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ABSTRACT

This thesis presents linear and convex programming based algorithms for NP-

hard discrete optimization problems, mainly with applications in network design.

Network design problems aim to find a minimal/maximal weighted subgraph sat-

isfying given properties. The problems studied include maximum cut, buy-at-

bulk network design, throughput maximization, and unrelated machine schedul-

ing. This thesis considers different models of input uncertainty: the traditional

deterministic setting, the online setting where inputs arrive over time and the

stochastic setting where inputs are drawn from some probability distribution. Our

approach to these problems involves solving suitable convex relaxations and then

using rounding procedures to convert the fractional solutions to integer solutions.

The specific contributions of this thesis include (1) approximation algorithms for

a constrained variant of the maximum cut problem using the Sherali-Adams LP

hierarchy; (2) online primal-dual algorithms for covering and packing with Lq

norm objectives; (3) approximation algorithms for stochastic unrelated machine

scheduling.
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CHAPTER 1

Introduction

In a network design problem, we are given a weighted graph, where we wish to find a
subgraph that satisfies certain properties and minimizes/maximizes total weight of the sub-
graph. Classic network design problems include Steiner tree [38], buy-at-bulk network
design [56], throughput maximization [10], and maximum cut [61]. Most problems in this
class are NP-hard. Therefore we do not believe there exists any algorithm that is both
efficient (polynomial running time) and optimal. One approach is to solve these problems
exactly using algorithms that require exponential time in the worst case. A common method
here is to formulate them as integer programs: these are optimization problems with a lin-
ear objective and constraints, and integrality restrictions on variables. Then many instances
can be solved by commercial solvers. However, when the instances become large, this ap-
proach becomes very time-consuming. Therefore another practical approach is to deal with
this intractability via heuristics, which are efficient algorithms that compute near-optimal
solutions.

The primary focus of this dissertation is to design approximation algorithms, which are
heuristics with mathematically rigorous performance guarantees on the gap from optimal-
ity (referred to as the approximation ratio). An effective approach to design approximation
algorithms is to (1) formulate the problem as an integer program, (2) find a valid linear
program (LP) or convex program relaxation and (3) design a rounding algorithm that con-
verts a fractional solution of the LP into an integral solution for the original problem. This
dissertation presents algorithms based on this approach for network design problems. In
addition to the classic deterministic setting, we also apply this approach in the setting of
uncertain input (namely online and stochastic optimization).

This thesis presents algorithms for a suite of discrete optimization problems, with em-
phasis on the following network design problems.

• Maximum cut: This problem is defined on an undirected edge-weighted graph and
asks to find a subset of vertices that maximizes the weight of edges going out of
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this subset [61]. In this thesis, we study a constrained version of the maximum cut
problem, where the constraints are defined by graph properties.

• Buy-at-bulk network design: In the buy-at-bulk network design problem [56], we are
given a graph with a monotone sub-additive cost function on each edge and a collec-
tion of source/destination pairs. The goal is to find a path for each source/destination
pair such that the total cost on the edges is minimized. We study the online version
of this problem.

• Throughput maximization: In the throughput maximization problem [10], we are
given a directed graph with edge capacities. There are requests with source/destination
pairs that arrive online. The goal is to choose a subset of requests to maximize the
number of accepted requests while the number of paths using any edge is not allowed
to exceed its capacity. In addition to this classic setting, we consider an extension
with capacity constraints on subsets of edges.

• Unrelated machine scheduling: This problem is a classic scheduling problem where
we want to schedule jobs on machines to minimize the maximum load [95]. In this
thesis, we take a stochastic optimization approach where the job sizes are random
variables with known distribution to deal with the scenarios where there is uncer-
tainty in the job sizes.

In Chapter 2, we study a key aspect of using LP relaxations in designing approxima-
tion algorithms, which is the choice of the LP relaxation. For many problems, the natural
LP relaxations have been proved to provide only weak bounds (see e.g. [121, 7]). One
approach to get around this difficulty is to investigate systematic procedures to strengthen
the relaxations. In Chapter 2, we design approximation algorithms based on the Sherali-
Adams LP hierarchy for the graph-constrained maximum cut problem. The maximum cut
problem is a fundamental network design problem that involves selecting a subset of nodes
that maximizes the number of edges crossing its boundary. In many applications, there is
a constraint on the subset of nodes that can be chosen. For example, a connected maxi-
mum cut problem can arise from community detection [58] and image segmentation [70].
We study a large class of graph-constrained maximum cut problems and present unified
approximation algorithms for them. In our setting, the graph-based constraint is defined
on a graph G and the solution vertex set S must satisfy some properties (e.g. independent
set, connectivity) in G. Our main results are for the case when G is of bounded treewidth,
where we obtain a 1

2
-approximation algorithm. The approximation ratio is the best possi-

ble via LP-based algorithms even for the unconstrained problem [35]. We also extend the

2



algorithm to handle the max-k-cut problem under any monadic second-order (MSO) logic
constraint [44]. MSO logic is an important concept in fixed-parameter tractability theory
that can express a large class of graph properties including Hamiltonicity, 3-colorability,
and connectivity [113]. Our main result is a 1

2
-approximation algorithms for graph-MSO-

constrained max-k-cut problems, where the constraint graph has bounded treewidth.

In Chapter 3, we study the use of convex programs to solve online optimization prob-
lems [26]. Online optimization is a widely used approach in optimization under uncertainty.
Here the algorithm has no prior information on the input which is revealed incrementally
over time. For example, in a network design problem, when a pair of source/destination
request arrives, the algorithm needs to find a path to satisfy this request immediately, with-
out knowledge of any future requests. The performance of an online algorithm is compared
to an optimum that knows the entire input upfront. So, in addition to computational com-
plexity, an algorithm needs to deal with the lack of information. The online primal-dual
approach is widely used for designing online algorithms and leads to algorithms for cov-
ering/packing LPs. There has been a lot of effort in obtaining good online algorithms for
various classes of continuous optimization problems, see e.g. [5, 30, 65, 30, 11, 12]. When
combined with suitable rounding algorithms, they lead to online algorithms for various
problems, e.g. set cover [6], facility location [5], machine scheduling [11], caching [16],
and buy-at-bulk network design [56]. In Chapter 3, we design an online algorithm for frac-
tional covering and packing problems with sums of `q-norm objectives, which significantly
extends the online primal-dual approach. We obtain a logarithmic competitive ratio, which
is nearly tight even for the special case of a linear objective. As direct applications we
obtain (1) improved online algorithms for non-uniform buy-at-bulk network design [34]
and (2) the first online algorithm for throughput maximization [10, 30] under `q-norm edge
capacities.

In Chapter 4, we study another approach to deal with input uncertainty, i.e., stochastic
optimization. In the stochastic setting, certain parts of the input are represented by ran-
dom variables, and the algorithm needs to optimize the expected performance [23]. One
common approach to design approximation algorithms for stochastic models is to find de-
terministic surrogates for random variables and then solve a certain deterministic problem
with the surrogates. The difficulty, however, is to come up with the correct determinis-
tic surrogate and establish a connection to the resulting deterministic problem. In Chap-
ter 4, we use this approach to give the first constant-factor approximation algorithm for
the general stochastic load balancing problem. The deterministic version is well-studied
with a known constant-factor approximation even in the most general case [95, 117]. In
the stochastic setting, however, the general problem remained open until our work. Prior
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results were limited to identical machines where each job is required to have the same
random size on all the machines. A constant-factor approximation algorithm for identical
machines was given [88] and better results for special classes of job size distributions were
known [60]. We utilize an exponential-sized LP relaxation of the stochastic problem and
use the solution of the LP to come up with a deterministic surrogate for the job sizes. We
note that these techniques can also be extended to some network design problems such as
unsplittable flow problem on the line/tree.
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CHAPTER 2

Max-Cut under Graph Constraints

2.1 Introduction

The max-cut problem is an extensively studied combinatorial-optimization problem. Given
an undirected edge-weighted graph, the goal is to find a subset S ⊆ V of vertices that max-
imizes the weight of edges in the cut (S, V \ S). Max-cut has a 0.878-approximation
algorithm [61] which is known to be best-possible assuming the unique games conjec-

ture [86]. It also has a number of practical applications, e.g., in circuit layout [37], statisti-
cal physics [18] and clustering [81, 94].

In some applications, one needs to solve the max-cut problem under additional con-
straints on the subset S. Consider, for example, the following community detection prob-
lem. The input is an undirected graph G = (V,E) representing, say, a social network
(vertices V denote users and edges E denote connections between users), and a weight
function c :

(
V
2

)
→ R+ representing, a dissimilarity measure between pairs of users. The

goal is to find a subset S ⊆ V of users that are connected inGwhile maximizing the weight
of edges in the cut (S, V \ S). This corresponds to finding a cluster of connected users that
is as different as possible from its complement set. Many community detection problems
involve such a connectivity constraint; see, e.g., [58]. This “connected max-cut” problem
also arises in image segmentation applications [70, 120].

Designing algorithms for constrained versions of max-cut is also interesting from a the-
oretical standpoint. For max-cut under certain types of constraints (such as cardinality or
matroid constraints) good approximation algorithms are known, e.g., [3, 4]. In fact, many
of these results have since been extended to the more general setting of submodular objec-
tives [43, 57]. However, not much is known for max-cut under “graph-based” constraints
as in the example above.

In this chapter, we study a large class of graph-constrained max-cut problems and
present unified approximation algorithms for them. Our results require that the constraint
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is defined on a graph G of bounded treewidth. (Treewidth is a measure of how similar
a graph is to a tree structure — see Section 2.2 for definitions.) We note however that
for a number of constraints, we can combine our algorithm with known decomposition re-
sults [47, 48] to obtain essentially the same approximation ratios when the constraint graph
G is bounded-genus or excluded-minor.

Definition 2.1.1 (GCMC). The input to the graph-constrained max-cut (GCMC) problem

consists of (i) an n-vertex graph G = (V,E) with a graph property which implicitly speci-

fies a collection SG of vertex subsets, and (ii) symmetric edge-weights c :
(
V
2

)
→ R+. The

GCMC problem is then as follows:

max
S∈SGG

∑
u∈S,v 6∈S

c(u, v). (2.1)

In this chapter, we assume that the constraint graph G has bounded treewidth. And we
are interested in constraints that are specified by an auxiliary constraint graph, especially
the graph constraint that can be expressed in monadic second-order logic (MSO) (see [44]).
MSO logic is an important concept in fixed-parameter tractability theory [113]. It can ex-
press a large class of graph properties including Hamiltonicity, 3-colorability, connectivity,
independent set, vertex cover. Section 2.2 gives more detailed description of MSO logic.

2.1.1 Results and Techniques

Our main result can be stated as follows.

Theorem 2.1.2 ( GCMC result). Consider any instance of the GCMC problem on a bounded-

treewidth graph G = (V,E). Suppose the constraint SG can be expressed by an MSO
formula. Then we obtain a 1

2
-approximation algorithm for GCMC.

Our algorithm uses a linear-programming relaxation for GCMC based on the dynamic
program which is further strengthened via the Sherali-Adams LP hierarchy. The resulting
LP has polynomial size whenever the number of dynamic program states associated with
a single tree-decomposition node is constant (see Section 2.2 for the formal definition).1

The rounding algorithm is a natural top-down procedure that randomly chooses a “state”
for each tree-decomposition node using the LP’s probability distribution conditioned on
the choices at its ancestor nodes and their siblings. The complete solution is obtained
by combining the chosen states at each tree-decomposition node, which is guaranteed to
satisfy constraint SG due to properties of the dynamic program.

1For other polynomial-time dynamic programs, the LP has quasi-polynomial size.
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The requirements in Theorem 2.1.2 on the graph constraint SG are satisfied by several
interesting constraints and thus we obtain approximation algorithms for all these GCMC

problems. See Section 2.5 for details.

Theorem 2.1.3 (Applications of GCMC). There is a 1
2
-approximation algorithm for GCMC

under the following constraints in a bounded-treewidth graph: independent set, vertex

cover, precedence, dominating set, connectivity.

We note that many other constraints such as connected dominating set, and triangle
matching also satisfy our requirement.

For many of the constraints above, we can use known decomposition results [48, 47] to
obtain approximation algorithms for GCMC when the constraint graph has bounded genus
or excludes some fixed minor (e.g., planar graphs).

Corollary 2.1.3.1. There is a (1
2
− ε)-approximation algorithm for GCMC under the fol-

lowing constraints in an excluded-minor graph: independent set, vertex cover, dominating

set. Here ε > 0 is a fixed constant.

Corollary 2.1.3.2. There is a (1
2
− ε)-approximation algorithm for connected max-cut in a

bounded-genus graph. Here ε > 0 is a fixed constant.

We also extend these results to the setting of max-k-cut, where we seek to partition the
vertices into k parts {Ui}ki=1 so as to maximize the weight of edges crossing the partition.
In the constrained version, we additionally require each part Ui to satisfy some MSO graph
property. We obtain a 1

2
-approximation algorithm even in this setting (k is fixed).

A k-partition of vertex set V is a function h : V → [k], where the k parts are Uα = {v ∈
V : h(v) = α} for α ∈ [k]. Note that ∪kα=1Uα = V and U1, · · · , Uk are disjoint. When we
want to refer to the k parts directly, we also use {Uα}kα=1 to denote the k-partition.

Definition 2.1.4 (GCMCk). The input to the graph-constrained max-k-cut problem consists

of (i) an n-vertex graph G = (V,E) with a graph property which implicitly specifies a

collection SG of vertex k-partitions, and (ii) symmetric edge-weights c :
(
V
2

)
→ R+. The

GCMCk problem is to find a k-partition in SG with the maximum weight of crossing edges:

max
h∈SG

∑
{u,v}∈(V2),h(u)6=h(v)

c(u, v). (2.2)

2.1.2 Related Work

For the basic undirected max-cut problem, there is an elegant 0.878-approximation algo-
rithm [61] via semidefinite programming. This is also the best one can hope for, assuming
the unique games conjecture [86].
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Most of the prior work on constrained max-cut has focused on cardinality, matroid
and knapsack constraints [3, 4, 43, 57, 92, 93]. Constant-factor approximation algorithms
are known for max-cut under the intersection of any constant number of such constraints
— these results hold in the substantially more general setting of non-negative submodu-
lar functions. The main techniques used here are local search and the multilinear exten-
sion [32] of submodular functions. These results made crucial use of certain exchange
properties of the underlying constraints, which are not true for the graph-based constraints
that we consider.

Closer to our setting, a version of the connected max-cut problem was studied recently
in [70], where the connectivity constraint, as well as the weight function, were defined on
the same graph G. The authors obtained an O(log n)-approximation algorithm for gen-
eral {0, 1}-weighted graphs, an O(log2 n)-approximation algorithm for general weighted
graphs, and an exact algorithm on bounded-treewidth graphs (which implied a PTAS for
bounded-genus graphs); their algorithms relied heavily on the uniformity of the constraint
and weight graphs. In contrast, we consider the connected max-cut problem where the
connectivity constraint and the weight function are unrelated; in particular, our problem
generalizes max-cut even when G is a trivial graph (e.g., a star). Moreover, our algorithms
work for a much wider class of constraints. We note however that our results require the
graph G to have bounded treewidth — this is also necessary because some of the con-
straints we consider (e.g., independent set) are inapproximable in general graphs [71]. For
connected max-cut itself, obtaining a non-trivial approximation ratio when G is a general
graph remains an open question.

In terms of techniques, the closest work to ours is [68]. We use ideas from [68] in
formulating the (polynomial size) Sherali-Adams LP as well as in the rounding algorithm.
There are important differences too, as discussed in Section 2.1.1.

A recent result [35] showed that any polynomial-sized linear program (that only de-
pends on the input size) for unconstrained max-cut has an integrality gap of 1/2. As GCMC

generalizes unconstrained Max-Cut, we cannot obtain a better approximation ratio directly
using LPs.

Finally, our result adds to a somewhat small list [?, 20, 22, 59, 68, 99] of algorithmic
results based on the Sherali-Adams [116] LP hierarchy. We are not aware of a more direct
approach to obtain a constant-factor approximation algorithm even for connected max-cut
when the constraint graph G is a tree.
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2.2 Preliminaries

2.2.1 Tree Decomposition

Given an undirected graph G = (V,E), a tree decomposition consists of a tree T = (I, F )

and a collection of vertex subsets {Xi ⊆ V }i∈I such that:

• for each v ∈ V , the nodes {i ∈ I : v ∈ Xi} are connected in T ,

• for each edge (u, v) ∈ E, there is some node i ∈ I with u, v ∈ Xi.

The width of such a tree decomposition is maxi∈I(|Xi| − 1), and the treewidth of G is
the smallest width of any tree decomposition for G.

We work with “rooted” tree decompositions, also specifying a root node r ∈ I . The
depth d of such a tree decomposition is the length of the longest root-leaf path in T . The
depth of any node i ∈ I is the length of the r− i path in T . For any i ∈ I , the set Vi denotes
all the vertices at or below node i, that is

Vi := ∪k∈TiXk,where Ti = {k ∈ I : k in subtree of T rooted at i}.

The following result provides a convenient representation of T .

Theorem 2.2.1 (Balanced Tree Decomposition; see [25]). Let G = (V,E) be a graph with

tree decomposition (T = (I, F ), {Xi|i ∈ I}) of treewidth k. Then G has a rooted tree de-

composition (T ′ = (I ′, F ′), {X ′i|i ∈ I ′}) where T ′ is a binary tree of depth 2dlog 5
4
(2|V |)e

and treewidth at most 3k+2. Moreover, for all i ∈ I , there is an i′ ∈ I ′ such thatXi ⊆ X ′i′ .

The tree decomposition T ′ can be found in O(|V |) time.

2.2.2 Constraint Satisfaction Problem

Definition 2.2.2 (CSP instance). An instance of Constraint Satisfaction Problem (CSP)

J = (N, C) consists of:

• a set N of boolean variables,

• a set C of constraints, where each constraint CU ∈ C is a |U |-ary relation CU ⊆
{0, 1}U on some subset U ⊆ N .

For a vector x ∈ {0, 1}N and a subset R of variables, we denote by x|R the restriction

of x to R. A vector z ∈ {0, 1}N satisfies constraint CU ∈ C if z|U ∈ CU . We say that
z ∈ {0, 1}N is a feasible assignment for the CSP instance J if z satisfies every constraint

9



C ∈ C. Let Feas(J) be the set of all feasible assignments of J . Finally, ‖C‖ =
∑

CU∈C |CU |
denotes the length of C.

Definition 2.2.3 (Constraint graph). The constraint graph of J , denoted G(J), is defined

as G(J) = (N,F ) where F = {{u, v} | ∃CU ∈ C s.t. {u, v} ⊆ U}.

Definition 2.2.4 (Treewidth of CSP). The treewidth tw(J) of a CSP instance J is defined

as the treewidth of its constraint graph tw(G(J)).

Definition 2.2.5 (CSP extension). Let J = (N, C) be a CSP instance. We say that J ′ =

(N ′, C ′) with N ⊆ N ′ is an extension of J if Feas(J) =
{
z|N

∣∣ z ∈ Feas(J ′)
}

.

