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Abstract 

 

The fast advancement of computers in the past decade has revolutionized the way we explore and 

understand the world. Meanwhile, the development of algorithms and methods enables us to 

efficiently analyze data, build models, and even perform in silico experiments through simulations. 

This is especially true in the era of big data - how to leverage large-scale multi-source information 

to model physiological phenomena and interpret observations from an unprecedented 

computational perspective. In this dissertation, I focus on multiple physiological and biological 

systems at different scales, ranging from biological molecules at nanosecond time scale to human 

physiological signals spanning hours. 

 

First, I present a network analysis approach for comparing the structural dynamics of three major 

GTPase superfamilies based on extensive molecular dynamics simulations. GTPases are essential 

biological macromolecules that regulate a variety of cellular processes. They share a common core 

structure supporting nucleotide binding and hydrolysis, yet their biological functions diverge 

dramatically. Many efforts have been made to compare their sequences and 3D structures, however, 

the similarity and differences of their physical movements remain unclear. I investigated the 

structural dynamic characteristics of three typical GTPases, and identified common and family-

specific residues mediating the coupling of functional sites. I further performed mutational 

simulations and demonstrated the dynamic effects of disrupting key couplings. 

 



 xvi 

Second, I describe a first-place algorithm in the 2017 NCI-CPTAC DREAM Proteogenomics 

Challenge, which unbiasedly evaluated computational methods for predicting the proteomics 

profiles in breast and ovarian cancer patients. Decoding the determinants controlling protein levels 

is crucial for understanding the regulatory mechanisms underlying cancers. Predicting the protein 

abundance from mRNA levels is challenging, due to the large variations across cancer patients and 

weak correlations between mRNA and protein levels. I investigated several critical determinants 

of protein abundance, including the rule of multi-omics data, the interdependencies among various 

genes, and how to harness information from two different cancer tissues to extend our 

understanding of protein abundance regulation. While for the first two we gave an improved 

modelling method over previous studies, the last aspect is unexplored in literature for proteomic 

expression level modelling. In addition, the prediction correlation of our method approaches the 

theoretical upper limit calculated from experimental replicates. Key functional pathways and gene-

gene interaction network modules associated with cancer proteome regulation were further 

revealed.  

 

Third, I present a first-place algorithm in the 2018 PhysioNet/Computing in Cardiology Challenge. 

I developed a deep learning approach, DeepSleep, to automatically segment sleep arousals from 

polysomnographic recordings, including physiological signals from brain activity, heart, breath, 

and body movement during sleep. DeepSleep enables fast segmentation of sleep records at 

millisecond resolution. Compared with the theoretical upper limit based on annotation replicates 

by different sleep experts, our method approximates human performance in detecting sleep 

arousals. Moreover, the pattern of our predictions differs from human annotations, especially at 

the low-confident boundary regions. This indicates that in silico annotations is a complement to 



 xvii 

human annotations and potentially advances the current binary label system and scoring criteria 

for sleep arousals. 
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CHAPTER I 

Introduction 

 

Molecular dynamics 

Molecular dynamics (MD) is a technique for studying the physical movements of atoms and 

molecules through computer simulations (Frenkel and Smit 2002). Given a system of interest, we 

first compute the forces on all particles in the system based on molecular mechanics force fields, 

which can be derived from physicochemical experiments and/or calculations in quantum 

mechanics. Then we numerically integrate Newton’s equations of motion and obtain the new 

positions of all particles. Repeating the force and position calculations result in the dynamic 

evolution or trajectory of the system. The first development of MD simulation dates back to early 

1950s (Alder and Wainwright 1959). At that time, MD was mainly used to simulate atoms and 

small molecules in the fields of physics and chemistry . The first MD simulation of a biomolecule 

was published in 1977 (McCammon et al. 1977). As the improvement of computational powers, 

nowadays MD has been widely used to study biological macromolecules (Karplus 2002). In 2013, 

the Nobel chemistry prize was awarded to Martin Karplus, Michael Levitt, and Arieh Warshel, for 

their significant contribution to the development of multiscale models for complex chemical 

systems (https://www.nobelprize.org/prizes/chemistry/2013/summary/). Meanwhile, massively 

parallel supercomputers specially designed for MD simulations such as Anton, can simulate 

processes on long above microsecond time scales. These advancements open a new avenue for us 

to investigate and understand details of particle motions in a variety of biophysical problems, 
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including protein-ligand interactions, protein folding, conformational dynamics of protein and 

protein complexes (Guo et al. 2016; Chung et al. 2015; Rosenbaum et al. 2011). 

 

Molecular switches 

Molecular switches are molecules that can reversibly transit between two or more states (Vale 

1996).  Guanosine triphosphate phosphohydrolases (GTPases) are ubiquitous molecular switches 

that regulate a multitude of essential cellular processes ranging from cell division and 

differentiation to protein synthesis and translocation (Scheffzek and Ahmadian 2005; Vetter and 

Wittinghofer 2001). They operate through hydrolyzing guanosine triphosphate (GTP) into 

guanosine diphosphate (GDP) with associated conformational changes that modulate affinity for 

specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases 

(Wennerberg 2005), heterotrimeric G proteins (Milligan and Kostenis 2009) and protein-

synthesizing GTPases (Maracci and Rodnina 2016). As the primary coupling molecule to 

membrane receptors, Gα together with its partner βγ subunits (Gβγ) mediate the very early stage 

signal transduction initiated by extracellular stimuli. In contrast, small GTPase does not interact 

with receptors directly and regulates more downstream events in the cascade. The protein-

synthesizing GTPases participate in initiation, elongation and termination of mRNA translation. 

Although they contain a similar nucleotide-binding architecture, the detailed mechanisms by 

which these structurally and functionally diverse superfamilies operate remain unclear (Vetter and 

Wittinghofer 2001). MD provides us the opportunity to study their nucleotide-associated dynamics 

in silico. 

 

Machine learning 
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Machine learning is a category of algorithm that computer systems learn patterns from data and 

perform specific tasks without being explicitly programmed (Ziegel 2003; Bishop 2016). Two 

major types of machine learning algorithms are unsupervised learning and supervised learning. In 

a unsupervised learning task, the data only contain the inputs. In a supervised learning task, the 

data contain both the inputs/features and the desired supervisory outputs/labels. The aim is to 

model the relationship between features and labels, and ultimately make predictions based on new 

inputs from held-out test datasets. 

 

Artificial neural network 

Artificial neural network (ANN) is a machine learning algorithm that is inspired by the structure 

of biological neural networks in animal brains (Hopfield 1982; LeCun et al. 2015). Multiple layers 

of artificial neurons are used to learn the representation and abstraction of the intricate structures 

in data at multiple levels (Hopfield 1982; LeCun et al. 2015). ANN was created back to the 1970s 

and 1980s (Werbos 1974; Rumelhart et al. 1986), yet the lacks of large datasets and  computational 

powers limited the application of ANN. In recent years, with the big data explosion and the 

advancement of computer hardwares such as graphics processing unit (GPU), ANN has 

demonstrated extraordinary breakthroughs in image recognition and speech recognition, and 

dramatically outperformed conventional machine learning models. Unlike traditional machine 

learning models, deep ANN approaches do not depend on manually crafted features and can 

automatically extract information from large datasets in an implicit way (LeCun et al. 2015). 

Without stringent assumptions and restrictions, deep ANN can approximate complex 

mathematical functions and models to address those problems. Currently, these powerful tools 
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have also been successfully applied to biomedical image analysis and signal processing (Litjens et 

al. 2017; Shen et al. 2017; Faust et al. 2018). 

 

Data challenge 

A typical problem of machine learning algorithms is overfitting, which means the models 

excellently fit the training data but fail to make predictions on new data. This usually occurs when 

the dataset is small and the machine learning model is complex. A common technique to address 

this is cross-validation (Devyver and Kittler 1982), in which the dataset is randomly partitioned 

into two subsets for model training and testing, respectively. However, each time we evaluate a 

model using the internal test set, we probe the dataset and fit our model to it, ultimately leading to 

overfitting. Data challenge provide the opportunity for researchers to develop methods that are less 

likely to overfit, since the test dataset is stringently held-out. Meanwhile, data challenge is a unique 

platform to unbiasedly evaluate methods of a field in the same format. Similar to the Olympics, all 

data science “athletes” are evaluated according to the same standard during a data challenge. In 

contrast, studies reported in literatures may use different datasets or formats, making it hard to 

truly compare the performances of different models. Furthermore, data challenge encourages 

scientists to efficiently advance the state-of-the-art (Guan 2019), during which new findings may 

occur. 

 

Genomics, transcriptomics, and proteomics 

The central dogma of information flow from DNA to mRNA to protein has been applied for nearly 

six decades (Crick 1958). Yet, the cell functions as a whole: besides the translation from mRNA 

to protein, many other features are important to the complex protein expression process, including 
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microRNA (Lovett and Rogers 1996a), upstream open reading frame (Lovett and Rogers 1996b), 

cap-binding proteins (Raczynska et al. 2010), poly(A) tails (Guhaniyogi and Brewer 2001), 

nonsense-mediated decay (Chang et al. 2007) or alternative splicing (Black 2003). In addition, the 

mRNA and protein abundances are dynamic, due to ubiquitination and other degradation 

mechanisms to fulfill diverse condition-dependent functional requirements (Liu et al. 2016a). 

These complicated regulatory mechanisms underlying protein translation lead to the weak 

correlations between mRNA and protein abundances, when evaluating the same gene across 

multiple samples (Liu et al. 2016a; Vogel and Marcotte 2012; Ning et al. 2012; Zhang et al. 2014, 

2016; Mertins et al. 2016). Identifying the missing factors affecting transcriptomic and proteomic 

correlation is important to understanding the biological mechanisms behind phenotypic variances 

and diseases. This is particularly true in cancers. Transcriptomic and proteomic variations across 

individuals are expected in diverse cancers, such as colorectal, breast, and ovarian cancers (Mertins 

et al. 2016; Zhang et al. 2016, 2014). These variations have important clinical consequences and 

implications, due to activation of different functional pathways, leading to different subtypes in 

the same organ, and biomarkers indicative of high- and low-risk patients in survival analysis 

(Zhang et al. 2014; Mertins et al. 2016; Zhang et al. 2016). These transcriptional and proteomic 

expression profiles provide invaluable information to studying cancer mechanisms. However, 

compared with the fast, inexpensive RNA sequencing profiles, large-scale high-quality proteomic 

data are costlier to obtain, despite remarkable progress. Therefore, a computational model to 

predict protein abundance from mRNA data could not only help to quickly obtain an estimation of 

proteomic data, but also, to understand what are the important players in cancers.  

 

Sleep arousal 
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Sleep plays an important role in our health and wellbeing. Inadequate sleep results in many 

negative outcomes, including obesity, cardiovascular dysfunction, hypotension, irritability, 

impaired memory, and depression. About one third of the general population in United States are 

affected by insufficient sleep (Liu et al. 2016b). The prevalence of inadequate sleep results in large 

economic costs (Hillman et al. 2018). Sleep arousals are transient intrusions of wakefulness into 

sleep. Excessive arousals due to disturbances are harmful resulting in fragmented sleep, daytime 

sleepiness and sleep disorders (Bonnet 1985, 1986; Ting and Malhotra 2005). Unlike common 

sleep stages (wakefulness, stage1, stage2, stage3, and rapid eye movement), sleep arousals are very 

brief and sparsely distributed during sleep, which makes the detection difficult.  Typically, each 

sleep stage lasts more than ten minutes and transition between sleep stages forms a unique 

architecture, the sleep circle. In contrast, sleep arousals are extremely short, being less than one 

minute, and sparsely distributed during sleep. The accumulated length of sleep arousals is usually 

less than 10 percent of the total sleep time. Therefore the prediction of sleep arousals is a highly 

imbalanced classification problem. In addition, the arousal patterns vary dramatically across 

individuals (e.g. some individuals do not have any arousal while others may have hundreds of 

arousals per night), further complexing the situation and rendering it a much more difficult task 

than sleep staging. Currently, polysomnographic recordings are manually examined by human 

experts to annotate sleep arousal events. This requires significant time and effort, due to the fact 

that one sleep record may contain millions of data points to be analyzed. Although pioneering 

progress has been made (Olsen et al. 2018; Basner et al. 2007; Behera et al. 2014; Fernández-

Varela et al. 2017; Alvarez-Estevez and Fernández-Varela 2019), there is a great demand for an 

accurate, robust, generalizable, and fast computational tool to automatically detect sleep arousals. 
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Thesis outline 

In this dissertation, I mainly focus on three projects related to different physiological systems at 

multiple time and length scales. In Chapter II, I describe a novel method to compare and contrast 

structural dynamics of evolutionarily-related proteins through PCA and MD simulations at the 

atom level. In Chapter III, I describe a novel trans-tissue approach for predicting proteomics from 

transcriptomics in cancer patient at the tissue level, using a classical machine learning model 

random forest (RF). In Chapter IV, I describe a novel deep neural network method for automatic 

segmentation of sleep arousals based on polysomnograms at the organism level. Finally in Chapter 

V, I summarize my work and propose future directions for these studies. 
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CHAPTER II 

Comparative Structural Dynamic Analysis of GTPases 

 

Abstract 

GTPases regulate a multitude of essential cellular processes ranging from movement and division 

to differentiation and neuronal activity. These ubiquitous enzymes operate by hydrolyzing GTP to 

GDP with associated conformational changes that modulate affinity for family-specific binding 

partners. There are three major GTPase superfamilies: Ras-like GTPases, heterotrimeric G proteins 

and protein-synthesizing GTPases. Although they contain similar nucleotide-binding sites, the 

detailed mechanisms by which these structurally and functionally diverse superfamilies operate 

remain unclear. Here we compare and contrast the structural dynamic mechanisms of each 

superfamily using extensive molecular dynamics (MD) simulations and subsequent network 

analysis approaches. In particular, dissection of the cross-correlations of atomic displacements in 

both the GTP and GDP-bound states of Ras, transducin and elongation factor EF-Tu reveals 

analogous dynamic features. This includes similar dynamic communities and subdomain 

structures (termed lobes). For all three proteins the GTP-bound state has stronger couplings 

between equivalent lobes. Network analysis further identifies common and family-specific 

residues mediating the state-specific coupling of distal functional sites. Mutational simulations 

demonstrate how disrupting these couplings leads to distal dynamic effects at the nucleotide-

binding site of each family. Collectively our studies extend current understanding of GTPase 
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allosteric mechanisms and highlight previously unappreciated similarities across functionally 

diverse families. 

 

Author Summary 

GTPases are a large superfamily of essential enzymes that regulate a variety of cellular processes. 

They share a common core structure supporting nucleotide binding and hydrolysis, and are 

potentially descended from the same ancestor. Yet their biological functions diverge dramatically, 

ranging from cell division and movement to signal transduction and translation. It has been shown 

that conformational changes through binding to different substrates underlie the regulation of their 

activities. Here we investigate the conformational dynamics of three typical GTPases by in silico 

simulation. We find that these three GTPases possess overall similar substrate-associated dynamic 

features, beyond their distinct functions. Further identification of key common and family-specific 

elements in these three families helps us understand how enzymes are adapted to acquire distinct 

functions from a common core structure. Our results provide unprecedented insights into the 

functional mechanism of GTPases in general, which potentially facilitates novel protein design in 

the future. 

  

Introduction  

Guanosine Triphosphate Phosphohydrolases (GTPases) are ubiquitous molecular machines 

mediating a variety of essential cellular processes (Scheffzek and Ahmadian 2005). Harnessing 

the GTP hydrolysis to modulate the affinity of partner molecule binding, GTPases transduce 

intracellular signals, control cell division and differentiation, and direct protein synthesis and 

translocation (Bourne et al. 1991; Simon et al. 1991; Takai et al. 2001; Jackson et al. 2010). In 
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general, GTP-bound GTPases in the active state are able to interact with partner effectors and 

regulate effector-mediated processes. GTP hydrolysis leads to the dissociation of GTPases from 

effectors, whereas exchange of GDP for GTP activates GTPases and restarts the signaling or 

protein synthesis cycle (Sprang 1997; Vetter and Wittinghofer 2001). Two classes of accessory 

proteins are involved in regulating this reaction cycle. GTPase-activating proteins (GAPs) 

accelerate the GTPase activity and the inactivation of GTPases, whereas guanine nucleotide 

exchange factors (GEFs) promote GDP dissociation and subsequent GTP binding, activating 

GTPases (Cherfils and Zeghouf 2013; Ross and Wilkie 2000; Hollinger and Hepler 2002). 

 

There are three major GTPase superfamilies: small Ras-like GTPase, heterotrimeric G protein α 

subunit (Gα) and protein-synthesizing GTPase. Both small and heterotrimeric G proteins 

participate in signal transduction. As the primary coupling molecule to membrane receptors, Gα 

together with its partner βγ subunits (Gβγ) mediate the very early stage signal transduction initiated 

by extracellular stimuli. In contrast, small GTPase does not interact with receptors directly and 

regulates more downstream events in the cascade. Finally, the protein-synthesizing proteins 

participate in initiation, elongation and termination of mRNA translation. Underlying this 

functional difference are the low sequence identity (<20%) and overall different molecular shapes 

among these three types of GTPases. In particular, whereas small G protein consists of a single 

canonical Ras-like catalytic domain (RasD), Gα has an extra α-helical domain (HD) inserted and 

elongation factor EF-Tu has two extra β-barrel domains (D2 and D3) subsequent to the C-terminus 

(Figure 2.1). In addition, Gα can form a complex with Gβγ and undergoes a cycle of altered 

oligomeric states during function. 
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In contrast to the functional and structural diversity, GTPases display significant conservation in 

the core structure of the catalytic domain. Small GTPase, Gα and EF-Tu contain a RasD consisting 

of six β strands (β1-β6) and five α helices (α1-α5) flanking on both sides of the β sheet (Figure 

2.1). Three highly conserved loops named P-loop (PL), switch I (SI), and switch II (SII) constitute 

the primary sites coordinating the nucleotide phosphates. This structural similarity suggests that at 

a fundamental level small GTPase, Gα and EF-Tu may utilize the same mode of structural 

dynamics for their allosteric regulation, which is likely inherited from their common evolutionary 

ancestor (Vale 1996; Leipe et al. 2002). However, it is currently unclear what are the general 

atomistic mechanisms underlying GTPase allostery and how these common mechanisms can be 

adapted to have specific function. 

