the
variable reordering algorithm (Sec. 3.4.3) with one that simply orders the most recent
graph node last and applies BHAMD [2] to the remaining nodes.

We use the original authors’ implementation of iSAM2 in GTSAM [18], which we refer
to as iSAM2-GTSAM. We tested the algorithms on two benchmark datasets: W10000 [32]
and M3500 [77]. W10000 contains 10000 (x, y, θ) nodes and 64311 (x, y, θ) factors.
M3500 contains 3500 nodes and 5453 factors.

3.5.2 Evaluation on W10000 and M3500

Figs. 3.8 and 3.9 show the performance of the tested algorithms on the W10000 dataset and
M3500 dataset, respectively.
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Figure 3.8: Evaluation on W10000 dataset
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(a) (b)

(c) (d)

Figure 3.9: Evaluation on M3500 dataset

Figs. 3.8a and 3.9a show the cumulative running time of the tested algorithms. April-
SAM runs faster than AprilSAM-NoPredictiveOrder, which supports our claim that the
min-heap based variable ordering algorithm saves running time.

Figs. 3.8b and 3.9b show the χ2 error of the algorithms relative to
√

SAM-Chol, which
performs a batch update at each step. Recall the distinction between AprilSAM-Periodic
and AprilSAM: AprilSAM uses the criteria listed in Alg. 3.1 to decide between incremental
and batch updates, whereas AprilSAM-Periodic performs batch updates periodically. We
configured AprilSAM-Periodic to perform a batch update every 100 steps for the W10000
dataset and every 50 steps for the M3500 dataset. AprilSAM has a faster running time
and higher accuracy than AprilSAM-Periodic, suggesting that these decision criteria are
effective.

Recall that the baseline against which we measure relative accuracy is
√

SAM, which
performs batch updates at each step. The negative error in Figs. 3.8b and 3.9b is a result of
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AprilSAM detecting large state changes after an incremental update and then performing
a batch update immediately. This situation is similar to performing a batch update twice
when calculating χ2 error based on state, though the linearization point is only changed
once right before the batch update.

Figs. 3.8c and 3.9c show the cumulative density function of the distribution of iteration
running times. On the W10000 dataset, AprilSAM runs in less than 10 ms on 70 percent
of its iterations and less than 100ms on 93 percent. On the M3500 dataset, AprilSAM
achieves these same metrics in 93 percent and 100 percent of iterations, respectively.

The incremental algorithms can trade off running time for accuracy, a property which
we evaluate in Figs. 3.8d and 3.9d. In the case of iSAM2-GTSAM, we exchange running
time for accuracy by varying the value of the parameter β, which determines how many
graph nodes are re-linearized [43]. We use β = {1, 0.9, . . . , 10−1, 10−2 . . . , 10−6}. Though
AprilSAM has more free parameters than iSAM2-GTSAM, we only vary the parameter δT
(see Alg. 3.1), setting its value equal to iSAM2-GTSAM’s β. When we examine the cu-
mulative running time and relative cumulative χ2 square error in Figs. 3.8d and 3.9d, we
observe that beyond a certain point, AprilSAM always maintains a lower error given the
same amount of running time. In case of iSAM-GTSAM, we use batch update interval as
{100, 90, · · · , 10, 5, 1}. AprilSAM is better than iSAM-GTSAM in terms of both running
time and error. We do not show all points of iSAM-GTSAM and iSAM2-GTSAM because
their errors are too large to fit on the plot. In contrast, with the same parameters, April-
SAM’s errors are relatively small. This is because its decision to use batch or incremental
updates depends not just on state changes, but on the tracked difference in running time
between both types of updates.

For small enough parameter settings (which lead to higher running times), both iSAM2-
GTSAM and AprilSAM converge to particular values of χ2 error. AprilSAM significantly
outperforms iSAM2-GTSAM in terms of accuracy at this convergence point.

3.6 Summary

In this chapter, we introduce an incremental SLAM algorithm, AprilSAM, that uses a min-
heap based variable reordering algorithm coupled with fast incremental Cholesky factor-
ization. This algorithm drives down system error while maintaining real-time performance.
We evaluate AprilSAM on real-world data, comparing it with the current state-of-the-art
algorithm, iSAM2. We have shown that AprilSAM runs faster and achieves better absolute
error than other algorithms. Thus AprilSAM expands the operational envelope in terms of
scale, increasing the availability of position estimates to a robot.
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CHAPTER 4

FLAG: Feature-based Localization between Air
and Ground

4.1 Introduction

Global localization (i.e. localization in a globally consistent coordinate frame) is critical
for planning the paths of autonomous mobile robots, coordinating the actions of multiple
agents or creating coherent user interfaces for operators. GPS could supply this positioning
information, but GPS does not work well indoors. A robot could also localize using a
prior map built with its own sensors, but this requires a previous visit to the site, which
limits the availability of those methods only to familiar environments. Such a requirement
may be unacceptable in many applications (e.g. search-and-rescue) in which a robot must
operate in an environment it is visiting for the first time. How can a robot perform global
localization in a new indoor environment?

One solution is to leverage existing global map resources from outside of the robot
system. For example, a robot can match visual features in its camera view to aerial or
satellite imagery to localize globally in an outdoor environment [45, 101]. Satellite imagery
is not available for indoor environments, but we can use an analogous resource: floor plans.

In this chapter, we propose and demonstrate FLAG (Global Localization in a Floor
Plan), which allows a ground robot to perform global positioning by recognizing landmarks
in the floor plan map. In particular, we use a Lidar sensor on the robot to detect large vertical
features (e.g. intersections of walls) that are also easy to detect as corners in the floor plans.

FLAG can serve as a replacement for GPS in indoor environments, providing global
position updates based on a floor plan map. In between such global fixes, the robot relies
on local odometry measurements. In our evaluated system, this odometry is based on
wheel encoder and inertial sensors; tracking algorithms such as visual odometry or Lidar
odometry could also be applied to improve localization between global corrections. Fig.4.3
further illustrates the role of FLAG in a robot’s localization system.
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Figure 4.1: Comparison of dead-reckoning (blue), laser scan match-based localization [28]
(yellow), and our FLAG method (red) over a 180 m looped path in an indoor environment.
Unlike the scan matching method, FLAG uses only a floor plan with labeled corners (white
squares) as a prior map, then matches vertical edge features (e.g. wall intersections) ob-
served from the robot’s point-of-view to those landmarks. FLAG runs online for reasonable
indoor speeds: here, the robot moved at about 2 m/s.
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Map Point cloud

Figure 4.2: FLAG performs global localization in a previously unvisited environment. It
uses a floor plan (left) as a prior map with labeled corners (white squares) as landmarks.
The robot extracts vertical features from a 3D point cloud (right) and matches those features
(green squares) to the landmarks in the prior map. It adds the robot’s discrete poses and the
landmark positions to a factor graph to be optimized.