2.2.3 Monadic Second Order Logic

We briefly introduce MSO over graphs. In first-order logic (FO) we have variables for
individual vertices/edges (denoted x, y, . . .), equality for variables, quantifiers ∀, ∃ ranging
over variables, and the standard Boolean connectives ¬,∧,∨, =⇒ . MSO is the extension
of FO by quantification over sets (denotedX, Y, . . . ). Graph MSO has the binary relational
symbol edge(x, y) encoding edges, and traditionally comes in two flavours, MSO1 and
MSO2, differing by the objects we are allowed to quantify over: in MSO1 these are the
vertices and vertex sets, while in MSO2 we can additionally quantify over edges and edge
sets. For example, 3-colorability can be expressed in MSO1 as follows:

∃X1, X2, X3 :[
∀x (x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3) ∧

∧
i=1,2,3

∀x, y (x 6∈ Xi ∨ y 6∈ Xi ∨¬ edge(x, y))
]
.

We remark that MSO2 can express properties that are not MSO1 definable. As an example,
consider Hamiltonicity on graph G = (V,E); an equivalent description of a Hamiltonian
cycle is that it is a connected 2-factor of a graph:

ϕham ≡ ∃F ⊆ E : ϕ2-factor(F ) ∧ ϕconnected(F ),

ϕ2-factor(F ) ≡ (∀v ∈ V : ∃e, f ∈ F : (e 6= f) ∧ (v ∈ e) ∧ (v ∈ f)) ∧ ¬(∃v ∈ V :

∃e, f, g ∈ F : (e 6= f 6= g) ∧ (v ∈ e) ∧ (v ∈ f) ∧ (v ∈ g)),

ϕconnected(F ) ≡ ¬
[
∃U,W ⊆ F : (U ∩W = ∅) ∧ (U ∪W = V ) ∧ ¬

(
∃{u, v} ∈ E :

u ∈ U ∧ v ∈ W
)]

.

We use ϕ to denote an MSO formula and G = (V,E) for the underlying graph. For a
formula ϕ, we denote by |ϕ| the size (number of symbols) of ϕ.
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In order to express constraints on k-vertex-partitions via MSO, we use MSO formulas
ϕ with k free variables {Uα}kα=1 where (i) the Uα are enforced to form a partition of the
vertex-set V , and (ii) each Uα satisfies some individual MSO constraint ϕα. Because k is
constant, the size of the resulting MSO formula is a constant as long as each of the MSO
constraints ϕα has constant size.

Connecting CSP and MSO Consider an MSO formula ϕ with k free variables on graph
G (as above). For a vector t ∈ {0, 1}V×[k], we write G, t |= ϕ if and only if ϕ is satisfied
by solution Uα = {v ∈ V : t((v, α)) = 1} for α ∈ [k].

Definition 2.2.6 (CSPϕ(G) instance). Let G be a graph and ϕ be an MSO2-formula with

k free variables. By CSPϕ(G) we denote the CSP instance (N, C) with N = {t((v, α)) |
v ∈ V (G), α ∈ [k]} and with a single constraint {t | G, t |= ϕ}.

Observe that Feas(CSPϕ(G)) corresponds to the set of feasible assignments of ϕ onG.
Also, the treewidth of CSPϕ(G) is |V |k which is unbounded. The following result shows
that there is an equivalent CSP extension that has constant treewidth.

Theorem 2.2.7 ([89, Theorem 25]). Let G = (V,E) be a graph with tw(G) = τ and ϕ

be an MSO2-formula with k free variables. Then CSPϕ(G) has a CSP extension J with

tw(J) ≤ f(|ϕ|, τ) and ‖CJ‖ ≤ f(|ϕ|, τ) · |V |.

To be precise, [89, Theorem 25] speaks of MSO1 over σ2-structures, which is equivalent
to MSO2 over graphs; cf. the discussion in [89, Section 2.1].

2.2.4 Dynamic Program

The algorithm in this chapter works if the constraint SG admits an exact dynamic program-
ming (DP) algorithm of a specific form. Then we will show that any MSO expressible
constraint SG admits such DP.

Definition 2.2.8 ( Dynamic Program). With a tree decomposition (T = (I, F ), {Xi|i ∈ I}),
we associate the following:

1. For each node i ∈ I , there is a state space Σi.

2. For each node i ∈ I and σ ∈ Σi, there is a collectionHi,σ ⊆ 2Vi of subsets.

3. For each node i ∈ I , its children nodes {j, j′} and σ ∈ Σi, there is a collection

Fi,σ ⊆ Σj × Σj′ of valid combinations of children states.
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Assumption 2.2.1 (Dynamic Program for SG). Let (T = (I, F ), {Xi|i ∈ I}) be any tree

decomposition. Then there exist Σi, Fi,σ and Hi,σ (see Definition 2.2.8) that satisfy the

following conditions:

1. (bounded state space) Σi and Fi,σ are all bounded by constant, that is, maxi |Σi| =

O(1) and maxi,σ |Fi,σ| = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the intersection with Xi of every set in

Hi,σ is the same, denoted Xi,σ, that is S ∩Xi = Xi,σ for all S ∈ Hi,σ.

3. By condition 2, for any leaf ` ∈ I and σ ∈ Σ`, we haveH`,σ = {X`,σ} or ∅.

4. (subproblem) For each non-leaf node i ∈ I with children {j, j′} and σ ∈ Σi,

Hi,σ =
{
Xi,σ ∪ Sj ∪ Sj′ : Sj ∈ Hj,wj , Sj′ ∈ Hj′,wj′

, (wj, wj′) ∈ Fi,σ
}
.

5. (feasible subsets) At the root node r, we have SG =
⋃
σ∈Σr
Hr,σ.

2.2.5 Dynamic Program for CSP

In this section we demonstrate that every CSP of bounded treewidth admits a dynamic
program that satisfies Assumption 2.2.1.

Consider a CSP instance J = (V, C) with a constraint graph G = (V,E) of bounded
treewidth. Let (T = (I, F ), {Xi|i ∈ I}) denote a balanced tree decomposition of G (from
Theorem 2.2.1). In what follows, we denote the vertex set V = [n] = {1, 2, · · · , n}. Let λ
be a symbol denoting an unassigned value. For anyW ⊆ V , define the set of configurations

of W as:

K(W ) =
{

(z1, . . . , zn) ∈ {0, 1, λ}V |∀CU ∈ C : (U ⊆ W =⇒ z|U ∈ CU),

∀i 6∈ W : zi = λ, ∀j ∈ W : zj ∈ {0, 1}
}

Let k ∈ K(W ) be a configuration and v ∈ V . Because k is a vector, k(v) refers to the v-th
element of k.

Definition 2.2.9 (State Operations). Let U,W ⊆ V . Let k ∈ K(U) and p ∈ K(W ).

• Configurations k and p are said to be consistent if, for each v ∈ V , either k(v) =

p(v) or at least one of k(v), p(v) is λ.

• If configurations k and p are consistent, define [p ∪ k](v) =

p(v), if k(v) = λ;

k(v), otherwise.
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• Define [k ∩W ](v) =

k(v), if v ∈ W ;

λ, otherwise.

We start by defining some useful parameters for the dynamic program.

Definition 2.2.10. For each node i ∈ I with children nodes {j, j′}, we associate the fol-

lowing:

1. state space Σi = K(Xi).

2. for each σ ∈ Σi, there is a collection of partial solutions

Hi,σ := {k ∈ K(Vi) | k ∩Xi = σ}.

3. for each σ ∈ Σi, there is a collection of valid combinations of children states

Fi,σ ={(σj, σj′) ∈ Σj × Σj′ | (σj ∩Xi) = (σ ∩Xj) and (σj′ ∩Xi) = (σ ∩Xj′)}.

In words, (1) Σi is just the set of configurations for the vertices Xi in node i, (2) Hi,σ

are those configurations for the vertices Vi (in the subtree rooted at i) that are consistent
with σ, (3) Fi,σ are those pairs of states at the children {j, j′} that agree with σ on the
intersections Xi ∩Xj and Xi ∩Xj′ respectively.

Theorem 2.2.11 ( Dynamic Program for CSP). Let (T = (I, F ), {Xi|i ∈ I}) be a tree

decomposition of a CSP instance (V, C) of bounded treewidth. Then Σi, Fi,σ andHi,σ from

Definition 2.2.8 satisfy the conditions:

1. (bounded state space) Σi and Fi,σ are all bounded by constant, that is, maxi |Σi| =

O(1) and maxi,σ |Fi,σ| = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the intersection with Xi of every vector

inHi,σ is the same, in particular h ∩Xi = σ for all h ∈ Hi,σ.

3. By condition 2, for any leaf ` ∈ I and σ ∈ Σ`, we haveH`,σ = {σ} or ∅.

4. (subproblem) For each non-leaf node i ∈ I with children {j, j′} and σ ∈ Σi,

Hi,σ =
{
σ ∪ hj ∪ hj′ | hj ∈ Hj,wj , hj′ ∈ Hj′,wj′

, (wj, wj′) ∈ Fi,σ
}
.

5. (feasible subsets) At the root node r, we have Feas(V, C) =
⋃
σ∈Σr
Hr,σ.
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Proof. Let q = O(1) denote the treewidth of T . We prove each of the claimed properties.

Bounded state space. Because |Xi| ≤ q + 1, we have |Σi| = |K(Xi)| ≤ 3q+1 = O(1) and
|Fi,σ| ≤ |Σj × Σj′ | ≤ (3q+1)2 = O(1).

Required state. This holds immediately by definition ofHi,σ in Definition 2.2.8.

Subproblem. We first prove the “⊆” inclusion of the statement. Consider any h ∈ Hi,σ ⊆
K(Vi). Let hj = h∩Vj , wj = h∩Xj and analogously for j′. Observe that for U ⊂ W ⊆ V

we have that k ∈ K(W ) =⇒ k∩U ∈ K(U). By this observation, hj ∈ K(Vj). Moreover,
hj ∩Xj = h ∩Xj = wj , which implies hj ∈ Hj,wj . Again, the same applies for j′ and we
have hj′ ∈ Hj′,wj′

. Finally, note that wj ∩Xi = h ∩Xj ∩Xi = (h ∩Xi) ∩Xj = σ ∩Xj

and similarly wj′ ∩Xi = σ ∩Xj′ . So we have (wj, wj′) ∈ Fi,σ.

Now, we prove the “⊇” inclusion of the statement. Consider any two partial solutions
hj ∈ Hj,wj and hj′ ∈ Hj′,wj′

with (wj, wj′) ∈ Fi,σ. Note that hj and σ (similarly hj′ and σ)
are consistent by definition of Fi,σ. We now claim that hj and hj′ are also consistent: take
any v ∈ V with both hj′(v), hj′(v) 6= λ, then we must have v ∈ Vj ∩ Vj′ ⊆ Xi ∩Xj ∩Xj′

as Xi is a vertex separator, and so hj(v) = σ(v) = hj′(v) by definition of Fi,σ. Because
σ, hj and hj′ are mutually consistent, h = σ ∪ hj ∪ hj′ is well-defined. It is clear from the
above arguments that h∩Xi = σ. In order to show h ∈ Hi,σ we now only need h ∈ K(Vi),
that is, h does not violate any constraint that is contained in Vi. For contradiction assume
that that there is such a violated constraint CS with S ⊆ Vi. Then S induces a clique in the
constraint graph G and thus there must exist a node k among the descendants of i such that
S ⊆ Vk. But k cannot be in the subtree rooted in j or j′, because then CS would have been
violated already in hj or hj′ , and also it cannot be that i = k, because then CS would be
violated in σ, a contradiction.

Feasible subsets. Clearly, the set Feas(V, C) of feasible CSP solutions is equal to K(V ).
BecauseHr,σ is those k ∈ K(V ) with k ∩Xr = σ, the claim follows.

Example Here we outline how independent set satisfies the above requirements.

• The state space of each node i ∈ I consists of all independent subsets of Xi.

• The subsetsHi,σ consist of all independent subsets S ⊆ Vi with S ∩Xi = σ.

• The valid combinations Fi,σ consist of all tuples (wj, wj′) where the child states wj
and wj′ are “consistent” with state σ at node i. Here “consistent” means both wj and
wj′ make the same choice as σ on the vertices of Xi, formally, wj ∩Xi = σ∩Xj and
wj′ ∩Xi = σ ∩Xj′ .

14



A formal proof appears in Section 2.5. There, we also discuss a number of other graph
constraints satisfying our assumption.

The following result follows from Assumption 2.2.1.

Claim 2.2.12. For any S ∈ SG, there is a collection {b(i) ∈ Σi}i∈I of states such that:

• for each node i ∈ I with children j and j′, (b(j), b(j′)) ∈ Fi,b(i),

• for each leaf ` we haveH`,b(`) 6= ∅, and

• S =
⋃
i∈I Xi,b(i).

Moreover, for any vertex u ∈ V , if ū ∈ I denotes the highest node in T containing u then

we have: u ∈ S if and only if u ∈ Xū,b(ū).

Proof. We define the states b(i) in a top-down manner; we will also define an associated
subset Bi ∈ Hi,b(i) at each node i. At the root, we set b(r) = σ such that S ∈ Hr,σ: this
is well-defined by Assumption 2.2.1(5) because S ∈ SG. We also set Br = S. Having set
b(i) and Bi ∈ Hi,b(i) for any node i ∈ I with children {j, j′}, we use Assumption 2.2.1(4)
to write

Bi = Xi,b(i) ∪ Sj ∪ Sj′ where Sj ∈ Hj,wj , Sj′ ∈ Hj′,wj′
and (wj, wj′) ∈ Fi,b(i).

Then we set b(j) = wj , Bj = Sj and b(j′) = wj′ , Bj′ = Sj′ for the children of node i. The
first condition in the claim is immediate from the definition of states b(i). By induction on
the depth of node i, we obtain Bi ∈ Hi,b(i) for each node i. This implies thatH`,b(`) 6= ∅ for
each leaf `, which proves the second condition; moreover, by Assumption 2.2.1(3) we have
B` = X`,b(`). Now, by definition of the sets Bi, we obtain S = Br =

⋃
i∈I Xi,b(i) which

proves the third condition in the claim.
Because S =

⋃
i∈I Xi,b(i), it is clear that if u ∈ Xū,b(ū) then u ∈ S. In the other

direction, suppose u 6∈ Xū,b(ū): we will show u 6∈ S. Since ū is the highest node containing
u, it suffices to show that u 6∈ Bū. But this follows directly from Assumption 2.2.1(2)
because Bū ∈ Hū,b(ū), u ∈ Xū and u 6∈ Xū,b(ū).

2.2.6 Sherali-Adams LP Hierarchy

This is one of the several “lift-and-project” procedures that, given a {0, 1} integer program,
produces systematically a sequence of increasingly tighter convex relaxations. The main
idea is to use linear constraints to simulate nonlinear constraints. The Sherali-Adams pro-
cedure [116, 101] involves generating stronger LP relaxations by adding new variables and
constraints.
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Given a polytope P ⊆ Rn, Sherali-Adams hierarchy produces systematically a se-
quence of increasingly tighter convex relaxations of given polytopes. The kth round of this
procedure has a variable y(L) for every subset L of at most k + 1 variables in the original
integer program — setting the new variable y(L) to one corresponds to the joint event that
all the original variables in S are one. Formally, let P0 = L0 = {x ∈ Rn : Ax ≥ b}
be a convex polytope contained in [0, 1]n, defined by m linear constraints, and let P =

conv(P0∩{0, 1}n) be the associated 0-1 polytope. Starting from P0, the kth level Pk of the
Sherali-Adams hierarchy is obtained as follows.

First, we multiply constraint aT` x−b` ≥ 0 by each product
∏

i∈I xi
∏

j∈J(1−xj),where
I, J are disjoint subsets of {1, . . . , n} such that |I ∪J | ≤ k, to produce a set of polynomial
inequalities. We add to this set all the inequalities

∏
i∈I xi

∏
j∈J(1 − xj) ≥ 0, where I, J

are disjoint subsets of {1, . . . , n} such that |I ∪ J | ≤ min{k + 1, n}.
Then, we replace each square x2

i by xi so that each expression is multilinear, and lin-
earize each product monomial

∏
`∈L x` by replacing it with new variable y(L). This defines

a new, lifted polyhedron Lk in the higher-dimensional space Rd, d =
(
n
1

)
+ · · ·+

(
n
k+1

)
.

Finally, polyhedron Pk is obtained by projecting Lk back onto Rn:

Pk = {x ∈ Rn : ∃y ∈ Lk, ∀i = 1, . . . , n, y({i}) = xi}.

2.3 The Max-Cut Setting

Here, we consider the GCMC problem where we have k = 2 and there is a constraint SG
for only one side of the cut. Recall the definition from Section 2.1.1, i.e., problem (2.1).

In this section, we prove:

Theorem 2.3.1. Consider any instance of the GCMC problem on a bounded-treewidth

graph G = (V,E) with k = 2. If the graph constraint SG is for only one side of the

cut and satisfies Assumption 2.2.1 then we obtain a 1
2
-approximation algorithm.

Algorithm outline: We start with a balanced tree decomposition T of graph G, as given
in Theorem 2.2.1; recall the associated definitions from Section 2.2. Then we formulate
an LP relaxation of the problem using the dynamic program in Assumption 2.2.1. This
LP is further strengthened by applying the Sherali-Adams operator for O(log n) rounds.
However, in order to obtain a polynomial-size LP, we only use a specific subset of the
variables/constraints from the Sherali-Adams LP. The resulting LP can be solved in poly-
nomial time. The rounding algorithm is a natural top-down procedure that relies on As-
sumption 2.2.1 and the Sherali-Adams constraints.
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2.3.1 Linear Program

We start with some additional notation related to the tree decomposition T (from Theo-
rem 2.2.1) and our dynamic program assumption (Assumption 2.2.1).

• For any node i ∈ I , Ti is the set consisting of (1) all nodes N on the r − i path in T ;
(2) children of all nodes in N \ {i}. See also Figure 2.1.

• P is the collection of all node subsets J such that J ⊆ T`1 ∪ T`2 for some pair of
leaf-nodes `1, `2. See also Figure 2.1.

• s(i) ∈ Σi denotes a state at node i. Moreover, for any subset of nodes N ⊆ I , we
use the shorthand s(N) := {s(k) : k ∈ N}.

• a(i) ∈ Σi denotes a state at node i chosen by the algorithm. Similar to s(N), a(N) :=

{a(k) : k ∈ N}.

• ū ∈ I denotes the highest tree-decomposition node containing vertex u.

rr

Ti

i

j j′ l1 l2

Tl1 Tl2
The grey nodes form a set in P .

Figure 2.1: Examples of (i) a set Ti and (ii) a set in P .

The variables in our LP are y(s(N)) for all {s(k) ∈ Σk}k∈N and N ∈ P . Variable
y(s(N)) corresponds to the probability of the joint event that the solution (in SG) “induces”
state s(k) at each node k ∈ N .

We give a linear program below that has several constraints, numbered (2.3)-(2.8). We
use variables zuv defined in constraint (2.3) that measure the probability of an edge (u, v)

being cut. The first summation in (2.3) is the probability that the state at ū selects vertex u
and the state at v̄ does not select vertex v.
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Constraints (2.4) are the Sherali-Adams constraints that enforce consistency among the
y variables. They require that the joint distribution imposed by y on any set N of nodes is
consistent with the joint distribution imposed by y on any superset of N .