  

Recent computational and experimental studies have gained much insight into the allosteric 

mechanisms of individual small and heterotrimeric G protein systems. Principal component 

analysis (PCA) of crystallographic structures and molecular dynamics (MD) simulations 

characterized the structural dynamics of small GTPase Ras and revealed an intriguing dynamical 

partitioning of Ras structure into two lobes: the N-terminal nucleotide binding lobe (lobe1) and 

the C-terminal membrane anchoring lobe (lobe2) (Gorfe et al. 2008; Grant et al. 2009). Several 

allosteric sites were identified in lobe 2 or between lobes, including L3 (the loop between β2 and 

β3), L7 (the loop between α3 and β5), and α5. Importantly, α5 is the major membrane-binding site 

and has been related to the nucleotide modulated Ras/membrane association (Abankwa et al. 2008). 

In addition, binding of small molecules at L7 has been reported to affect the ordering of SI and SII 

(Buhrman et al. 2010). Intriguingly, recent studies of Gα have revealed nucleotide associated 

conformational change and bilobal substructures in the catalytic domain largely resembling those 
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in Ras (Yao and Grant 2013; Yao et al. 2016). The allosteric role of lobe 2, which contains the 

major binding interface to receptors, has also been well established for Gα (Yao et al. 2016; Marin 

et al. 2001; Oldham et al. 2006; Chung et al. 2011; Rasmussen et al. 2011; Kaya et al. 2014; 

Alexander et al. 2014; Dror et al. 2015; Sun et al. 2015; Flock et al. 2015). Furthermore, the 

comparison between G proteins and translational factors via sequence and structural analysis 

indicates a conserved molecular mechanism of GTP hydrolysis and nucleotide exchange, and 

cognate mutations of key residues in the nucleotide-binding regions showed similar functional 

effects among these systems (Bourne et al. 1991; Sprang 1997; Vetter and Wittinghofer 2001; 

Leipe et al. 2002). Collectively, these consistent findings from separate studies support the 

common allosteric mechanism hypothesis of GTPases and underscore a currently missing detailed 

residue-wise comparison of the structural dynamics among different GTPase superfamilies. 

  

In this study, we compare and contrast the nucleotide-associated conformational dynamics 

between H-Ras (H isoform of Ras), Gαt (transducin α subunit) and EF-Tu (elongation factor 

thermo unstable), and describe how this dynamics can be altered by single point mutations in both 

common and family-specific ways. This entails the application of an updated PCA of 

crystallographic structures, multiple long time (80-ns) MD simulations, and recently developed 

network analysis approach of residue cross-correlations (Yao et al. 2016). In particular, we identify 

highly conserved nucleotide dependent correlation patterns across GTPase families: the active 

GTP-bound state displays stronger correlations both within lobe1 and between lobes, exhibiting 

an overall “dynamical tightening” consistent with the previous study in Gα alone (Yao et al. 2016). 

Detailed inspection of the residue level correlation networks along with mutational MD 

simulations reveal several common key residues that are potentially important for mediating the 
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inter-lobe communications. Point mutations of these residues substantially disrupt the couplings 

around the nucleotide binding regions in Ras, Gαt and EF-Tu. In addition, with the same network 

comparison analysis, we identify Gαt and EF-Tu specific key residues. Mutations of these residues 

significantly disrupt the couplings in Gαt and EF-Tu but have no or little effect in Ras. Our results 

are largely consistent with findings from experimental mutagenesis, with a number of dynamical 

disrupting mutants have been shown to have altered activities in either Ras or Gα. Our new 

predictions can be promising targets for future experimental testing. 

 

Results 

Principal component analysis (PCA) of Ras, Gαt/i and EF-Tu crystallographic structures 

reveals functionally distinct conformations. 

Previous PCA of 41 Ras crystallographic structures revealed distinct GDP, GTP and intermediate 

mutant conformations (Gorfe et al. 2008). Updating this analysis to include the 121 currently 

available crystallographic structures reveals consistent results but with two additional 

conformations now evident (Figure 2.2A). In addition to GDP (green in Figure 2.2A), GTP (red), 

and mutant forms, GEF-bound nucleotide free (purple) and so-called ‘state 1’ forms (orange) are 

now also apparent. In the GEF-bound form, the SI region is displaced in a distinct manner – 12Å 

away from the nucleotide-binding site coincident with the insertion of a helix of GEF into the PL-

SI cleft. The state 1 GTP-bound form was first observed via NMR and later high-resolution crystal 

structures were solved (Geyer et al. 1996; Araki et al. 2011; Muraoka et al. 2012). In contrast to 

the canonical GTP-bound conformation (red), the state 1 form (orange) lacks interaction between 

the two switches and the γ-phosphate of GTP, resulting in a moderate 7Å displacement of SI away 

from its more closed GTP conformation. 



 

 18 

  

The first two PCs capture more than 75% of the total mean-square displacement of all 121 Ras 

structures. Residue contributions from SI and SII dominate PC1 and PC2 (Figure 2.2D). The 

height of each bar in Figure 2.2D displays the relative contribution of each residue to a given PC. 

PC1 mainly describes the opening and closing of SI – more open in GEF-bound and state 1 forms, 

and more closed in nucleotide bound structures. PC1 also captures smaller scale displacement of 

L8 (the loop between β5 and α4), which resides 5Å closer to the nucleotide-binding pocket in the 

GEF-bound structures than the GTP-bound structure set. PC2 depicts SII displacements and clearly 

separates GTP from GDP bound forms (red and green, respectively). As we expect, the lack of γ-

phosphate in the GDP releases SII from the nucleotide, whereas in the GTP form SII is fixed by 

the hydrogen bond of the backbone amide of G60 with the γ-phosphate oxygen atom. This is also 

shown in the state 1 form where the hydrogen bond is disrupted with SII moderately displaced 

from the nucleotide (4Å on average from the canonical GTP group structures). 

  

PCA of 53 available Gαt/i structures described recently revealed three major conformational 

groups: GTP (red in Figure 2.2B), GDP (green) and GDI (GDP dissociation inhibitor; blue) bound 

forms (Yao et al. 2016). The first two PCs capture over 65% of the total variance of Cα atom 

positions in all structures. The dominant motions along PC1 and PC2 are the concerted 

displacements of SI, SII and SIII in the nucleotide-binding region as well as a relatively small-

scale rotation of the helical domain with respect to RasD (Figure 2.2E). 

  

PC1 separates GDI-bound from non-GDI bound forms. In GDI-bound structures the GDI interacts 

with both the HD and the cleft between SII and SIII of the Ras-like domain, increasing the distance 



 

 19 

between SII and SIII. Similar to Ras, PC2 of Gαt/i clearly distinguishes the GTP and GDP-bound 

forms, where again the unique γ-phosphate (or equivalent atom in GTP analogs) coordinates SI 

and SII. In addition, the SIII is displaced closer to the nucleotide, effectively closing the nucleotide-

binding pocket. 

  

PCA of 23 available full-length EF-Tu structures reveals distinct GTP and GDP conformations. 

PC1 dominantly captures nearly 95% of the total structural variance of Cα atom positions (Figure 

2.2C). It mainly describes the dramatic conformational transition in SI as well as the large rotation 

of two β-barrel domains D2 and D3 (Figure 2.2F). In the GTP-bound form, the C-terminal SI is 

coordinated to the γ-phosphate and Mg2+ ion, forming a small helix near SII. Meanwhile, D2 and 

D3 are close to RasD and create a narrow cleft with SI, serving as the binding site for tRNA (Nissen 

et al. 1995). In the GDP-bound form, the C-terminal helix in SI unwinds and forms a β-hairpin, 

protruding towards D2 and D3 (Polekhina et al. 1996). The highly conserved residue T62 (T35 in 

Ras) of EF-Tu moves more than 10Å away from its position in the GTP form and loses interaction 

with the Mg2+ ion. In addition, D3 rotates towards SI and D2 moves far away from the Ras-like 

domain. In contrast to PC1, PC2 only captures a very small portion (3.59%) of the structural 

variance in EF-Tu (Figure 2.2F). The major conformational change along PC2 is a small-scale 

rotation of D2 and D3 with respect to RasD in the GTP form. 

  

PCA of Ras, Gαt/i and EF-Tu demonstrates that the binding of different nucleotides and protein 

partners can lead to a rearrangement of global conformations in a consistent manner. In particular, 

within RasD, these three families display conserved nucleotide-dependent conformational 

distributions with major contributions from the switch regions. In the GTP-bound form of these 
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proteins, SI and SII are associated with the nucleotide through interacting with γ-phosphate. 

Despite these similarities, critical questions about their functional dynamics remain unanswered: 

How does nucleotide turnover lead to allosteric regulation of distinct partner protein-binding 

events? To what extent are the structural dynamics of these proteins similar beyond the switch 

region displacements evident in accumulated crystal structures? How do distal disease-associated 

mutations affect the functional dynamics for each family and are there commonalities across 

families? In the next section, we report MD simulations that address these questions, which are 

not answered by accumulated static experimental structures. 

  

MD simulations reveal distinct nucleotide-associated flexibility and cross-correlation near 

functional regions. 

MD simulations reveal distinct nucleotide-associated flexibility at known functional regions. 

Representatives of the distinct GTP and GDP-bound conformations of Ras, Gαt and EF-Tu were 

selected as starting points for MD simulation. Five replicated 80-ns MD simulations of these three 

proteins for each state (GTP and GDP totaling 2.4us; see Materials and Methods) exhibit high 

flexibility in the SI, SII, SIII/α3 and loop L3, L7, L8 and L9 regions (Figure 2.3A-C). The Cα 

atom root-mean-square fluctuation (RMSF) in Gαt shows that SI is significantly more flexible in 

the GDP-bound state (Figure 2.3B). The C-terminal SI of Ras and EF-Tu, corresponding to the 

shorter SI in Gαt, is also more flexible with GDP bound (Figure 2.3A & C). Interestingly, the 

middle part of SI in Ras and EF-Tu show higher fluctuations in the GTP-bound state. Moreover, 

SII is more flexible in the GTP-bound state in Ras. Detailed inspection reveals that SII always 

stays away from the nucleotide during the GDP-bound state MD simulations, whereas SII 

sometimes moves close to and interacts with the unique γ-phosphate of GTP, leading to higher 
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flexibility in the GTP-bound state. In contrast, the flexibility of SII in Gαt has no significant 

difference between states, whereas SII in EF-Tu is less flexible with GTP bound. This is due to 

the relatively compact interactions between SII and the unique D2 and D3 in the GTP-bound EF-

Tu. In fact, D2 and D3 show extremely higher flexibility in the GDP state (Figure 2.3C). Overall, 

the nucleotide-dependent flexibility of RasD in Ras, Gαt and EF-Tu are quite similar except for 

SII. 

  

The cross-correlations of atomic displacements derived from MD simulations also manifest 

conserved nucleotide-associated coupling in these three systems (Figure 2.3D-F). In both Ras and 

Gαt, significantly stronger couplings within the catalytic lobe 1 between PL, SI and SII can be 

found only in the GTP-bound state (red rectangles in Figure 2.3D & E). Interestingly, a unique 

inter-lobe coupling between SII and SIII/α3 also characterizes the GTP-bound state in both 

systems (blue rectangles in Figure 2.3D & E). In EF-Tu, the intra-lobe 1 and inter-lobe couplings 

are similar between states (red and blue rectangles in Figure 2.3F). Intriguingly, a lot of negative 

correlations between D2 and RasD of EF-Tu are found in the GDP-bound state, indicating the 

swing motion of D2 with respect to RasD during MD simulations (lower triangle in Figure 2.3F). 

 

Correlation network analysis displays similar nucleotide-associated correlation in Ras, Gαt 

and ET-Tu 

Consensus correlation networks for each nucleotide state were constructed from the corresponding 

replicate MD simulations. In these initial networks, each node is a residue linked by edges whose 

weights represent their respective correlation values averaged across simulations (see Materials 

and Methods). These residue level correlation networks underwent hierarchical clustering to 
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identify groups of residues (termed communities) that are highly coupled to each other but loosely 

coupled to other residue groups. Nine communities were identified for Ras and eleven for Gαt and 

EF-Tu (Figure 2.4). The two additional family specific communities not present in Ras correspond 

to two regions of HD in Gαt and D2 and D3 in EF-Tu. 

  

In the resulting community networks the width of an edge connecting two communities is the sum 

of all the underlying residue correlation values between them. Interestingly, Ras, Gαt and EF-Tu 

community networks can be partitioned into two major groups (dashed lines in Figure 2.4) 

corresponding to the previously identified lobes for Ras and the RasD in Gαt (Gorfe et al. 2008; 

Yao et al. 2016). The boundary between lobes is located at the loop between α2 and β4. In these 

proteins, lobe1 includes the nucleotide-binding communities (PL, SI and SII) as well as the N-

terminal β1-β3 and α1 structural elements. Lobe2 includes α3-α5, L8 and the C-terminal β4-β6 

strands. 

  

Comparing the GTP and GDP community networks of these three proteins reveals common 

nucleotide-dependent coupling features. In particular, for Ras and Gαt, comparing the relative 

strength of inter-community couplings in GTP and GDP networks using a nonparametric 

Wilcoxon test across simulation replicates reveals common significantly distinct coupling patterns 

(colored edges in Figure 2.4A & B). Within lobe1 stronger couplings between PL, SI and SII are 

observed for the GTP state of both families. This indicates that the γ-phosphate of GTP leads to 

enhanced coupling of these proximal regions. This is consistent with our PCA results above, where 

PC2 clearly depicts the more closed conformation of SI and SII in the GTP bound structures 

(Figure 2.2D & E). In addition, a significantly stronger inter-lobe correlation between SII and α3 
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is evident for the GTP state of both families, which is not available from analysis of the static 

experimental ensemble alone. This indicates that nucleotide turnover can lead to distinct structural 

dynamics not only at the immediate nucleotide-binding site in lobe 1 but also at the distal lobe 2 

region. 

  

Intriguingly, similar patterns of intra and inter-lobe dynamic correlations are observed in EF-Tu 

(Figure 2.4C). Within lobe1, significantly stronger correlations between PL-SI and PL-SII are 

evident in the GTP state, although SI-SII coupling becomes weaker in this state. In fact, the C-

terminal β-hairpin of SI moves towards and interacts extensively with SII and D3 in the GDP 

bound state, leaving the nucleotide-binding site widely open. Moreover, our results reveal that SII 

and SIII/α3 of EF-Tu are more tightly coupled in the GTP state, resembling the strong inter-lobe 

couplings in the GTP bound Ras and Gαt. It is worth noting that this conserved structural dynamic 

coupling is evident only from the comparative network analysis and is not accessible from PCA 

of crystal structures. 

 

The common residue-wise determinants of structural dynamics in Ras, Gαt and EF-Tu. 

Comparative network analysis highlights the common residue-wise determinants of nucleotide-

dependent structural dynamics. Besides correlations within lobe1, inter-lobe couplings are also 

significantly stronger in the GTP state networks of Ras, Gαt and EF-Tu. Inspection of the residue-

wise correlations between communities reveals common major contributors to the SII – α3 

couplings in the three proteins (red residues in Table S2.1). In particular, M72Ras in SII and 

V103Ras in α3 act as primary contributors to inter-lobe correlations in Ras. Interestingly, the 

equivalent residues in the other two systems, F211Gαt or I93EF-Tu in SII and F255Gαt or V126EF-Tu in 
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α3/SIII also contribute to the inter-lobe couplings. We further examined the importance of these 

residues by MD simulations of mutant GTP-bound systems. Results indicate that each single 

mutation M72ARas and V103ARas can significantly reduce the couplings between SI and PL, 

indicating that these mutations disturb couplings at distal sites of known functional relevance 

(Figure 2.5A & D). Moreover, the cognate mutations F211AGαt and F255Gαt in Gαt not only 

decouple SI and PL but also SI and SII (Figure 2.5B & E). Similarly, the analogous mutation 

I93AEF-Tu decreases the correlations between PL and SI, whereas V126AEF-Tu decouples PL and 

SII (Figure 2.5C & F). The simulation results indicate that single alanine mutation of residues 

contributing to SII-α3 couplings diminishes the couplings of the nucleotide binding regions, and 

this allosteric effect is common in all the three proteins. 

  

Inter-lobe couplings that are distal from the nucleotide binding regions are also shown to be critical 

for the nucleotide dependent dynamics in Ras, Gαt and EF-Tu. By inspecting the residue level 

couplings between L3 and α5, we identified common distal inter-lobe couplings in the three 

proteins. Mutational simulations indicate that the substitutions K188AGαt and D337AGαt 

significantly decouple SI from the PL and SII regions (Figure 2.6B & E). Interestingly, the 

mutations K188AGαt and D337AGαt have been reported to cause a 6-fold and 2-fold increase in 

nucleotide exchange, respectively, but no direct structural dynamic mechanism was established 

(Marin et al. 2001). We further tested mutations of analogous residues in Ras. We considered both 

D47Ras and E49Ras as the equivalent residues to K188Gαt (due to the longer L3 region of Ras), and 

R164Ras as the equivalent residue to D337Gαt. Both double mutation D47A/E49ARas and single 

mutation R164ARas significantly reduce the correlations between PL and SI (Figure 2.6A & D). 