The primary challenge in our approach is data association. The features are descrip-
torless and the robot’s only prior knowledge is the floor plan. The environment may be
dynamic and obstacles may obscure the robot’s view of landmarks. Furthermore, the lo-
cations of landmarks in the floor plan may be imprecise; this might happen, for example,
when a low-resolution map image is scaled. The contributions of this chapter target these
challenges. These contributions are:

• A system that provides global localization in a floor plan map for a ground robot
equipped with a Lidar sensor,

• A factor graph-based localization approach that increases accuracy by modeling un-
certainty in the location of labeled landmarks,

• A data association method that increases robustness by using the pairwise measure-
ment consistency checks and max-mixtures error model, and

• Evaluations on real-world and synthetic data demonstrating robust data association
and accuracy comparable to laser scanmatching-based localization with a Lidar prior
map.
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Figure 4.3: Robot localization system architecture showing the role of FLAG as a replace-
ment for GPS.

4.2 Related Work

Our proposed method, FLAG, performs global localization by matching Lidar data to land-
marks in a floor plan map. We split our discussion of related work on global localization
into two parts, first focusing on Lidar-based approaches and then examining methods that
use orthographic imagery.

4.2.1 Global Localization with Lidar-based Sensing

Mobile robots typically produce detailed prior maps offline and then perform global local-
ization by matching observed features with landmarks in the map [12, 60]. For example,
Hentschel et al. [36] applied Monte Carlo Localization to a line feature-based reference
map. Levinson and Thrun [54], Levinson et al. [55] localize an autonomous vehicle in a
pre-built, high-quality road surface map based on the reflectivity of Lidar. Goeddel et al.
[28] construct a globally consistent, pose graph-based prior map of the environment and
then match 2D laser scans to known locations in the prior map to yield factor potentials in
a localization pose graph.

These approaches rely on a prior map generated with the same sensors the robot uses
for localization. Typically, this requires the robot to visit and map the environment before
operating in it. In contrast, FLAG performs global localization in a previously unvisited
environment, using a floor plan image as a prior map and sensing with Lidar.

A few existing methods (e.g. [9, 49, 79, 80]) use aerial images as prior information in
graph-based SLAM. These methods seek to use the prior information to make the generated
map more globally consistent. In contrast, our paper uses the prior information (i.e. the
floor plan map) to perform global localization in real time.
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The closest of these methods to our own algorithm is that of Kümmerle et al. [49].
Their method inserts correspondences found between three-dimensional range data and
edges detected in aerial images as constraints into a graph-based formulation of the SLAM
problem. The matching algorithms they use do not work well in corridors or other less
structured environments because the edge features are aliased from the robot’s local per-
spective. In contrast, our method extracts corner features from the overhead image and then
uses several techniques to handle data association challenges.

4.2.2 Global Localization in Orthographic Imagery

Other papers (e.g. [7, 45, 56, 98]) have also considered the problem of localizing without
a detailed prior map. Instead, they use an existing map resource such as imagery collected
by satellite or UAV. Typically, these methods involve comparing ground-level images to a
database of georeferenced overhead images.

Viswanathan et al. [98] proposed an algorithm that warps images from a ground robot’s
omnidirectional camera to project them into a top-down view. These projected images are
then matched to a grid of satellite locations using hand-crafted interest point-based features.
Kim and Walter [45] used two Convolutional Neural Networks (CNN) to transform ground-
level and aerial images into a common feature space. To localize a query ground image,
they find the closest georeferenced aerial image in that feature space.

These methods based on visual feature matching tend to fail when faced with signifi-
cant viewpoint or appearance variations (e.g. matching a query image taken at night to a
database image taken during the day) and seasonal changes (e.g. matching a query image
with snow to one taken during summer). In addition, visual feature matching will not work
in a floor plan map as interest point features (e.g. SURF [8], ORB [83], or those learned
by a CNN [45]) tend to be the same for different corners because the pixel values around a
corner in a floor plan map are artificial.

Recognizing these drawbacks of visual feature matching, we previously proposed FLAG,
which directly matches 3D features (edges) in a stereo view to 2D landmarks (corners) in
a satellite image [101]. As most environments have at least some 3D features which are
stable over time, this approach is robust to visual appearance changes. However, data asso-
ciation without visual feature signatures is still a challenge, particularly in the presence of
dynamic or static obstacles near a landmark. FLAG [101] uses a particle filter to explicitly
track multiple hypotheses. In this chapter, we present a new system that can achieve more
robust data association by applying two data association techniques: the pairwise con-
sistency check and the max-mixtures error model. The max-mixtures model can directly
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capture multiple hypotheses that arise from uncertain data associations in the graph-based
localization formulation. In addition, using graph-based formulation allows us to model
the uncertainty in the location of labeled landmarks. In contrast to pure landmark-based
localization, our method refines the positions of landmarks as the robot navigates. In the
evaluation, we show that modeling the uncertainty in labeled landmark locations improves
global localization accuracy.

4.3 Approach

A key insight with FLAG is to identify features which are co-observable from a low-quality
overhead map and from a robot’s sensor view. Large vertical edges emerged as a highly-
salient, easily-extractable feature that occurs in most indoor environments with enough
frequency to be useful but not so much as to confound data association. FLAG extracts
these edges from a 3D point cloud and matches them to the known corner features in the
floor plan map. It then uses a factor graph-based localization algorithm to solve for the
positions of a robot.

4.3.1 Vertical Edges as Global Map Features

A floor plan is an illustrated, overhead view of the environment. Because it is artificial, we
cannot extract interest point-based features (e.g. SIFT or SURF) from it that are also visible
from the robot’s point-of-view. Instead, we use long vertical edges, which occur regularly
indoors at wall intersections or other similar permanent structures, as global features. These
features have a characteristic appearance from overhead (i.e. corners) and from the ground
(i.e. tall vertical lines). By using these features, a robot can localize in a scene it has not
previously observed.

In this chapter, we manually label feature locations in the floor plan, though automated
extraction would also be feasible. The labeling need not be highly precise: our approach
refines the position estimates of the landmarks as the robot navigates.

4.3.2 Detecting Features from the Ground

From the ground, our features appear as large vertical lines. Though the same features may
be detectable as corners in a 2D point cloud, such an approach would fail to account for the
height of the features. An indoor environment may contain many objects (e.g. furniture)
that would appear as corners in planar sensor data but are not part of the permanent structure
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of the environment. Such transient features do not appear in a floor plan and therefore could
not be used by FLAG for localization in a previously unvisited environment.

In this chapter, we detect vertical edge features using a 3D Lidar, though one might also
use, for example, a stereo vision sensor [101]. We first project the 3D point cloud into 2.5D
(i.e. 2D with height information), then detect corners in that data [78]. We discard any
corners less than 1 meter in height as these likely do not correspond to permanent structure
visible in the floor plan.

4.3.3 Factor Graph-Based Localization

The positions of the landmarks labeled in the floor plan may be imprecise, whether because
of sloppy annotation or lack of resolution in the floor plan image. We therefore treat both
the landmark positions and discrete robot poses as variables to be optimized in a factor
graph (see Fig.4.4). In this way, the initial landmark position estimates come from the map
annotation, and subsequent measurements refine these estimates.

Fig.4.4 illustrates the resulting factor graph representation. We treat the label as an ob-
servation of the landmark’s location and create a factor potential to represent this measure-
ment. We add factor potentials between robot poses based on odometry measurements. In
our evaluation, these come from wheel encoders and inertial sensors, though one could also
use tracking-based methods such as visual odometry. Finally, the robot measures ranges to
landmarks, which are incorporated as factor potentials between landmarks and robot poses.
The factor graph is optimized using AprilSAM [102].