Constraints (2.5)-(2.7) enforce the dynamic program structure from Assumption 2.2.1.
Constraint (2.5) requires that some state is selected at the root node. Constraint (2.6) re-
quires that the states chosen at any node i and its children {j, j′} form a valid combination.
Finally constraint (2.7) requires that the state s(`) chosen at any leaf node ` must have a
non-empty “feasible” subsetH`,s(`).

maximize
∑

{u,v}∈(V2)

cuvzuv (LP)

zuv =
∑

s(ū)∈Σū
u∈Xū,s(ū)

∑
s(v̄)∈Σv̄
v 6∈Xv̄,s(v̄)

y(s({ū, v̄})) +
∑

s(ū)∈Σū
u6∈Xū,s(ū)

∑
s(v̄)∈Σv̄
v∈Xv̄,s(v̄)

y(s({ū, v̄})),

∀{u, v} ∈
(
V

2

)
; (2.3)

y(s(N)) =
∑
s(i)∈Σi

y(s(N ∪ {i})),

∀s(k) ∈ Σk, ∀k ∈ N, ∀N ∈ P , ∀i /∈ N : N ∪ {i} ∈ P ; (2.4)∑
s(r)∈Σr

y(s(r)) = 1; (2.5)

y(s({i, j, j′})) = 0, ∀i ∈ I, s(i) ∈ Σi, (s(j), s(j′)) /∈ Fi,s(i); (2.6)

y(s(`)) = 0, ∀ leaf ` ∈ I, s(`) ∈ Σ` : H`,s(`) = ∅; (2.7)

0 ≤ y(s(N)) ≤ 1, ∀N ∈ P , {s(k) ∈ Σk}k∈N . (2.8)

In constraint (2.6), we use j and j′ to denote the two children of node i ∈ I .
We note that our base LP (level 0 in the Sherali-Adams hierarchy) involves only vari-

ables y for tuples of size at most three. The above LP can be obtained mechanically by
applying the Sherali-Adams operator for O(log n) rounds and then dropping some vari-
ables/constraints.

Claim 2.3.2. Let y be a feasible solution to LP. For any node i ∈ I with children j, j′ and

s(k) ∈ Σk for all k ∈ Ti,

y(s(Ti)) =
∑

s(j)∈Σj

∑
s(j′)∈Σj′

y(s(Ti ∪ {j, j′}). (2.9)
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Proof. Note that Ti∪{j, j′} ⊆ T` for any leaf node ` in the subtree below i. So Ti∪{j, j′} ∈
P and the variables y(s(Ti ∪ {j, j′}) are well-defined. The claim now follows by two
applications of constraint (2.4).

2.3.2 The Rounding Algorithm

We start with the root node r ∈ I . Here {y(s(r)) : s(r) ∈ Σr} defines a probability
distribution over the states of r. We sample a state a(r) ∈ Σr from this distribution. Then
we continue top-down: for any node i ∈ I , given the chosen states a(k) at each k ∈ Ti,
we sample states for both children of i simultaneously from their joint distribution given at
node i. Our algorithm is described in Algorithm 1.

Input : Optimal solution of LP.
Output: A vertex set in CG.

1 Sample a state a(r) at the root node by distribution y(s(r));
2 Do process all nodes i in T in order of increasing depth :
3 Sample states a(j), a(j′) for the children of node i by joint distribution

Pr[a(j) = s(j) and a(j′) = s(j′)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
, (2.10)

where s(Ti) = a(Ti).
4 end
5 Do process all nodes i in T in order of decreasing depth :
6 Ri = Xi,a(i) ∪Rj ∪Rj′ where j, j′ are the children of i.
7 end
8 R = Rr;
9 return R.

Algorithm 1: Rounding Algorithm for LP

Algorithm Analysis

Lemma 2.3.3. (LP) is a valid relaxation of GCMC.

Proof. Let S ∈ SG be any feasible solution to the GCMC instance. Let {b(i)}i∈I denote
the states given by Claim 2.2.12 corresponding to S. For any subset N ∈ P of nodes, and
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for all {s(i) ∈ Σi}i∈N , set

y(s(N)) =

{
1, if s(i) = b(i) for all i ∈ N ;

0, otherwise.

Clearly constraints (2.4) and (2.8) are satisfied. By the first property in Claim 2.2.12,
constraint (2.6) is satisfied. And by the second property in Claim 2.2.12, constraint (2.7) is
also satisfied. The last property in Claim 2.2.12 implies that u ∈ S ⇐⇒ u ∈ Xū,b(ū) for
any vertex u ∈ V . So any edge {u, v} is cut exactly when one of the following occurs:

• u ∈ Xū,b(ū) and v 6∈ Xv̄,b(v̄);

• u 6∈ Xū,b(ū) and v ∈ Xv̄,b(v̄).

Using the setting of variable zuv in (2.3) it follows that zuv is exactly the indicator of edge
{u, v} being cut by S. Thus the objective value in (LP) is c(δS).

Lemma 2.3.4. (LP) has a polynomial number of variables and constraints. Hence the

overall algorithm runs in polynomial time.

Proof. There are
(
n
2

)
= O(n2) variables zuv. Because the tree is binary, we have |Ti| ≤ 2d

for any node i, where d = O(log n) is the depth of the tree decomposition. Moreover there
are only O(n2) pairs of leaves as there are O(n) leaf nodes. For each pair `1, `2 of leaves,
we have |T`1 ∪ T`2| ≤ 4d. Thus |P| ≤ O(n2) · 24d = poly(n). By Assumption 2.2.1, we
have max |Hi,σ| = t = O(1), so the number of y-variables is at most |P| · t4d = poly(n).
This shows that (LP) has polynomial size and can be solved optimally in polynomial time.
Finally, it is clear that the rounding algorithm runs in polynomial time.

Lemma 2.3.5. The algorithm’s solution R is always feasible.

Proof. Due to Claim 2.3.2, the distributions used in Step 1 and Step 2 are well-defined ; so
the states a(i)s are well-defined. Moreover, by the choice of these distributions, for each
node i, y(a(Ti)) > 0.

We now show that for any node i ∈ I with children j, j′ we have (a(j), a(j′)) ∈
Fi,a(i). Indeed, at the iteration for node i (when a(j) and a(j′) are set) using the conditional
probability distribution in (2.10) and by constraint (2.6), we obtain that (a(j), a(j′)) ∈
Fi,a(i) with probability one.

We show by induction that for each node i ∈ I , the subsetRi ∈ Hi,a(i). The base case is
when i is a leaf. In this case, due to constraint (2.7) and the fact that y(a(Ti)) > 0 we know
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that Hi,a(i) 6= ∅. So Ri = Xi,a(i) ∈ Hi,a(i) by Assumption 2.2.1(3). For the inductive step,
consider node i ∈ I with children j, j′ where Rj ∈ Hj,a(j) and Rj′ ∈ Hj′,a(j′). Moreover,
from the property above, (a(j), a(j′)) ∈ Fi,a(i). Now using Assumption 2.2.1(4) we have
Ri = Xi,a(i) ∪Rj ∪Rj′ ∈ Hi,a(i). Thus the final solution R ∈ SG.

Claim 2.3.6. A vertex u is contained in solution R if and only if u ∈ Xū,a(ū).

Proof. This proof is identical to that of the last property in Claim 2.2.12.

In the rest of this section, we show that every edge (u, v) is cut by solutionRwith proba-
bility at least zuv/2, which would prove the algorithm’s approximation ratio. Lemma 2.3.10
handles the case when ū ∈ Tv̄ (the case v̄ ∈ Tū is identical). And Lemma 2.3.11 handles
the (harder) case when ū 6∈ Tv̄ and v̄ 6∈ Tū.

We first state some useful claims before proving the lemmas.

Observation 2.3.7 (see [68] for a similar use of this principle). Let X, Y be two jointly

distributed {0, 1} random variables. Then Pr(X = 1) Pr(Y = 0) + Pr(X = 0) Pr(Y =

1) ≥ 1
2
[Pr(X = 0, Y = 1) + Pr(X = 1, Y = 0)].

Proof. Let Pr(X = 0, Y = 0) = x, Pr(X = 0) = a, Pr(Y = 0) = b. The probability
table is as below:

Y = 0 Y = 1
X = 0 x a− x a
X = 1 b− x 1 + x− a− b 1− a

b 1− b

Then we want to show a(1 − b) + b(1 − a) ≥ 1
2
(a + b − 2x), i.e. a + b + 2x ≥ 4ab.

This is clearly true if a = 0 or b = 0. When a, b 6= 0, consider the covariance matrix of the

vector v =

(
X

Y

)
of random variables:

M = E[(v − E[v]) · (v − E[v])T ] =

[
a(1− a) x− ab
x− ab b(1− b)

]
.

As is true of every covariance matrix,M � 0. Let y =

√ b
a√
a
b

 . Then we know yTMy ≥ 0

as M � 0. Expanding this expression and simplifying directly shows a+b+2x−4ab ≥ 0.
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Claim 2.3.8. For any node i and states s(k) ∈ Σk for all k ∈ Ti, the rounding algorithm

satisfies Pr[a(Ti) = s(Ti)] = y(s(Ti)).

Proof. We proceed by induction on the depth of node i. It is clearly true when i = r, i.e.
Ti = {r}. Assuming the statement is true for node i, we will prove it for i’s children. Let
j, j′ be the children nodes of i; note that Tj = Tj′ = Ti ∪ {j, j′}. Then using (2.10), we
have

Pr[a(Tj) = s(Tj) | a(Ti) = s(Ti)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
.

Combined with Pr[a(Ti) = s(Ti)] = y(s(Ti)) we obtain Pr[a(Tj) = s(Tj)] = y(s(Tj)) as
desired.

Claim 2.3.9. For any u, v ∈ V , s(ū) ∈ Σū and s(v̄) ∈ Σv̄, we have

y(s({ū, v̄})) =
∑

s(k)∈Σk
k∈Ti\ū\v̄

y(s(Ti ∪ {ū, v̄})),

where i is the least common ancestor of ū and v̄.

Proof. Since i is the least common ancestor of ū and v̄, we have Ti ∪{ū, v̄} ∈ P . Then the
claim follows by repeatedly applying constraint (2.4).

Lemma 2.3.10. Consider any u, v ∈ V such that ū ∈ Tv̄. Then the probability that edge

(u, v) is cut by solution R is zuv.

Proof. Applying Claim 2.3.8 with node i = v̄, for any {s(k) ∈ Σk : k ∈ Tv̄}, we have
Pr[a(Tv̄) = s(Tv̄)] = y(s(Tv̄)). Let Du = {s(ū) ∈ Σū |u ∈ Xū,s(ū)} and similarly
Dv = {s(v̄) ∈ Σv̄ | v ∈ Xv̄,s(v̄)}. Because ū ∈ Tv̄,

Pr[u ∈ R, v 6∈ R] =
∑

s(ū)∈Du

∑
s(v̄) 6∈Dv

∑
s(k)∈Σk
k∈Tv̄\ū\v̄

y(s(Tv̄)) =
∑

s(ū)∈Du

∑
s(v̄)6∈Dv

y(s(ū, v̄)).

The last equality above is by repeated application of constraint (2.4). Similarly,

Pr[u 6∈ R, v ∈ R] =
∑

s(ū)6∈Du

∑
s(v̄)∈Dv

y(s(ū, v̄)),

which combined with constraint (2.3) implies Pr[|{u, v} ∩R| = 1] = zuv.

Lemma 2.3.11. Consider any u, v ∈ V such that ū 6∈ Tv̄ and v̄ 6∈ Tū. Then the probability

that edge (u, v) is cut by solution R is at least zuv/2.
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Proof. In order to simplify notation, we define:

z+
uv =

∑
s(ū)∈Σū
u∈Xū,s(ū)

∑
s(v̄)∈Σv̄
v 6∈Xv̄,s(v̄)

y(s({ū, v̄})), z−uv =
∑

s(ū)∈Σū
u6∈Xū,s(ū)

∑
s(v̄)∈Σv̄
v∈Xv̄,s(v̄)

y(s({ū, v̄})).

Note that zuv = z+
uv + z−uv.

Let Du = {s(ū) ∈ Σū |u ∈ Xū,s(ū)} and Dv = {s(v̄) ∈ Σv̄ | v ∈ Xv̄,s(v̄)}. Let i denote
the least common ancestor of nodes ū and v̄, and {j, j′} the two children of i. Note that
Tj = Tj′ = Ti ∪ {j, j′} and Tū, Tv̄ ⊇ Tj . Because ū 6∈ Tv̄ and v̄ 6∈ Tū, both ū, v̄ are strictly
below j and j′ in the tree decomposition (see also Figure 2.2).

r

i

j j′

v̄

ū

Tj

Tū

Tv̄

Figure 2.2: Example of Tj , Tū, and Tv̄

For any choice of states {s(k) ∈ Σk}k∈Tj define:

z+
uv(s(Tj)) =

∑
s(ū)∈Du

∑
s(v̄)6∈Dv

y(s(Tj ∪ {ū, v̄}))
y(s(Tj))

,

and similarly z−uv(s(Tj)).

In the rest of the proof, we fix states {s(k) ∈ Σk}k∈Tj and condition on the event E that
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a(Tj) = s(Tj). We will show:

Pr[|{u, v} ∩R| = 1 | E ] ≥ 1

2

(
z+
uv(s(Tj)) + z−uv(s(Tj))

)
. (2.11)

By taking expectation over the conditioning E , this would imply Lemma 2.3.11.

We now define the following indicator random variables (conditioned on E).

Iu =

0 if a(ū) 6∈ Du

1 if a(ū) ∈ Du

and Iv =

0 if a(v̄) 6∈ Dv

1 if a(v̄) ∈ Dv

.

Observe that Iu and Iv (conditioned on E) are independent because ū, v̄ 6∈ Tj , and v̄ and ū
appear in distinct subtrees under node i. So,

Pr[|{u, v} ∩R| = 1 | E ] = Pr[Iu = 1] · Pr[Iv = 0] + Pr[Iu = 0] · Pr[Iv = 1]. (2.12)

For any s(k) ∈ Σk for k ∈ Tū \ Tj , we have by Claim 2.3.8 and Tj ⊆ Tū that

Pr[a(Tū) = s(Tū) | a(Tj) = s(Tj)] =
Pr[a(Tū) = s(Tū)]

Pr[a(Tj) = s(Tj)]
=
y(s(Tū))

y(s(Tj))
.

Therefore

Pr[Iu = 1] =
∑

s(ū)∈Du

∑
k∈Tū\Tj\{ū}
s(k)∈Σk

y(s(Tū))

y(s(Tj))
=

∑
s(ū)∈Du

y(s(Tj ∪ {ū}))
y(s(Tj))

.

The last equality follows from constraint (2.4). Furthermore, note that Tj ∪{ū, v̄} ∈ P ,
we have again by constraint (2.4) that

Pr[Iu = 1] =
∑

s(ū)∈Du

y(s(Tj ∪ {ū}))
y(s(Tj))

=
∑

s(ū)∈Du

∑
s(v̄)∈Σv̄

y(s(Tj ∪ {ū, v̄}))
y(s(Tj))

=
∑

s(ū)∈Du

∑
s(v̄)∈Dv

y(s(Tj ∪ {ū, v̄}))
y(s(Tj))

+ z+
uv(s(Tj)).

Similarly,

Pr[Iv = 1] =
∑

s(v̄)∈Dv

y(s(Tj ∪ {v̄}))
y(s(Tj))

=
∑

s(ū)∈Du

∑
s(v̄)∈Dv

y(s(Tj ∪ {ū, v̄}))
y(s(Tj))

+ z−uv(s(Tj)).
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and

Pr[Iu = 0] =
∑

s(ū)6∈Du

y(s(Tj ∪ {ū}))
y(s(Tj))

=
∑

s(ū)6∈Du

∑
s(v̄) 6∈Dv

y(s(Tj ∪ {ū, v̄}))
y(s(Tj))

+ z−uv(s(Tj)).

Now define {0, 1} random variables X and Y jointly distributed as:

Y = 0 Y = 1

X = 0 Pr[Iu = 0]− z−uv(s(Tj)) z−uv(s(Tj))

X = 1 z+
uv(s(Tj)) Pr[Iu = 1]− z+

uv(s(Tj))

Note that Pr[X = 1] = Pr[Iu = 1] and Pr[Y = 1] = Pr[Iu = 1] − z+
uv(s(Tj)) +

z−uv(s(Tj)) = Pr[Iv = 1]. So, applying Observation 2.3.7 and using (2.12) we have:

Pr[|{u, v} ∩R| = 1 | E ] ≥ 1

2
(Pr[X = 0, Y = 1] + Pr[X = 1, Y = 0]) ,

which implies (2.11).

Now We show that the dynamic-program structure for CSP can be combined with the
algorithm in this section to obtain a 1

2
-approximation algorithm.

Theorem 2.3.12. There is a 1
2
-approximation algorithm for GCMC with k = 2 when the

constraint SG is for one-side of the cut and given by any MSO formula on a bounded-

treewidth graph.

Proof. The proof uses Theorem 2.3.1 as a black-box. Note that the constraint SG cor-
responds to feasible assignments to CSPϕ(G) as in Definition 2.2.6. Consider the CSP
extension ϑ obtained after applying Theorem 2.2.7 to CSPϕ(G). Then ϑ has variables
V ′ ⊇ V and bounded treewidth. We obtain an extended weight function c :

(
V ′

2

)
→ R+

from c by setting c′(u, v) = c(u, v) if u, v ∈ V and c′(u, v) = 0 otherwise. We now
consider a new instance of GCMCI on vertices V ′ and constraint ϑ. Due to the bounded-
treewidth property of ϑ, we can apply Theorem 2.2.11 which proves that Assumption 2.2.1
is satisfied by the dynamic program in Definition 2.2.8. Combined with Theorem 2.3.1, we
obtain the claimed result.

We note that the choice of variables in the Sherali-Adams LP as well as the rounding al-
gorithm are similar to those used in [68] for the sparsest-cut problem on bounded-treewidth
graphs. An important difference in our result is that we apply the Sherali-Adams hierar-
chy to a non-standard LP that is defined using the dynamic program. (If we were to apply
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Sherali-Adams to the standard LP, then it is unclear how to enforce the constraint SG during
the rounding algorithm.) Another difference is that our rounding algorithm needs to make a
correlated choice in selecting the states of sibling nodes in order to satisfy constraint SG —
this causes the number of variables in the Sherali-Adams LP to increase, but it still remains
polynomial because one can ensure that the tree decomposition has constant degree.

2.4 The Max-k-Cut Setting

In this section, we generalize the setting to any constant k, i.e. problem (2.2). Recall the
formal definition from Section 2.1.1. Here the graph property SG is expressed as an MSO
formula with k free variables on graph G. Our main result is the following:

Theorem 2.4.1. There is a 1
2
-approximation algorithm for any GCMC instance with con-

stant k when the constraint SG is given by any MSO formula on a bounded-treewidth

graph.

Remark 2.4.2. The complexity of Theorem 2.4.1 in terms of the treewidth τ , length |ϕ| of ϕ,

depth d of a tree decomposition of G, and maximum degree r of a tree decomposition of G,

is sdr, where s is the number of states of the dynamic program, namely f(|ϕ|, τ) for f from

Theorem 2.2.7. From the perspective of parameterized complexity [51] our algorithm is an

XP algorithm parameterized by τ , i.e., it has runtime ng(τ) for some computable function

g.