We note that the functional consequences of mutating these residues in Ras has been highlighted 
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in a previous study, in which the salt bridges between D47/E49Ras in L3 and R161/R164Ras in α5 

were shown to be involved in the reorientation of Ras with respect to the plasma membrane, and 

enhanced activation of MAPK pathway (Abankwa et al. 2008). Moreover, substitutions of 

analogous residues R75AEF-Tu (L3) and D207AEF-Tu (α5) also significantly reduce the couplings 

between PL and SI (Figure 2.6C & F). Our results indicate that the conserved interactions between 

L3 and α5 are important for maintaining the close coordination of the distal SI, SII and PL around 

the nucleotide, and this is common to these three proteins. 

  

Network analysis identifies family-specific residue substitutions that can also perturb 

structural dynamics. 

Comparison of the GTP-bound residue-wise networks of Ras, Gαt and EF-Tu reveals that the N-

terminus of α3 strongly couples SII only in Gαt and EF-Tu. In particular, we identified residues 

R201Gαt or A86EF-Tu (SII) and E241Gαt or Q115EF-Tu (α3) as underlying these strong couplings (blue 

residues in Table S2.1). These residues are specific to Gαt and EF-Tu because the corresponding 

residues E62Ras in SII and K88Ras in α3 have no contribution in Ras (green residues in Table S2.1). 

Mutational MD simulations indicate that substitutions E241AGαt and Q115AEF-Tu have a similar 

drastic effect on the coupling of nucleotide binding regions (Figure S2.1). In particular, the 

couplings between PL, SII and PL are all significantly reduced (Figure S2.1B & C). We note that 

E241AGαt in Gαs (the α subunit of the stimulatory G protein for adenylyl cyclase) was previously 

reported to impair GTP binding but the structural basis for this allosteric effect has been unknown 

(Iiri et al. 1997, 1999). Our results indicate that weakened correlations of the nucleotide-binding 

regions in E241AGαt as a consequence of allosteric mutations in SIII/α3 and SII likely underlie the 

reported impaired GTP binding. Moreover, we identified residue E232Gαt as a Gαt-specific primary 
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contributor to the inter-lobe couplings in SIII, which has no direct counterparts in Ras or EF-Tu 

due to the absence of SIII (purple residues in Table S2.1). The simulation of mutation E232AGαt 

shows diminished couplings between PL, SI and SII, as well (Figure S2.2A). Similar effects of 

mutations R201AGαt and D234AGαt are also observed (Figure S2.2B & C). 

 

Mutations of the counterpart residues E62ARas and K88ARas result in no significant change in the 

coupling of nucleotide binding loops in Ras (Figure S2.1A). Collectively these findings indicate 

that in Gαt and EF-Tu both N- and C-terminal α3 positions dynamically couple with SII, whereas 

in Ras the communication between α3 and SII is mainly through the C-terminus of α3. In addition, 

our results suggest that SIII plays a unique role in Gαt not only mediating the couplings between 

the two lobes but also allosterically maintaining the tight correlations between SI, SII and PL. 

 

Discussion 

In this work, our updated PCA of Ras structures captures two new conformational clusters 

representing the GEF-bound state and “state 1”, respectively, in addition to the canonical GTP and 

GDP forms. By comparing the Ras PCA to PCA of Gαt/i and EF-Tu, we reveal common nucleotide 

dependent collective deformations of SI and SII across G protein families. Our extensive MD 

simulations and network analyses reveal common nucleotide-associated conformational dynamics 

in Ras, Gαt and EF-Tu. Specifically, these three systems have stronger intra-lobe1 (PL – SI and 

PL – SII) and inter-lobe (SII – SIII/α3) couplings in the GTP-bound state. Meanwhile, with the 

network comparison approach we further identify residue-wise determinants of commonalities and 

specificities across families. Residues M72Ras (SII), V103Ras (α3), D47/E49Ras (L3) and R164Ras 

(α5) are predicted to be crucial for inter-lobe communications in Ras. Mutations of these distal 
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residues display decreased coupling strength in SI – PL. Interestingly, the analogous residues in 

the other two proteins, F211Gαt/I93EF-Tu (SII), F255Gαt/V126EF-Tu (α3), K188Gαt/R75EF-Tu (L3) and 

D337Gαt/D207EF-Tu (α5) also have important inter-lobe couplings and show similar decoupling 

effects upon alanine mutations. Besides the key residues that are common in the three systems, 

residues mediating inter-lobe couplings only in Gαt and EF-Tu are identified. These include 

R201Gαt/A86EF-Tu and E241Gαt/Q115EF-Tu, whose cognates in Ras do not have significant effect on 

the nucleotide-binding regions upon mutation. In addition, Gαt specific residue E232Gαt in SIII 

(which is missing in Ras and EF-Tu) is identified to be important to the couplings of the nucleotide-

binding regions. Importantly, some of our highlighted mutants (D47A/E49ARas, K188AGαt, 

D207AGαt and R241AGαt) have been reported to have functional effects by in vitro experiments. 

Our analysis provides insights into the atomistic mechanisms of these altered protein functions. 

  

Using differential contact map analysis of crystallographic structures, Babu and colleagues 

recently suggested a universal activation mechanism of Gα (Flock et al. 2015). In their model, 

structural contacts between α1 and α5 act as a ‘hub’ mediating the communications between α5 

and the nucleotide. These contacts are broken upon the binding of receptor at α5, leading to a more 

flexible α1 and the destabilization of nucleotide binding. According to their studies, however, these 

critical α1/α5 contacts do not exist in Ras structures. Thus, they concluded that, unlike Gα, α5 in 

Ras does not have allosteric regulation of the nucleotide. It is worth noting that Babu’s work is 

purely based on the comparison of structures without considering protein dynamics. In fact, our 

study indicates that functionally important communications may not be directly observed from 

static structures. For example, the inter-lobe couplings between SII and SIII/α3 are not captured 

by PCA of structure ensemble, but they are clearly shown in our network analysis of structural 
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dynamics. By inspecting structural dynamics, we find that α5 in Ras actually plays an allosteric 

role, in which point mutation (R164A) substantially disrupts the couplings in the nucleotide 

binding regions. The potential salt bridges between D47/E49 in L3 and R161/R164 in α5 are shown 

in Figure S2.3. 

  

A previous study of Ras GTPases via an elastic network model – normal mode analysis (ENM-

NMA) revealed similar bilobal substructures and found that functionally conserved modes are 

localized in the catalytic lobe1, whereas family-specific deformations are mainly found in the 

allosteric lobe2 (Raimondi et al. 2010). The subsequent study via MD, in contrast, indicated that 

the conformational dynamics of Ras and Gαt are distinct, especially in the GDP state (Raimondi 

et al. 2011). We note that in that study only a single MD simulation trajectory was analyzed, which 

is insufficient to assess the significance of the observed difference. Moreover, few atomistic details 

were given in that work. In our study, we make improvements by building ensemble-averaged 

networks based on multiple MD simulations instead of a single trajectory. This increases the 

robustness of the networks and largely reduces statistical errors. In addition, our correlation 

analysis provides residue wise predictions of potential important positions that mediate 

communications between functional regions. Overall, separation of functionally conserved and 

specific residues in conformational dynamics provides us unprecedented insights into protein 

evolution and engineering. 

 

Materials and Methods 

Crystallographic structures preparation 
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Atomic coordinates for all available Ras, Gαt/i and EF-Tu crystal structures were obtained from 

the RCSB Protein Data Bank (Rose et al. 2017) via sequence search utilities in the Bio3D package 

version 2.2 (Grant et al. 2006; Skjærven et al. 2014). Structures with missing residues in the switch 

regions were not considered in this study, resulting in a total of 143 chains extracted from 121 

unique structures for Ras, 53 chains from 36 unique structures for Gαt/i and 34 chains from 23 

unique structures for EF-Tu. Prior to analyzing the variability of the conformational ensemble, all 

structures were superposed iteratively to identify the most structurally invariable region. This 

procedure excludes residues with the largest positional differences (measured as an ellipsoid of 

variance determined from the Cartesian coordinate for equivalent Cα atoms) before each round of 

superposition, until only invariant “core” residues remained (Gerstein and Altman 1995). The 

identified “core” residues were used as the reference frame for the superposition of both crystal 

structures and subsequent MD trajectories. 

 

Principal component analysis 

PCA was employed to characterize inter-conformer relationships of both Ras and Gαt/i. PCA is 

based on the diagonalization of the variance-covariance matrix, Σ, with element Σij built from the 

Cartesian coordinates of Cα atoms, r, of the superposed structures: 

Σij = <(ri - <ri>)> · <(rj - <rj>)>, 

 where i and j enumerate all 3N Cartesian coordinates (N is the number of atoms being considered), 

and <·> denotes the average value. The eigenvectors, or principal components, of Σ correspond to 

a linear basis set of the distribution of structures, whereas each eigenvalue describes the variance 

of the distribution along the corresponding eigenvector. Projection of the conformational ensemble 
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onto the subspace defined by the top two largest PCs provides a low-dimensional display of 

structures, highlighting the major differences between conformers. 

Molecular dynamics simulations 

Similar MD simulation protocols as those used in (Yao et al. 2016) were employed. Briefly, the 

AMBER12 (http://ambermd.org/) and corresponding force field ff99SB (Hornak et al. 2006) were 

exploited in all simulations. Additional parameters for guanine nucleotides were taken from 

Meagher et al. (Meagher et al. 2003). The Mg2+·GDP-bound Ras crystal structure (PDB ID: 4Q21), 

Gαt structure (PDB ID: 1TAG) and EF-Tu structure (PDB ID: 1TUI) were used as the starting 

point for GDP-bound simulations. The Mg2+·GNP (PDB ID: 5P21), the Mg2+·GSP (PDB ID: 

1TND) and the Mg2+·GNP (PDB ID: 1TTT) bound structures were used as the starting point for 

GTP-bound simulations of Ras, Gαt and EF-Tu, respectively. These structures were identified as 

cluster representatives from PCA of the crystallographic structures. Prior to MD simulations, the 

sulfur (S1γ)/nitrogen (N3β) atom in the GTP-analogue was replaced with the corresponding 

oxygen (O1γ) / oxygen (O3β) of GTP. All Asp and Glu were deprotonated whereas Arg and Lys 

were protonated. The protonation state of each His was determined by its local environment via 

the PROPKA method (Olsson et al. 2011). Each protein system was solvated in a cubic pre-

equilibrated TIP3P water box, where the distance was at least 12Å from the surface of the protein 

to any side of the box. Then sodium ions (Na+) were added to neutralize the system. Each MD 

simulation started with a four-stage energy minimization, and each stage employed 500 steps of 

steepest descent followed by 1500 steps of conjugate gradient. First, the atomic positions of ligands 

and protein were fixed and only solvent was relaxed. Second, ligands and protein side chains were 

relaxed with fixed protein backbone. Third, the full atoms of ligands and protein were relaxed with 

fixed solvent. Fourth, all atoms were free to relax with no constraint. Subsequent to energy 
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minimization, 1ps of MD simulation was performed to increase the temperature of the system from 

0K to 300K. Then 1ns of simulations at constant temperature (T=300K) and pressure (P=1bar) 

was further performed to equilibrate the system. Finally, 80ns of production MD was performed 

under the same condition as the equilibration. For long-range electrostatic interactions, particle 

mesh Ewald summation method was used, while for short-range non-bonded Van der Waals’ 

interactions, an 8Å cutoff was used. In addition, a 2-fs time step was use. The center-of-mass 

motion was removed every 1000 steps and the non-bonded neighbor list was updated every 25 

steps. 

We performed a total of 1,920 ns MD simulations and analyzed results from multiple production 

phase 80ns simulations for each of our 3 systems, including the wild type in two nucleotide states 

and (5 x ras / 8 x Gat / 5 x EF-Tu) mutant systems in the GTP-bound states (i.e. 80ns x (7 + 10 +7) 

= 1,920 ns; see details in Tables S2.2). The RMSD time courses for the above systems are shown 

in Figure S2.4. 

 

Correlation network construction 

Consensus correlation networks were built from MD simulations to depict dynamic couplings 

among functional protein segments. A weighted network graph was constructed where each node 

represents an individual residue and the weight of edge between nodes, i and j, represents their 

Pearson’s inner product cross-correlation value cij (Ichiye and Karplus 1991) during MD 

trajectories. The approach is similar to the dynamical network analysis method introduced by 

Luthey-Schulten and colleagues (Sethi et al. 2009). However, instead of using a 4.5Å contact map 

of non-neighboring residues to define network edges, which were further weighted by a single 
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correlation matrix, we constructed consensus networks based on five replicate simulations in the 

same way as described before (Yao et al. 2016). 

  

Network community 

Hierarchical clustering was employed to identify residue groups, or communities, that are highly 

coupled to each other but loosely coupled to other residue groups. We used a betweenness 

clustering algorithm similar to that introduced by Girvan and Newman (Girvan and Newman 2002). 

However, instead of partitioning according to the maximum modularity score, which is usually 

used in unweighted networks, we selected the partition closest to the maximum score but with the 

smallest number of communities (i.e. the earliest high scoring partition). This approach avoided 

the common cases that many small communities were generated with equally high partition scores. 

The resulting networks under different nucleotide-bound states showed largely consistent 

community partition in Ras, Gαt and EF-Tu, with differences mainly localized at the nucleotide 

binding PL, SI, SII and α1 regions. To facilitate comparison between states and families, the 

boundary of these regions was re-defined based on known conserved functional motifs. Re-

analysis of the original residue cross-correlation matrices with the definition of communities was 

then performed. Only inter-community correlations were of interest, which were calculated as the 

sum of all underlying residue correlation values between two given communities satisfying that 

the smallest atom-atom distance between corresponding residue pairs was less than 4.5Å (for Gαt 

and EF-Tu) or 6 Å (for Ras) for more than 75% of total simulation frames. A larger cutoff was 

selected for Ras because the overall residue level correlations are weaker in Ras. A standard 

nonparametric Wilocox test was performed to evaluate the significance of the differences of inter-

community correlations between distinct states. 
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Figures 

Figure 2.1 Structural comparison of Ras, Gαt and EF-Tu reveals common canonical Ras-
like domain.  The Ras-like domains of Ras (A), Gαt (B) and EF-Tu (C) are shown in cartoon and 
the extra domains in Gαt and EF-Tu are shown as gray tubes. Highly conserved regions (PL, SI, 
and SII) and helices (α1, α3, α4, and α5) are labeled. The PDB IDs of these three structures are 
5P21 (Ras), 1TND (Gαt) and 1TTT (EF-Tu). 
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Figure 2.2 Principal component analysis of Ras, Gαt/i and EF-Tu crystallographic structures 
reveals distinct nucleotide-associated conformations. (A-C) Projection of 121 Ras (A), 53 Gαt/i 
(B) and 23 EF-Tu (C) PDB structures (represented as squares) onto the first two PCs reveals 
different conformational clusters corresponding to GTP (red), GDP (green), GEF (purple) and GDI 
(blue) bound states. A distinct cluster of GTP-bound structures in Ras corresponds to the “State 1” 
state (orange). The inserted figures show that the first two PCs capture 76.1%, 65.4% and 97.7% 
of the total structural variances in Ras, Gαt/i and EF-Tu, respectively. (D-F) The contributions of 
each residue to PC1 (brown) and PC2 (grey) show that the switch regions mainly correspond to 
the accumulated structural differences in Ras (D) and Gαt/i (E). In addition to switch regions, 
Domain 2 and Domain 3 also contribute to the structure differences in EF-Tu (F). The marginal 
black and grey rectangles with labels on top of them represent the location of alpha-helix and beta-
strand secondary structures. 
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Figure 2.3 Nucleotide specific residue fluctuations and cross-correlations of atomic 
displacements from molecular dynamics simulations.  (A-C) The ensemble averaged root-
mean-square fluctuation (RMSF) reveals nucleotide dependent flexibilities that are consistent in 
the Ras-like domain of Ras (A), Gαt (B) and EF-Tu (C). Residues with significant differences (p-
value < 0.01) between GTP and GDP bound states are highlighted with dashed lines. (D-F) The 
cross-correlations reveal stronger intra-lobe1 couplings between PL, SI and SII (red rectangles) 
and inter-lobe couplings between SII and SIII/α3 (blue rectangles) in the GTP-bound state (upper 
triangle) for both Ras (D) and Gαt (E). 
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Figure 2.4 Correlation network analysis reveals similar patterns of nucleotide-dependent 
couplings in Ras, Gαt and EF-Tu.  (A) Network communities are represented as colored circles 
with different radius indicating the number of residues within the community. The width of an 
edge is determined by the summation of all residue level correlation values between two connected 
communities. Red and green edges indicate enhanced GTP or GDP couplings that are significantly 
(p-value < 0.05) or more than two-fold stronger in one state than the other. All other lines are 
colored gray. Dashed lines with a light gray background represent the two-lobe substructures. (B 
& C) Similar nucleotide-associated network patterns are evident in the GTP (top) and GDP 
(bottom) bound state of Gαt (B) and EF-Tu (C), except for the SI and SII coupling. 
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Figure 2.5 Mutations of common residue-wise determinants of structural dynamics between 
SII and α3 have similar effects in Ras, Gαt and EF-Tu.  Mutations M72ARas in SII (A) and 
V103ARas in α3 (D) significantly reduce the couplings between PL and SI. The counterpart 
mutations in Gαt and EF-Tu, F211AGαt in SII (B), F255AGαt in α3 (E), I93AEF-Tu in SII (C) and 
V126AEF-Tu in α3 (F) have similar effects in the nucleotide-binding region – significantly reducing 
the coupling between PL, SI and SII. 
 