Because the features we use are descriptorless, data association is a primary challenge,
especially given that indoor environments may be cluttered with objects that trigger false
positive detections. For example, consider the case of a trash can placed near a hallway
corner in an office building. The object would not appear in the floor plan, but it may
obscure a nearby feature or be mistaken for it. In addition to these types of static obstacles,
our system must handle dynamic obstacles, such as a person walking. Filtering out small
vertical edges helps with these problems, but we still need a way to improve the robustness
of data association.

In contrast to methods which make data association an explicit process prior to infer-
ence (e.g. JCBB [68] or IPJC [75]), we move the bulk of data association into the inference
process itself using the max-mixtures method [73]. These mixtures are bootstrapped with
nearest-neighbor associations.
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Figure 4.4: Illustration of FLAG factor graph. We discretize the robot’s trajectory into
a series of poses (cyan triangles) that we add to the graph as nodes. We also add the
positions of landmarks (blue circles) as graph nodes. Factors in the graph include odometry
constraints (black squares), labeled position constraints of landmarks (red squares), and
measurement constraints between pose nodes and landmark nodes (green squares). With
this formulation, both the robot poses and landmark positions are updated when the graph
is optimized.

4.3.3.1 Pairwise Consistency Check

To reject erroneous data associations caused by dynamic obstacles, we apply a pairwise
consistency check (see Fig.4.5). The robot takes multiple measurements of a landmark
over the time interval during which the landmark is within view. When combined with the
estimate of the robot’s pose when the measurement was taken, each observation gives an
estimate of the projected position of the landmark. For every pair of these measurements,
we compute the distance between the corresponding projected positions of the landmark.
If those positions are within a threshold distance, we consider the pair of measurements to
be consistent.

We then form an undirected graph in which the measurements are nodes, and we add
edges between pairs of nodes corresponding to consistent measurements. Mangelson et al.
[61] showed that finding the largest pairwise-consistent set is equivalent to finding the
maximum clique in the graph, which is well-studied in graph theory. Olson et al. [76]
presented an approximate solution to find a single cluster of well-connected nodes in a
graph. In this chapter, we apply a simple variation on this idea. Namely, if there exists a
measurement that has enough consistent links to other measurements, we create a factor
potential for the measurement and add it into the factor graph. In this way, a moving
obstacle will not yield enough consistent measurements to be added into the graph.
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Figure 4.5: Illustration of the pairwise consistency check. The green circles (left) are
the projected positions of landmarks based on distance and bearing measurements. These
measurements form an undirected graph (right). Edges exist between nodes if the projected
landmark positions from the two measurements are within a threshold distance. A clique in
the graph represents a set of internally consistent measurements. We reject measurements
that are not part of a sufficiently large clique.

4.3.3.2 Max-Mixture Error Model

To reject erroneous data associations caused by static objects near landmarks, we apply
a max-mixtures error model [73]. We used two-component mixtures with one being the
nominal data association and the second being a ”null” hypothesis. With the max-mixtures,
the localization system can visit all data association decisions to reject outliers as the robot
makes new observations.

Consider again the case of a trash can placed near a hallway corner. As the robot
approaches the trash can, associating the object to the nearby feature might reduce error
compared to an odometry-only solution. However, as the robot continues to observe the
object, the repeated low-likelihood measurements resulting from the association cause error
to increase. A max-mixtures error model can revisit those previous data associations and
apply a null hypothesis to them.

4.4 Experimental Evaluation

We evaluate FLAG in two parts: (1) we test the entire system’s performance using real-
world data, and (2) we analyze the effect of FLAG’s robust data association and factor
graph formulation using simulation.
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4.4.1 Robot Platform

We performed all experiments with the MAGIC2 robot platform developed by the APRIL
Robotics Lab. Relevant sensors onboard the robot include wheel encoders and a fiber optic
gyroscope (KVH DSP-1715) for robot odometry and a 3D Lidar (Velodyne VLP-16).

4.4.2 Global Localization

We evaluated our method on real-world indoor datasets to demonstrate its overall perfor-
mance and to compare it to a state-of-the-art laser scan match-based localization method
that uses a Lidar prior map [28, 72].

Our floor plan had a resolution of 0.1 m per pixel. We hand-labeled the initial positions
of landmarks at every corner corresponding to an intersection of walls (see white squares
in Fig.4.1). We assigned an uncertainty of 10 cm to the factor potentials corresponding
to these labeled positions. The odometry measurements came from the fusion of wheel
encoders and a fiber optic gyroscope; we assigned x, y, θ uncertainty of 10 cm, 5 cm,
and 0.1 degrees per meter traveled. We assigned an uncertainty of 5 cm to the ranging
measurements between landmarks and robot poses.

We manually drove the robot at a speed of about 2 m/s in a 180 m loop through the halls
of an office building (the BBB at the University of Michigan) for 4 times. We followed a
figure-8 pattern; the green star in Fig.4.1 shows the starting point and the tan arrows indicate
the path of travel.

Fig.4.1 shows the path of the robot resulting from odometry-based dead-reckoning
(blue), a laser scan match-based localization method using a Lidar prior map [28] (yel-
low), and our proposed FLAG method (red). FLAG shows clear improvements over dead-
reckoning, and its performance is similar to that of laser scan matching approach, which we
consider an approximate ground-truth. Recall that the laser scan matching approach uses
a Lidar prior map generated offline, whereas FLAG uses only a floor plan map. Fig.4.6
shows the average absolute errors of FLAG and dead-reckoning for 4 trips.

Because FLAG adds the positions of landmarks to the factor graph, it continually up-
dates their positions as the robot travels around and makes observations. The white squares
in Fig.4.1 are the initial hand-labeled initial positions, and the green squares are the final
positions after the whole run.
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Figure 4.6: Average absolute distance errors of FLAG and dead-reckoning over a 180 m
looped path in an indoor environment for 4 different runs (Fig.4.1 shows one of four runs).
We use a state-of-the-art laser scan match-based method (with a Lidar prior map) as an
approximate ground-truth.

4.4.3 Data Association

To evaluate the performance and reliability of our data association system, we performed
an ablation study to show the effects of the pairwise consistency test and max-mixture error
model, and to measure the effectiveness of refining the floor plan landmark positions.

4.4.3.1 Pairwise Consistency Check

The primary purpose of the pairwise consistency check in FLAG is to handle dynamic
obstacles in the robot’s environment. To test the effect of this component, we constructed
a simulated scenario in which a moving object passes in a straight line by an existing
landmark (see Fig.4.7). We randomly sample 10 measurements from the landmark and 10
measurements from the moving object, both with variance 10 cm. In this experiment, the
distance threshold to determine whether measurements are consistent is 10 cm, and the data
association threshold is set to be 50 cm. We run 5000 trials for data association with and
without pairwise consistency check, incorporating all observations within 50 cm. Fig.4.8
shows the result of this test, namely that the pairwise consistency check results in lower
error and lower error variance.
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Figure 4.7: Illustration of simulated test of the pairwise consistency check algorithm. Green
dots show the 10 measurements of the landmark, which are sampled from its true location
with variance 10 cm. The blue dots show observations of a dynamic object moving along
a straight line, from which measurements are sampled with variance 1 cm. The results are
shown in Fig.4.8.