Let G = (V,E) be the input graph (assumed to have bounded treewidth) and ϕ be
any MSO formula with k free variables. Recall the CSP instance CSPϕ(G) on variables
{y(v, α) : v ∈ V, α ∈ [k]} from Definition 2.2.6. Feasible solutions to CSPϕ(G) cor-
respond to feasible k-partitions in SG. Now consider the CSP extension ϑ obtained after
applying Theorem 2.2.7 to CSPϕ(G). Note that ϑ is defined on variables V ′ ⊇ {(v, α) :

v ∈ V, α ∈ [k]} and has bounded treewidth. Let T denote the tree decomposition for
ϑ. Below we utilize the dynamic program from Definition 2.2.10 applied to ϑ: recall the
quantities Σi, Fi,σ etc. We will also refer to the variables in V ′ as vertices, especially when
referring to the tree decomposition T ; note that these are different from the vertices V in
the original graph G.

Claim 2.4.3. Let {Uα}kα=1 be a k-partition satisfying SG. There is a collection of states

{b[i] ∈ Σi}i∈I such that:

• for each node i ∈ I with children j and j′, (b[j], b[j′]) ∈ Fi,b[i],
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• for each leaf ` we haveH`,b[`] 6= ∅,

• Uα = {v ∈ V : bT ((v, α)) = 1} for all α ∈ [k], where bT =
⋃
i∈I b[i].

Moreover, for any vertex (v, α) ∈ V ′, if vα ∈ I denotes the highest node in T containing

(v, α) then we have: v ∈ Uα if and only if b[vα]((v, α)) = 1.

Proof. By definition of CSP ϑ, we know that it has some feasible solution t ∈ {0, 1}V ′

where Uα = {v ∈ V : t((v, α)) = 1} for all α ∈ [k]. Now, using Theorem 2.2.11(5) we
have t ∈ ⋃σ∈Σr

Hr,σ.

We define the states b[i] in a top-down manner. We will also define an associated vector
ti ∈ Hi,b[i] at each node i. At the root, we set b[r] = σ such that t ∈ Hr,σ: this is well-
defined because t ∈ ⋃σ∈Σr

Hr,σ. We also set tr = t. Having set b[i] and ti ∈ Hi,b[i] for any
node i ∈ I with children {j, j′}, we use Theorem 2.2.11(4) to write hi = b[i] ∪ hj ∪ hj′
where hj ∈ Hj,wj , hj′ ∈ Hj′,wj′

and (wj, wj′) ∈ Fi,b[i]. Then we set b[j] = wj , tj = hj

and b[j′] = wj′ , tj′ = hj′ for the children of node i. The first condition in the claim
is immediate from the definition of states b[i]. By induction on the depth of node i, we
obtain ti ∈ Hi,b[i] for each node i. This implies that H`,b[`] 6= ∅ for each leaf `, which
proves the second condition; moreover, by Theorem 2.2.11(3) we have t` = b[`]. Now,
by definition of the vectors ti, we obtain t = tr =

⋃
i∈I b[i] = bT which, combined with

Uα = {v ∈ V : t((v, α)) = 1} for all α ∈ [k], proves the third condition in the claim.

Because t =
⋃
i∈I b[i], it is clear that if b[vα]((v, α)) = 1 then v ∈ Uα. In the other

direction, suppose b[vα]((v, α)) 6= 1: we will show v 6∈ Uα. Since vα is the highest node
containing (v, α), it suffices to show that tvα((v, α)) 6= 1. But this follows directly from
Theorem 2.2.11(2) because tvα ∈ Hvα,b[vα], (v, α) ∈ Xvα and b[vα]((v, α)) 6= 1.

2.4.1 LP Relaxation for Max-k-Cut

We start with some additional notation related to the tree decomposition T (from Theo-
rem 2.2.1) and the dynamic program for CSP (from Theorem 2.2.11).

• For any node i ∈ I , Ti is the set consisting of (1) all nodes N on the r − i path in T ,
and (2) children of all nodes in N \ {i}.

• P is the collection of all node subsets J such that J ⊆ T`1 ∪ T`2 for some pair of
leaf-nodes `1, `2.

• s[i] ∈ Σi denotes a state at node i. Moreover, for any subset of nodes N ⊆ I , we use
the shorthand s[N ] := {s[k] : k ∈ N}.
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• a[i] ∈ Σi denotes a state at node i chosen by the algorithm. Similar to s[N ], for any
subset N ⊆ I of nodes, a[N ] := {a[k] : k ∈ N}.

• vα ∈ I denotes the highest tree-decomposition node containing vertex (v, α) ∈ V ′.

The LP that we use here is a generalization of that in Section 2.3.1. The variables
are y(s[N ]) for all {s[k] ∈ Σk}k∈N and N ∈ P . Variable y(s[N ]) corresponds to the
probability of the joint event that the solution (in SG) “induces” state s[k] at each node
k ∈ N . Variable zuvα corresponds to the probability that edge (u, v) ∈ E is cut by part α
of the k-partition.

In constraint (2.16), we use j and j′ to denote the two children of node i ∈ I . We note
that constraints (2.14)-(2.18) which utilize the dynamic-program structure, are identical to
the constraints (2.4)-(2.8) in Section 2.3.1. This allows us to essentially reuse many of the
claims proved in Section 2.3.1, which are stated below.

maximize
1

2

∑
{u,v}∈(V2)

cuv

k∑
α=1

zuvα (LP)

zuvα =
∑

s[uα]∈Σuα, s[vα]∈Σvα
s[uα]((u,α))6=s[vα]((v,α))

y(s[{uα, vα}]), ∀{u, v} ∈
(
V

2

)
,∀α ∈ [k]; (2.13)

y(s[N ]) =
∑
s[i]∈Σi

y(s[N ∪ {i}]),

∀s[k] ∈ Σk, ∀k ∈ N, ∀N ∈ P , ∀i /∈ N : N ∪ {i} ∈ P ; (2.14)∑
s[r]∈Σr

y(s[r]) = 1; (2.15)

y(s[{i, j, j′}]) = 0, ∀i ∈ I, ∀s[i] ∈ Σi, ∀(s[j], s[j′]) /∈ Fi,s[i]; (2.16)

y(s[`]) = 0, ∀ leaf ` ∈ I, ∀s[`] ∈ Σ` : H`,s[`] = ∅; (2.17)

0 ≤ y(s[N ]) ≤ 1, ∀N ∈ P , ∀s[k] ∈ Σk for k ∈ N. (2.18)

Claim 2.4.4. Let y be feasible to (LP). For any node i ∈ I with children j, j′ and s[k] ∈ Σk

for all k ∈ Ti,
y(s[Ti]) =

∑
s[j]∈Σj

∑
s[j′]∈Σj′

y(s[Ti ∪ {j, j′}]).

Proof. Note that Ti ∪ {j, j′} ⊆ T` for any leaf node ` in the subtree below i. So Ti ∪
{j, j′} ∈ P and the variables y(s[Ti ∪ {j, j′}]) are well-defined. The claim follows by two
applications of (2.14).
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Lemma 2.4.5. (LP) has a polynomial number of variables and constraints.

Proof. There are
(
n
2

)
· k = O(kn2) variables zuvα. Because the tree is binary, we have

|Ti| ≤ 2d for any node i, where d = O(log n) is the depth of the tree decomposition.
Moreover there are only O(n2) pairs of leaves as there are O(n) leaf nodes. For each
pair `1, `2 of leaves, we have |T`1 ∪ T`2| ≤ 4d. Thus |P| ≤ O(n2) · 24d = poly(n). By
Theorem 2.2.11, we have max |Hi,σ| = O(1), so the number of y-variables is at most
|P| · (max |Hi,σ|)4d = poly(n). This shows that (LP) has polynomial size and can be
solved optimally in polynomial time. Finally, it is clear that the rounding algorithm runs in
polynomial time.

Lemma 2.4.6. (LP) is a valid relaxation of GCMC.

Proof. Let k-partition {Uα}kα=1 be any feasible solution to SG. Let {b[i]}i∈I denote the
states given by Claim 2.4.3 corresponding to {Uα}kα=1. For any subset N ∈ P of nodes,
and for all {s[i] ∈ Σi}i∈N , set

y(s[N ]) =

{
1, if s[i] = b[i] for all i ∈ N ;

0, otherwise.

Clearly constraints (2.14) and (2.18) are satisfied. By the first property in Claim 2.4.3,
constraint (2.16) is satisfied. And by the second property in Claim 2.4.3, constraint (2.17) is
also satisfied. The last property in Claim 2.4.3 implies that v ∈ Uα ⇐⇒ b[vα]((v, α)) = 1

for any vertex v ∈ V . So any edge {u, v} is cut by Uα exactly when b[uα]((u, α)) 6=
b[vα]((v, α)). Using the setting of variable zuvα in (2.13) it follows that zuvα is exactly the
indicator of edge {u, v} being cut by Uα. Finally, the objective value is exactly the total
weight of edges cut by the k-partition {Uα}kα=1 where the coefficient 1

2
comes from the fact

that that summation counts each cut-edge twice. Thus (LP) is a valid relaxation.

2.4.2 The Rounding Algorithm

This is a top-down procedure, exactly as Algorithm 1. The only difference is now we need
to find a vertex partition of the vertices. Our algorithm is formally described in Algorithm 2.

Lemma 2.4.7. The algorithm’s solution {Uα}kα=1 is always feasible.

Proof. Due to Claim 2.4.4, the distributions used in Step 2 and Step 3 are well-defined; so
the states a[i]s are well-defined. Moreover, by the choice of these distributions, for each
node i, y(a[Ti]) > 0.
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Input : Optimal solution of LP.
Output: A vertex partition of V in SG.

1 Sample a state a[r] at the root node by distribution y(s[r]).
2 Do process all nodes i in T in order of increasing depth :
3 Sample states a[j], a[j′] for the children of node i by joint distribution

Pr[a[j] = s[j] and a[j′] = s[j′]] =
y(s[Ti ∪ {j, j′}])

y(s[Ti])
, (2.19)

where s[Ti] = a[Ti].
4 end
5 Do process all nodes i in T in order of decreasing depth :
6 hi = a[i] ∪ hj ∪ hj′ where j, j′ are the children of i.
7 end
8 Set Uα = {v ∈ V : hr((v, α)) = 1} for all α ∈ [k].
9 return k-partition {Uα}kα=1.

Algorithm 2: Rounding Algorithm for LP

We now show that for any node i ∈ I with children j, j′ we have (a[j], a[j′]) ∈ Fi,a[i].
Indeed, at the iteration for node i (when a[j] and a[j′] are set), using the conditional proba-
bility distribution (2.19) and constraint (2.16), we have (a[j], a[j′]) ∈ Fi,a[i] with probabil-
ity one.

We show by induction that for each node i ∈ I , hi ∈ Hi,a[i]. The base case is when
i is a leaf. In this case, due to constraint (2.17) and the fact that y(a[Ti]) > 0 we know
that Hi,a[i] 6= ∅. So hi = a[i] ∈ Hi,a[i] by Theorem 2.2.11(3). For the inductive step,
consider node i ∈ I with children j, j′ where hj ∈ Hj,a[j] and hj′ ∈ Hj′,a[j′]. Moreover,
from the property above, (a[j], a[j′]) ∈ Fi,a[i]. Now using Theorem 2.2.11(4) we have hi =

a[i]∪ hj ∪ hj′ ∈ Hi,a[i]. Finally, using hr ∈ Hr,a[r] at the root node and Theorem 2.2.11(5),
it follows that hr ∈ Feas(ϑ). Now let h′ denote the restriction of hr to the variables
{(v, α) : v ∈ V, α ∈ [k]}. Then, using the CSP extension result (Theorem 2.2.7) we obtain
that h′ is feasible for CSPϕ(G). In other words, the k-partition {Uα}kα=1 satisfies SG.

Claim 2.4.8. For any node i and states s[k] ∈ Σk for all k ∈ Ti, the rounding algorithm

satisfies Pr[a[Ti] = s[Ti]] = y(s[Ti]).

Proof. We proceed by induction on the depth of node i. It is clearly true when i = r, i.e.
Ti = {r}. Assuming the statement is true for node i, we will prove it for i’s children. Let
j, j′ be the children nodes of i; note that Tj = Tj′ = Ti ∪ {j, j′}. Then using (2.19), we
have

Pr[a[Tj] = s[Tj] | a[Ti] = s[Ti]] =
y(s[Ti ∪ {j, j′}])

y(s[Ti])
.
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Combined with Pr[a[Ti] = s[Ti]] = y(s[Ti]) we obtain Pr[a[Tj] = s[Tj]] = y(s[Tj]) as
desired.

Lemma 2.4.9. Consider any u, v ∈ V and α ∈ [k] such that uα ∈ Tvα. Then the probabil-

ity that edge (u, v) is cut by Uα = {v ∈ V : hr((v, α)) = 1} is zuvα.

Proof. Applying Claim 2.4.8 with node i = vα, for any {s[k] ∈ Σk : k ∈ Tvα}, we have
Pr[a[Tvα] = s[Tvα]] = y(s[Tvα]). Let Duα = {s[uα] ∈ Σ[uα] | s[uα]((u, α)) = 1} and
similarly Dvα = {s[vα] ∈ Σ[vα] | s[vα]((v, α)) = 1}. Because uα ∈ Tvα,

Pr[u ∈ Uα, v 6∈ Uα] =
∑

s[uα]∈Duα

∑
s[vα]6∈Dvα

∑
s[k]∈Σk

k∈T[vα]\{uα}\{vα}

y(s[vα])

=
∑

s[uα]∈Duα

∑
s[vα] 6∈Dvα

y(s[{uα, vα}]).

The last equality above is by repeated application of LP constraint (2.14) where we use
Tvα ∈ P . Similarly,

Pr[u 6∈ Uα, v ∈ Uα] =
∑

s[uα] 6∈Duα

∑
s[vα]∈Dvα

y(s[{uα, vα}]),

which combined with constraint (2.13) implies Pr[|{u, v} ∩ Uα| = 1] = zuvα.

Lemma 2.4.10. Consider any u, v ∈ V and α ∈ [k] such that uα 6∈ Tvα and vα 6∈ Tuα.

Then the probability that edge (u, v) is cut by Uα = {v ∈ V : hr((v, α)) = 1} is at least

zuvα/2.

Proof. In order to simplify notation, we define:

z+
uvα =

∑
s[uα]∈Σuα, s[vα]∈Σvα

s[uα]((u,α))=1,s[vα]((v,α))=0

y(s[{uα, vα}]),

z−uvα =
∑

s[uα]∈Σuα, s[vα]∈Σvα
s[uα]((u,α))=0,s[vα]((v,α))=1

y(s[{uα, vα}]).

Note that zuv = z+
uvα + z−uvα.

LetDuα = {s[uα] ∈ Σ[uα] | s[uα]((u, α)) = 1} andDvα = {s[vα] ∈ Σ[vα] | s[vα]((v, α)) =

1}. Let i denote the least common ancestor of nodes uα and vα, and {j, j′} the two children
of i. Note that Tj = Tj′ = Ti∪{j, j′} and Tuα, Tvα ⊇ Tj . Because uα 6∈ Tvα and vα 6∈ Tuα,
both uα and vα are strictly below j and j′ (respectively) in the tree decomposition.
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For any choice of states {s[k] ∈ Σk}k∈Tj define:

z+
uvα(s[Tj]) =

∑
s[uα]∈Duα

∑
s[vα] 6∈Dvα

y(s[Tj ∪ {uα, vα}])
y(s[Tj])

,

and similarly z−uvα(s[Tj]).

In the rest of the proof, we fix states {s[k] ∈ Σk}k∈Tj and condition on the event E that
a[Tj] = s[Tj]. We will show

Pr [|{u, v} ∩ Uα| = 1 | E ] ≥ 1

2

(
z+
uvα(s[Tj]) + z−uvα(s[Tj])

)
. (2.20)

By taking expectation over the conditioning E , this would imply Lemma 2.3.11.

We now define the following indicator random variables (conditioned on E).

Iuα =

0 if a[uα] 6∈ Duα

1 if a[uα] ∈ Duα

and Ivα =

0 if a[vα] 6∈ Dvα

1 if a[vα] ∈ Dvα

Observe that Iuα and Ivα (conditioned on E) are independent because uα, vα 6∈ Tj , and uα
and vα appear in distinct subtrees under node i. So,

Pr[|{u, v} ∩ Uα| = 1 | E ] = Pr[Iuα = 1] Pr[Ivα = 0] + Pr[Iuα = 0] Pr[Ivα = 1]. (2.21)

For any s[k] ∈ Σk for k ∈ Tuα \ Tj , we have by Claim 2.4.8 and Tj ⊆ Tuα that

Pr[a[Tuα] = s[Tuα] | a[Tj] = s[Tj]] =
y(s[Tuα])

y(s[Tj])
.

Therefore Pr[Iuα = 1] equals

∑
s[uα]∈Duα

∑
k∈Tuα\Tj\{uα}

s[k]∈Σk

y(s[Tuα])

y(s[Tj])
=

∑
s[uα]∈Duα

y(s[Tj ∪ {uα}])
y(s[Tj])

.

The last equality follows by repeatedly using LP constraint (2.14) and the fact that Tuα ∈
P . Furthermore, note that Tj ∪ {uα, vα} ∈ P; again by constraint (2.14),

Pr[Iuα = 1] =
∑

s[uα]∈Duα

y(s[Tj ∪ {uα}])
y(s[Tj])

=
∑

s[uα]∈Duα

∑
s[vα]∈Σvα

y(s[Tj ∪ {uα, vα}])
y(s[Tj])

32



=
∑

s[uα]∈Duα

∑
s[vα]∈Dvα

y(s[Tj ∪ {uα, vα}])
y(s[Tj])

+ z+
uvα(s[Tj]).

Similarly,

Pr[Ivα = 1] =
∑

s[vα]∈Dvα

y(s[Tj ∪ {vα}])
y(s[Tj])

=
∑

s[uα]∈Duα

∑
s[vα]∈Dvα

y(s[Tj ∪ {uα, vα}])
y(s[Tj])

+ z−uvα(s[Tj]).

Pr[Iuα = 0] =
∑

s[uα] 6∈Duα

y(s[Tj ∪ {uα}])
y(s[Tj])

=
∑

s[uα] 6∈Duα

∑
s[vα]6∈Dvα

y(s[Tj ∪ {uα, vα}])
y(s[Tj])

+ z−uvα(s[Tj]).

Now define {0, 1} random variables X and Y jointly distributed as:

Y = 0 Y = 1
X = 0 Pr[Iuα = 0]− z−uvα(s[Tj]) z−uvα(s[Tj])
X = 1 z+

uvα(s[Tj]) Pr[Iuα = 1]− z+
uvα(s[Tj])

Note that Pr[X = 1] = Pr[Iuα = 1] and Pr[Y = 1] = Pr[Iuα = 1] − z+
uvα(s[Tj]) +

z−uvα(s[Tj]) = Pr[Ivα = 1]. So, applying Observation 2.3.7 and using (2.21) we have
Pr[|{u, v} ∩ Uα| = 1 | E ] is at least

1

2
(Pr[X = 0, Y = 1] + Pr[X = 1, Y = 0]) ,

which implies (2.20).

Lemma 2.4.11. For any u, v ∈ V , the probability that edge (u, v) is cut by the k-partition

{Uα}kα=1 is at least 1
4

∑k
α=1 zuvα.