 



 

 38 

Figure 6. Mutations of common residue-wise determinants of structural dynamics between 
L3 and α5 have similar effects in Ras, Gαt and EF-Tu.  Mutations D47A/E49ARas in L3 (A) 
and R164ARas in α5 (D) significantly reduce the couplings between PL and SI. The counterpart 
mutations in Gαt and EF-Tu, K188AGαt in L3 (B), D337AGαt in α5 (E), R75AEF-Tu in L3 (C) and 
D207AEF-Tu in α5 (F) have similar effects in the nucleotide-binding region – significantly reducing 
the coupling between PL, SI and SII. 
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Supplementary Figures and Tables 
 
Figure S2.1 Mutations of distal Gαt and EF-Tu specific residues perturb structural dynamics 
at nucleotide binding regions. 
In each panel, networks of wild type GTP-bound (WT-GTP, top) and mutant GTP-bound (MU-
GTP, bottom) are compared. Red and blue edges indicate enhanced WT or MU couplings that are 
significantly (p-value <0.05). All other lines are colored gray. Specific mutations E241AGαt (B) 
and Q115AEF-Tu (C) in α3 dramatically reduce the couplings between the functional regions PL, 
SI and SII, whereas the counterpart mutation K88ARas (A) has minor effects. 
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Figure S2.2 Mutations of distal Gαt specific residues perturb structural dynamics at 
nucleotide binding regions. 
In each panel, networks of wild type GTP-bound (WT-GTP, top) and mutant GTP-bound (MU-
GTP, bottom) are compared. Red and blue edges indicate enhanced WT or MU couplings that are 
significantly (p-value <0.05). All other lines are colored gray. Gαt specific mutations E232AGαt 
(A) in SIII dramatically reduce the couplings between the functional regions PL, SI and SII. 
Similar effects of mutations R201AGαt (B) and D234AGαt (C) are also observed in Gαt. 
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Figure S2.3 The potential salt bridges between D47/E49 in L3 and R161/R164 in α5 in Ras-
GTP wild type. 
The L3 loop and helix α5 are shown as secondary structure cartoons in blue and green respectively. 
The side chains of the noted residues are highlighted, with oxygen atoms in red and nitrogen atoms 
in blue. Labeled distances are in the unit of Angstrom (Å). 
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Figure S2.4 The RMSD time-course plots of all 24 MD simulation systems. 
In each system, the five simulation replicates are shown in five different colors. 
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Table S2.1 Residue-wise contributions to inter-community couplings. 
The numbers represent the residue-wise contributions to inter-community couplings. For example, 
the sum of correlations between residue M72 in SII and all residues in SIII/ α3 is 1.19 (after 
filtering by contact map). The first row contains common counterpart residues (red) connecting 
SII and SIII/α3 in three proteins. The second row contains family-specific functional residues: 
residues in Gαt and EF-Tu (blue) contribute to the dynamic correlations between SII and SIII/α3, 
whereas their counterparts in Ras (green) have no contributions. The third row contains Gαt 
specific residue in SIII, which has no counterparts in the other two proteins. 
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Table S2.2 Summary of systems simulated. 
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CHAPTER III 

Transfer Learning Improves The State of The Art for  

Protein Abundance Prediction in Cancers 

 

Abstract 

The mechanism by which information is translated from transcriptome to proteome and ultimately 

to phenotype has long been an intriguing problem. The observed baseline Pearson’s correlation 

between mRNA and protein levels across cancer samples is low (corr=0.40). Here we report a 

method for predicting proteome from transcriptome. First, we establish a generic model capturing 

the correlation between mRNA and protein abundance of a single gene. Second, we build a gene-

specific model capturing the inter-dependencies among multiple genes in a regulatory network. 

Third, we create a cross-tissue model by transfer learning the information of shared regulatory 

networks and pathways across cancer tissues. This method ranked first in the 2017 NCI-CPTAC 

DREAM Proteogenomics Challenge, which is a benchmark platform to unbiasedly evaluate 

prediction accuracy of proteome based on genomic and transcriptomic data in breast and ovarian 

cancer patients. The performance of our method (corr=0.53) on the held-out test dataset is 

approaching the accuracy of experimental replicates (corr=0.59). Key functional pathways and 

network modules controlling the proteomic abundance in cancers were revealed.
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Significance Statement 

Understanding the controllers of protein abundance is important for understanding the mechanisms 

driving the phenotypic differences across individuals. The proteomic data are invaluable sources 

of information to understanding the regulation of gene expression. However, it requires 

considerable time and effort to measure proteome experimentally. Here we present a novel method 

for predicting protein abundance from mRNA levels by transfer learning the shared gene 

regulatory network between breast and ovarian cancers. The performance of our method 

approaches the accuracy of experimental replicates. 

 

Introduction 

The central dogma of information flow from DNA to mRNA to protein has been applied for nearly 

six decades (Crick 1958). Yet, the cell functions as a whole: besides the translation from mRNA 

to protein, many other features are important to the complex protein expression process, including 

microRNA (Lovett and Rogers 1996a), upstream open reading frame (Lovett and Rogers 1996b), 

cap-binding proteins (Raczynska et al. 2010), poly(A) tails (Guhaniyogi and Brewer 2001), 

nonsense-mediated decay (Chang et al. 2007) or alternative splicing (Black 2003). In addition, the 

mRNA and protein abundances are dynamic, due to ubiquitination and other degradation 

mechanisms to fulfill diverse condition-dependent functional requirements (Liu et al. 2016). These 

complicated regulatory mechanisms underlying protein translation lead to the weak correlations 

between mRNA and protein abundances, when evaluating the same gene across multiple samples 

(Liu et al. 2016; Vogel and Marcotte 2012; Ning et al. 2012; Zhang et al. 2014, 2016; Mertins et 

al. 2016). Identifying the missing factors affecting transcriptomic and proteomic correlation is 

important to understanding the biological mechanisms behind phenotypic variances and diseases.  
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This is particularly true in cancers. Transcriptomic and proteomic variations across individuals are 

expected in diverse cancers, such as colorectal, breast, and ovarian cancers (Mertins et al. 2016; 

Zhang et al. 2016, 2014). These variations have important clinical consequences and implications, 

due to activation of different functional pathways, leading to different subtypes in the same organ, 

and biomarkers indicative of high- and low-risk patients in survival analysis (Zhang et al. 2014; 

Mertins et al. 2016; Zhang et al. 2016). These transcriptional and proteomic expression profiles 

provide invaluable information to studying cancer mechanisms. However, compared with the fast, 

inexpensive RNA sequencing profiles, large-scale high-quality proteomic data are costlier to 

obtain, despite remarkable progress. Therefore, a computational model to predict protein 

abundance from mRNA data could not only help to quickly obtain an estimation of proteomic data, 

but also, to understand what are the important players in cancers.  

 

The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

(Ellis et al. 2013) and The Cancer Genome Atlas (TCGA) provide large datasets of proteomic and 

transcriptomic data in many cancers, which is an unprecedented source for exploring the regulatory 

process of protein expression. In 2017, the Dialogue on Reverse Engineering Assessment and 

Method (DREAM) (Stolovitzky et al. 2007) organized the NCI-CPTAC Proteogenomics 

Challenge. This challenge provides a systematic benchmark to evaluate computational methods 

for predicting proteomic profiles in breast and ovarian cancers. Here, we describe the best-

performing algorithm in this challenge, and reveal the insights derived. Our approach pinpoints 

the relative importance of the innate correlations between mRNA and protein levels, and the global 

direct and indirect interactions across all genes in controlling the expression level of a protein. 
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Based on the intuition that the regulatory mechanism may be shared across different cancer types, 

we built a new model that shares parameters across two cancers, and improved prediction 

performance in both cancers. This reveals a new, unexplored aspect of the regulatory mechanism 

that is previously not captured in single tissue modelling approaches. Pathway analysis and gene-

gene interaction network indicate that functionally different gene sets have different predictability 

profiles and regulatory powers. In sum, our approach offers a new field standard for protein 

abundance prediction across cancer patients, and the key features used in our model and the 

innovation of transfer learning across two cancer types will be instructive for future method 

development and protein expression regulatory mechanism exploration. 

 

Results 

Overview of the experimental design for protein abundance prediction 

In this study, we use a training dataset provided by NCI-CPTAC, which consists of the 

transcriptome and proteome data from 77 breast and 105 ovarian cancer samples. To unbiasedly 

evaluate prediction methods, a docker image system was used in the NCI-CPTAC DREAM 

challenge for participants to submit their code and score on a held-out testing dataset of the 

proteomic data from 108 breast and 82 ovarian cancer samples (Figure 3.1 top-center). For each 

protein, the primary evaluation metric was the Pearson’s correlation between predictions and 

observations across samples. The final score was calculated by averaging the prediction 

correlations of all proteins under consideration. In addition, the Normalized Root Mean Square 

Error (NRMSE) between predictions and observations was used as the secondary scoring metrics 

to evaluate models. 
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We developed three major components in order to extract informative features and exploit the 

training data. First, the intrinsic correlation between mRNA and protein levels was considered in 

the generic model (Figure 3.1 top-left). Second, for each protein under investigation, we utilized 

the nonlinear interdependencies among all genes in the gene-specific model (Figure 3.1 bottom). 

Third, the model weights were interchangeable between cancer tissues, capturing the shared 

regulatory mechanism in the trans-tissue model (Figure 3.1 top-right). By integrating these 

components, we enhanced the prediction of protein abundance in both breast and ovarian cancers. 

 

Dissection of critical components in determining protein abundance 

To quantify the relative contributions of features that determine protein abundance, we 

investigated the performance gain of each component. The average Pearson’s correlations of the 

generic model were 0.37 and 0.40 in breast and ovarian cancer, respectively (Figure 3.2A left; 

Table S3.1). By combining the predictions from the gene-specific model, we significantly 

improved the correlations to 0.40 (breast) and 0.46 (ovary) (Figure 3.2A middle; p<2.2e-16; see 

Materials and Methods). To consider the similarity across cancer tissues, we further integrated 

the trans-tissue model and achieved the highest correlations of 0.41 (breast) and 0.47 (ovary) 

(Figure 3.2A right; p<2.2e-16; see Materials and Methods). In addition, the RMSEs of these 

components were also calculated (Figure S3.1A). 

 

When we built the gene-specific model, a key question was how many genes should be used as 

features for predicting protein abundance. As we expected, as the number of features increased 

(the top 10, 100, or 1,000 expressed genes), the predictive performances consistently improved in 

terms of both correlation (Figure S3.2) and RMSE (Figure S3.3). Interestingly, filtering feature 
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genes based on prior knowledge of Gene Ontology (GO) (Ashburner et al. 2000; The Gene 

Ontology Consortium 2017) related to ‘translation’ and ‘gene expression’ did not improve the 

performance, whereas using all genes as features achieved the highest correlations (“GO-features” 

and “All-features” in Figure 3.2B) and lowest RMSEs (Figure S3.1B). These results indicate that 

the abundance of a single protein is regulated by the commonly existing gene-gene associations; 

the regulatory contributions are not from a small set of genes but universally distributed among all 

genes. 

 

To further investigate contributions of these three models, we performed the grid-search of various 

weighting ratios of them. We observed similar “dark” right arms of the ternary plots in both breast 

and ovarian cancers (Figure 3.2C,D), where the correlations were relatively low. This is because 

the gene-specific and trans-tissue models captured non-redundant regulatory information, 

compared with the generic model. When integrating different types of models, we significantly 

improved the correlations, leading to the sudden color change moving from the right arms towards 

the left-bottom generic model. Furthermore, when moving along the right arms towards the trans-

tissue model, the correlation gradually increased (the color becomes brighter), since the trans-

tissue model contributed more to the final prediction. The best combination ratios of the generic, 

gene-specific and trans-tissue models were 2:3:5 in breast and 1:4:5 in ovary, where the trans-

tissue model had the largest weights in both cancers (golden stars in Figure 3.2C,D). 
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Regulatory information of protein abundance is transferable between breast and ovarian 

cancers 

Regulatory pathways are expected to be shared to certain extent across different tissues, which 

motivates us to develop a model that shares the weights between tissues. To investigate the effect 

of transferring information between cancer tissues, we trained a “Combined-samples” model by 

combining samples from these two cancers, and directly compared it with the model training on 

one cancer only. The “Combined-samples” model largely increased the prediction correlation from 

0.27 to 0.32 in breast and from 0.36 to 0.49 in ovary (“All-features” and “Combined-samples” in 

Figure 3.2B). In fact, the performance was highly dependent on the number of training samples. 

When we used 40%, 60%, 80% or 100% of the samples to train the model, the performances 

gradually increased in terms of both correlation (Figure S3.4) and RMSE (Figure S3.5). These 

results demonstrate that current prediction performance is limited by the relatively small sample 

size. Therefore, we combined samples from the two types of cancers and trained the trans-tissue 

model, assuming that the same protein is regulated in a similar fashion in these two cancers. As 

we expected, the trans-tissue model achieved higher correlations since it was trained on more 

samples.  

 
In addition to the transcriptomic data, we also investigated other types of data that could potentially 

contribute to the prediction of protein abundance (Figure 3.3). We first considered DNA copy 

number variation (CNV) as the approximation for proteome. Compared with RNA, CNV provided 

much less information and the prediction correlation of CNV itself was only 0.2 in both breast and 

ovarian cancers (RNA and CNV in Figure 3.3A,B). We next used the RNA and CNV values of a 

gene as features and trained a random forest model on all available proteins, yet the performance 

was worse than RNA itself. Nevertheless, the cross-tissue models either trained on separated or 
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combined data improves the correlation (“RF”, “RF+cross1”, and “RF+cross2” in Figure 3.3A,B). 

These results indicate that the RNA level itself is already a good approximation for the protein 

abundance, better than CNV or the simple model trained on RNA and CNV. Therefore, the CNV 

data was not used in our final model. To reduce the potential batch effects across individuals, 

different normalization methods were also tested (Figure S3.6). 

 

We further explored the effects of adding features of protein sequence and class. For each amino 

acid, we counted the number of occurrences in a protein sequence as an extra feature, improving 

the correlations in both cancers (“RF+aa” and “RF+aaKR” in Figure 3.3C,D). Similarly, we 

considered the protein classes defined by CATH protein structure classification database as extra 

features, improving the performance (“RF+class” and “RF+aaKR+class” in Figure 3.3C,D). 

However, when assembling models using these features into the final model, we didn’t observe 

any improvement. Therefore, these features were not used in our final model.  

 

Transfer learning approaches experimental replicate level accuracy 

Since proteomics data have intrinsic noises due to batch effects and fluctuations, we further 

estimated the theoretical best performance based on the experimental replicates for the overlapping 

samples measured at two different cohorts. To be specific, there are 32 ovarian cancer samples 

measured at both JHU and PNNL. For these samples, we calculated the Pearson’s correlation (0.59) 

and RMSE (0.179) between the experimental replicates at two cohorts. Meanwhile, the prediction 

correlation and RMSE of our method on the held-out testing dataset during the NCI-CPTAC 

DREAM challenge were 0.53 (Figure S3.7) and 0.186 (Figure S3.8), respectively. These results 

indicate that the protein abundance prediction is a relatively hard task, due to the intrinsic noises 
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of the measurements across cancer samples. Although our method only achieved a medium 

prediction correlation of 0.53, it is in fact close to the correlation of 0.59 between experimental 

replicates. In terms of RMSE, our method is even closer to the accuracy of experimental replicates 

and the error is only 3.9% higher, which is calculated from (0.186 -  0.179) / 0.179 = 3.9%. 

Currently, our method was built on 77 breast and 105 ovarian cancer samples by transfer learning. 

We foresee that this method would become even closer to the performance of experimental 

replicates with more training samples, since we have observed the gradually increased 

performance as the training set becomes larger (Figure S3.4). 

 

Functionally diverse gene sets display different predictability spectrums 

To investigate the relationship between protein functions and ease of predictability, we performed 

functional enrichment analysis of all considered proteins. We found that gene sets of different 

predictability were functionally enriched in different Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways (Kanehisa and Goto 2000). The overall distributions of correlations between 

our predictions and observations for breast and ovarian cancers are shown in Figure 3.4 A and B, 

respectively. Based on the predictability, we partitioned the proteins into four groups: the top 0%-

25% proteins that are easy to predict, the 25%-50% and 50%-75% proteins that are medium to 

predict, and the bottom 75%-100% proteins that are hard to predict. For each group, the functional 

enrichment analysis was performed against KEGG pathways, and significantly enriched functional 

pathways were shown in Figure 3.4. In the breast cancer, the gene group easy to predict was highly 

associated with the “Metabolism” category, including pathways of amino acids and other 

biomolecules metabolism (red genes in Figure 3.4C). In contrast, the genes hard to predict were 

usually associated with the “Genetic Information Processing” and “Human Disease” categories, 
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including pathways of ribosome, spliceosome, proteasome and three neurodegenerative diseases 

(blue and purple genes in Figure 3.4C, respectively). Interestingly, it has been reported that 

cancers and neurodegenerative disease share common mechanisms of molecular abnormalities (Du 

and Pertsemlidis 2011; Spencer et al. 2012). In particular, microRNA (miRNA)-based regulation 

of mRNA translation is a potential common regulator of both cancer and neurodegenerative 

disease (Cooper et al. 2009). Mutations in genes associated with cell cycle regulation, protein 

turnover and DNA repair have been implicated in these two type of diseases (Morris et al. 2010). 