Figure 4.8: Localization error in the presence of dynamic obstacles (see Fig.4.7). Error
bars represent three standard error of the mean across the 5000 trials. Using the pairwise
consistency check resulted in lower error.

49



ACTUAL
LANDMARK

STATIC
OBJECT

Figure 4.9: Illustration of a simulated scenario testing the max-mixture error model. The
rightmost landmark is obstructed by a static object, which the robot observes instead of the
landmark. For each trial, we randomly sample the location of the static obstacle within a
particular radius of the landmark. We plot the localization error of the last pose in Fig.4.10.

4.4.3.2 Max-mixture Error Model

The primary purpose of FLAG’s max-mixture error model is to avoid associating static
obstacles with landmarks from the floor plan map. Analogous to the simulation of the pre-
vious section, we built a simulated test case in which a robot passes by several landmarks,
the last of which is blocked by a static obstacle (see Fig.4.9). We randomly sample the
location of this static obstacle within a specified radius of the landmark. As in the previous
section, we randomly sample measurements with standard deviation 10 cm.

The robot does not observe the final landmark but rather receives measurements from
the nearby static obstacle. We vary the maximum distance of the object from the landmark
in the range 10-50 cm and conduct 5000 trials at each radius. We measured the localization
of the last node in each trial with and without the max-mixture error model. Fig.4.10 shows
the result of this experiment.

Without the max-mixture error model, error increases proportionally to the distance
between the obstacle and the landmark. With the max-mixture model, error increases until
the distance reaches approximately 20 cm, after which it levels off. Once measurements
from the mis-associated obstacle cause error to rise to a certain point, the max-mixture
model “turns off” measurements of that landmark by assigning a highly uncertain noise
model to them. This mitigates the effect of the erroneous data association.
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Figure 4.10: Localization error in the presence of a static obstacle. Error bars represent
three standard error of the mean across the 5000 trials. As the static object gets further
from the true landmark localization, the effect of using the max-mixture model becomes
more pronounced.

4.4.3.3 Incorporating Landmark Uncertainties

One source of localization error in our previous approach [101] is not incorporating un-
certainties of labeled landmark positions. In this chapter, we model those uncertainties by
formulating the localization problem as a factor graph-based SLAM problem that optimizes
both robot positions and landmark positions. Fig.4.11 shows the effect of this optimization
on the average localization error measured on the real-world dataset of Sec. 4.4.2. We com-
pare the performance of FLAG to that of an otherwise identical method that considers the
locations of the landmarks to be static. Incorporating the uncertainty in landmark positions
leads to smaller longitudinal, lateral, and heading errors.
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Figure 4.11: Effect of modeling uncertainty in labeled landmark positions on localization
performance. Including the landmark positions reduces the longitudinal, lateral, and head-
ing errors.

4.5 Summary

In this chapter, we presented FLAG, a method that enables a ground robot to localize itself
globally by identifying landmarks visible in a floor plan map. FLAG is a factor graph-
based approach that uses a pairwise measurement consistency check and max-mixtures
error model. This results in more robust and accurate localization than the our previous
work [101]. We demonstrated that our system has comparable performance to laser scan
matching-based localization with a Lidar prior map, showing FLAG expands the opera-
tional envelope in terms of the amount of prior data required, increasing the availability of
position estimates to a robot.
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CHAPTER 5

MOSS: Map Optimization for Size and Saliency

5.1 Introduction

Pose estimation in a prior map is a common online localization method for robot naviga-
tion. A high quality map can improve the robustness of localization in a robot system,
which improves the availability of algorithms in complex environments. Whereas exist-
ing mapping approaches focus primarily on improving the quality of the map in terms of
consistency, we seek to optimize a map for subsequent localization performance. To this
end, we present a machine learning-based map optimization algorithm to generate compact
maps that support robust localization.

For range-based sensors (e.g. LIDAR), a popular map representation is the occupancy
grid map, which discretizes the mapped area into cells of equal size [67]. A high-resolution
grid map provides a detailed representation of the world but is susceptible to feature aliasing
since a sensor’s view is noisy and often ambiguous. Such aliasing leads to poor localization
performance. Furthermore, the memory consumption of the grid map representation grows
quadratically with the range of the sensor. A coarser grid size reduces the memory burden
of the grid map but may also harm localization performance. Multi-resolution maps can
help with these issues, but it remains a challenge to decompose grid maps with suitable
resolutions for each map region.

In this chapter, we use a factor graph-based map representation in which each node
stores sparse scans assembled in the sensor’s local view, a representation similar to the
keyframe used in vision-based SLAM [90]. To localize online, we match live scans to the
sparse scans in the map. A key advantage of this map representation is that it allows us to
select which nodes to include in the map to improve localization performance and reduce
memory consumption [86].

Existing methods in factor-graph SLAM (e.g. [14, 39, 41, 47]) have considered node
removal as a way to slow the growth rate of the graph. When removing a node from the
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Figure 5.1: Illustration of MOSS pipeline. MOSS (Alg. 5.1) optimizes a prior map for size
and saliency based on the results of localization trials, seeking to eliminate portions of the
map prone to feature aliasing.

graph, these methods generate a new set of factors to preserve the measurement information
from the sensors. The primary purpose of such node removal is controlling computational
cost or memory consumption while building maps online. These methods also treat map-
ping as a standalone optimization problem, where the optimal map output is the one that
best satisfies the observation constraints made during the mapping run.

In this chapter, we optimize the map offline for use in subsequent localization trials.
Our algorithm, MOSS (Map Optimization for Size and Saliency), learns distinctive features
from an existing prior map generated by factor-graph SLAM algorithms. MOSS eliminates
nodes prone to feature aliasing while offline in order to achieve better localization online.
We will show experimentally that the optimized maps produced by MOSS lead to better
localization performance than the original full map.

The contributions of this chapter include the following:
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• A machine learning-based map optimization algorithm producing compact maps that
support robust localization, and

• Evaluations on synthetic data demonstrating that MOSS produces maps with better
localization performance than either a state-of-the-art node selection method or the
original full map.

5.2 Related Work

MOSS draws inspiration from many distinct lines of research in robot mapping and local-
ization, culminating in a key idea: MOSS optimizes a prior map both for size and for future
localization performance. We now review these areas of research and discuss their relation
to MOSS.

Memory Consumption in Occupancy Grid Mapping

When mapping with laser ranging sensors, one of the most common map representations is
the occupancy grid map [67]. However, the memory consumption of basic occupancy grid
mapping grows quadratically with the range of the laser sensors. Many researchers have
focused on reducing this memory consumption burden [37, 86, 104, 106]. Wurm et al.
[104] propose a tree-based representation which offers a lossless compression method that
improves the compactness of the representation. Schiotka et al. [86] introduced a memory-
efficient map representation based on a constant set of individual scans. Their method
incrementally selects scans to add to the map based on the additional information they
provide relative to the scans previously selected. They view the full map as the ideal case
that gives the best performance when used for localization.