Proof. Edge (u, v) is cut by {Uα}kα=1 if and only if u ∈ Uα and v ∈ Uβ for some α 6= β.
Enumerating all partition parts and applying Lemmas 2.4.9 and 2.4.10, we get that the
probability is at least 1

4

∑k
α=1 zuvα. The extra factor of 1

2
is because any cut edge (u, v) is

cut by the partition twice: by the parts containing u and v.

From Lemmas 2.4.6, 2.4.7 and 2.4.11, we obtain Theorem 2.4.1.
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2.5 Applications

2.5.1 Max-k-Cut Applications

We claim that MSO2 is powerful enough to model various graph properties; to that end,
consider the following formulae, meant to model that a set S is a vertex cover (ϕvc), an
independent set (ϕis), a dominating set (ϕds), and a connected set (ϕconn), respectively:

ϕvc(S) ≡ ∀{u, v} ∈ E : (u ∈ S) ∨ (v ∈ S).

ϕis(S) ≡ ∀{u, v} ∈ E : ¬ ((u ∈ S) ∧ (v ∈ S)) .

ϕds(S) ≡ ∀v ∈ V : ∃u ∈ S : (v 6∈ S) =⇒ {u, v} ∈ E.
ϕconn(S) ≡ ¬

[
∃U, V ⊆ S : U ∩ V = ∅ ∧ U ∪ V = S ∧ ¬

(
∃{u, v} ∈ E : u ∈ U ∧ v ∈ V

)]
.

We argue as follows: ϕvc is true if every edge has at least one endpoint in S; ϕis is true if
every edge does not have both endpoints in S; ϕds is true if for each vertex v not in S there
is a neighbor u in S; finally, ϕconn is true if there does not exist a partition U, V of S with
an edge going between U and V .

We also show how to handle the precedence constraint. Let G be a directed graph; we
require S to satisfy that, for each arc (u, v) ∈ E, either v 6∈ S, or u, v ∈ S. This can be
handled directly with CSP constraints: we have a binary variable for each vertex with the
value 1 indicating that a vertex is selected for S; then, for each arc (u, v) ∈ E, we have a
constraint C(u,v) = {(1, 0), (0, 0), (1, 1)}.

It is known [44] that many other properties are expressible in MSO2, such as that S is
k-colorable, k-connected (both for fixed k ∈ N), planar, Hamiltonian, chordal, a tree, not
containing a list of graphs as minors, etc. It is also known how to encode directed graphs
into undirected graphs in an “MSO-friendly” way [44], which allows the expression of
various properties of directed graphs. Our results also extend to so-called counting MSO,
where we additionally have a predicate of the form |X| = pmod q for a fixed integer q ∈ N.

2.5.2 Applications with Specific Dynamic Programs

For MSO expressible constraints, by Theorem 2.4.1, we automatically get that there exists
a 1

2
-approximation algorithm via MSO and CSP dynamic program. However, this does

not directly gives an actual algorithm description. In this section, we show a number of
graph constraints that satisfy Assumption 2.2.1 by explicitly giving the required dynamic
program structure, and thereby obtain 1

2
-approximation algorithms for GCMC under these

constraints (on bounded-treewidth graphs). The constraints we consider includes indepen-
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dent set, vertex cover, precedence, dominating set and connectivity.

Recall that the underlying graph G is given by its tree decomposition from Theo-
rem 2.2.1, i.e. (T = (I, F ), {Xi|i ∈ I}). Recall also the definition of a dynamic program
on this tree decomposition, as given in Definition 2.2.8. We first have some simple but
useful observations.

Observation 2.5.1. For any node i with children nodes j1, j2, if u, v ∈ Vi and (u, v) ∈ E,

then either u, v ∈ Xi or u, v ∈ Vj for some j ∈ {j1, j2}.

Proof. Since (u, v) ∈ E, by the tree decomposition, there is some node i′ ∈ I with u, v ∈
Xi′ . If node i′ is an ancestor of node i or node i itself, u, v ∈ Xi by the first property of the
tree decomposition. If node i′ is strictly below node i, then u, v ∈ Xi′ implies u, v ∈ Vj for
some j ∈ {j1, j2}.

Observation 2.5.2. For any node i with children nodes j1, j2, if Sj ⊆ Vj for j ∈ {j1, j2},
Sj ∩Xi = Sj ∩Xi ∩Xj .

Proof. For any vertex v ∈ Sj ∩ Xi, v ∈ Xi and v ∈ Vj . By the first property of the tree
decomposition, Xi ∩ (Vj \Xj) = ∅. Hence v ∈ Xj .

Independent Set Given graph G = (V,E) and edge-weights c :
(
V
2

)
→ R+, we want to

maximize c(δS) where S is an independent set in G. Recall that S ⊆ V is an independent
set if there is no edge of G induced on S.

For each node i ∈ I define state space Σi = {σ ⊆ Xi |σ is an independent set}. For each
node i ∈ I and σ ∈ Σi, we define:

• set Xi,σ = σ.

• collectionHi,σ = {S ⊆ Vi |Xi ∩ S = σ and S is an independent set in G[Vi]}.

• Fi,σ = {(wj1 , wj2) | for each j ∈ {j1, j2}, wj ∈ Σj such that wj ∩ Xi = σ ∩ Xj}
which denotes valid combinations. Note that the conditionwj∩Xi = σ∩Xj enforces
wj to agree with σ on vertices of Xi ∩Xj .

We next show that these satisfy all the conditions in Assumption 2.2.1. Note that as all
subgraphs we consider are induced graphs, a set S is independent in the induced graph if
and only if it is independent in G.
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Assumption 2.2.1, part 1. We have t = max |Σi| ≤ 2k. Also p = max |Fi,σ| ≤ t2 because
each node has at most two children. For constant k, both t, p = O(1).

Assumption 2.2.1, part 2. By definition, for any S ∈ Hi,σ we have S ∩Xi = σ = Xi,σ.

Assumption 2.2.1, part 3. For any leaf ` ∈ I and σ ∈ Σ` it is clear thatH`,σ = {X`,σ}.
Assumption 2.2.1, part 4. Consider now any non-leaf node i and σ ∈ Σi. Let

Z = {Xi,σ ∪ Sj1 ∪ Sj2 : Sj1 ∈ Hj1,wj1
, Sj2 ∈ Hj2,wj2

, (wj1 , wj2) ∈ Fi,σ}. (2.22)

We first prove Hi,σ ⊆ Z . For any S ∈ Hi,σ and child j ∈ {j1, j2} let Sj = S ∩ Vj and
wj = S ∩ Xj; because S is independent in G[Vi], Sj is also an independent set in G[Vj],
and Sj ∈ Hj,wj . Note that S ∩ Xi = Xi,σ = σ. Because Vi = Xi ∪ Vj1 ∪ Vj2 , we have
S = Xi,σ ∪ Sj1 ∪ Sj2 . Moreover, we have σ ∩ Xj = S ∩ Xi ∩ Xj = wj ∩ Xi for each
j ∈ {j1, j2}. So we have (wj1 , wj2) ∈ Fi,σ and hence S ∈ Z .

We next prove Z ⊆ Hi,σ. Consider any S = Xi,σ ∪ Sj1 ∪ Sj2 as in (2.22). For
j ∈ {j1, j2} by definition of Fi,σ andHj,wj , we have σ ∩Xj = wj ∩Xi = (Sj ∩Xj)∩Xi.
By Observation 2.5.2 and Sj ⊆ Vj , we haveXi∩Sj = Xi∩Xj∩Sj = σ∩Xj . Thus we have
Xi ∩S = σ. It just remains to prove that S is an independent set in G[Vi]. Because Sj1 , Sj2
and Xi,σ are independent sets, if S were not independent then we must have an edge (u, v)

where u, v ∈ S. By Observation 2.5.1, u, v ∈ Xi or u, v ∈ Vj for some j ∈ {j1, j2}, which
is a contradiction to the fact that Sj1 , Sj2 , and Xi,σ are all independent sets. So S ∈ Hi,σ.

Assumption 2.2.1, part 5. This follows directly from the definition ofHi,σ.

Vertex Cover Given graph G = (V,E) and edge-weights c :
(
V
2

)
→ R+ we want to

maximize c(δS) where S is a vertex cover in G. Recall that S ⊆ V is a vertex cover if S
contains at least one end-point of each edge in E.

We can use the independent set application as a black box for the vertex cover applica-
tion. This is because S is an independent set of G if and only if V \ S is a vertex cover of
G and c(δS) = c(δ(V \ S)).

Precedence Given a directed graph G = (V,E) and edge-weights c :
(
V
2

)
→ R+, we

want to maximize c(δS) where S is set of vertices that satisfies precedence constraints in
G. A subset S ⊆ V is said to satisfy precedence constraints if, for each arc (u, v) ∈ E,
either v 6∈ S or both u, v ∈ S. We assume that the undirected version of graph G (obtained
by dropping arc directions) has bounded treewidth, and is given by a tree decomposition as
in Theorem 2.2.1.
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For each node i ∈ I , define state space Σi = {σ ⊆ Xi |σ satisfies precedence constraints
in G[Xi]}. For each node i ∈ I and σ ∈ Σi, we define:

• set Xi,σ = σ.

• Hi,σ = {S ⊆ Vi |Xi ∩ S = σ and S satisfies precedence constraint in G[Vi]}.

• Fi,σ = {(wj1 , wj2) | for each j ∈ {j1, j2}, wj ∈ Σj such that wj ∩ Xi = σ ∩ Xj}
which denotes valid combinations. Note that the conditionwj∩Xi = σ∩Xj enforces
wj to agree with σ on vertices of Xi ∩Xj .

We next show that these satisfy all the conditions in Assumption 2.2.1.

Assumption 2.2.1 part 1. We have t = max |Σi| ≤ 2k and p = max |Fi,σ| ≤ t2. So for
constant k, both t, p = O(1).

Assumption 2.2.1 part 2. By definition, for any S ∈ Hi,σ we have S ∩Xi = σ = Xi,σ.

Assumption 2.2.1 part 3. For any leaf ` ∈ I and σ ∈ Σ` it is clear thatH`,σ = {X`,σ}.
Assumption 2.2.1 part 4. Consider any non-leaf node i and σ ∈ Σi. Let Z be as in (2.22)
with the new definitions ofH and F for precedence (as above).

We first prove Hi,σ ⊆ Z . For any S ∈ Hi,σ and child j ∈ {j1, j2} let Sj = S ∩ Vj and
wj = S ∩Xj . Because S satisfies precedence constraints in G[Vi], Sj satisfies precedence
constraints in G[Vj]; and with Sj ∩Xj = S∩Vj ∩Xj = S∩Xj = wj , we have Sj ∈ Hj,wj .
Note that S ∩Xi = Xi,σ = σ. Because Vi = Xi ∪ Vj1 ∪ Vj2 , we have S = Xi,σ ∪Sj1 ∪Sj2 .
Moreover, we have σ ∩Xj = S ∩Xi ∩Xj = wj ∩Xi for each j ∈ {j1, j2}. So we have
(wj1 , wj2) ∈ Fi,σ and hence S ∈ Z .

We next prove Z ⊆ Hi,σ. Consider any S = Xi,σ ∪ Sj1 ∪ Sj2 as in (2.22). For
j ∈ {j1, j2} by definition of Fi,σ andHj,wj , we have σ ∩Xj = wj ∩Xi = (Sj ∩Xj)∩Xi.
By Observation 2.5.2 and Sj ⊆ Vj , we have Xi ∩ Sj = Xi ∩Xj ∩ Sj = σ ∩Xj . Thus we
have Xi ∩ S = σ. It just remains to prove that S satisfies precedence constraints in G[Vi].
For any edge (u, v) ∈ G[Vi], by Observation 2.5.1, it must be that at least one of Xi, Vj1 or
Vj2 contains both u and v. By definition of σ and Hi,σ, we obtain that v ∈ S =⇒ u ∈ S.
That is, S satisfies precedence constraints in G[Vi].

Assumption 2.2.1 part 5. This follows directly from the definition ofHi,σ at the root.

Dominating Set Given graph G = (V,E) and edge-weights c :
(
V
2

)
→ R+, we want to

maximize c(δS) where S is a dominating set in G. Recall that S ⊆ V is a dominating set
if every vertex in V is either in S or a neighbor of some vertex in S. For a vertex subset
S ⊆ V , we use N(S) to denote the set of vertices in S as well as neighbors of S.
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For each node i ∈ I (other than the root), define the state space

Σi = {(Bi, Yi) |Bi ⊆ Xi, Yi ⊆ Xi}.

Here, state σ = (Bi, Yi) specifies which subset Bi of the vertices (in Xi) are included in
the solution and what subset Yi of the vertices (in Xi) need not be dominated.

For the root r, define Σr = {(Br, Yr) |Br ⊆ Xr, Yr = ∅}.

For each node i ∈ I and σ = (Bi, Yi) ∈ Σi, we define:

• set Xi,σ = Bi

• Hi,σ = {S ⊆ Vi|Xi ∩ S = Bi, S is a dominating set of Vi \ Yi in G[Vi]}

• Fi,σ consists of (wj1 , wj2) where for j ∈ {j1, j2}, wj = (Bj, Yj) ∈ Σj such that
Bi ∩ Xj = Bj ∩ Xi and Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪ N(Bi). Note that for
some states there may be no such pair (wj1 , wj2) : in this case Fi,σ is empty.

Assumption 2.2.1, part 1. For each node i, the possible number of vertex subsets Bi, Yi is
at most 2k. So we have t = max |Σi| ≤ 22k = O(1) and p = max |Fi,σ| ≤ t2 = O(1).

Assumption 2.2.1, part 2. This follows directly from the definition ofHi,σ and Xi,σ.

Assumption 2.2.1, part 3. For any leaf ` ∈ I and σ = (B`, Y`) ∈ Σ` it is clear that
H`,σ = {X`,σ} if B` is a dominating set of V` \ Y` and ∅ otherwise.

Assumption 2.2.1, part 4. Consider a non-leaf node i ∈ I and σ = (Bi, Yi) ∈ Σi. Let Z be
as in (2.22) with the new definitions of H and F for dominating set (as above). To reduce
notation we just use j to denote a child of i; we will not specify j ∈ {j1, j2} each time.

We first prove Hi,σ ⊆ Z . For any S ∈ Hi,σ, let Sj = Vj ∩ S and Bj = Xj ∩ S. Let
Yj = Xj \N(Sj). Let wj = (Bj, Yj). We will show that Sj ∈ Hj,wj and (wj1 , wj2) ∈ Fi,σ.

1. Sj ∈ Hj,wj . By definition of Bj , we have Xj ∩ Sj = Xj ∩ Vj ∩ S = Xj ∩ S = Bj .
We only need to prove Sj is a dominating set of Vj \Yj in G[Vj]. For any v ∈ Vj \Yj ,
we consider the following cases:

• v ∈ Xi. Because v ∈ Vj , we have v ∈ Xj . Because v 6∈ Yj and v ∈ Xj ,
v ∈ Xj \ Yj = Xj \ (Xj \N(Sj)) = N(Sj) ∩Xj .

• v 6∈ Xi. So v 6∈ Yi, which implies v ∈ Vi \Yi. So v is dominated by S, i.e. there
is some u ∈ S with (u, v) ∈ E. Then by Observation 2.5.1, because v ∈ Vj and
v 6∈ Xi, we must have u ∈ Vj . And using Sj = S ∩ Vj , we have u ∈ Sj , i.e.
v ∈ N(Sj).
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Therefore we obtain that Sj dominates Vj \ Yj . Thus Sj ∈ Hj,wj .

2. (wj1 , wj2) ∈ Fi,σ. We have Bi ∩Xj = Bj ∩Xi and Yj = Xj \ N(Sj) by definition
of wj . It remains to show that Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪ N(Bi). For all
v ∈ Vi \ Yi, we have v is dominated by S ⊆ Vi, i.e. there is u ∈ S with (u, v) ∈ E.
By Observation 2.5.1, we have the following two cases:

• If u ∈ Xi, then we have u ∈ Bi and so v ∈ N(Bi).

• If u, v ∈ Vj , then we have u ∈ Sj and v ∈ N(Sj). Therefore v 6∈ Xj \N(Sj) =

Yj , i.e. v ∈ Vj \ Yj .
Therefore, for all v ∈ Vi \ Yi, we have v ∈ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪ N(Bi).
Thus Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪N(Bi) as desired.

Next we prove Z ⊆ Hi,σ. Consider any S ∈ Z given by S = Bi ∪ Sj1 ∪ Sj2 as
in (2.22). The fact that S ∩ Xi = Bi follows exactly as in the case of an independent-set
constraint. It remains to show that S is a dominating set of Vi \ Yi. By the definition of
Fi,σ, Vi \ Yi ⊆ (Vj1 \ Yj1) ∪ (Vj2 \ Yj2) ∪N(Bi). Because Sj is a dominating set of Vj \ Yj
and Bi is a dominating set of N(Bi), we have Vi \ Yi is dominated by Bi ∪ Sj1 ∪ Sj2 = S.
Thus we have S is a dominating set of Vi \ Yi. So S ∈ Hi,σ.

Assumption 2.2.1, part 5. By our definition of Σr, any solution given by Hr,σ requires all
vertices to be dominated. Thus this assumption is satisfied.

Connectivity Given graph G = (V,E) and edge-weights c :
(
V
2

)
→ R+, we want to

maximize c(δS) where S is a connected vertex-set inG. We say that a vertex subset S ⊆ V

is connected if the induced graph G[S] is connected.

For each node i ∈ I (other than the root), define the state space

Σi = {(Bi, Pi) |Bi ⊆ Xi, Pi is a partition of Bi}.

Here, a state σ = (Bi, Pi) specifies (1) the subset Bi ⊆ Xi that is included in the solution
and (2) the connectivity pattern of Bi in the subgraph G[Vi] which is given by partition Pi
where all vertices in the same part are connected in the solution induced on Vi. Recall that
any partition corresponds to an equivalence relation: vertices u, v are related if and only if
u, v lie in the same part. We also need the notion of a partition union. Given two partitions
Q and R, their union P = Q∪R is the partition given by the transitive closure of the union
of the equivalence relations of Q and R.

At the root, we set Σr = {(Br, Pr) |Br ⊆ Xr, Pr = {Br}}.
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For each node i ∈ I and σ = (Bi, Pi) ∈ Σi, we define:

• set Xi,σ = Bi.

• Hi,σ = {S ⊆ Vi |Xi ∩ S = Bi, each part of Pi is connected in G[S] and every
connected component of G[S] contains some vertex of Bi}.

• partition P̄i denotes the connected components in G[Bi].

• Fi,σ consists of (wj1 , wj2) where for j ∈ {j1, j2}, wj = (Bj, Pj) ∈ Σj such that
Bi ∩ Xj = Bj ∩ Xi and each part of Pj contains some vertex of Bi, and Pi is
satisfied2 by P̄i ∪ Pj1 ∪ Pj2 . Note that for some states there may be no such pair
(wj1 , wj2) : in this case Fi,σ is empty.

Assumption 2.2.1, part 1. For each node i, the possible number of vertex subsets Bi is at
most 2k and the possible number of partitions Pi is at most kk. So t = max |Σi| ≤ kk+1 =

O(1) and p = max |Fi,σ| ≤ t2 = O(1).

Assumption 2.2.1, part 2. This follows directly from the definition ofHi,σ and Xi,σ.