We observed similar distribution of functionally different gene sets in ovarian cancers (Figure 

3.4D). These results are consistent with the previous observations that stable and housekeeping 

proteins usually have weak mRNA-protein correlations, whereas dynamic proteins tend to have 

strong correlations (Zhang et al. 2014; Mertins et al. 2016; Zhang et al. 2016).  

 

To further understand the regulatory patterns of different genes, we performed similar functional 

enrichment analysis on genes ranked by the prediction improvement after integrating the gene-

gene interdependencies of the gene-specific model. We found that in general the housekeeping 

proteins, associated with RNA transport, ribosome, spliceosome and proteasome, benefited more 

than the metabolism-related genes in both cancers (Figure S3.9). In addition, several disease-

related gene sets gained relatively large improvements in the ovarian cancer, including Parkinson’s, 

Alzheimer’s and Huntington’s diseases. In sum, we find similar mapping landscapes between 

protein abundance prediction improvement and functional pathways in breast and ovarian cancers.   

 



 

 59 

Metabolism-related genes are essential in regulating the protein abundance 

Metabolism-related gene sets make major contributions to predicting protein abundance. To 

evaluate the feature importance of a gene, the mRNA values of each gene across samples were 

permuted and the prediction performance was re-evaluated. Permutation of more important genes 

resulted in larger drops in performances, which were considered as the feature importance. Based 

on the importance, we ranked all genes and performed the functional enrichment analysis on the 

important “driver” genes. We found that genes of the KEGG “Metabolism” category played an 

essential role (Figure 3.5). As we expected, among pathways of carbon metabolism, biosynthesis 

of amino acids was more critical in determining the protein abundance.  

 

To further investigate these “driver” genes, we mapped them to a gene functional network (Li et 

al. 2015, 2016; Guan et al. 2008). This network was constructed based on a Bayesian integration 

of diverse genetic and functional genomic data. We hypothesize that these “driver” genes form a 

nexus module which dictates certain core functions in the cell. We extracted a subnetwork that 

contained only the driver genes as well as edges that had high estimated probability of the co-

functioning relationship (Figure 3.6). The high-confidence connections encompassed 674 “driver” 

and “target” genes in ovarian cancer, and 568 in breast cancer. Then, we applied the Girvan-

Newman community clustering algorithm to the subnetwork. The algorithm iteratively identifies 

and cuts the sparse connections that connect different modules to maximize a modularity score 

(Newman and Girvan 2004; Newman 2006). 

 

The resulting clusters are a collection of gene modules that are highly connected within the cluster 

but loosely connected to other genes. The GO term enrichment analysis was further performed on 
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the resulting modules. The important enriched pathways fell into a number of naturally forming 

groups. Specifically, the processes of gene expression, protein metabolics, transcription initiation 

and regulation were enriched. The initiation of protein translation is known to be the bottleneck 

step of the protein synthesis (Guimaraes et al. 2014). The pathways of cell cycle regulation and 

DNA/RNA modification were also prominently featured. Additionally, the immune response, 

signal transduction, response to wounds, and morphological development were all enriched. 

Interestingly, it has been reported that cellular stress responses and the wound healing are related 

to cancer treatment resistance and metastasis (Chircop and Speidel 2014; Arnold et al. 2015; 

Sundaram et al. 2017). The results confirmed our expectation that the nexus modules formed by 

these genes are loosely but confidently associated with other genes. The translation level of a 

protein is controlled by a complex network consisting of diverse regulatory elements in the cells. 

 

Discussion 

From the central dogma to the complex protein functional networks and pathways, our 

understanding of protein expression regulation has been revolutionized over the past 60 years. 

Although macromolecular interactions require specific physicochemical interfaces (Liddington 

2004), indirect interactions and high-level associations exist in cellular environment. In terms of 

predicting protein abundance from transcriptomic data, these ubiquitous associations among all 

genes play an indispensable role. This indicates that in addition to the idea of functional pathways 

and protein-protein interaction networks, considering the general direct and indirect interactions 

among all genes is a complement towards understanding the underlying mechanisms. 
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Many pioneering efforts have been made to characterize the proteogenomic features of various 

cancers (Zhang et al. 2014; Mertins et al. 2016; Zhang et al. 2016; Robertson et al. 2017). However, 

how to integrate information from multiple cancers to foster cancer research remains unclear. In 

this study, we propose a simple yet effective attempt to address this problem, facilitating the 

prediction of protein abundance. It would be interesting to see where the information is shareable 

among diverse cancers or other diseases, beyond breast and ovarian cancers. Intriguingly, we 

observe that protein subsets that are hard to predict are enriched in several neural degenerative 

diseases. 

 

Materials and Methods 

Data collection 

For both breast and ovarian cancers, the proteome data were acquired using the isobaric Tags for 

Relative and Absolute Quantification protein quantification method. The proteomics data were 

downloaded from CPTAC data portal. For breast proteome, 77 samples were analyzed at the Broad 

Institute (BI). For ovarian proteome, 84 and 122 samples were analyzed at Pacific Northwest 

National Laboratory (PNNL) and Johns Hopkins University (JHU), respectively. The protein log 

ratios of the protein abundance were calculated including only peptides that map unambiguously 

to the protein. Among the 84+122=206 samples, only 105 samples had the corresponding TCGA 

RNA-seq data. Since we needed both the RNA-seq (as features) and the proteomic data (as labels) 

to build machine learning models, only these 105 samples were used in this work. The 

transcriptomics data for the corresponding breast and ovarian cancer samples were downloaded 

from TCGA firehose.  
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Generic model 

For each gene i, the mRNA levels across patients were used as the baseline predictions for the 

corresponding protein abundance across the same patients (top-left in Figure 3.1). If the mRNA 

values were missing, we used the average of all non-missing RNA observations of the same gene 

as the imputation:  

𝑥"#$$#%& = ( 𝑥#

%)*)+,-..-)/

#01

)/𝑛%5%6"#$$#%& 

where xi represents the mRNA level of a non-missing sample and nnon-missing represents the number 

of non-missing samples. 

 

Gene-specific model 

The entire RNA-seq data is represented by a m-by-n matrix X, 

 

where rows represent genes and columns represent samples. An element xij denotes the mRNA 

level of gene i from sample j. Similar to mRNA, the proteomic data is represented by a s-by-n 

matrix Y, 

 

where rows represent proteins and columns represent samples. For each gene, we created a gene-

specific random forest (RF) model (Breiman 2001), with maximum depth of 3 and 100 trees 



 

 63 

(bottom in Figure 3.1). As one of the tree-based models, RF has been reported to avoid overfitting 

and capture nonlinear interactions between features (Li et al. 2018c, 2018b, 2018a, 2018d). For 

example, for gene i, we treated the protein levels of this gene across n samples (yi1, yi2, … , yin) as 

n targets. For each sample yik, we use its corresponding mRNA levels of all m genes (x1k, x2k, … , 

xmk) as a vector of m features . In this way, we trained a model using n samples. And for a different 

gene j, we created a different model since the target values across n samples (yj1, yj2, … , yjn) are 

different. Thus, we call this a gene-specific model. After excluding genes with missing mRNA 

values, the total numbers of feature genes are 8,738 and 5,837 in breast and ovarian cancers, 

respectively. These models were implemented using the function called 

ensemble.RandomForestRegressor of python module scikit learn. 

 

Trans-tissue model 

The numbers of proteins to be predicted are 10,006 and 7,061 in breast and ovarian cancers, 

respectively. Among them, 6934 proteins are common in the two cancers. To pool regulatory 

information between two cancers, we combined the patient samples for each common protein and 

trained the trans-tissue random forest model in the same way as the gene-specific model (top-right 

in Figure 1). The total number of training samples is 182 (77 breast and 105 ovarian).  

 

Statistical analysis 

To compare the prediction correlations among different models, the bootstrap sampling with 

replacement was performed. Specifically, 5,000 genes were randomly selected to calculate the 

overall prediction correlation of a model in each bootstrap sample. The sampling was performed 

1,000 times for each model, followed by the Wilcoxon signed-rank test to compare two models. 
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The differences between all pairs of models in Figure 3.2A-B were statistically significant (p < 

2.2e-16). The p-values were calculated using the default function wilcox.test in R version 3.4.4. 

 

Five-fold cross validation 

To systematically compare the performance of different models and features, five-fold cross 

validation was performed on the training data of 77 breast and 105 ovarian cancer samples. For 

each cancer, the entire training samples were randomly partitioned into 5 non-overlapping subsets. 

In each validation, 4 subsets were used to train a model and 1 subset was used to validate the 

performance of this model. This resulted in 5 scores, reflecting the overall performance of a model 

on the entire dataset. 

 

Comparing models using different numbers of features 

To evaluate the effects of using different number of features, the top 10, 100, and 1000 highly 

expressed genes, and all genes (8738 breast genes and 5837 ovarian genes) were used to train the 

gene-specific models. We further evaluated the filtered gene subset based on GO terminology (GO 

0010467: gene expression and GO 0010468: regulation of gene expression), resulting in 4472 and 

4473 feature genes in the GO breast and ovarian cancer models. 

 

Comparing models trained on different numbers of samples 

To evaluate the effects of training different numbers of samples, 20%, 40%, 80% and 100% of 

training samples were randomly selected to train the gene-specific model. Then the samples from 

the breast and ovarian cancers were combined and trained the trans-tissue model. 
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Model ensemble 

For each protein, the weighted average predictions from the generic and the gene-specific models 

were calculated, with the weighting ratio of 1:3. For the 6934 common proteins, the predictions 

from the trans-tissue model were added, with the weighting ratio of 1:1. It should be noted that, 

for non-common proteins, the trans-tissue model is not applicable. These weights were used to 

generate predictions. To evaluate the effect of different weighting ratios, we performed a grid 

search of all possible weights from 0 to 10 among the generic, gene-specific and trans-tissue 

models. 

 

Evaluation metrics 

To evaluate the performance of different models, the Pearson’s correlation between observed and 

predicted abundances across all samples was calculated for each protein. We then took the mean 

correlations of all proteins as the primary evaluation score. In addition, the Normalized Root Mean 

Square Error (NRMSE) was used as the secondary metric to compare models. 

The formula for computing the Pearson correlation r,  is as follow: 

𝑟 =
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The formula for computing NRMSE is as follows: 
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The observed and predicted values are denoted by y and x, respectively.  Sy and  Sx are their 

standard deviations. For each protein, nobs is the number of observed samples. And  ymax and  ymin 

are the respective maximal and minimal value across all observed samples. 
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Correlations and RMSEs between experimental replicates 

There were 32 overlapping ovarian cancer samples measured at both JHU and PNNL. These 

overlapping samples were used to estimate the theoretical best performance that could be achieved 

by a computational prediction method. The Pearson’s correlations and RMSEs for all 5,218 

proteins under consideration were calculated across the 32 ovarian cancer samples. 

 

Feature importance 

Random forest enables us to estimate the importance of each chemical feature by permuting the 

values of a feature across samples and computing the increase in prediction error, delta-error. More 

important feature genes have larger delta-error. Based on the delta-error, we evaluate the 

importance of all feature genes. 

 

Functional enrichment analysis 

All the evaluated proteins were quantile partitioned into four subsets based on the prediction 

performance. For each subset, functional annotation was performed using DAVID. We further 

analyzed the functional enrichment of proteins ranked by the improvement compared with the 

baseline mRNA and protein levels, and proteins playing important roles in regulating the protein 

abundance of all genes. 

 

Functional network analysis 

The top 500 genes with the highest feature importance (“driver” genes) were mapped to a gene 

functional network. A subset of highly connected genes were selected for the clustering analysis 
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(674 genes in breast and 568 genes in ovary). These genes, together with edges among these genes, 

were extracted to a subnetwork. The network was then fed into GLay community clustering 

method. The clustering method is based on the Girvan-Newman algorithm [23] and implemented 

in ClusterMaker2, a Cytoscape plugin. The method dissects the original subnetwork into multiple 

modules. Each of the modules was then fed into BINGO, a Cytoscape plugin, for GO term 

enrichment analysis. 

 

Figure preparation 

The figures were prepared using R package ggplot2, ggtern and GGally. The protein structures 

shown as 3D illustration in Figure 1 were downloaded from Protein Data Bank. Their IDs are 1cr5, 

1ctq, 1grn, 1jbb, 1kpc, 1tnd, 1yfp and 1zho. These images were generated by VMD 1.9.3.  

 
Availability of data and material 

Source code: https://github.com/GuanLab/CPTAC_sub2 

Challenge dataset repository: https://www.synapse.org/#!Synapse:syn8228304/wiki/448379 

Breast cancer proteomic data: https://cptac-data-portal.georgetown.edu/cptac/s/S029 

Ovarian cancer proteomic data: https://cptac-data-portal.georgetown.edu/cptac/s/S026 

Transcriptomic data: https://portal.gdc.cancer.gov/ 
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Figures 

Figure 3.1 Overview of the algorithm design for predicting proteomic expression from 
transcriptomic data.  
The overall task of this study is to transform the red matrix, representing the transcriptomic level 
expression across different individuals, to the blue-grey matrix, representing the proteomic level 
expression (top-center). Three models are created to address this problem: 1. Generic model, which 
captures the innate correlation between mRNA and protein level (top-left); 2. Gene-specific model, 
which captures how multiple genes work in a network to control the protein level under 
investigation through random forest aggregation of multiple base learners (bottom); 3. Trans-tissue 
model, which captures the shared functional networks across cancer types (top-right).  
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 69 

Figure 3.2 The contributions of different models to predicting proteome in breast and 
ovarian cancers.  
A. From left to right, the correlations were calculated by assembling the following three models 
step by step (blue: breast;  red: ovary): 1) The generic model, which only uses the transcript-level 
expression of a target protein as the only feature; 2) The gene-specific model, which uses the 
transcript-level expressions of all genes as features for predicting a target protein; 3) The trans-
tissue model, which is similar to the gene-specific model yet combines both breast and ovarian 
cancer samples. B. Dissection of the gene-specific model by using different sets of features and 
samples. 1）Sub-selecting all genes related to ‘gene expression’ as features. 2）Using all 
transcripts as features to predict the target protein. 3) Combining samples from two tissues to train. 
The correlations between all pairs of models are significantly different (p<2.2e-16) using 
Wilcoxon signed-rank test, after bootstrap sampling for 1,000 times. C-D. The contributions of 
the generic, gene-specific, and trans-tissue models to the final predictions in (C) breast and (D) 
ovary. The combination that achieves the highest correlation is labeled by the golden star, where 
the best combination ratios of the generic, gene-specific and trans-tissue models are 2:3:5 in breast 
and 1:4:5 in ovary. Notably, the right arms of both triangle are in “darker” color (lower 
correlations), representing large correlation increases when new models are integrated. 
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Figure 3.3 Prediction performance using different input features.  
A-B. The Pearson’s correlation between predictions and observations across patients in (A) breast 
and (B) ovary. The x-axis represents different methods. Specifically, RNA and CNV simply use 
the mRNA and DNA copy number variation values as approximations for the proteomic values, 
respectively. RF is the random forest model trained across all available proteins using two features, 
the corresponding RNA and CNV values of a protein. RF+cross1 and RF+cross2 are the random 
forest models transferring information cross breast and ovarian cancers. In RF+cross1, we trained 
two RF models on breast or ovary data separately and assembled the predictions of them, while in 
RF+cross2, we only trained one RF model on the combined breast and ovary data. C-D. The 
prediction performance using protein sequence and class information in (C) breast and (D) ovary. 
In addition to RNA and CNV, in RF+aa we add twenty features, each representing the number of 
an amino acid in a protein. In RF+aaKR, we add only the numbers of two amino acids, lysine (K) 
and arginine (R), which are the cleavage targets of trypsin in proteomics mass spectrometry. In 
RF+class, we add four binary features, representing the four protein classes defined by the CATH 
protein structure classification database. In RF+aaKR+class, we add features of both the number 
of amino acids and protein classes. 
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Figure 3.4 The functional enrichment analysis of gene sets with different predictability 
spectrums.  
A-B. The overall distribution of the Pearson’s correlations between observations and our 
predictions in (A) breast and (B) ovarian cancers. C-D. Based on the predictability, we partitioned 
the proteins into four groups: the top 0%-25% easiest proteins to predict, the median 25%-50% 
and 50%-75% predictable group and the bottom 75%-100% hardest proteins to predict. For each 
group, the functional enrichment analysis was performed against KEGG pathways. The colors 
represent the major KEGG categories. Genes with high prediction correlations are mainly 
associated with “Metabolism”, whereas genes with low prediction correlations are mainly 
associated with “Genetic Information Processing” and “Human Diseases”. 
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Figure 3.5 The functional enrichment analysis of gene sets that drive the regulation of protein 
abundance.  
A-B. The overall distribution of the gene importance in predicting protein abundance are shown 
in (A) breast and (B) ovarian cancers. C-D. Functional enrichment analysis was performed on gene 
subsets based on the feature importance. The colors represent the major KEGG categories and the 
x-axis is the feature importance. The genes and pathways on the right have higher feature 
importance and contribute more to regulating protein abundance. In both breast and ovarian 
cancers, genes and pathways associated “Metabolism” are the most informative for predicting 
protein abundance and cross-sample correlations.   
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Figure 3.6. Functional clusters in the gene-gene interaction network that drive the regulation 
of protein abundance.  
A-B. Decomposition of gene functional network among “driver” genes in breast (A) and ovarian 
(B) cancers reported important metabolism pathways. The gene clusters were shown in different 
colors and visualized using a gene-gene interaction network. The shared biological processes of 
selected clusters were labeled in rectangles. 
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Supplementary Figures and Tables 
 