In contrast to this type of approach, we aim to both reduce the size of maps and improve
their localization performance. We propose a machine learning-based approach to select a
set of nodes in a pose graph that offers better localization performance than the full map.

Node Selection Algorithms in Factor Graph SLAM

Node selection algorithms (e.g. [14, 41, 47]) in factor-graph SLAM are mainly used to
control computational cost or memory consumption when building maps online. Johanns-
son et al. [41] propose an approach that continually uses new measurements to improve the
map but doesn’t add new nodes for already visited areas. Kretzschmar et al. [47] use ex-
pected information gain of observations to select nodes. Carlevaris-Bianco et al. [14] apply
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marginalization to eliminate nodes and show that they can produce a new set of linearized
factors to approximate the true marginalization. When removing a node, these methods cre-
ate a new set of factors to preserve all measurement information. By comparison, MOSS
runs offline to select nodes to include in the map to achieve the best localization perfor-
mance online. MOSS operates on maps produced via factor graph SLAM and selects a
subset of the original nodes to include in the final map, which is a combinatorial optimiza-
tion problem.

Schaff et al. [85] propose a deep learning-based method to solve a similar combinato-
rial optimization problem of placing beacons for localization. They formulate the beacon
placement as a differentiable neural layer and estimate the current stationary position based
on range readings from the beacons.

In this chapter, we address a related but more challenging sequential scenario in which
localization performance at previous time steps affects the current localization result. Deep
neural network-based methods [44, 100] show success in camera re-localization and visual
odometry but not in real-time localization. We therefore use graph optimization [102]
to estimate current and historical poses (see Sec. 5.3). We apply machine learning-based
approach to select nodes to include in the final map representation.

Learning from Past Experience in Localization

MOSS can be considered a way of learning from past experience to improve localization
performance. In the same spirit, Churchill and Newman [16] propose a way to achieve
long-term navigation in changing environments by recalling previous experiences in those
environments. Maddern et al. [59] proposes a similar approach for laser ranging sensors.

In contrast to MOSS, these methods only add information to the map, which increases
computational cost and memory consumption for online localization. Additionally, they
do not address perceptual aliasing. MOSS seeks to remove aliasing features in the map to
improve localization performance.

Back-end Approaches to Feature Aliasing

Max-mixture models [73], sum-mixture models [52] or dynamic covariance scaling [3] can
be used in optimization back-ends to deal with outlying observations caused by perceptual
aliasing. However, it is still difficult to estimate correct measurement error models in prac-
tice. MOSS provides a way to directly remove features that may cause perceptual aliasing.
In so doing, it moves outlier rejection to the front-end of online localization.
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Figure 5.2: Left: The pose-graph model. The robot trajectory is discretized into a series
of poses (red triangles), which correspond to nodes in the graph. Relative position and
orientation constraints between nodes are encoded as graph edges. Right: Map product of
a pose graph. Once the graph has been optimized, the map is stored as a series of known
poses, each with an associated laser scan (cyan lines around cyan triangle).

5.3 Problem Statement

5.3.1 Pose-Graph Map Representation

Fig.5.2 illustrates the pose-graph model [33] we use during mapping. Robot poses corre-
spond to nodes in the graph, and rigid transformation constraints between poses correspond
to edges. Inference of the joint probability distribution over the nodes in the graph is equiv-
alent to recovering the maximum a posteriori (MAP) estimate for the robot states X given
rigid transformation observations Z. According to Bayes law, the maximum likelihood
solution is:

XML = arg max
x

P (X = x|Z = z)

= arg max
x

P (Z = z|X = x)
. (5.1)

XML contains the maximum likelihood solution for each pose in the graph. In storing the
map for later use, we include each of these pose estimates along with their associated laser
scan measurements. We discard the constraints between poses since the graph will not be
optimized further.

5.3.2 Localization

The pose graph map defines a global coordinate frame. The robot maintains an open-
loop estimate of its current pose in its own local coordinate frame. The goal of global
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Figure 5.3: Coordinate transformations. Each robot pose represents a local coordinate
system that can be related to the global coordinate by a rigid-body transform. Two local
coordinate systems can also be related, e.g., T ag = T ab T

b
g .

localization is to compute a transformation from the robot’s local coordinate frame to the
map’s global coordinate frame. We refer to this local-to-global transformation as L2G.

We illustrate this coordinate transformation in Fig.5.3. Pose b is a node in the prior
map with known L2G T bg . Pose a is a localization node generate online during the robot’s
mission. We can obtain the relative transformation between a and b, T ab , using laser scan
matching. To find the L2G estimate of pose a, we compose the relative pose transforma-
tion T ab with the global transformation T bg ; that is, T ag = T ab T

b
g .

We formulate online localization as the factor-graph SLAM problem[29] illustrated in
Fig.5.4. The nodes of a localization pose graph correspond to poses taken from the robot’s
trajectory. Odometry measurements become edges between adjacent nodes. Laser scan
matching provides factor potentials between robot poses and known locations in the prior
map, which are themselves considered fixed. When combined with the global transfor-
mation of these prior map locations, the scan matching results give noisy observations of
L2G. Optimizing the graph yields a maximum likelihood estimate for each pose in the
localization graph.
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Fixed prior map pose-graph

Localization pose-graph

Figure 5.4: A simple example of a factor graph for localization. Yellow triangles are
localization nodes and red triangles are map nodes. In addition to standard factors based on
inertial measurements (black squares), scan matching factors (yellow squares) are added
describing transformations back to a known map (in red). During optimization, the portion
of the graph corresponding to the known map is held fixed.

A challenge in reliably localizing in this way is rejecting erroneous observations caused
by bad scan matches. Such observations often occur in regions of the map prone to feature
aliasing and can lead to catastrophic shifts in the L2G estimate. To deal with this issue,
we propose to learn a binary function f that selects L2G observations to accept or reject.
Given such a function, the maximum likelihood solution to (5.1) becomes

XML = arg min
x

∑
k

f
(
xik ,yjk

)∥∥∥zL2G
k − g

(
xik ,yjk

)∥∥∥2

ΩL2G
k

+

∑
l

∥∥∥zODO
l − h

(
xil ,xjl

)∥∥∥2

ΩODO
l

. (5.2)

zL2G
k is an L2G observation between pose xik in the localization pose graph and pose yjk

in the prior map. ΩL2G
k is the information matrix corresponding to observation zL2G

k and
g
(
xik ,yjk

)
is the expected L2G observation based on the scan matching measurement

model. zODO
l is a rigid transformation observation between poses xil and xjl of the lo-

calization graph based on odometry measurements. ΩODO
l is the information matrix corre-

sponding to observation zODO
l , and g

(
xil ,xjl

)
is the expected rigid transformation between

the poses based on the odometry measurement model.
Our goal is to learn a function f ∗ that minimizes the error of the solution XML relative
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to the ground truth solution XGT over a number of training trials. We define this error as
the cumulative Euclidean distance between the poses’ translational components. f ∗ is then
given by

f ∗ = arg min
f

∑
t

E(X
(s)
ML, X

(s)
GT )

= arg min
f

∑
s

∑
i

∥∥∥x(s)
i ML − x

(s)
i GT

∥∥∥
2
,

(5.3)

where x(s)
i ML and x(s)

i GT are the maximum likelihood solution and ground truth for pose i
of training trial s, respectively.