Assumption 2.2.1, part 3. For any leaf ` ∈ I and σ = (B`, P`) ∈ Σ` it is clear that
H`,σ = {X`,σ} if each part of P` is connected in G[B`];H`,σ = ∅ otherwise.

Assumption 2.2.1, part 4. Consider a non-leaf node i ∈ I and σ = (Bi, Pi) ∈ Σi. To reduce
notation we just use j to denote a child of i; we will not specify j ∈ {j1, j2} each time. Let
Z be as in (2.22) with the new definitions ofH and F for connectivity (as above).

We first prove Hi,σ ⊆ Z . For any S ∈ Hi,σ, let Sj = Vj ∩ S and Bj = Xj ∩ S. Let
Pj be a partition of Bj with a part C ∩ Bj for every connected component C in G[Sj]. Let
wj = (Bj, Pj). We will show that Sj ∈ Hj,wj and (wj1 , wj2) ∈ Fi,σ.

1. Sj ∈ Hj,wj . By definition of Bj , we have Xj ∩Sj = Xj ∩Vj ∩S = Xj ∩S = Bj . By
definition of Pj , each part of Pj is connected in G[Sj]. We only need to prove each
connected component of G[Sj] has at least one vertex of Bj . We show the following
stronger claim.

Claim 2.5.3. There is at least one vertex of Bj ∩Bi in each connected component C

of G[Sj].

Proof. Suppose that C has some vertex u ∈ Bi. Then we have u ∈ Sj ∩ Xi =

Sj ∩Xi ∩Xj by Observation 2.5.2. This implies u ∈ Bi ∩Bj .

2A partition P is said to be satisfied by another partition P ′ if every pair of elements in the same part of
P also lie in the same part of P ′.
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Now suppose (for contradiction) that C does not contain any vertex of Bi. By S ∈
Hi,σ we know that in the (larger) graph G[S], component C has to be connected to
some vertex u ∈ Bi. Then there is a path π in G[S] from some vertex u′ ∈ C to
u such that u′ is the only vertex of C on π (see also Figure 2.3). Let (u′, v′) be the
first edge of π, so u′ ∈ C ⊆ Sj and v′ ∈ S \ Sj . By Observation 2.5.1, because
(u′, v′) ∈ E and u′, v′ ∈ Vi, we have either u′, v′ ∈ Xi or u, v ∈ Vj′ for some
j′ ∈ {j1, j2}. We consider two cases:

• u′ ∈ Xi. Because u′ ∈ C ⊆ Sj ⊆ S and Bi = Xi ∩ S, u′ ∈ Bi which is a
contradiction.

• u′, v′ ∈ Vj′ . This means that v′ ∈ S ∩ Vj′ = Sj′ . As v′ ∈ S \ Sj we have
j′ 6= j. So u′ appears in both children of node i. By the first property of the tree
decomposition, u′ ∈ Xi. The remaining proof is the same as the first case.

So we obtain a contradiction in either case above.

Based on this claim, each component C in G[Sj] has at least one vertex of Bj ∩ Bi.
Therefore Sj ∈ Hj,wj .

2. (wj1 , wj2) ∈ Fi,σ. We have Bi ∩ Xj = Bj ∩ Xi by definition of wj . Because
we already proved that each connected component of G[Sj] has at least one vertex
of Bj ∩ Bi, we know that each part of partition Pj has at least one vertex of Bi.
By the tree decomposition we have G[Vi] = G[Xi] ∪ G[Vj1 ] ∪ G[Vj2 ], so G[S] =

G[Bi] ∪ G[Sj1 ] ∪ G[Sj2 ]. Hence partition Pi is satisfied by P̄i ∪ Pj1 ∪ Pj2 . Thus
(wj1 , wj2) ∈ Fi,σ.

Next we prove Z ⊆ Hi,σ. Consider any S ∈ Z given by S = Bi∪Sj1∪Sj2 as in (2.22).
The fact that S ∩Xi = Bi follows exactly as in the case of an independent-set constraint.
Because Pi is satisfied by P̄i ∪ Pj1 ∪ Pj2 and Sj connects up each part of Pj , it follows that
G[S] = G[Bi] ∪G[Sj1 ] ∪G[Sj2 ] connects up each part of Pi. It remains to show that each
connected component of G[S] has a vertex of Bi. Because (wj1 , wj2) ∈ Fi,σ we know that
each part of Pj has a Bi-vertex. By Sj ∈ Hj,wj , we know that each component of G[Sj]

contains some vertex u ∈ Bj , and this vertex u is connected to some vertex v ∈ Bi (as each
part of Pj contains a Bi-vertex); so every component of G[Sj] contains some vertex of Bi.
Hence each component of G[S] = G[Bi] ∪G[Sj1 ] ∪G[Sj2 ] contains some vertex of Bi.

Assumption 2.2.1, part 5. By our definition of Σr, any solution given by Hr,σ requires all
chosen vertices to be connected. Thus this assumption is satisfied.
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Figure 2.3: Connected components of G[Sj]

2.5.3 Bounded-genus and Excluded-minor Graphs

In this section, we extend our results beyond constant treewidth graph by combining known
decomposition results and prove Corollary 2.1.3.1 and 2.1.3.2. We consider two larger
class of graphs: excluded-minor graphs and bounded-genus graphs, with a small loss in the
approximation ratio.

Excluded-minor graph A minor of a graph G is a graph obtained from G by contracting
edges, deleting edges, and deleting isolated vertices. An H minor is a minor isomorphic to
graph H . An H-minor-free graph is a graph where H is not a minor of it. For example, the
famous planar graphs are (K5, K3,3)-minor-free graph, where K5 is complete graph of five
vertices and K3,3 is complete bipartite graph of three vertices on each part.

The following decomposition can convert any excluded-minor graph into graphs of
bounded treewidth.

Theorem 2.5.4. [47] For a fixed graph H , there exists a constant cH such that, for any

integer h ≥ 1 and for every H-minor-free graph G, the vertices of G can be partitioned

into h + 1 sets such that any h of those sets induce a graph of treewidth at most cHh.

Furthermore, such partition can be found in polynomial time.

We first state a simple claim.

Claim 2.5.5. Let V1, . . . , Vh be a partition of V and S ′ ⊆ V . Then

1. there is some i ∈ {1, . . . , h} such that c(δ(S ′ \ Vi)) ≥ (1− 2
h
)c(δS ′).

2. there is some i ∈ {1, . . . , h} such that c(δ(S ′ ∪ Vi)) ≥ (1− 2
h
)c(δS ′).
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Proof. Because V1, . . . , Vh is a partition of V , we have
∑h

i=1 c(δ(S
′ ∩ Vi)) ≤ 2c(δS ′). So

mini c(δ(S
′ ∩ Vi)) ≤ 2

h
c(δS ′), which implies maxi c(δ(S

′ \ Vi)) ≥ (1 − 2
h
)c(δS ′). This

proves the first statement as c(δS ′) ≤ c(δ(S ′ \ Vi)) + c(δ(S ′ ∩ Vi)).
The second statement can be shown by a reduction to the first. Let S ′′ = V \ S ′. Since

the cut function is symmetric, we have

c(δ(S ′ ∪ Vi)) = c(δ (V \ (S ′ ∪ Vi))) = c(δ(S ′′ ∩ (V \ Vi))) = c(δ(S ′′ \ Vi)).

By the first property applied to the subset S ′′,

max
i

c(δ(S ′′ \ Vi)) ≥ (1− 2

h
) · c(δS ′′) = (1− 2

h
) · c(δS ′)

This proves the second statement.

Algorithm for GCMC under an independent set constraint. We first partition V into
{Vi}hi=1 using Theorem 2.5.4. Then, for each i = 1, · · · , h we solve the GCMC instance
on the constraint graph G[V \ Vi] (which has bounded treewidth) using Theorem 4.1.1 to
obtain solution Si. Finally, we output the solution S = arg maxS∈{Si} c(δSi). Clearly S is
a feasible independent set.

In order to bound the objective value, let S∗ be the optimal solution of the GCMC

instance on G. For each i = 1, · · · , h, S∗ \ Vi is a feasible solution to the GCMC instance
on constraint graph G[V \ Vi]. Since we use a 1

2
-approximation algorithm for GCMC on

bounded-treewidth graphs, c(δSi) ≥ 1
2
c(δ(S∗\Vi)). By Claim 2.5.5, we have maxi c(δ(S

∗\
Vi)) ≥ (1− 2

h
)c(δS∗). So we obtain c(δS) ≥ 1

2
(1− 2

h
)c(δS∗).

Algorithm for GCMC under dominating-set constraint. The algorithm for a dominating-
set constraint relies on a slight variant of this approach. They also start with the partition
of V into {Vi}hi=1 using Theorem 2.5.4. For each i = 1, · · · , h we consider the graph Gi

obtained by contracting Vi to a single vertex vnew. The edge weights on Gi are defined
naturally as

ci(u, v) =

c(u, v), if u, v ∈ V \ Vi∑
w∈Vi c(u,w), if u ∈ V \ Vi and v = vnew

. (2.23)

Note that Gi is also a bounded-treewidth graph: its treewidth is at most one more than
that of G[V \ Vi] because adding vnew to every node gives a valid tree decomposition.
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Next, we solve the GCMC instance on constraint graph Gi with the additional requirement
that vnew be part of the solution. This requirement can be achieved by adding constraints
y(s(r)) = 0 for all root states s(r) 63 vnew to (LP). Let S ′i be the solution obtained by our
1
2
-approximation algorithm on Gi; and let Si = S ′i \{vnew}∪Vi. Finally we output solution
S = arg maxS∈{Si} c(δSi). Since S ′i is a feasible dominating set in Gi, it follows that Si is
also a feasible dominating set in G.

In order to bound the objective value, let S∗ be the optimal solution of the GCMC

instance on G. For each i = 1, · · · , h, S∗ \ Vi ∪ {vnew} is a feasible solution to the GCMC

instance on constraint graph G[V \Vi] for dominating-set. Since we use a 1
2
-approximation

algorithm for GCMC on bounded-treewidth graphs, ci(δS ′i) ≥ 1
2
ci(δ(S

∗ \ Vi ∪ {vnew})) =
1
2
c(δ(S∗ ∪ Vi)); the last equality is by definition of graph Gi. Since vnew ∈ S ′i and Si =

S ′i \ {vnew} ∪ Vi, we have c(δSi) = ci(δS
′
i) ≥ 1

2
c(δ(S∗ ∪ Vi)). By Claim 2.5.5, we have

maxi c(δ(S
∗ ∪ Vi)) ≥ (1− 2

h
)c(δS∗). So c(δS) ≥ 1

2
(1− 2

h
)c(δS∗).

Choosing h to be a large enough constant in Theorem 2.5.4, we obtain a (1
2
− ε)-

approximation algorithm for GCMC under independent-set, vertex-cover or dominating-set
constraints in an excluded minor graph. This proves Corollary 2.1.3.1.

Bounded-genus graph A 2-cell embedding of a graphG in a surface Σ (two-dimensional
manifold) is a drawing of the vertices as points in Σ and the edges as curves in Σ such
that no two points coincide, two curves intersect only at shared endpoints, and every face
(region) bounded by edges is an open disk. The genus of a graph is defined as the minimum
genus of a surface in which G can be 2-cell embedded. A graph has bounded genus if its
genus is O(1). It is known that every bounded genus graph is an excluded-minor graph [2].
Planar graphs are special bounded genus graph with genus 0.

For bounded-genus graph, recall the following decomposition of any bounded-genus
graph into graphs of bounded treewidth.

Theorem 2.5.6. [48] For a bounded-genus graph G and an integer h, the edges of G can

be partitioned in h color classesE1, . . . , Eh such that contracting all the edges in any color

class leads to a graph with treewidth O(h). Further, the color classes have the following

property: if edge e = (u, v) is in class i, then every edge e′ such that e ∩ e′ 6= ∅ is in class

i− 1 or i or i+ 1.

The algorithm for a connectivity constraint is as follows. For each i = 1, · · ·h, solve the
GCMC instance on the graph G/Ei (contract Ei) which has bounded treewidth, to obtain
solution Si. Let S ′i = {v|v ∈ Si or v is contracted to some vertex of Si}; note that S ′i is
connected in G. We output the solution that maximizes c(δS ′i). The proof of Corollary
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2.1.3.2 using Theorem 2.5.6 is identical to the proof in [70] for the “uniform” connected
max-cut problem. Although our edge-weights c are defined on a complete graph, the proof
of [70] works directly, and we omit the details.

2.6 Conclusion

In this chapter we obtained 1
2
-approximation algorithms for graph-MSO-constrained max-

k-cut problems, where the constraint graph has bounded treewidth. Our approach was
based on a strong LP relaxation that utilized a dynamic programming structure in the con-
straints as well as the Sherali-Adams hierarchy. Getting an approximation ratio better than
1
2

for any of these problems is an interesting question, even for a specific MSO-constraint;
this is likely to require the use of SDP relaxations.

Regarding Remark 2.4.2, could our algorithm be improved to an FPT algorithm (run-
time g(τ)nO(1) for some function g)? If not, is there an FPT algorithm parameterized by
the (more restrictive) tree-depth of G?

Credits: The results in this chapter are from “Approximating graph-constrained max-
cut” [115], obtained jointly with Jon Lee, and Viswanath Nagarajan and “Approximating
Max-Cut under Graph-MSO Constraints” [90], obtained jointly with Martin Kouteckỳ, Jon
Lee, and Viswanath Nagarajan.
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CHAPTER 3

Online Covering with `q-Norm Objectives

3.1 Introduction

Online algorithms are widely used to deal with optimization under uncertainty. They model
the situation where the input arrives as a sequence and the algorithm must respond to each
incoming input immediately. Moreover, they take into account that at any point in time
future input is unknown. In this situation, we wish to design algorithms that always return
good a solution for any possible future.

Formally, an online algorithm receives a sequence of requests σ = σ(1), . . . , σ(m).
These requests must be served in the order of occurrence. When serving request σ(t), an
online algorithm does not know requests σ(t′) with t′ > t. Serving the requests incurs cost,
and the goal is to minimize the total cost paid on the entire request sequence. This process
can be viewed as a request answer game. An adversary generates requests, and an online
algorithm has to serve them one at a time. The performance of online algorithms is usually
evaluated using competitive analysis [118].

Definition 3.1.1 (Competitive ratio). The competitive ratio of an online algorithm ALG

is the worst case (i.e., maximum) over possible futures σ of the ratio: ALG(σ)/OPT (σ),

where ALG(σ) is the cost of ALG on σ and OPT (σ) is the least possible cost on σ.

We note that competitive analysis is a strong worst-case performance measure. Here an
online algorithm ALG is compared to an optimal offline algorithm OPT that knows the
entire request sequence σ in advance and can serve it with minimum cost.

An important approach to design online algorithms is using potential functions. The
potential function Φ is typically served as the amortized online cost on requests σ. Here
Φ(t) is the value of potential function after request σ(t), i.e., Φ(t)−Φ(t− 1) is the change
of the potential function that occurs during the processing of σ(t). In the analysis using a
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potential function, we usually show that for any request σ(t),

ALGt + Φ(t)− Φ(t− 1) ≤ c ·OPTt.

There are results based on potential functions, such as paging [1], k-serve [21], list up-
date [118], and routing [8]. The difficult part in a competitive analysis using a potential
function is to construct the potential function Φ, which is often mysterious and show the
above inequality for all requests.

The online primal-dual approach is another widely used approach for online problems.
This involves solving a discrete optimization problem online as follows (i) formulate a lin-
ear programming relaxation and obtain a primal-dual online algorithm for it; (ii) obtain an
online rounding algorithm for the resulting fractional solution. While this is similar to a lin-
ear programming (LP) based approach for offline optimization problems, a key difference
is that solving the LP relaxation in the online setting is highly non-trivial. (Recall that there
are general polynomial time algorithms for solving LPs offline.) So there has been a lot of
effort in obtaining good online algorithms for various classes of LPs: see [5, 30, 65] for
pure covering LPs, [30] for pure packing LPs and [11] for certain mixed packing/covering
LPs. Such online LP solvers have been useful in obtaining online algorithms for various
problems, eg. set cover [6], facility location [5], machine scheduling [11], caching [16] and
buy-at-bulk network design [56].

Recently, [12] initiated a systematic study of online fractional covering and packing
with convex objectives; see also the full versions [13, 28, 36]. These papers obtained
good online algorithms for a large class of fractional convex covering problems. They also
demonstrated the utility of this approach via many applications that could not be solved us-
ing just online LPs. However these results were limited to convex objectives f : Rn

+ → R+

satisfying a monotone gradient property, i.e. ∇f(z) ≥ ∇f(y) pointwise for all z, y ∈ Rn

with z ≥ y. There are however many natural convex functions that do not satisfy such
a gradient monotonicity condition. Note that this condition requires the Hessian ∇2f(x)

to be pointwise non-negative in addition to convexity which only requires ∇2f(x) to be
positive semidefinite.

One of the goals in this chapter is to expand the class of convex programs with good
online algorithms. To this end, we focus on convex functions f that are sums of different
`q-norms. This is a canonical class of convex functions with non-monotone gradients, and
prior results are not applicable; see Section 3.1.1 for more details. Another goal in this
chapter is to obtain better online algorithms for discrete optimization using such convex
relaxations. Here, we show that sum of `q-norm objectives arise naturally as relaxations
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of some network design/routing problems for which our result leads to better online algo-
rithms.

We show that covering programs with sums of `q-norm objectives (and their dual pack-
ing programs) admit an online algorithm with a logarithmic competitive ratio. This result
is nearly tight because there is a logarithmic lower bound even for online covering LPs
(which corresponds to an `1 norm objective).

We also provide two applications of our fractional solver. The first is a covering ap-
plication: we obtain improved competitive ratios (by two logarithmic factors) for online
non-uniform buy-at-bulk problems. The second is a packing application: we obtain the
first poly-logarithmic online algorithm for throughput maximization with “group” edge ca-
pacities where there is an `p-norm constraint on the flows through some subsets of edges.

Given that we achieve log-competitive online algorithms for sums of `q-norms, a natural
question is whether such a result holds for all norms. Recall that any norm is a convex
function. It turns out that a log-competitive algorithm is not possible for general norms.
This follows from a result in [13] which shows an Ω(q log d) lower bound for minimizing
the objective ‖Bx‖q under covering constraints (where B is a non-negative matrix). It is
still an interesting open question to identify the correct competitive ratio for general norm
functions.

3.1.1 Results and Techniques

We consider the online covering problem

min
r∑
e=1

ce‖x(Se)‖qe (P)

s.t. Ax ≥ 1,

x ≥ 0,

where each Se ⊆ [n] := {1, 2, · · ·n}, qe ≥ 1, ce ≥ 0 and A is a non-negative m×n matrix.
For any x ∈ Rn and S ⊆ [n], we use x(S) ∈ R|S| to denote the vector with coordinates
(xi)i∈S; moreover, given any q ≥ 1 we use ‖x(S)‖q =

(∑
i∈S x

q
i

)1/q. For any subset
S ⊆ [n] we use S := [n] \ S. We also consider the dual of the above convex program,
which is the following packing problem:

max
m∑
k=1

yk (D)

s.t. ATy = µ,
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r∑
e=1

µe = µ,

‖µe(Se)‖pe ≤ ce, ∀e ∈ [r],

µe(Se) = 0, ∀e ∈ [r],

y ≥ 0.