Figure S3.1 The RMSEs of different models in predicting proteome in breast and ovarian 
cancers.   
A. From left to right, the RMSEs were calculated by assembling the following three models step 
by step (blue: breast;  red: ovary): 1) The generic model, which only uses the transcript-level 
expression of a target protein as the only feature; 2) The gene-specific model, which uses the 
transcript-level expressions of all genes as features for predicting a target protein; 3) The trans-
tissue model, which is similar to the gene-specific model yet combines both breast and ovarian 
cancer samples. B. Dissection of the gene-specific model by using different sets of features and 
samples. 1）Sub-selecting all genes related to ‘gene expression’ as features. 2）Using all 
transcripts as features to predict the target protein. 3) Combining samples from two tissues to train.  
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Figure S3.2 The correlation comparison of models using different number of genes as 
features. 
The Pearson’s correlations of five-fold cross validation results are shown in blue (breast) and red 
(ovary). From left to right, the number of feature genes used in the gene-specific model increases. 
The first three numbers represent models using the top 10, 100, and 1,000 expressed genes as 
features. In addition, the gene subsets associated with GO terms (0010467: gene expression and 
0010468: regulation of gene expression) are also evaluated, which contain 4,472 and 4,473 genes 
in breast and ovary, respectively. Our final gene-specific model uses all genes (8,738 genes in 
breast and 5,837 genes in ovary) as features and achieves highest correlations (the orange box).  
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Figure S3.3 The RMSE comparison of models using different number of genes as features. 
The RMSEs of five-fold cross validation results are shown in blue (breast) and red (ovary). From 
left to right, the number of feature genes used in the gene-specific model increases. The first three 
numbers represent models using the top 10, 100, and 1,000 expressed genes as features. In addition, 
the gene subsets associated with GO terms (0010467: gene expression and 0010468: regulation of 
gene expression) are also evaluated, which contain 4,472 and 4,473 genes in breast and ovary, 
respectively. Our final gene-specific model uses all genes (8,738 genes in breast and 5,837 genes 
in ovary) as features and achieves lowest RMSEs (the orange box). With greater number of features, 
the random forest model can learn the nonlinear interdependencies and the regulatory relationship 
between more genes. Therefore, models with more genes as features can estimate protein 
abundance more accurately, increasing the prediction correlation and reducing the prediction 
RMSE. Of note, the RMSEs in the ovarian cancer are overall lower than those in the breast cancer 
mainly due to the cohort effect. These two types of cancer samples were collected from two 
different cohorts (see details in the section “Materials and Methods – Data collection”). 
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Figure S3.4 The correlation comparison of models trained on different number of samples. 
From left to right, the Pearson’s correlations were calculated for models using (1) 40% of the 
training samples (2) 60% of the training samples (3) 80% of the training samples (4) 100% of the 
training samples (5) 100% of the combined training samples from two cancer tissues. Of note, the 
exact number of training samples in (4) is listed in the parentheses (b for breast and o for ovary). 
Our final trans-tissue model combines samples from two cancers and achieves highest correlations 
(the orange box). 
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Figure S3.5 The RMSE comparison of models trained on different number of samples. 
From left to right, the RMSEs were calculated for models using (1) 40% of the training samples 
(2) 60% of the training samples (3) 80% of the training samples (4) 100% of the training samples 
(5) 100% of the combined training samples from two cancer tissues. Of note, the exact number of 
training samples in (4) is listed in the parentheses (b for breast and o for ovary). Our final trans-
tissue model combines samples from two cancers and achieves lowest RMSEs. 
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Figure S3.6 The effects of different training scenarios and normalization strategies. 
A-B. The random forest model was trained on the two features, RNA and CNV values of a gene 
in (A) breast and (B) ovary. Two training scenarios were applied: 1. in the “local” model, only the 
samples of the same gene were used to train and 2. in the “global” model, the samples of all genes 
were used to train. To reduce the potential batch effects across individuals, in the “global+quantile” 
model, we quantile mapped the RNA or CNV profile of each individual to the corresponding 
reference profile, which was the average expression level across all individuals. We further tested 
the effects of adjusting the overall expression profile of an individual by multiplying an individual-
specific ratio. 
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Figure S3.7 The correlation comparison of predictions by our method and experimental 
replicates. 
We calculated the Pearson’s correlations across 32 overlapping ovarian cancer samples measured 
at both JHU and PNNL for all proteins (blue). Meanwhile, the prediction correlation of our method 
on the held-out testing dataset during the NCI-CPTAC DREAM challenge were shown in red. The 
dashed line represents the average correlation. 
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Figure S3.8 The RMSE comparison of predictions by our method and experimental 
replicates. 
We calculated the RMSEs across 32 overlapping ovarian cancer samples measured at both JHU 
and PNNL for all proteins (blue). Meanwhile, the prediction RMSEs of our method on the held-
out testing dataset during the NCI-CPTAC DREAM challenge were shown in red. The two dashed 
line represents the average RMSE. 
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Figure S3.9 The functional enrichment analysis of gene sets with different correlation 
increases. 
The overall distribution of the Pearson’s correlation increases using our method, compared with 
the baseline mRNA-protein correlation in A. breast and B. ovarian cancers. C-D. Functional 
enrichment analysis was performed on gene subsets based on the improvement.  
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Table S3.1 The five-fold Pearson’s correlations of the generic, gene-specific and trans-tissue 
models. 
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CHAPTER IV 

DeepSleep: Near-perfect Detection of Sleep Arousals  

at Millisecond Resolution by Deep Learning 

 

Abstract 

Sleep has an essential impact on our health and wellbeing. Sleep arousals are transient periods of 

wakefulness punctuated into sleep. Excessive arousals lead to fragmented sleep and have various 

negative effects. Accurate diagnosis of sleep arousal disorders requires high-quality annotations 

of sleep records. Currently, sleep arousal annotations are performed by human experts manually 

looking at millions of data points, which requires considerable time and effort. There exist 

automatic sleep arousal detection tools, however, their performance is unsatisfactory. Here we 

present a deep learning approach, DeepSleep, which empowers fast and automatic detection of 

sleep arousals within 10 seconds per sleep record. This method ranked first in the 2018 PhysioNet 

Challenge for segmenting sleep arousal regions based on polysomnographic recordings. Compared 

with the reported theoretical upper limit, DeepSleep approximates human performance in detecting 

sleep arousals. Moreover, the pattern of DeepSleep segmentations differs from human annotations 

for sleep arousals, especially at the low-confident boundary regions. These results indicate that 

computer-assisted segmentations can serve as an alternative to human annotations, and potentially 

allow for improvement of the current scoring criteria and binary-label system. 
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Introduction 

Sleep is important for our overall health and quality of life (Mukherjee et al. 2015; Buysse 2014; 

Takahashi 2012). Inadequate sleep is often associated with many negative outcomes, including 

obesity (Gangwisch et al. 2005; St-Onge 2017; Miller et al. 2018b), irritability (Gangwisch et al. 

2005; St-Onge 2017; Miller et al. 2018b; Paiva et al. 2015), cardiovascular dysfunction (Tobaldini 

et al. 2017; Bauters et al. 2016), hypotension (Lewis et al. 2015), impaired memory (Banks and 

Dinges 2007) and depression (Vitiello 2018; Okun et al. 2018). About one third of the general 

population in United States are affected by insufficient sleep (Liu et al. 2016). The prevalence of 

inadequate sleep results in large economic costs (Hillman et al. 2018) and continues to increase in 

various nations (Ford et al. 2015; St-Onge et al. 2016; Kronholm et al. 2016). Spontaneous sleep 

arousals, defined as brief intrusions of wakefulness into sleep (1992; Halasz et al. 2004), are a 

common characteristic of brain activity during sleep. Excessive arousals due to disturbances can 

be harmful, resulting in fragmented sleep, daytime sleepiness and sleep disorders (Bonnet 1985, 

1986; Ting and Malhotra 2005). There are different types of arousing stimulus, including 

obstructive sleep apneas or hypopneas, respiratory effort-related arousals (RERA), 

hyperventilations, bruxisms (teeth grinding), snoring, vocalizations, and leg movements. Together 

with sleep stages (wakefulness, stage1, stage2, stage3, and rapid eye movement), sleep arousals 

are labeled through visual inspections of polysomnographic recordings according to the American 

Academy of Sleep Medicine (AASM) scoring manual (Berry et al. 2017). Of note, an 8-hour sleep 

record sampled at 200Hz with 13 different physiological measurements contains a total of 75 

million data points. It takes hours to manually annotate such a large-scale sleep record.  
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Extensive research efforts have been made in developing computational methods for automatic 

sleep stage scoring (Hsu et al. 2013; Sharma et al. 2017; Suzuki et al. 2017; Alickovic and Subasi 

2018; ’t Wallant et al. 2016; Sousa et al. 2015; de Carli et al. 1999; Sugi et al. 2009; Shahrbabaki 

et al. 2015; Cho et al. 2005; Shmiel et al. 2009; Fernández-Varela et al. 2017a; Phan et al. 2019; 

Biswal et al. 2018; Patanaik et al. 2018; Anderer et al. 2005; Sun et al. 2017; Ebrahimi et al. 2008; 

Malafeev et al. 2018; Tsinalis et al. 2016; Supratak et al. 2017; Ronzhina et al. 2012; Huang et al. 

2018; Andreotti et al. 2018; Zhang et al. 2016; Sors et al. 2018; Sun et al. 2018; Chambon et al. 

2018) and arousal detection (Olsen et al. 2018; Basner et al. 2007; Behera et al. 2014; Fernández-

Varela et al. 2017b; Alvarez-Estevez and Fernández-Varela 2019) based on polysomnographic 

recordings. These methods mainly focus on 30-second epochs, and extract statistical features in 

the time and frequency domains through Fourier transform or in-house feature engineering. These 

features and/or raw signals are subsequently fed into classical machine learning or neural network 

models to classify different sleep stages and events. Typically, each sleep stage lasts more than ten 

minutes and transition between sleep stages forms a unique architecture, the sleep circle. In 

contrast, sleep arousals are extremely short, being less than one minute, and sparsely distributed 

during sleep. The accumulated length of sleep arousals is usually less than 10 percent of the total 

sleep time. Therefore the prediction of sleep arousals is a highly imbalanced classification problem. 

In addition, the arousal patterns vary dramatically across individuals (e.g. some individuals do not 

have any arousal while others may have hundreds of arousals per night), further complexing the 

situation and rendering it a much more difficult task than sleep staging. A key question is how to 

build an accurate, generalizable, and robust model to quickly detect sleep arousals. In particular, 

how to preprocess the raw data or extract features before training models? Which types of machine 
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learning models are well suited? What is the optimal input length (e.g. 30-second epochs or full-

length records)? Which types of physiological signals should be used?  

 

Here we investigate these questions and benchmark state-of-the-art methods in sleep staging and 

arousal detection. We describe a novel deep learning approach, DeepSleep, for automatic detection 

of sleep arousals. This approach ranked first in the 2018 “You Snooze, You Win” 

PhysioNet/Computing in Cardiology Challenge (Ghassemi et al. 2018), in which computational 

methods were systematically evaluated for predicting non-apnea arousal regions based on 

polysomnographic recordings (Guan 2019). The workflow of DeepSleep is schematically 

illustrated in Figure 4.1. We built a deep convolutional neural network (CNN) to capture long-

range and short-range interdependencies between timepoints across an entire sleep record. 

Information at different resolutions and scales was integrated to improve the performance. 

Intriguingly, we found that similar EEG and EMG channels were interchangeable, which was used 

as a special augmentation in our approach. Compared with the theoretical upper limit calculated 

from annotation replicates by different sleep experts, DeepSleep achieved near-perfect detection 

of sleep arousals at millisecond resolution, approximating human performance. 

 

Results 

Overview of the experimental design for predicting sleep arousals from polysomnogram 

In this work, we used the 994 polysomnographic records provided in the 2018 PhysioNet challenge, 

which were collected at the Massachusetts General Hospital. In each record, 13 physiological 

measurements were sampled at 200Hz (Location and Data in Figure 4.1), including six 

electroencephalography (EEG) signals at F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1; 



 

 91 

one electrooculography (EOG) signal at E1-M2; three electromyography (EMG) signals of chin, 

abdominal and chest movements;  one measure of respiratory airflow; one measure of oxygen 

saturation (SaO2); one electrocardiogram (ECG). Each time point in the polysomnographic record 

was labeled as “Arousal” or “Sleep” by sleep experts, excluding some non-scoring regions such 

as apnea or hypopnea arousals. To exploit the information of the training records, we employed a 

nested train-validate-test framework, in which 60% of the data was used to train the neural network, 

15% of the data was used to validate for parameter selection and 25% of the data was used to 

evaluate the performance of the model (Cross-validation in Figure 4.1). To capture the long-range 

and short-range information at different scales, we adapted a classic neural network (Model in 

Figure 4.1), U-Net, which was originally designed for image segmentation. Multiple data 

augmentation strategies, including swapping similar polysomnographic channels, were used to 

expand the training data space and enable the generalizability of the model. Finally, the prediction 

performance was evaluated by the area under receiver operating characteristic curve (AUROC) 

and the area under precision-recall curve (AUPRC) on the held-out test dataset of 989 records 

(Evaluation in Figure 4.1) during the challenge. Since sleep arousal events are extremely rare (<10% 

in terms of length), the performances of different methods are not apparent in the Receiver 

Operating Characteristic (ROC) curve (Davis and Goadrich 2006; Li et al. 2019), where the y-axis 

is the True Positive Rate (TPR) and the x-axis is the False Positive Rate (FPR). This is because 

when the number of negative events (“Sleep”; 92.8%), is much larger than the positive ones 

(“Arousal”; 7.2%), the FPR is always very small and will barely change even if a poor model 

makes many FP predictions. Therefore, in addition to the commonly used AUROC, we evaluated 

our model and various strategies using ARPRC (Li et al. 2018). In the Precision-Recall space, the 

Precision and Recall are defined as The Precision is very sensitive to FP when the number of TP 
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is relatively small. Therefore, the AUPRC metric is able to distinguish the performances in highly 

unbalanced data such as the annotations of sleep arousals. 

 

Highly heterogeneous sleep records among individuals 

By investigating the annotations of these sleep records, we found high levels of heterogeneity 

among individuals. In Figure 4.2a, we randomly selected sleep records of 20 individuals and 

presented the annotations in different colors. There are 8 major annotation categories: “Arousal”, 

“Undefined”, “REM” (Rapid Eye Movement), “N1” (Non-REM stage 1), “N2” (Non-REM stage 

2), “N3” (Non-REM stage 3), “Wake” and “Apnea”. The distribution of these categories differs 

dramatically among individuals (different colors in Figure 4.2a). Clearly, different individuals 

display distinct patterns of sleep, including the length of total sleep time and multiple sleep stages. 

Notably, the sleep arousal regions are relatively short and sparsely distributed along the entire 

record for most individuals (yellow regions in Figure 4.2a).  

 

We further investigated the occurrence of arousals and found that the median number of arousals 

during sleep was 29, indicating the prevalence of sleep arousals. A total of 43 individuals (4.33%) 

had solid sleep without any arousal, whereas 82 individuals (8.25%) had more than 100 arousals 

during their sleep (y-axis in Figure 4.2b), lasting around 10% of the total sleep duration (x-axis in 

Figure 4.2b). In addition, there was no significant correlation between the total sleep time and the 

total length of sleep arousals (Figure 4.2c), which was expected since quality of sleep is not 

determined by sleep length. In sum, the intrinsically high heterogeneity of sleep records across 

individuals rendered the segmentation of sleep arousals a very difficult problem. 
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Deep U-Net captures the long-range and short-range information at different scales and 

resolutions 

Current manual annotation of sleep arousals is defined by the AASM scoring manual (Berry et al. 

2017), in which sleep experts focus on a short period (less than a minute) and make decisions about 

sleep arousal events. However, it remains unclear whether the determinants of sleep arousals reside 

only within a short range, or long-range information across minutes and even hours plays an 

indispensable role in detecting sleep arousals. Although sleep arousal is in nature a transient event, 

it may be associated with the overall sleep pattern through the night. Intriguingly, when we trained 

the convolutional neural networks on longer sleep records, we consistently achieved better 

performances (Supplementary Figure 4.1). Therefore, we used the entire sleep record as input to 

make predictions, instead of small segments of a sleep record.  

 

To learn the long-range association between data points across different time scales (second, 

minute, and hours), we develop an extremely deep convolutional neural network, which contains 

a total of 35 convolutional layers (Figure 4.3a). This network architecture has two major 

components, the encoder and the decoder. The encoder takes a full-length sleep record of 223 = 

8,388,608 time points and gradually encrypts the information into a latent space (the red trapezoid 

in Figure 4.3a). Sleep records with different lengths are made uniform to the same 8-million length 

by padding zeros at both the beginning and the end. To be specific, the convolution-convolution-

pooling (hereafter referred to as “ccp”) block is used to gradually reduce the size from 223 = 

8,388,608 to 28 = 256 (Figure 4.3b top; see details in Methods). Meanwhile, the number of 

channels gradually increases from 13 to 480 to encode more information, compensating the loss 
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of resolution in the time domain. In each convolutional layer, the convolution operation is applied 

on the data along the time axis to aggregate the neighborhood information. Since the sizes of data 

in these convolutional layers are different, the encoded information is unique within each layer. 

For example, in the input layer, 10 successive time points (sampled at 200Hz) correspond to a 

short time interval of 0.05 seconds, whereas in the center layer (size = 28), 10 time points 

correspond to a much longer time interval of 0.05 * 223-8 = 1,638 seconds, nearly 30 minutes. 