5.4 Approach

Algorithm 5.1 Map Optimization for Size and Saliency
1: for t = 1, . . . , T hill climbs do . Run hill climbs from multiple starting locations
2: αt ∼ U

({
α ∈ FM2 : w (α) = C

})
. Randomly select C nodes to include in map

3: for k = 1, . . . , K hill climb steps do
4: α′ ∼ U

({
α ∈ FM2 : w (α) = C, d (αt,α) = 2

})
. Randomly swap node

into/out of map
5: e (α′) =

∑S
s=1

∥∥Xs
ML(α′)−Xs

GT

∥∥
2

. Compute error for map over
localization trials (see (5.2))

6: if e (α′) < e (αt) then
7: αt = α′

8: return arg minαt
e (αt) . Return best node combination found during all hill climbs

We now propose a method to find a function f̂ ∗ that approximates f ∗. Our method relies
on the intuition that the quality of scan matching results varies among the nodes of the prior
map. Some regions of the map have rich geometries suitable for scan matching while others
are susceptible to feature aliasing. For example, long corridors in an indoor environment
yield similar laser scans throughout their span, leading to frequent erroneous matches. In
contrast, the geometry of hallway intersections typically leads to reliable matches. We
therefore seek to learn which graph nodes to include in the prior map to support reliable
localization.

Let α ∈ FM2 be a binary vector such that α(j) indicates whether to include node yj in
the prior map. We can then define f as

f
(
xik ,yjk

)
:= α(jk). (5.4)
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In other words, the function f includes observations in the localization optimization as long
as they involve a prior map node for which the corresponding element of α is 1.

Given this definition of f , the task of finding an optimal function f ∗ is equivalent to the
task of finding an optimal indicator vector, α∗, which is given by

α∗ = arg min
α

∑
t

E
(
X

(t)
ML, X

(t)
GT

)
. (5.5)

Computing an optimal solution to this combinatorial optimization problem is intractable
outside of toy problems. We therefore seek to find an indicator vector α̂∗ that approximates
α∗.

Before presenting our method for computing α̂∗, we will first discuss two possible al-
ternative methods that we will use as performance baselines in our evaluation. All methods
are parameterized by the desired number of nodes, C, to include in the prior map. By con-
sidering multiple values of C, they determine an overall estimate of the optimal indicator
vector.

5.4.1 Equidistant Nodes

Given a prior map with M nodes, a straightforward way to reduce the map to C nodes is to
space the nodes uniformly throughout the mapped trajectory of the robot. For example, to
reduce the map to C = 1 nodes, we can include the node at the midpoint of the trajectory.
Such an approach leads to the indicator vector given by

α(i) =

1 i mod M
C+1

= 0

0 o.w.
(5.6)

5.4.2 Sparse Scan Matching

Schiotka et al. [86] propose Sparse Scan Matching (SSM), which selects the set of map
nodes that maximizes the likelihood of mapping observations given the map trajectory.
This observation likelihood depends on how much overlap there is between selected scan
set Sα and all scans in mapping trajectory.

Because this is a combinatorial optimization problem, SSM does not consider all pos-
sible solutions for Sα. Rather, it builds the scan set incrementally, each time selecting
the scan that adds the most informative candidate scan given the set of already selected
scans. In other words, SSM iteratively selects the next scan that maximizes the observation
likelihood of the mapping trajectory.
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α∗ = arg max
α

p(z1:M |x1:M , Sα)

= arg max
α

M∏
i=1

p(zi|xi, Sα)

= arg max
α

M∏
i=1

∑
s∈Sα

p(zi|xi, s)p(s|xi)

= arg max
α

M∏
i=1

∑
s∈Sα

{
∏
q∈zi

p(q|xi, s)p(s|xi)}

(5.7)

Here, zi is the laser scan observation of pose xi. Sα contains the poses and laser scan
observations selected by indicator vector α.

p(s|xi) is approximated with a Dirac distribution:

p(s|xi) =

1 ‖x− xs‖2 = mins′ ‖x− s′‖2

0 o.w.
(5.8)

p(q|xi, s) is calculated base on a Gaussian distribution:

p(q|xi, s) ∼ N ( min
(xs,qs)∈s

‖xs ⊕ qs − x⊕ q‖2; 0, σ) (5.9)

x⊕ q transforms the point p from local frame to global frame.
A greedy strategy is used to approximate (5.7). The node is selected incrementally

starting with α = 0.

k = arg max
k∈[1,M ],αt

k 6=1

p(z1:M |x1:M , Sαt,αt
k
:=1)

αt+1
k = 1

(5.10)

5.4.3 MOSS

In contrast to SSM, which maximizes the likelihood of observations only from the initial
mapping run, we propose a machine learning-based method that minimizes localization
error during offline training trials. We call this method Map Optimization for Size and
Saliency (MOSS). Instead of using regression models like deep neural network [91], we
choose to create factor graph-based models for the localization. The optimal parameter
set α (see in (5.4)) of those models can be learned from offline training trials. However,
computing the optimal set with respect to the training trials is intractable. We therefore
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propose to approximate it using the hill-climbing optimization method shown in Alg. 5.1.
MOSS uses the results of S localization trials in this algorithm to select nodes to include

in the map, seeking to solve (5.3). For each of these localization trials, we assume that we
have access to a ground truth trajectory. While such a ground truth trajectory is trivially
accessible in simulation, a real-world ground truth is more challenging to obtain. However,
one might use more expensive sensors or artificial landmarks to generate reference trajec-
tories. MOSS could then use those reference trajectories to optimize maps produced with
less expensive sensors.

MOSS consists of T hill climbs that may be run in parallel with one another. Each hill
climb begins with a combination of C nodes randomly sampled from the M available map
nodes (Line 2). In other words, we randomly sample from the set of all binary vectors of
length M and Hamming weight C. The variable to which this indicator vector is assigned,
αt, keeps track of the best combination of nodes found during hill climb t.

Each hill climb runs for K steps. At each step, we randomly select a node not currently
in the map to replace a node that is in the map (Line 4). In other words, we randomly
select a binary vector α′ with Hamming weight C whose Hamming distance from αt is
2. We then compute the RMSE (Root-Mean-Square-Error) of the new candidate map with
respect to the S localization trials (Line 5). Computing this involves solving (5.2) with the
new node combination α′. This yields training error e (α′). If the new node combination
has lower error, we replace αt with it (Line 7).

Once all hill climbs are complete, we return the best node combination found during all
hill climbs (Line 8). This vector α̂∗ is MOSS’s approximation of an optimal combination
α∗.

5.5 Evaluation

We will now evaluate MOSS in the two simulated scenarios illustrated in Fig.5.5 and com-
pare its performance to that of the Equidistant and SSM methods. The first scenario, COR-
RIDOR, consists of a long hallway with a T-shaped intersection at one end. The geometry
of this environment, which commonly occurs in indoor settings, leads to feature aliasing.
Therefore, CORRIDOR serves as a useful test of MOSS’s ability to remove nodes from
portions of the map prone to this problem. The second scenario, SQUARE, occurs in a
larger environment with multiple L-shaped walls. The environment’s large area and inte-
rior walls result in variable observations from the robot’s local view as it moves through
the environment.