The values pe above satisfy 1
pe

+ 1
qe

= 1; so ‖ · ‖pe is the dual norm of ‖ · ‖qe . This dual
can be derived from (P) using Lagrangian duality; see Section 3.2.

Our framework captures the classic setting of packing/covering LPs when r = n and
for each e ∈ [n] we have Se = {e} and qe = 1. Our first main result is:

Theorem 3.1.2 (Online covering/packing result). There is an O(log d+ log ρ)-competitive

online algorithm for (P) and (D) where the covering constraints in (P) and variables y in

(D) arrive over time. Here ρ =
max{aij}
min{aij} , and d is the maximum of the row-sparsity of A

and maxre=1 |Se|.

We note that this bound is also the best possible, even in the linear case [30] when we re-
quire monotone primal and dual variables. For just the covering problem, a better O(log d)

bound is known for linear objectives [65] and for monotone-gradient convex functions [12]:
these results involve non-monotone dual variables. Obtaining a similar O(log d) bound for
our covering program (P) remains an open question.

The algorithm in Theorem 3.1.2 is the natural extension of the primal-dual approach
for online LPs [30]. We use the gradient∇f(x) at the current primal solution x as the cost
function, and use this to define a multiplicative update for the primal. Simultaneously, the
dual solution y is increased additively. This algorithm is in fact identical to the one in [12]
for convex functions with monotone gradients. Our contribution here is in the analysis of
this algorithm, which requires new ideas to deal with non-monotone gradients.

Limitations of previous approaches in handling `q-norm objectives. The general con-
vex covering problem is

min {f(x) : Ax ≥ 1, x ≥ 0} ,

where f : Rn
+ → R+ is a convex function and A ∈ Rm×n

+ . Its dual is:

max

{
m∑
k=1

yk − f ∗(µ) : ATy = µ, y ≥ 0

}
,
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where f ∗(µ) = maxx∈Rn+{µTx− f(x)} is the Fenchel conjugate of f . When f is the sum
of `q-norms, these primal-dual convex programs reduce to (P) and (D).

We restrict the discussion of prior techniques to functions f with maxx∈Rn+
xT∇f(x)
f(x)

≤ 1

because this condition is satisfied by sums of `q norms.1 At a high level, the analysis
in [12] uses the gradient monotonicity to prove a pointwise upper bound ATy ≤ ∇f(x̄)

where x̄ is the final primal solution. This allows them to lower bound the dual objective by∑m
k=1 yk because f ∗(∇f(x̄)) ≤ 0 for any x̄ (see Lemma 4(d) in [12]). Moreover, proving

the pointwise upper bound ATy ≤ ∇f(x̄) is similar to the task of showing dual feasibility
in the linear case [30, 65] where∇f(x̄) corresponds to the (fixed) primal cost coefficients.

Below we give a simple example with an `q-norm objective where the pointwise upper
bound ATy ≤ ∇f(x̄) is not satisfied by the online primal-dual algorithm unless the dual
solution y is scaled down by a large (i.e. polynomial) factor. This means that one cannot
obtain a sub-polynomial competitive ratio for (P) using this approach directly.

Consider an instance with objective function f(x) = ‖x‖2 =
√∑n

i=1 x
2
i . So the gra-

dient ∇f(x) = x/‖x‖2 which is not monotone. There are m =
√
n covering constraints,

where the kth constraint is
∑km

i=m(k−1)+1 xi ≥ 1. Note that each variable appears in only
one constraint. Let P be the value of the primal objective and D be the value of the
dual objective at any time. Suppose that the rate of increase of the primal objective is at
most α times that of the dual; α corresponds to the competitive ratio in the online primal-
dual algorithm. Upon arrival of any constraint k, it follows from the primal updates that
all the variables {xi}kmi=m(k−1)+1 increase from 0 to 1

m
. So the increase in P due to con-

straint k is (
√
k −
√
k − 1) 1√

m
for iteration k. This means that the increase in D is at least

1
α

(
√
k −
√
k − 1) 1√

m
, and so yk ≥ 1

α
(
√
k −
√
k − 1) 1√

m
. Finally, since x̄ = 1

m
1, we know

that ∇f(x̄) = 1
m
1 (recall n = m2). On the other hand, (ATy)1 = y1 ≥ 1

α
√
m

. Therefore, in
order to guarantee ATy ≤ ∇f(x̄) we must have α ≥ √m = n1/4.

Our approach to handle `q-norm objectives. First, we show that by duplicating vari-
ables and using an online separation oracle approach one can ensure that the sets {Se}re=1

are disjoint. The use of a separation oracle in the online context is similar to [5]. The
disjoint structure of Ses allows for a simple expression for ∇f which is useful in the later
analysis. Then we utilize the specific form of the primal-dual convex programs (P) and (D)
and an explicit expression for∇f to show that the dual y is approximately feasible. In par-
ticular we show that ‖yTA(Se)‖pe ≤ O(log dρ) · ce for each e ∈ [r]; here A(Se) denotes the
submatrix of A with columns from Se. Note that this is a weaker requirement than upper

1The result in [12] also applies to other convex functions with monotone gradients, but the competitive
ratio depends exponentially on maxx∈Rn

+

xT∇f(x)
f(x) .
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bounding ATy pointwise by∇f(x̄).

In order to bound ‖yTA(Se)‖pe , we analyze each e ∈ [r] separately. We partition
the steps of the algorithm into phases where phase j corresponds to steps where Φe =∑

i∈Se x
qe
i ≈ θj; here θ > 1 is a parameter that depends on qe. The number of phases

can be bounded using the fact that Φe is monotonically increasing. By triangle inequality
we upper bound ‖yTA(Se)‖pe by

∑
j ‖yT(j)A(Se)‖pe where y(j) denotes the dual variables

that arrive in phase j. And in each phase j, we can upper bound ‖yT(j)A(Se)‖pe using the
differential equations for the primal and dual updates.

We also provide two applications of Theorem 3.1.2, one using the result for the covering
problem (P) and another using the packing problem (D).

Non-uniform multicommodity buy-at-bulk. This is a well-studied network design prob-
lem in the offline setting [39, 40]. The setting is as follows. We are given an undirected (or
directed) graph G = (V,E) with a monotone sub-additive cost function ge : R+ → R+ on
each edge e ∈ E and a collection {(si, ti)}mi=1 of m source/destination pairs. The goal is to
find an si−ti path Pi for each i ∈ [m] such that the objective

∑
e∈E ge(loade) is minimized;

here loade is the number of paths using e.

In its online version, the source-destination pairs arrive incrementally over time and we
need to select the path for each pair immediately upon arrival. The first poly-logarithmic
competitive ratio for the online problem was obtained recently in [56]. A key step in
this result was a fractional online algorithm for a specific mixed packing-covering LP. By
utilizing Theorem 3.1.2 we improve the competitive ratio of this step from O(log3 n) to
O(log n) which is also the best possible. Combined with the other steps in [56], we obtain:

Theorem 3.1.3 (Application for buy-at-bulk network design). There is an O(αβγ · log3 n)-

competitive ratio for non-uniform multicommodity buy-at-bulk, where α is the “junction

tree” approximation ratio, β is the integrality gap of the natural LP relaxation for single-

source instances, and γ is the competitive ratio for single-source instances.

See Section 3.1.1 for more details on the parameters α, β and γ. The corresponding
competitive ratio in [56] wasO(αβγ · log5 n). In particular, for undirected multicommodity
buy-at-bulk we obtain an O(log9 n) competitive ratio, improving over the O(log11 n) ratio
in [56].

The main idea in Theorem 3.1.3 is a reformulation of the LP from [56] as a pure cover-
ing program where the objective is a sum of `1 and `∞ norms. This reformulation uses the
equivalence of maximum-flow and minimum-cut. The resulting covering program has an
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exponential number of constraints: but we still obtain a polynomial-time online algorithm
using a suitable separation oracle.

Throughput maximization with `p-norm capacities. The online problem of maximiz-
ing throughput subject to edge capacities is a classic online optimization problem [10, 30].
Here we are given a directed graph withm edges and edge capacities u(e). Source/destination
requests (si, ti) arrive in an online fashion. An algorithm needs to select a subset of requests
to accept and assign a path to each accepted request so that the load on each edge e is at
most ue. The goal is to maximize the number of accepted requests. We consider a natural
generalization where there are capacity constraints on groups of edges: each such con-
straint requires the `pj -norm of the loads on some edge-subset Sj to be at most a given
capacity cj .

Theorem 3.1.4 (Application for throughput maximization). The throughput maximization

problem with `p-norm capacities admits a randomized O(logm)-competitive algorithm

when:

1. the capacity cj = Ω(logm) |Sj|1/pj for each group j, or

2. each capacity may be violated by an O(log1+1/pm) factor where p = minj pj .

The first algorithm above also works for arbitrary capacities when each capacity may be
violated by a factor of O(logm ·maxj |Sj|1/pj ). So the second algorithm achieves a better
capacity violation (note that |Sj| can be polynomial in m). On the other hand, the first
algorithm runs in polynomial time whereas the second algorithm takes exponential time.
The two algorithms rely on different convex relaxations that have the form of our dual
program (D) and so Theorem 3.1.2 can be used directly. While both relaxations have an
exponential number of variables, the first relaxation can be solved in polynomial time using
an efficient separation oracle (shortest path). Both algorithms use the natural randomized
rounding to obtain integral solutions from the fractional relaxations.

We note that some “high capacity” assumption is required (regardless of running time)
to obtain any sub-polynomial competitive ratio even in the usual throughput maximization
problem where each |Sj| = 1 [10, 19].

3.1.2 Related Work

The online primal-dual framework for linear programs [31] is fairly well understood. Tight
results are known for the class of packing and covering LPs [30, 65], with competitive ratio
O(log d) for covering LPs and O(log dρ) for packing LPs; here d is the row-sparsity and ρ
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is the ratio of the maximum to minimum entries in the constraint matrix. Such LPs are very
useful because they correspond to the LP relaxations of many combinatorial optimization
problems. Combining the online LP solver with suitable online rounding schemes, good
online algorithms have been obtained for many problems, eg. set cover [6], group Steiner
tree [5], caching [16] and ad-auctions [29]. Online algorithms for LPs with mixed packing
and covering constraints were obtained in [11]; the competitive ratio was improved in [12].
Such mixed packing/covering LPs were also used to obtain an online algorithm for capaci-
tated facility location [11]. A more complex mixed packing/covering LP was used recently
in [56] to obtain online algorithms for non-uniform buy-at-bulk network design: as an ap-
plication of our result, we obtain a simpler and better (by two log-factors) online algorithm
for this problem.

There have also been a number of results utilizing the online primal-dual framework
with convex objectives for specific problems, eg. matching [50], caching [104], energy-
efficient scheduling [49, 63] and welfare maximization [24, 76]. All of these results involve
separable convex/concave functions. Recently, [12] considered packing/covering problems
with general (non-separable) convex objectives, but (as discussed previously) this result
requires a monotone gradient assumption on the convex function. The sum of `q-norm
objectives considered in this chapter does not satisfy this condition. While our primal-dual
algorithm is identical to [12], we need new techniques in the analysis.

All the results above (as well as ours) involve convex objectives and linear constraints.
We note that [54] obtained online primal-dual algorithms for certain semidefinite programs
(i.e. involving non-linear constraints). While both our result and [54] generalize pack-
ing/covering LPs, they are not directly comparable.

We also note that online algorithms with `q-norm objectives have been studied pre-
viously for many scheduling problems, eg. [9, 17]. More recently [13] used ideas from
the online primal-dual approach in an online algorithm for unrelated machine scheduling
where the objective is the sum of `p-norm of loads and startup costs. These results use
different techniques and are not directly comparable to ours.

3.2 Preliminaries

Recall the primal covering problem (P) and its dual packing problem (D). In the online
setting, the constraints in the primal and variables in the dual arrive over time. We need to
maintain monotonically increasing primal (x) and dual (y) solutions.
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3.2.1 Dual Packing Problem

We first describe how (D) can be derived as the Lagrangian dual of (P). Let fe(x) =

ce‖x(Se)‖qe for each e ∈ [r] and f(x) =
∑r

e=1 fe(x).

The Lagrangian dual of problem (P) is given by

sup
y≥0

inf
x≥0

(
r∑
e=1

ce‖x(Se)‖qe + yT (1− Ax)

)

= sup
y≥0

(
m∑
k=1

yk − sup
x≥0

(
(ATy)Tx−

r∑
e=1

ce‖x(Se)‖qe

))

= sup
y≥0

(
m∑
k=1

yk − f ∗(ATy)

)
(3.1)

where f ∗(·) is the conjugate function of f(·). Let µ = ATy. µ ≥ 0 since y ≥ 0 and A is a
nonnegative matrix. By the Moreau-Rockafellar formula [108, §6.8][119, Thm 3.2], since
f(x) is closed, proper, continuous and convex, we have

f ∗(µ) = f ∗1 (µ)⊕ · · · ⊕ f ∗r (µ) = inf
µ1+···+µr=µ

{
r∑
e=1

f ∗e (µe)

}
, ∀µ ∈ Rn,

where ⊕ is the infimal convolution.

The Fenchel conjugate of f is f ∗(µ) = maxx∈Rn+{µTx − f(x)} [27, §3.3.1]. Since
fe(x) = ce‖x(Se)‖qe ,

f ∗e (µe) =

0, if ‖µe(Se)‖pe ≤ ce and µe(Se) = 0,

∞, otherwise.

Problem (3.1) can then be reformulated as

max
m∑
k=1

yk

s.t. ATy = µ,
r∑
e=1

µe = µ,

‖µe(Se)‖pe ≤ ce, ∀e ∈ [r],

µe(Se) = 0, ∀e ∈ [r],

y ≥ 0,
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which is exactly the packing problem (D).

Note that strong duality holds since the Slater’s condition holds [27, §5.2.3], that is,
there is x ∈ Rn such that Ax > 1 and x > 0.

3.2.2 Disjointedness Assumption on Ses

We next show that one can assume that the sets {Se}re=1 are disjoint without loss of gener-
ality. This leads to a much simpler expression for ∇f that will be used in Section 3.3. An
online algorithm for the covering problem (P) is said to be primal-dual if it also maintains
dual variables in (D) and the primal objective is bounded in terms of the dual objective.

Lemma 3.2.1. Suppose there is a polynomial time α-competitive algorithm A for the cov-

ering problem (P) with disjoint Se. Then, there is a polynomial time O(α)-competitive

algorithm for (P) on general instances. Moreover, if algorithmA is primal-dual and main-

tains monotonically non-decreasing dual variables, then there is a polynomial time O(α)-

competitive algorithm for the packing problem (D) on general instances.

Proof. LetA denote an α-competitive algorithm for the covering problem (P) with disjoint
Se. We assume that it is a minimal algorithm, that is when constraint k arrives it stops
increasing x when

∑n
i=1 akixi = 1. (Any online algorithm can be ensured to be of this

form.)

Given an instance PI of the covering problem (P) with general {Se}re=1, we define
an instance PJ with disjoint S ′e as follows. For each variable xi, we introduce r copies
x

(1)
i , . . . , x

(r)
i where x(e)

i corresponds to the possible occurrence of xi in Se. So there are nr
variables in PJ . For each e ∈ [r] we set S ′e to consist of the variables x(e)

i for i ∈ Se. So
{S ′e}re=1 are disjoint. For each constraint aTk x ≥ 1 in instance PI , we introduce a family of
rn constraints in instance PJ which corresponds to all combinations of the x(e)

i variables,
namely

n∑
i=1

aki · x(ei)
i ≥ 1, ∀e1 ∈ [r], e1 ∈ [r], · · · en ∈ [r]. (3.2)

If x̄ is a feasible solution of PI , then x(e)
i = x̄i, for all e ∈ [r] and i ∈ [n] is a feasible

solution to PJ with the same objective value. Conversely, if x is a feasible solution for
PJ then x̄i = minre=1 x

(e)
i for all i ∈ [n] is a feasible solution for PI with at most the

same objective value. Hence, instances PI and PJ share the same optimal value. So an
α-competitive algorithm for PJ also leads to one for PI . However, this is not a polynomial
time reduction as there are exponentially many constraints in J . In order to deal with this,
we use a separation oracle based algorithm (see Algorithm 3), as in [5].
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Input : The kth covering constraint.
Output: Current solution x̄.

1 When the kth covering constraint
∑n

i=1 akixi ≥ 1 arrives in PI
2 while

∑n
i=1 aki ·minre=1 x

(e)
i < 1

2
do

3 let ei = arg minee=1 x
(e)
i for all i ∈ [n];

4 add constraint
∑n

i=1 aki · x
(ei)
i ≥ 1 to instance PJ and run algorithm A;

5 end
6 Output current solution x̄i = 2 ·minre=1 x

(e)
i for all i ∈ [n];

Algorithm 3: Separation Oracle Based Algorithm for General Se

It is obvious that the output solution is feasible for instancePI . As x is an α-competitive
solution to PJ , the output solution is 2α-competitive for PI . It remains to show that Algo-
rithm 3 runs in polynomial time upon arrival of any constraint k. For this, define potential
function ψ =

∑n
i=1

∑r
e=1 aki · x

(e)
i which is monotone non-decreasing. We know that

maxi,e akix
(e)
i ≤ 1 since algorithm A is minimal. So ψ ≤ rn. In each iteration of Algo-

rithm 3,
∑n

i=1 aki · x
(ei)
i increases by at least 1

2
, i.e. ψ also increases by at least 1

2
. So the

number of iterations is bounded by 2rn which is polynomial. This completes the first part
of the proof.

Let DI and DJ be the dual programs for PI and PJ respectively. By strong duality
and the fact that PI and PJ share the same optimal value, DI and DJ also have the same
optimal value. Let µ′ ∈ Rnr denote the µ-variables in DJ . Recall from (3.2) that each
constraint k in PI corresponds to rn constraints in PJ : let y′k,` for ` ∈ [rn] denote the dual
variables in DJ for these constraints. Given a feasible dual solution µ′, y′ for DJ , we can
obtain a feasible solution for DI by setting yk =

∑
` y
′
k,`, for each e ∈ [r],

µe(i) =

{
µ′(e, i) if i ∈ Se
0 if i 6∈ Se

,

and µ =
∑r

e=1 µe. Note also that the objective value of (y, µ) in DI equals that of (y′, µ′)

in DJ , Furthermore, since the online algorithm maintains monotone variables y′, the corre-
sponding y-variables are also monotone. The running time is polynomial (same as for the
primal instance). Finally, as the algorithm is primal-dual, we obtain an O(β)-competitive
ratio for the dual problem DI as well. This completes the second part of the proof.

Henceforth we will assume that the sets {Se}re=1 are disjoint. Our algorithm in this case
(Section 3.3) is primal-dual and maintains monotone duals. Using Lemma 3.2.1 we would
then obtain online algorithms for both covering and packing on general instances.

With disjoint {Se}re=1, the constraints
∑r

e=1 µe = µ, ‖µe(Se)‖pe ≤ ce, and µe(Se) = 0
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for e ∈ [r] are equivalent to ‖µ(Se)‖pe ≤ ce for e ∈ [r] and µ(∩eSe) = 0. Then the dual
packing problem (D) simplifies to:

max

{
m∑
k=1

yk : ATy = µ, ‖µ(Se)‖pe ≤ ce ∀e ∈ [r], µ(∩eSe) = 0, y ≥ 0

}
. (DD)

This is the dual program that will be used in Section 3.3. We show below (for com-
pleteness) that weak duality holds for the primal program (P) and its dual (DD). We note
that strong duality also holds because (P) satisfies Slater’s condition; however we do not
use this fact in Section 3.3.