Therefore, this deep encoder architecture allows us to capture and learn about the interactions 

across data points at multiple time scales. 

 

Similar to the encoder, the second component of our network architecture is a decoder to decrypt 

the compressed information from the center latent space. In contrast to the “ccp” block, the 

convolution-convolution-upscaling (hereafter referred to as “ccu”) block is used (Figure 4.3b 

bottom; see details in Methods), which gradually increases the size and decreases the number of 

channels of the data (the purple trapezoid in Figure 4.3a). In addition, the concatenation is used 

to integrate the information from both the encoder and the decoder at each time scale (green 

horizontal arrows in Figure 4.3). The concatenation is a unique feature of U-Net, without which 

the performance decreases (Supplementary Figure 4.2-4.3). Finally, the output is the 

segmentation of the entire sleep record, where high prediction values indicate sleep arousal events  

and low values indicate sleep. 

 

Deep learning enables accurate predictions of sleep arousals 

By capturing the information at multiple resolutions, DeepSleep achieves high performance in 

automatic segmentation of sleep arousals. Since deep neural networks are iteration-based machine 
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learning approaches, a validation subset is used for monitoring the underfitting or overfitting status 

of a model and approximating the generalization ability on unseen datasets. A subset of 15% 

randomly selected records was used as the validation set during the training process (Cross-

validation in Figure 4.1) and the cross entropy was used to measure the training and validation 

losses (see details in Methods). Since the 13 polysomnographic channels complemented each 

other, using all of them instead of one type of these signals enabled the neural network to capture 

interactions between channels and achieved the highest performance (Supplementary Figure 4.4). 

We developed three basic models called “1/8”, “1/2” and “full”, according to the resolution of the 

neural network input. The “full” resolution means that the original 8-million (223 = 8,388,608) 

length data were used as input. The “1/2” or “1/8” resolution means that the original input data 

were first shrunk to the length of 4-million (222) or 1-million (220)  by averaging every 2 or 8 

successive time points, respectively. We observed similar validation losses of the “full”, “1/2” and 

“1/8” models (solid lines in Figure 4.4a). The final evaluation was based on the AUROC and 

AUPRC scores of predicting 25% of the data. In Figure 4.4b, each blue dot represented one sleep 

record and we observed a significant yet weak correlation = 0.308 between the AUROCs and 

AUPRCs. The baselines of random predictions were shown as red dashed lines. Notably, the 

AUPRC baseline of 0.072 corresponded to the ratio of the average total sleep arousal length over 

the total sleep time, which was considerably low and made it a hard task due to the intrinsic sparsity 

of sleep arousal events.  

 

To build a robust and generalizable model, multiple data augmentation strategies were used in 

DeepSleep. After carefully examining the data, we found that signals belonging to the same 

physiological categories were very similar and synchronized, including two EMG channels and 
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six EEG channels (see Data in Figure 4.1b). We applied a novel augmentation strategy by 

randomly swapping these similar channels during the model training process, assuming that these 

signals were interchangeable in determining sleeping arousals. This channel swapping strategy 

was bold but effective, adapting which largely improved the prediction performance 

(“1/8_no_swap” versus “1/8” in Figure 4.4c-d). In addition, we multiplied the polysomnographic 

signals by a random number between 0.90 and 1.15 to simulate the inherent fluctuation and noise 

of the data. Furthermore, to address the heterogeneity and batch effects among individuals, we 

quantile normalized each sleep record to a reference, which was generated by averaging all the 

records. This step effectively removed the biases introduced by the differences of individuals and 

instruments. Finally, we assembled the predictions from the “1/8” , “1/2” and “full” resolution 

models as the final prediction in DeepSleep (red violin plots in Figure 4.4c-d). 

 

We further compared different machine learning models and strategies, and benchmarked current 

methods in segmenting sleep arousals and stages. We first tested a classical model, logistic 

regression, and found that our deep learning approach had a much higher performance 

(Supplementary Figure 4.5).  It has also been reported that neural network approaches 

significantly outperformed classical machine learning methods, including random forest (Biswal 

et al. 2018), logistic regression (Biswal et al. 2018), support vector machine (Alvarez-Estévez and 

Moret-Bonillo 2011), linear and quadratic models (Alvarez-Estévez and Moret-Bonillo 2011; 

Becq et al. 2005). In fact, 8 out of the top 10 teams (Howe-Patterson et al. 2018; Már Þráinsson et 

al. 2018; He et al. 2018; Varga et al. 2018; Patane et al. 2018; Miller et al. 2018a; Warrick and 

Nabhan Homsi 2018; Bhattacharjee et al. 2018; Szalma et al. 2018) used neural network models 

in the 2018 PhysioNet Challenge (red blocks in Supplementary Figure 4.6) (Ghassemi et al. 
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2018). Two types of network structures (convolutional and recurrent) were mainly used, and 

integrating Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) or Gated 

Recurrent Unit (GRU) (Cho et al. 2014) into DeepSleep did not improve the performance 

(Supplementary Figure 4.7-4.8). In terms of input length, most previous studies focused on short 

epochs (equal or less than 30 seconds) (Phan et al. 2019, 2018b, 2018a; Biswal et al. 2018; Sun et 

al. 2017). We found that increasing input length significantly improved the performance 

(Supplementary Figure 4.1), and full-length records were used by three teams (blue blocks in 

Supplementary Figure 4.6). We also compared DeepSleep with recent state-of-the-art methods 

in sleep stage scoring. These methods extracted features from 30-second epochs through short-

time Fourier transform (STFT) (Phan et al. 2019, 2018b, 2018a) or Thomson’s multitaper (Biswal 

et al. 2018; Sun et al. 2017), but they were not transferred very well to the task of sleep arousal 

detection (Supplementary Figure 4.9). In contrast, deep learning approaches can model 

informative features in an implicit way without tedious feature crafting (Sors et al. 2018), and 

neural networks using raw data as input were frequently used by half of the top 10 teams (orange 

blocks in Supplementary Figure 4.6). 

 

To comprehensively investigate the effects of various network structures and parameters on 

predictions, we further performed experiments with different modifications, including shallow 

neural network, large convolution kernel size, average pooling, and loss functions. These 

modifications had either similar or lower prediction performances. We concluded that the neural 

network architecture and augmentation strategies in DeepSleep were optimized for the current task 

of segmenting sleep arousals. Subsequent analysis of the relationships between the prediction 

performance and multiple statistics were investigated. As we expected, the prediction AUPRC was 
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correlated with the number of arousals in a sleep record (Supplementary Figure 4.10). The 

individuals who had more sleep arousals during sleep were relatively easier to predict. Moreover, 

we tested the runtime of DeepSleep with GPU acceleration and segmenting sleep arousals of a full 

sleep record can be finished within 10 seconds on average (Supplementary Figure 4.11). The 

time cost of DeepSleep is much lower than that of manual annotations, which requires hours for 

one sleep record.  

 

Unlike the sleep stage annotation, the sleep arousal annotation is a hard task. The relatively weak 

agreement across human experts has been reported with the Intraclass Correlation Coefficients 

(ICCs) of 0.520 and 0.575 for scoring sleep arousals in non-REM and REM, respectively (Kuna 

et al. 2013). Similar to Pearson’s correlation, ICC is a statistic for quantifying the degree to which 

data from the same group resemble each other. The medium ICCs indicate that the gold standard 

itself is not perfect and the annotations for the same sleep record vary across different human 

experts. The theoretical upper bound for the task of computation prediction is thus around 0.520 

to 0.575. To estimate the performance of DeepSleep, we calculated the ICC between our 

predictions and the gold standard annotations. DeepSleep achieved the ICC of 0.497 

(Supplementary Figure 4.12), which is close to the theoretical upper limit in literature.  

 

Visualization of DeepSleep predictions 

In addition to the abstract AUROC and AUPRC scores, we directly visualized the prediction 

performance of DeepSeep at 5-millisecond resolution (corresponding to the 200Hz sample rate). 

An example 7.5-hour sleep record with the prediction AUROC of 0.960 and AUPRC of 0.761 is 

shown in Figure 4.5. From top to bottom, we plotted the multi-stage annotations, sleep arousal 
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labels, predictions and cross entropy losses long the time x-axis. By comparing the prediction and 

gold standard, we can see the general prediction pattern of DeepSleep correlates well with the gold 

standard across the entire record (the second and third rows in Figure 4.5a). We further zoom into 

a short interval of 12.5 minutes and DeepSleep successfully identifies and segments seven sleep 

arousal events out of eight (yellow in Figure 4.5b), although one arousal around 25,600 is missed. 

Intriguingly, DeepSleep predictions display a different pattern from the gold standard annotated 

by sleep experts: DeepSleep assigns continuous prediction values with lower probabilities near the 

arousal-sleep boundaries, whereas the gold standard is strictly binary either arousal = 1 or sleep = 

0 based on the AASM scoring manual (Berry et al. 2017). This becomes clearer when examining 

the cross entropy loss at each time point and the boundary region has higher losses shown in red 

(the bottom row in Figure 4.5b). This is expected because in general we will have a higher 

confidence of annotation in the central region of sleep arousal or other sleep events. Yet due to the 

limit of time and effort, it is practically infeasible to introduce rules for manually annotating each 

time point via a probability scenario. Additionally, binary annotation of sleep records containing 

millions of data points has already required significant effort. DeepSleep opens a new avenue to 

reconsider the way of defining sleep arousals or other sleep stage annotations by introducing the 

probability system. 

 

Discussion 

In this study, we created a deep learning approach, DeepSleep, to automatically segment sleep 

arousal regions in a sleep record based on the corresponding polysomnographic signals. A deep 

convolutional neural network architecture was designed to capture the long-range and short-range 

interactions between data points at different time scales and resolutions. Unlike traditional machine 
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learning models, deep learning approaches do not depend on manually crafted features and can 

automatically extract information from large datasets in an implicit way (LeCun et al. 2015). Using 

traditional approaches to define rules and craft features for modelling sleep problems in real life 

would become much too tedious. In contrast, without assumptions and restrictions, deep neural 

networks can approximate complex mathematical functions and models to address those problems. 

Currently, these powerful tools have also been successfully applied to biomedical image analysis 

and signal processing (Litjens et al. 2017; Shen et al. 2017; Faust et al. 2018). 

 

Overfitting is a common issue in deep learning models, especially when the training dataset is 

small and the model is complex. Many previous studies only trained and evaluated models on less 

than 100 polysomnographic recordings (Ebrahimi et al. 2008; Malafeev et al. 2018; Huang et al. 

2018; Chambon et al. 2018; Supratak et al. 2017; Sun et al. 2018; Zhang et al. 2016), which may 

not generalize well. Moreover, even if we use a large dataset and perform cross-validation, we will 

gradually and eventually overfit to the data. This is because each time we evaluate a model using 

the internal test set, we probe the dataset and fit our model to it. In contrast to previous studies, the 

2018 PhysioNet Challenge offered us a unique opportunity to truly evaluate the performances and 

compare cutting-edge methods on a large external hidden test set of 989 samples (Guan 2019). In 

addition, we demonstrate that deep convolutional neural networks trained on full-length records 

and multiple physiological channels have the best performance in detecting sleep arousals, which 

are quite different from current approaches extracting features from short 30-second epochs (Phan 

et al. 2019; Biswal et al. 2018; Huang et al. 2018; Patanaik et al. 2018; Chambon et al. 2018; 

Supratak et al. 2017; Sors et al. 2018; Andreotti et al. 2018). The ideas embedded in our approach 

will provide unprecedented insights into future method development for automatic scoring of sleep. 
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An interesting observation is that when we used records of different lengths as input to train deep 

learning models, the model using full-length records largely outperformed models using short 

periods of records. This observation brings about the question of how to accurately detect sleep 

arousals based on polysomnography. Current standards mainly focus on short time intervals of less 

than one minute (Berry et al. 2017), yet the segmentations among different sleep experts are not 

very consistent in determining sleep arousals. One reason is that it is hard for human to directly 

read and process millions of data points at once. In contrast, computer is good at processing large-

scale data and discover the intricate interactions and structures between data points across seconds, 

minutes and even hours. Our results indicate that sleep arousal events are not be solely determined 

by the local physiological signals but associated with much longer time intervals even spanning 

hours. It would be interesting to foresee the integration of computer-assisted annotations to 

improve definitions of sleep arousals or other sleep stages. 

 

In addition to the unique long-range information captured by DeepSleep, a clear advantage of 

computational approaches lies in the annotations for the boundary regions between arousal and 

sleep. Since current sleep annotations are binary only, it would be a more accurate and appropriate 

approach to introduce the probability of the annotation confidence, especially at the boundary 

regions. Machine learning approaches such as DeepSleep naturally provide the continuous 

predictions for each time point. It would be interesting to see improved annotation systems using 

continuous values instead of binary labels. A simple approach could be directly integrating the 

computer predictions with annotations by human sleep experts. The proposed annotation systems 
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would provide more accurate information for the diagnosis of sleep disorders and the evaluation 

of sleep quality in the future. 

 

Methods 

Polysomnographic recordings 

The dataset used in this study contains a total of 994 polysomnographic sleep records from 

different individuals and their corresponding labels at each time point. Specifically, the arousal 

region is labeled by “1” and other sleep regions are labeled by “0”, except for the wakefulness 

regions, apnea arousal regions and hypopnea arousal regions labeled by “-1”. These “-1” regions 

will not be scored in the challenge, and we mainly focused on non-apnea arousals that 

interrupted the sleep of an individual, including spontaneous arousals, respiratory effort related 

arousals (RERA), bruxisms, hypoventilations, hypopneas, apneas (central, obstructive and 

mixed), vocalizations, snores, periodic leg movements, Cheyne-Stokes breathing or partial 

airway obstructions (https://physionet.org/challenge/2018/). The final test dataset consists of 989 

unseen polysomnographic recordings from different individuals. For each time point sampled at 

200Hz in each test sleep record, the participants needed to provide a prediction value between 0 

and 1. A 8-hour sleep record contained nearly 75 million data points 

(8*60*60*200*13=74,880,000). Our model made predictions for all the time points, at the 

resolution of 5 milliseconds (1/200Hz = 5 milliseconds). 

 

Partition of the training, validation and testing sleep records 

The 994 sleep records were randomly partitioned into three sets: 60% of them as the training set, 

15% of them as the validation set and 25% of them as the testing set. The validation set was used 
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for monitoring the training-validation losses and avoiding the problems of overfitting or 

underfitting. 

 

AUROC and AUPRC 

Since sleep arousal events are extremely rare (<10% in terms of length), the performances of 

different methods are not apparent in the Receiver Operating Characteristic (ROC) curve (Davis 

and Goadrich 2006; Li et al. 2019), where the y-axis is the True Positive Rate (TPR) and the x-

axis is the False Positive Rate (FPR). The TPR and FPR are defined as 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 

where TP is True Positive, FN is False Negative, FP is False Positive, and TN is True Negative. 

This is because when the number of negative events (“Sleep”; 92.8%), or TN, is much larger than 

the positive ones (“Arousal”; 7.2%), the FPR is always very small and will barely change even if 

a poor model makes many FP predictions. Therefore, in addition to the commonly used AUROC, 

we evaluated our model and various strategies using ARPRC (Li et al. 2018). In the Precision-

Recall space, the Precision and Recall are defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

The Precision is very sensitive to FP when the number of TP is relatively small. Therefore, the 

AUPRC metric is able to distinguish the performances in highly unbalanced data such as the 

annotations of sleep arousals. 
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Convolutional neural network architectures 

The classic U-Net architecture was adapted in DeepSleep. The original U-Net is a 2D 

convolutional neural network designed for 2D image segmentation (Ronneberger et al. 2015). We 

transformed the structure into 1D for the time-series sleep records and largely increased the number 

of convolutional layers from the original 18 to 35 for extracting the information at different scales. 

Similar to U-Net, we had convolution, max pooling and concatenation layers. The kernel size of 7 

was used in the convolution operation and increasing the kernel size didn’t significantly change 

the performance. The nonlinear activation after each convolution operation is a Rectified Linear 

Unit (ReLU) (Nair and Hinton 2010) defined as 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

where x is the input to a neuron and f(x) is the output. Only positive values active a neuron and 

ReLU allows for fast and effective training of neural networks compared to other complex 

activation functions. In addition, batch normalization was used after each convolutional layer. In 

the final output layer, we used the sigmoid activation unit defined as 

𝑓(𝑥) =
1

1 + 𝑒6@ 

where x is the input to a neuron and f(x) is the output. During the training process, the Adam 

optimizer (Kingma and Ba 2014) was used with the learning rate of 1e-4 and the decay rate of 1e-

5.  

Other network structures were also tested, including AlexNet (Krizhevsky et al. 2017) 

(Supplementary Fig. 2), Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) 

and Gated Recurrent Unit (GRU) (Cho et al. 2014) (Supplementary Fig. 9). They have worse 
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(AlexNet) or similar (LSTM and GRU) performances. Therefore, we kept the U-Net based 

structure. 