For each scenario, we first manually drive the robot through the environment to produce
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the map factor graph. We then conduct a number of localization trials in which the robot
navigates through the environment autonomously. The robot starts at the same position
with a known initial pose in each of these trials. We randomly sample waypoints from
around the mapping trajectory; the robot navigates to these waypoints using the Dynamic
Window algorithm [26]. To increase the variability of the robot’s trajectory, we place static
obstacles randomly along the robot’s path.

The simulated robot is equipped with a 2-D laser scanner with a 360° field of view.
This sensor has a 4 meter range and a distance error of σd = 2 cm. The robot’s odometry
measurements are sampled with variance σxy = 30 cm for translation and σθ = 0.1° for
orientation. We generate a L2G factor potential zL2G

k between pose xik in the localization
pose graph and the nearest pose yjk in the prior map.

We use the ground truth localization provided by the simulator to evaluate the localiza-
tion performance of the tested methods. We measure the root-mean-square-error (RMSE),
which is the average error measured throughout all localization trials.

We set the parameters of Alg. 5.1 at T = 10 hill climbs, each consisting of K = 1000.

Figure 5.5: Left: Example localization trials in two simulated scenarios (CORRIDOR and
SQUARE). Right: Maps produced by MOSS for both scenarios. Highlighted green triangles
indicate nodes selected by MOSS from the full map to include in the map optimized for
future localization performance.
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Figure 5.6: Localization test results in CORRIDOR. The red dashed line indicates the lo-
calization performance using the original map (i.e. C = 21). Overall, MOSS finds map
representations with lower error than the competing methods. Furthermore, the best maps
produced by MOSS perform better than the original complete prior map.

5.5.1 Corridor

The CORRIDOR scenario covers an area 12 meters in length and 6 meters in width con-
sisting of a hallway and a T-shaped intersection. We conducted a single mapping run, 10
training localization trials, and 10 testing localization trials. The trajectories were 10 to
15 meters in length, and we discretized each of them into 21 poses. We varied the desired
number of nodes in the prior map, C, from 1 to 20.

Fig.5.6 shows the localization RMSE for the test trials resulting from using the map
generated by each method. The red dashed line indicates the localization performance
using the original map. Overall, the best results come from using the map generated by
MOSS with C ≤ 6 nodes. Notably, the localization error using these maps is even lower
than the complete prior map (i.e. C = 21). This supports our claim that MOSS can
eliminate portions of the map that are prone to feature aliasing to achieve better localization
performance.
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MOSSSSM Equidistant

Figure 5.7: CORRIDOR map products of different approaches. Green triangles are the se-
lected nodes. Equidistant covers most areas of the mapping environments as nodes are
distributed uniformly. SSM applies a greedy method to maximize observation likelihood
for the mapping trajectory. This does not protect against selecting nodes susceptible to per-
ceptual aliasing during localization, which in turn leads to poor localization performance.
Instead of selecting nodes spaced throughout the hallway, MOSS prioritizes nodes with
distinctive scan features (i.e. those near the intersection).

To better understand the performance of the methods, consider Fig.5.7, which shows
the nodes selected by each method for C = 1, 2, 3 and 4 nodes. MOSS selects nodes near
the intersection since that region of the map has the most distinctive scan features that
support reliable localization. In contrast, the Equidistant and SSM methods select nodes
spaced throughout the hallway. Recall that SSM selects nodes that maximize the likelihood
of mapping observations given the trajectory. This does not protect against selecting nodes
susceptible to perceptual aliasing during localization.

In the 14-node map selected by SSM, the robot is stuck at the beginning so it never gets
chance to match scans to the rest of nodes, while adding one node in 15-node map helps the
robot get out the trap. Thus, the error of SSM abruptly falls from 14-node map to 15-node
map (See in Fig.5.8).
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Figure 5.8: Top left: 14-node map selected by SSM. Top right: 15-node map selected by
SSM. New added node is circled. Middle: Localization results. The red triangle is the
ground truth and the blue triangle is the localized position. In the 14-node map, the robot
is stuck at the beginning so it never gets chance to match scans to the rest of nodes, while
adding one node in 15-node map helps the robot get out the trap.
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Figure 5.9: Localization test results in SQUARE. The red dashed line is the localization
performance using the original map (i.e. C = 204). MOSS achieves the best localization
results across each tested map size. MOSS achieves localization performance at least as
good as that of the original full map with as few as C = 11 nodes, a reduction of approxi-
mately 95 percent in map size.

5.5.2 Square

The SQUARE scenario consists of a square-shaped environment with 12-meter sides (see
Fig.5.5). The limited range of the simulated laser sensor causes the robot’s local view
to vary significantly for different trajectories, making robust localization challenging. We
conducted a single mapping run, 100 training localization trials and 20 testing localization
trials. The trajectories were 35 to 50 meters in length, and we discretized each of them into
204 poses. We varied the desired number of map poses as C = 6, 11, 16, and 21.

Fig.5.9 shows the localization RMSE resulting from using the map generated by each
method. Again, the red dashed line indicates the localization performance using the orig-
inal map. The map generated by MOSS with C = 21 nodes yielded the best overall
performance. MOSS’s map with C = 11 nodes performed equivalently to the full prior
map while reducing the number of nodes in the map by 95 percent.
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MOSSSSM Equidistant

Figure 5.10: SQUARE map products of different approaches. Triangles marked in green are
selected nodes in the graph using different algorithms

.

69



Figure 5.11: An example of Equidistant method’s failure. Red triangle is the ground truth
position and blue triangle is the localized position. Left: Robot is precisely localized in the
11-node map selected by MOSS. Map scans are shown in white and live scans are shown
in red. Right: Robot is localized in the wrong place because of the aliasing in local view
between map scans and live scans. It is pulled closed to the circled map node.

Figure 5.12: An example of SSM method’s failure. Red triangle is the ground truth position
and blue triangle is the localized position. Left: Robot is precisely localized in the 11-node
map selected by MOSS. Map scans are shown in white and live scans are shown in red.
Right: Robot is localized in the wrong place because of the aliasing in local view between
map scans and live scans. It is trapped near the circled map node.
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5.6 Summary

In this chapter, we presented MOSS, a machine learning-based map optimization approach
that produces compact maps supporting robust localization. We first formulated online
localization as a factor graph optimization problem. Then we proposed an approach for
learning to select the combinations of nodes in the map factor graph that achieves least
errors on subsequent localization trials. Our experimental evaluation shows that MOSS
achieves better localization results than either an existing state-of-the-art map reduction
approach or the original full map. Thus, MOSS expands the operational envelope in terms
of robustness, increasing the availability of position estimates to a robot.
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CHAPTER 6

Conclusion

Mapping and localization are fundamental requirements for autonomous robots being able
to plan safe paths and reach the desired destination. The challenge arises when a mobile
robot needs mapping and localization available outside the operational envelope that is
determined by scale, robustness and the amount of prior data needed. In this thesis, we
present high availability mapping and localization algorithms that focus on expanding this
envelope by increasing the mapping speed, improving localization robustness, and reducing
the amount of prior data required.