 

Training Losses 

The cross entropy loss, or log loss, was used for model training in DeepSleep. The cross entropy 

loss is defined as 

𝐻(𝑦, 𝑦) = −𝑦# ⋅ 𝑙𝑜𝑔𝑦Z − (1 − 𝑦#) ⋅ 𝑙𝑜𝑔(1 − 𝑦Z)
[

#0=

	

where 𝑦# is the gold standard label of sleep=0 or arousal=1 at time point i, 𝑦𝑖 is the prediction value 

at time point i, N is the total number of time points, 𝑦 is the vector of the gold standard labels and 

𝑦  is the vector of predictions. Ideally, an “AUPRC loss” should be used for optimizing the 

prediction AUPRC. However, the “AUPRC loss” doesn’t exist because the AUPRC function is 

not mathematically differentiable, which is required in the neural network model training through 

the back propagation algorithm (Rumelhart et al. 1986). Therefore, we need to use cross entropy 

loss to approximate the “AUPRC loss”. Another option is using the Sorensen-dice coefficient 

defined as 

𝑆(𝑦, 𝑦) =
(𝑦# ⋅ 𝑦Z)[

#0=

(𝑦#)[
#0= + (𝑦Z)[

#0=
	

where 𝑦# is the gold standard label of sleep=0 or arousal=1 at time point i, 𝑦𝑖 is the prediction value 

at time point i, N is the total number of time points, 𝑦 is the vector of the gold standard labels and 

𝑦 is the vector of predictions. We have tested the cross entropy loss, the Sorensen dice loss and 

combining these two losses. Using the cross entropy loss achieved the best performance in 

DeepSleep. 
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Intraclass correlation coefficient 

Intraclass correlation coefficient is a statistic for quantifying the degree to which data from the 

same group resemble each other. When the paired units are under consideration, the definition of 

ICC is similar to Pearson’s correlation, except for using the pull the average and variance. In this 

study, we paired the prediction with the annotation by sleep expert for each time point in each 

sleep record. The ICC is defined as (Bartko 1966) 

𝐼𝐶𝐶(𝑦, 𝑦) =
1
𝑁𝑠F (𝑦# − 𝑦)(𝑦Z − 𝑦)

[

#0=

	

𝑦 =
1
2𝑁 (𝑦# + 𝑦Z)

[

#0=

	

𝑠F =
1
2𝑁 (𝑦# − 𝑦)F

[

#0=

+ (𝑦Z − 𝑦)F
[

#0=

	

where 𝑦# is the gold standard label of sleep=0 or arousal=1 at time point i, 𝑦𝑖 is the prediction value 

at time point i, N is the total number of time points, 𝑦 is the vector of the gold standard labels and 

𝑦 is the vector of predictions. In contrast to Pearson’s correlation, the 𝑦 and 𝑠F  are the pulled 

average and variance, respectively.  

Since the annotations for sleep arousals are binary, we first transformed the predictions into binary 

values using a cutoff before calculating the ICC. The 7% percentile value among all prediction 

values was selected as the cutoff, based on the positive (“Arousal”) ratio of 0.07 observed in the 

training data. All the prediction values larger than the cutoff were set to “1” and others were set to 

“0”, resulting in 7% of the processed predictions were “1” and 93% were “0”. 
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Overall AUPRC 

The overall AUPRC, or the gross AUPRC, is defined as 

𝐴𝑈𝑃𝑅𝐶 = 𝑃a(𝑅a − 𝑅ab=)
	

a

	

𝑃a =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟  

𝑅a =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑗/1000)	𝑜𝑟	𝑔𝑟𝑒𝑎𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑟𝑜𝑢𝑠𝑎𝑙	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠  

where the Precision (𝑃a) and Recall (𝑅a) were calculated at each cutoff j and j = 0, 0.001, 0.002, …, 

0.998, 0.999, 1. For a test dataset of multiple sleep records, this overall AUPRC is similar to the 

“weighted AUPRC”, which is different from simply averaging the AUPRC values of all test 

records. This is because the overall AUPRC considers the length of each record and longer records 

contributing more to the overall AUPRC, resulting in a more accurate performance description of 

a model. The overall AUPRC was also used as the primary scoring metric in the 2018 PhysioNet 

Challenge. 

 

Data availability 

The dataset used in this study is publicly available at the 2018 PhysioNet Challenge website: 

https://physionet.org/physiobank/database/challenge/2018/ 

 

Code availability 

The code of DeepSleep is available at: 

https://github.com/GuanLab/DeepSleep 
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Figures 

Figure 4.1 Schematic Illustration of DeepSleep workflow.  
DeepSleep is a deep neural network model for automatic detecting sleep arousals based on 
polysomnograms, which contain multiple human physiological signals during sleep. Location. 
The 13-channel polysomnogram monitored multiple body functions, including brain activity (six 
EEG channels of F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1), eye movement (one EOG 
channel of E1-M2), muscle activity (three EMG channels of Chin, ABD, and Chest), heartbeat 
(one channel of ECG), airflow, and saturation of oxygen (SaO2). Data. A 50-second sleep record 
with the gold standard label of arousal/sleep on the top and the corresponding 13 physiological 
features. Cross-validation. In the nested train-validate-test framework, 60%, 15%, and 25% of the 
data were used to train, validate, and evaluate the model. Model. The classic U-Net architecture 
was adapted to capture the information at different scales and allowed for detecting sleep arousals 
at millisecond resolution. Evaluation. DeepSleep achieved high prediction AUROC of 0.927 and 
AUPRC of 0.550. 
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Figure 4.2 Sleep arousals sparsely distributed in the heterogenous sleep records among 
individuals. 
a. The 8 major annotation categories are shown in different colors for 20 randomly selected sleep 
records. b. The relationship between the number of sleep arousals (y-axis) and the percentage of 
total sleep arousal time over total sleep time (x-axis) in the 994 sleep records. In general, more 
arousal events lead to longer accumulated arousal time and the correlation is significantly strong. 
c. The length of sleep (x-axis) has no significant correlation with the accumulated length of sleep 
arousals (y-axis). 
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Figure 4.3 The deep convolutional neural network architecture in DeepSleep.  
a. The classic U-Net structure was adapted in DeepSleep, which has two major components of the 
encoder (the red trapezoid on the left) and the decoder (the purple trapezoid on the right). b. The 
building blocks of DeepSleep are the convolution-convolution-pooling block (red), the 
concatenation (green) and the convolution-convolution-upscaling block (purple). 
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Figure 4.4 The performance comparison of DeepSleep using different model training 
strategies.  
a. The training and validation cross entropy losses are shown in the dashed and solid lines, 
respectively. The models using sleep records at different resolutions are shown in different colors. 
b. The prediction of each sleep record in the test set is shown as a blue dot in the AUROC-AUPRC 
space. A weak correlation is observed between AUROCs and AUPRCs with a significant p-value 
< 0.001. The 95% percent confidence interval is shown as the yellow bend. The baselines of 
random predictions are shown as red dashed lines. The prediction c. AUPRCs and d. AUROCs of 
models using different resolution or strategies were calculated. The “1/8_no_swap” model 
corresponds to the model using the “1/8” resolution records as input without any channel swapping, 
whereas the “1/8”, “1/2” and “full” models use the strategy of swapping similar polysomnographic 
channels. The final “1/8+1/2+full” model of DeepSleep is the ensemble of models at 3 different 
resolutions, achieving the highest AUPRC of 0.550 and AUROC of 0.927. 
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Figure 4.5 Visualization of DeepSleep predictions and the gold standard annotations.  
a. A 7.5-hour sleep record (id=tr05-1034) with the prediction AUROC of 0.960 and AUPRC of 
0.761 is used as an example. From top to bottom along the y-axis, the four rows correspond to the 
8 annotation categories, the binary label of arousal (yellow), sleep (blue) and the non-scoring 
regions (gray), the continuous prediction, and the cross entropy loss at each time point along the 
x-axis. b. The zoomed in comparison of a 12.5-minute period of this sleep record. 
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Supplementary Figures 
 
Supplementary Figure 4.1 The prediction performances of models using various lengths of 
polysomnographic recordings as input. 
The A. AUROCs and B. AUPRCs of models using different lengths of polysomnographic 
recordings as input. From left to right, the length of input gradually increases from 4,096 (about 
20 seconds) to 131,072 (about 11 minutes). Each color represents a model using one of the 13 
polysomnographic signals. These signals correspond to the 13 channels from top to bottom in 
Figure 4.1 - “Data”: 1. F3-M2; 2. F4-M1; 3. C3-M2; 4. C4-M1; 5. O1-M2; 6. O2-M1; 7. E1-
M2; 8. Chin; 9. ABD; 10. Chest; 11. Airflow; 12. SaO2; 13. ECG. The dashed lines represent the 
baseline of random predictions in the AUROC space (baseline=0.500) and the AUPRC space 
(baseline=0.072). 
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Supplementary Figure 4.2 The comparison of network structures between AlexNet and U-
Net. 
Both A. AlexNet and B. U-Net contain the encoder and the decoder, whereas AlexNet does not 
have the concatenation operations (horizontal green arrows) to directly transfer the information 
from the encoder to the decoder in each feature map. The feature map is the output of the ccp or 
ccu block. The convolutional/pooling/upscaling layers within the ccp and ccu blocks, and the 
concatenation operation are shown in C. 
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Supplementary Figure 4.3 The performance comparison between AlexNet and U-Net. 
The prediction A. AUPRCs and B. AUROCs of AlexNet and U-Net in segmenting sleep arousal 
regions. The only difference is that AlexNet does not have the concatenation operations between 
the encoder and the decoder (Supplementary Figure 4.2). U-Net outperformed AlexNet, in 
terms of both AUPRC and AUROC. 
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Supplementary Figure 4.4 The performance comparison of models using different types of 
polysomnographic signals. 
From left to right, the first six categories are EEG (channel 1-6), EOG (channel 7), EMG 
(channel 8-10), Airflow (channel 11), saturation of Oxygen (channel 12) and ECG (channel 13). 
The last one, “All”, represents the model using all these 13 channels as input. The prediction A. 
AUPRCs and B. AUROCs of models using different types of signals are shown in different 
colors. Of note, the model “All” using all 13 polysomnographic signals achieved the best 
performance. 
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Supplementary Figure 4.5 The performance comparison of deep CNN and the traditional 
approach of logistic regression. 
The prediction A. AUPRCs and B. AUROCs of deep convolutional neural network and logistic 
regression are shown in different colors. Clearly, the deep CNN had much higher performance in 
terms of both AUPRC and AUROC. 
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Supplementary Figure 4.6 The comparison of the top 10 teams in the 2018 PhysioNet 
Challenge. 
In the left panel, top methods (Howe-Patterson et al. 2018; Már Þráinsson et al. 2018; He et al. 
2018; Varga et al. 2018; Patane et al. 2018; Miller et al. 2018a; Warrick and Nabhan Homsi 
2018; Bhattacharjee et al. 2018; Szalma et al. 2018) are compared in terms of machine learning 
models (red blocks), input length for models (blue blocks), and the types of input (orange 
blocks). In particular, the input are either raw polysomnogram data, or features extracted by 
statistical analysis, short-time Fourier transform, or wavelet transform. The corresponding 
prediction performances of these methods are shown in the right panel. 
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Supplementary Figure 4.7 The comparison of U-Net structures with or without recurrent 
layers. 
Both A. U-Net with LSTM or GRU layer and B. U-Net has components of the encoder, the 
decoder and concatenation. The only difference lies at the bottom of U-Net, where a recurrent 
unit of LSTM or GRU layer is inserted. The the recurrent layer, the layers within the ccp and ccu 
blocks, and the concatenation operation are shown in C. 
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Supplementary Figure 4.8 The performance comparison of different U-Net structures with 
or without recurrent units. 
The prediction A. AUPRCs and B. AUROCs of U-Net, U-Net with GRU and U-Net with LSTM 
are shown in different colors. The recurrent layer, GRU or LSTM, was implemented at the center 
of U-Net (Supplementary Figure 4.5). Adding the recurrent layer did not improve the 
performance. We used U-Net without recurrent layers as in our final model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 121 

Supplementary Figure 4.9 The comparison of DeepSleep with current methods for sleep 
staging. 
The prediction A. AUPRCs and B. AUROCs of (1) attention recurrent neural network (ARNN), 
(2) SeqSleepNet using features from short-time Fourier transform, (3) a method using features 
from Thomson’s multitaper, and (4) our DeepSleep approach are shown in different colors.  
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Supplementary Figure 4.10 The relationship between prediction performance and the 
number of arousals. 
Each dot represents one sleep record. The prediction A. AUPRCs and B. AUROCs are shown by 
the y-axis. The AUPRC has a medium correlation with the number of sleep arousals.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 123 

Supplementary Figure 4.11 The runtimes for predicting sleep arousals at millisecond 
resolution. 
The A. total time cost and B. average time cost per sleep record are shown in bar plots. Notably, 
the average runtime per sleep record is less than 10 seconds and gradually decreases as the total 
number of records to be analyzed increases. This results from the overhead time of loading the 
large neural network models before the prediction step. 
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Supplementary Figure 4.12 The distribution of Intraclass Correlation Coefficient values 
for all the test sleep records between our predictions and human labels. 
The overall ICC of DeepSleep is 0.497, which approaches the reported theoretical upper limit 
between 0.520 (arousals in REM regions) and 0.575 (arousal in non-REM regions). 
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CHAPTER V 

Summary and Conclusion 

 

Summary and future directions 

Advancements in unsupervised and supervised machine learning algorithms have provided new 

insights into data patterns and generated prediction models for practical usage. More importantly, 

these machine learning approaches have been evolving our understanding of various physiological 

systems. In this dissertation, I have contributed to developing cutting-edge computational models 

to address multiple problems, including the comparison of evolutionarily-related protein families, 

modelling the relationship of multi-omics in cancers, and automatic segmentation of sleep arousals. 

 

In Chapter II, I performed PCA of existing crystallographic structures of three GTPase families.  

In addition to the canonical GTP and GDP forms, I found two new conformational clusters 

representing the GEF-bound state in Gαt/i and the “state 1” in Ras. By comparing the Ras PCA to 

PCA of Gαt/i and EF-Tu, I revealed common nucleotide dependent collective deformations of SI 

and SII across G protein families. I further performed extensive MD simulations and network 

analyses, which reveal common nucleotide-associated conformational dynamics in Ras, Gαt and 

EF-Tu. Specifically, these three systems have stronger intra-lobe1 (PL–SI and PL–SII) and inter-

lobe (SII–SIII/α3) couplings in the GTP-bound state. Meanwhile, through the network comparison 

approach, I further identified residue-wise determinants of commonalities and specificities across 

families. Mutations of identified distal residues display decreased coupling strength in SI–PL. 
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Besides the key residues that are common in the three systems, residues mediating inter-lobe 

couplings only in Gαt and EF-Tu are identified. Importantly, some of the highlighted mutants have 

been reported to have functional effects by in vitro experiments. This study provides insights into 

the atomistic mechanisms of these altered protein functions. Overall, separation of functionally 

conserved and specific residues in conformational dynamics provides us unprecedented insights 

into protein evolution and engineering. In addition to molecular switches, this approach can be 

broadly used in the comparison of multiple protein families in the future. For example, molecular 

motors such as ATPases have a similar nucleotide-dependent functional circle. A structural 

dynamic comparison between GTPases and ATPases will potential reveal key determinants of 

these two evolutionarily-related enzyme superfamilies. 

 

In Chapter III, I created a machine learning algorithm for predicting protein abundances from the 

mRNA levels. This approach pinpointed the relative importance of the innate correlations between 

mRNA and protein levels, and the global direct and indirect interactions across all genes in 

controlling the expression level of a protein. Based on the intuition that the regulatory mechanism 

may be shared across different cancer types, I built a new model that shares parameters across 

breast and ovarian cancers, and improved prediction performance in both cancers. This revealed a 

new, unexplored aspect of the regulatory mechanism that is previously not captured in single tissue 

modelling approaches. Pathway analysis and gene-gene interaction network indicated that 

functionally different gene sets had different predictability profiles and regulatory powers. In sum, 

this approach offers a new field standard for protein abundance prediction across cancer patients, 
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and the key features used in our model and the innovation of transfer learning across two cancer 

types will be instructive for future method development and protein expression regulatory 

mechanism exploration. In addition, decoding the determinants modulating protein 

phosphorylation is also crucial for understanding the regulatory mechanisms underlying cancers. 

Similar ideas can be potentially used in predicting the phosphoproteomic profiles from the 

corresponding genomic, transcriptomic, and proteomic data in the future. 

 

In Chapter IV, I investigated a novel deep learning approach, DeepSleep, for automatic detection 

of sleep arousals. I built a deep convolutional neural network (CNN) to capture long-range and 

short-range interdependencies between timepoints across an entire sleep record. Information at 

different resolutions and scales was integrated to improve the performance. I found that similar 

EEG and EMG channels were interchangeable, which was used as a special augmentation in our 

approach. Compared with the theoretical upper limit calculated from annotation replicates by 

different sleep experts, DeepSleep achieved near-perfect detection of sleep arousals at millisecond 

resolution, approximating human performance. Furthermore, a clear advantage of computational 

approaches lies in the annotations for the boundary regions between arousal and sleep. Since 

current sleep annotations are binary only, it would be a more accurate and appropriate approach to 

introduce the probability of the annotation confidence, especially at the boundary regions. Machine 

learning approaches such as DeepSleep naturally provide the continuous predictions for each time 

point. It would be interesting to see improved annotation systems using continuous values instead 

of binary labels. A simple approach could be directly integrating the computer predictions with 
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annotations by human sleep experts. The proposed annotation systems would provide more 

accurate information for the diagnosis of sleep disorders and the evaluation of sleep quality in the 

future. 

 

Conclusion 

In the big data era, data explosion brings up critical problems - how to efficiently distinguish true 

signals from noises and artifacts, build high-performing prediction models for practical usage, and 

ultimately reveal new insights from the computational perspective. In this dissertation, I apply a 

variety of machine learning algorithms to multiple problems. I believe these improved approaches 

will facilitate data analysis in the fields of structural dynamic comparison of proteins, 

proteogenomics, and signal processing of sleep recordings. 

 

 

 

 

 

 

 

 