6.1 Contributions

This dissertation included the following contributions.
In Chapter 3, we presented AprilSAM that uses a min-heap based variable reorder-

ing algorithm coupled with fast incremental Cholesky factorization. This algorithm drives
down system error while maintaining real-time performance for solving large scale map-
ping problems. We have shown that AprilSAM achieves better absolute error than other
state-of-the-art algorithms while running faster to obtain the same mapping performance.

In Chapter 4, we presented FLAG that enables a ground robot to localize itself in a
global reference frame by identifying landmarks visible in a floor plan map. We demon-
strated that our system has comparable performance to laser scan matching-based localiza-
tion with a Lidar prior map, showing FLAG’s feasibility for real-time global localization in
a previously unvisited indoor environment.

In Chapter 5, we presented MOSS that optimizes a map for subsequent localization
performance using machine learning-based methods. We have shown that MOSS produces
compact maps that support more robust localization than state-of-the-art approaches.
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6.2 Discussions

6.2.1 Faster Optimization for Large Scale Mapping

One of major challenge for large-scale mapping is to maintain real-time performance and
high quality estimation for optimization when dealing with large number of observations.
Despite AprilSAM is the fastest algorithm that gives the most accurate estimates, the run-
ning time of it is not bounded even for small environments which are repeatedly explored.
It is desirable to at least achieve a persistent mapping solution that scales only in terms of
the spatial extent of an environment, and not the duration of the mission. This could be
done by applying node removal algorithms [14, 41]. However, as mapping area becomes
larger and larger, the algorithm still grows unbounded. Sub-mapping approaches [69, 70]
then could be used to solve this problem. It seems obvious to us that the combination of
those algorithms will perform the best. However, it is still unclear how to design the three
systems that interact with each other to achieve the best. How would the node removal
affect the incremental update? How would the map division affect the decision between
batch update and incremental update? Exploring this idea is out of the scope of this thesis,
but we believe it is a practical approach to solve large scale mapping problems.

6.2.2 Leveraging Existing Map Resource for Localization

Localization in a global reference frame is often done as pose estimation in a global con-
sistent map. In order to achieve good localization performance, very detailed maps are
usually built ahead. This can provide the system higher position updates rate compared
to the approaches leveraging sparse features in the environment (e.g. FLAG uses corner
features that are sparsely distributed in the floor plan map). However, map building is a
computationally expensive and time consuming process. If maps do not exist, we can use
the algorithms developed in Chapter 3, but if maps exist (even if not designed for robots)
and a robot can re-use them, it will allow them to navigate without needing to explore the
full environment first. Lots of approaches have been developed in the outdoor environ-
ments, but to the best of our knowledge, FLAG is the first system that does not require
additional map building by leveraging floor plans in the indoor environments. Although
there are still limitations in FLAG, we believe that this technique paves the way towards
a new way of localization approach that can be generally applied to indoor environments
since architectural floor plan maps exist pretty much for every building.
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6.2.3 Map Optimization for Robust Localization

A primary usage of the map for autonomous mobile robots is localization. Most of re-
searches about robotic mapping focus on the consistency of the map product but neglect
the use of it afterwards. This causes the problem that the improvements in the robotic
mapping didn’t bring lots of successes in robotic localization. As more and more robots
are deployed into real world, we realize that robust localization is the key for long-term
autonomy. Localization failures can be caused by that the live observations don’t match
the models in the prior map. To address this issue, the maps need to be updated when there
is a discrepancy between new observations and models in the map. When dealing with the
failures caused by perceptual aliasing, adding more aliased observations wouldn’t help but
result in more troubles. The novelty of MOSS is that we believe the less is better in this
case. More specifically, the less features that may lead to wrong data association, the bet-
ter localization performance we can get. “The less is better” may seem counter-intuitive
especially in robotic localization that the key insight of Bayes Filter is the probabilistic
data fusion. However, it works under the assumption that the error models of the obser-
vations are correct. For example, when robot is going through a tunnel, if the system is
overconfident about the GPS measurements, it will cause localization failure. Max-mixture
model [73] and dynamic covariance scaling [1] are approaches that reject outliers in opti-
mization back-end. But they can only handle to a certain number of outliers. MOSS moves
the outlier rejection to the front-end for online localization. It is still a challenging problem
to come up with a good metric that defines the quality of features (e.g. laser scans, image
features, etc) for localization in the complex world. Semantic information [10, 63] could
help the algorithm work better, but it is not clear what semantic information is really help-
ful in certain environments. For example, semantic label chair is not quite helpful for the
mapping and localization in a room full of chairs. Therefore, we introduced a data-driven
approach that selects features that provide the best localization performance. Essentially,
MOSS is computationally figuring out the answers for the most critical question: will in-
cluding this feature in map help improve the localization?

6.3 Future Work

In this section, we present ways in which someone might extend or improve upon the
algorithms of this dissertation.
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6.3.1 Decision Making in AprilSAM

As presented in Chapter 3, AprilSAM uses the criteria listed in Alg. 3.1 to decide between
incremental and batch updates. Choosing between batch update and incremental update is
a decision-making problem. In this thesis, we presented several heuristics trying to drive
down error and running time for SLAM problem. It would be interesting to design the
objective function for making this decision based on whole autonomous system (speed,
position uncertainty, planned trajectory, etc). When a vehicle approach an intersection, it is
likely there will be a loop closure. If the vehicle stop at the intersection, AprilSAM should
take this chance to perform batch update.

6.3.2 Incorporating Graph-based Mapping Techniques into FLAG

In Chapter 4, FLAG performs occasional global position updates directly in a floor plan,
and relies upon open-loop odometry maintain local position estimates between global po-
sition fixes. However, the data association becomes extremely hard when the robot doesn’t
see a global feature for a long time, or some structures are not represented in the draw-
ing. In addition to the methods presented in the thesis, incorporating graph-based mapping
techniques into FLAG could possibly improve the system performance. The laser-based
map can be aligned to the floor plan map and is exploited for relative localization.

6.3.3 Learning Value Function for MOSS

In Chapter 5, the goal of MOSS is to learn a function f ∗ in (5.3) that minimizes the error
of the solution XML relative to the ground truth solution XGT over a number of training
trials. We simplify this problem to find the best combinations of map nodes based on the
intuition that the quality of scan matching results varies among the nodes of the prior map.
This means function f only takes map node position and map scans as input. We think that
incorporating a robot’s current position, position uncertainty, robot’s live laser scans into
function f could further improve the localization performance. For example, if the robot is
surrounded by people and live scans look like a clutter of blobs, the system shouldn’t trust
the scan matching results even map scans seem to be very distinctive features. We think
this type of learning can fit into a reinforcement learning framework. Regression function
f can be an approximation of the value function which takes a robot’s current position,
position uncertainty, robot’s live laser scans, and graph nodes’ positions and laser scans as
input. The action is whether (or how much) to trust scan matching results. The expected
reward to be maximized is localization accuracy. Once f is learned, it can be applied for
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online localization to determine whether (or how much) should the system trust the scan
matching results.
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