Lemma 3.2.2. For any pair of feasible solutions x to (P) and (y, µ) to (DD), we have

r∑
e=1

ce‖x(Se)‖qe ≥
m∑
k=1

yk.

Proof. This follows from the following inequalities:

m∑
k=1

yk = yT1 ≤ yTAx = µTx ≤
r∑
e=1

∑
i∈Se

µi · xi ≤
r∑
e=1

‖µ(Se)‖pe · ‖x(Se)‖qe

≤
r∑
e=1

ce · ‖x(Se)‖qe .

The first inequality is by primal feasibility; the second inequality is by x ≥ 0, µi ≥ 0 and
µi = 0 if i ∈ ∩eSe. The third inequality is by Hölder’s inequality. The last inequality is by
dual feasibility.

3.3 Algorithm and analysis

Let f(x) =
∑r

e=1 ce‖x(Se)‖qe denote the primal objective in (P). The algorithm is shown
in Algorithm 4.

In order to ensure that the gradient∇f is defined, the primal solution x starts off as δ ·1
where δ > 0 is arbitrarily small. So we assume that the initial primal value is zero.

It is clear that the algorithm maintains a feasible and monotonically non-decreasing
primal solution x. The dual solution (y, µ) is also monotonically non-decreasing, but not
necessarily feasible. We will show that (y, µ) is O(log ρd)-approximately feasible, i.e. the
packing constraints in (DD) are violated by at most an O(log ρd) factor.

Lemma 3.3.1. The primal objective f(x) is at most twice the dual objective
∑m

k=1 yk.
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Input : The kth covering constraint.
Output: Current solution x, y, µ.

1 When the kth request
∑n

i=1 akixi ≥ 1 arrives
2 Let τ be a continuous variable denoting the current time;
3 while the constraint is unsatisfied, i.e.,

∑n
i=1 akixi < 1 do

4 For each i with aki > 0, increase xi at rate
∂xi
∂τ

=
akixi+

1
d

∇if(x)
=

akixi+
1
d

cex
qe−1
i

‖x(Se)‖qe−1
qe ;

; // If ∇if(x) = 0, increase xi at rate ∂xi
∂τ

=∞;
5 Increase yk at rate ∂yk

∂τ
= 1;

6 Set µ = ATy;
7 end

Algorithm 4: Algorithm for `q-norm packing/covering

Proof. We will show that the rate of increase of the primal is at most twice that of the dual.
Consider the algorithm upon the arrival of some constraint k. Then

df(x)

dτ
=
∑
i:aki>0

∇if(x) · ∂xi
∂τ

=
∑
i:aki>0

(akixi +
1

d
) ≤ 2.

The inequality comes from the fact that (i) the process for the kth constraint is terminated
when

∑
i akixi = 1 and (ii) the number of non-zeroes in constraint k is at most d. Also it

is clear that the dual objective increases at rate one, which finishes the proof.

Lemma 3.3.2. The dual solution (y, µ) is O(log ρd)-approximately feasible, i.e.

µ(∩eSe) = 0, (3.3)

and

‖µ(Se)‖pe ≤ O(log ρd) · ce, ∀e ∈ [r]. (3.4)

Proof. First we prove (3.3). For any i ∈ ∩eSe we always have ∇if(x) = 0: we will show
that µi = 0 always. Consider the arrival of any constraint

∑n
i=1 akixi ≥ 1. If aki = 0 then

∂µi
∂τ

= 0. If aki > 0 then xi increases at∞ rate: so the constraint will be satisfied without
increasing yk, so µi also stays 0.

In order to prove (3.4), fix any e ∈ [r]. When qe = 1, the corresponding part of
the objective function is reduced to the linear case ce

∑
i∈Se xi and we want to prove

‖µ(Se)‖∞ ≤ O(log ρd) · ce for all e ∈ [r]. It is equivalent to prove that µi ≤ O(log ρd) · ce
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for all i ∈ Se. In this case, we have

∂xi
∂τ

=
aki xi + 1

d

ce
,

∂yk
∂τ

= 1,
∂µi
∂τ

= aki ⇒ dµi =
ce aki

aki xi + 1
d

dxi.

This means that the increase in µi over the entire algorithm is:

∆µi ≤
∫ 1

min{aij}

0

ce aki
aki xi + 1

d

dxi = ce · ln
(

aki · d
min{aij}

+ 1

)
= O(log ρd) · ce.

The case qe > 1 is the main part of the analysis. In order to prove the desired upper
bound on ‖µ(Se)‖pe we use a potential function Φ =

∑
i∈Se(x

qe
i ). Let phase zero denote

the period where Φ ≤ ζ := ( 1
max{aij}·d2 )qe , and for each j ≥ 1, phase j is the period

where θj−1 · ζ ≤ Φ < θj · ζ . Here θ > 1 is a parameter depending on qe that will be
determined later. Note that Φ ≤ d( 1

min{aij})
qe as variable xi will never be increased beyond

1/minmj=1 aij . So the number of phases is at most 3qe · log(dρ)/ log θ. Next, we bound the
increase in ‖µ(Se)‖pe for each phase separately.

For any phase, we have the following equalities

∂xi
∂τ

=
akixi + 1

d

cex
qe−1
i

‖x(Se)‖qe−1
qe ,

∂yk
∂τ

= 1,
∂µi
∂τ

= aki,

⇒ dµi =
ce aki x

qe−1
i

(
∑

j∈Se x
qe
j )1− 1

qe (akixi + 1
d
)
dxi. (3.5)

Phase zero. Suppose that each xi increases to αi in phase zero. From (3.5) we have

dµi ≤
d ce aki x

qe−1
i

(
∑

j∈Se x
qe
j )1− 1

qe

dxi ⇒ 1

d ce aki
dµi ≤

xqe−1
i

(
∑

j∈Se x
qe
j )1− 1

qe

dxi.

This means that the increase ∆µi in µi (during phase zero) can be bounded as

1

d ce aki
∆µi ≤

∫ αi

δ

xqe−1
i

(
∑

j∈Se x
qe
j )1− 1

qe

dxi ≤
∫ αi

0

1dxi ≤ αi.

Since in phase zero, Φ ≤ ( 1
max{aij}·d2 )qe , we know that each αi ≤ 1

max{aij}·d2 . So
∆µi ≤ ce

d
and at the end of phase zero, we have ‖µ(Se)‖pe ≤ ‖µ(Se)‖1 ≤ ce. The last

inequality is because d ≥ maxe |Se|.

Phase j ≥ 1. Let Φ0 and Φ1 be the value of Φ at the beginning and end of this phase
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respectively. In phase j, suppose that each xi increases from si to ti. Then,

dµi =
ce aki x

qe−1
i

(
∑

j∈Se x
qe
j )1− 1

qe (akixi + 1
d
)
dxi ≤

cex
qe−2
i

(
∑

j∈Se x
qe
j )1− 1

qe

dxi.

So the increase ∆µi in µi during this phase is:

∆µi ≤
∫ ti

si

cex
qe−2
i

(
∑

j∈Se x
qe
j )1− 1

qe

dxi.

Note that variables xi′ for i′ 6= i can also increase in this phase: so we cannot directly
bound the above integral. This is precisely where the potential Φ is useful. We know that
throughout this phase,

∑
i∈Se x

qe
i ≥ Φ0. So the increase in µi during this phase is:

∆µi ≤ ce

∫ ti

si

xqe−2
i

Φ
1− 1

qe
0

dxi = ce
tqe−1
i − sqe−1

i

(qe − 1)Φ
1− 1

qe
0

= ce
tqe−1
i − sqe−1

i

(qe − 1)Φ
1
pe
0

.

Above we used the assumption that qe > 1 in evaluating the integral. Now,

(∆µi)
pe ≤ cpee

(qe − 1)pe Φ0

·
(
tqe−1
i − sqe−1

i

)pe
≤ cpee

(qe − 1)pe Φ0

·
(
t
(qe−1)pe
i − s(qe−1)pe

i

)
=

cpee
(qe − 1)pe Φ0

· (tqei − sqei ) .

The first inequality above uses the fact that (z1 + z2)pe ≥ zpe1 + zpe2 for any pe ≥ 1 and
z1, z2 ≥ 0, with z1 = sqe−1

i and z2 = tqe−1
i − sqe−1

i . The last equality uses 1
pe

+ 1
qe

= 1.

We can now bound∑
i∈Se

(∆µi)
pe ≤ cpee

(qe − 1)pe Φ0

·
∑
i∈Se

(tqei − sqei ) =
cpee (Φ1 − Φ0)

(qe − 1)pe Φ0

≤ cpee (θ − 1)

(qe − 1)pe
.

Let vector µ(j) ∈ RSe denote the increase in variables {µi : i ∈ Se} during phase j. It
follows from the above that ‖µ(j)‖pe ≤ ce

qe−1
(θ − 1)1/pe .

Combining across phases. Note that the final vector µ =
∑

j≥0 µ
(j). By triangle inequal-

ity, we have

‖µ‖pe ≤
∑
j≥0

‖µ(j)‖pe ≤ ce +
∑
j≥1

‖µ(j)‖pe ≤ ce

(
1 +

3qe(θ − 1)1/pe

(qe − 1) log θ
· log(dρ)

)
. (3.6)
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To complete the proof we show next that for any qe > 1, there is some choice of θ > 1 such
that the right-hand-side above is O(log(dρ)) · ce.

Case 1: qe ≥ 2. In this case, setting θ = 2, we have 3qe
(qe−1)

(θ − 1)1/pe/ log θ ≤ 6.

Case 2: 1 < qe < 2. We set θ = 1 + (qe − 1)−εpe , where ε = 1
− log(qe−1)

> 0. We have

(θ − 1)
1
pe

log θ
≤ (θ − 1)

1
pe

log(qe − 1)−εpe
=

(qe − 1)−ε

log(qe − 1)−εpe
=

(qe − 1)−ε

−εpe log(qe − 1)
=

(qe − 1)−ε

pe
=

2

pe
.

The first inequality above uses that θ − 1 = (qe − 1)−εpe > 1. Thus we have

3qe(θ − 1)1/pe

(qe − 1) log θ
≤ 6qe

(qe − 1)pe
= 6,

where the last equality uses 1
pe

+ 1
qe

= 1.

So in either case we have that the right-hand-side of (3.6) is at most (1 + 6 log(dρ))ce.

Combining Lemmas 3.2.2, 3.3.1 and 3.3.2, we obtain Theorem 3.1.2.

3.4 Applications

3.4.1 Online Buy-at-Bulk Network Design

In the non-uniform multicommodity buy-at-bulk problem, we are given a directed or undi-
rected graph G = (V,E) with a monotone sub-additive cost function ge : R+ → R+ on
each edge e ∈ E and a collection {(si, ti)}mi=1 of m source/destination pairs. The goal is to
find an si−ti path Pi for each i ∈ [m] such that the objective

∑
e∈E ge(loade) is minimized;

here loade is the number of paths using e. An equivalent view of this problem involves two
costs ce and `e for each edge e ∈ E and the objective

∑
e∈∪Pi ce +

∑
e∈E `e · loade. In

the online setting, the pairs (si, ti) arrive over time and we need to decide on the path Pi
immediately after the ith pair arrives.

Example In Figure 3.1, there are three requests. (s1, t1) is satisfied by the yellow path,
(s2, t2) is satisfied by the blue path and (s3, t3) is satisfied by the red path. The number on
each edge is the load on that edge.
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Figure 3.1: Buy-at-bulk network design example

Recently, [56] gave a modular online algorithm for non-uniform buy-at-bulk problems
with competitive ratio O(αβγ · log5 n) where:

• β is the integrality gap of the natural LP relaxation for single-source instances, where
all sis correspond to the same node.

• γ is the competitive ratio of an online algorithm for single-source instances.

• α is the “junction tree” approximation ratio. A junction-tree is a specific solu-
tion structure (introduced in [40]) that enables a reduction from multicommodity
to single-source instances. In such a solution, the m pairs are partitioned into groups
and each group S ⊆ [m] corresponds to a root vertex r ∈ V such that the path for
each pair in S goes through r. There is no sharing of costs across groups: in partic-
ular, we view the solution for each group as using a distinct copy of the graph. The
value α is the worst-case ratio of the cost of a junction-tree solution to the optimum.

One of the main components in the result in [56] was an O(log3 n)-competitive frac-
tional online algorithm for a certain mixed packing/covering LP. Here we show that Theo-
rem 3.1.2 can be used to provide a better (and tight)O(log n)-competitive ratio for the same
LP. This leads to the improved O(αβγ · log3 n)-competitive ratio stated in Theorem 3.1.3.

The LP relaxation. We now describe the LP relaxation used in [56]. Let T = {(si, ti) :

i ∈ [m]} denote the set of all sources/destinations. For each i ∈ [m] and root r ∈ V

variable zir denotes the extent to which both si and ti route to/from r: this corresponds to
assigning pair i to the group (in the junction-tree solution) with root r. For each r ∈ V and
e ∈ E, variable xer denotes the extent to which edge e is used in the routing to root r: this
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corresponds to whether/not edge e is used in the junction-tree solution for root r. For each
r ∈ V and u ∈ T , variables {fr,u,e : e ∈ E} represent a flow between r and u.

min
∑
r∈V

∑
e∈E

ce · xe,r +
∑
r∈V

∑
e∈E

`e ·
∑
u∈T

fr,u,e

s.t.
∑
r∈V

zir ≥ 1, ∀i ∈ [m],

{fr,si,e : e ∈ E} is a flow from si to r of zir units, ∀r ∈ V, ∀i ∈ [m],

{fr,ti,e : e ∈ E} is a flow from r to ti of zir units, ∀r ∈ V, ∀i ∈ [m],

fr,u,e ≤ xe,r, ∀u ∈ T , ∀e ∈ E, ∀r ∈ V,
x, f, z ≥ 0.

The above LP is not of packing or covering type due to the flow constraints: there are
both positive and negative signs on variables. The online algorithm in [56] for this LP uses
various ideas and has competitive ratio O(D · log n) w.r.t. the optimal integral solution;
here D is an upper bound on the length of any si − ti path (note that D can be as large as
n). Using a height reduction operation, they could ensure that D = O(log n) while incur-
ring an additional O(log n)-factor loss in the objective. This lead to the O(log3 n) factor
for the fractional online algorithm. Here we provide an improved O(log n)-competitive
algorithm that does not require any bound on the path-lengths and that also guarantees the
approximation relative to the optimal fractional solution.

For any r ∈ V and u ∈ T , let MC(r, u) denote the u− r (resp. r − u) minimum cut in
the graph with edge capacities {fr,u,e : e ∈ E} if u is a source (resp. destination). By the
max-flow min-cut theorem, it follows that zir ≤ min {MC(r, si) , MC(r, ti)}. Using this,
we can combine the first three constraints of the above LP into the following:∑

r∈V

min {MC(r, si) , MC(r, ti)} ≥ 1, ∀i ∈ [m].

For a fixed i ∈ [m], this constraint is equivalent to the following. For each r ∈ V , pick
either an si − r cut (under capacities fr,si,?) or an r − ti cut (under capacities fr,ti,?), and
check if the total cost of these cuts is at least one. Moreover, given values for the f -
variables, it is optimal for the LP to set xer = maxu∈T fr,u,e for all e ∈ E and r ∈ V .

This leads to the following equivalent reformulation that eliminates the x and z vari-
ables. We use the notation fr,u(S) =

∑
e∈S fr,u,e for any subset S ⊆ E, and r ∈ V ,

u ∈ T .
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min
∑
r∈V

∑
e∈E

ce ·
(

max
u∈T

fr,u,e

)
+
∑
r∈V

∑
e∈E

`e ·
∑
u∈T

fr,u,e

s.t.
∑
r∈Rs

fr,si(Sr) +
∑
r∈Rt

fr,ti(Tr) ≥ 1, ∀i ∈ [m], ∀(Rs, Rt) partition of V,

∀Sr : si − r cut, ∀r ∈ Rs, ∀Tr : r − ti cut, ∀r ∈ Rt,

f ≥ 0.

Note that `log(n)-norm is a constant approximation for `∞. Therefore we can reformulate
the above objective function (at the loss of a constant factor) as the sum of `log(n) and
`1 norms. Our fractional solver applies to this convex covering problem, and yields an
O(log n)-competitive ratio (note that ρ = 1 for this instance). In order to get a polynomial
running time, we can use the natural “separation oracle” approach (as in Section 3.2) to
produce violated covering constraints.

Input : The ith request (si, ti).
Output: Current solution f .

1 When the ith request (si, ti) arrives
2 while

∑
r∈V min {MC(r, si) , MC(r, ti)} < 1

2
do

3 For each r ∈ V , compute MC(r, si) and MC(r, ti) and the respective cuts Sr
and Tr;

4 Let Rs = {r ∈ V : MC(r, si) ≤ MC(r, ti)} and Rt = V \Rs;
5 Run Algorithm 4 with constraint

∑
r∈Rs fr,si(Sr) +

∑
r∈Rt fr,ti(Tr) ≥ 1;

6 end
Algorithm 5: Separation Oracle Based Algorithm for Buy-at-Bulk

Each iteration of Algorithm 5 runs in polynomial time since the minimum cuts can be
computed in polynomial time. In order to bound the number of iterations, consider the
potential ψ =

∑
e∈E(fr,si,e + fr,ti,e). Note that 0 ≤ ψ ≤ 2|E| and each iteration increases

ψ by at least 1
2
. So the number of iterations is at most 4|E|.

Results for specific buy-at-bulk problems. Using existing results from offline and
single-source versions of these problems, Theorem 3.1.3 implies the following:

• For undirected edge-weighted buy-at-bulk we obtain an O(log9 n)-competitive ra-
tio in polynomial time using α = O(log n) [41], β = O(log n) [42] and γ =

O(log4 n) [105]. This improves upon the O(log11 n)-competitive ratio that follows
from [56].
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• For undirected node-weighted buy-at-bulk we obtain an O(log9 n)-competitive ra-
tio in quasi-polynomial time using α = O(log n) [41], β = O(log n) [41] and
γ = O(log4 n) [56, 5]. This again improves upon the O(log11 n)-competitive ratio
that follows from [56]. The quasi-polynomial runtime is due to the online single-
source algorithm that relies on the height-reduction technique for directed Steiner
problems [73].

• As discussed in [56], we can also obtain the same competitive ratios for the prize-
collecting variants of these problems, where pairs may be left disconnected by paying
a penalty in the objective. So our result implies an O(log9 n)-competitive ratio here
as well.

3.4.2 Throughput Maximization with `p-Norm Capacities

The online problem of maximizing multicommodity flow was studied in [10, 30]. In this
problem, we are given a directed graph G = (V,E) with edge capacities u(e). Requests
(si, ti) arrive in an online fashion. The algorithm needs to accept a subset of these requests
and choose an si− ti path for each accepted request i. The number of paths using any edge
e (referred to as the load of edge e) is not allowed to exceed its capacity u(e). The goal is
to maximize the number of accepted requests.

Here we consider an extension with capacity constraints on subsets of edges. In partic-
ular, we are also given a number of groups where the jth group consists of a subset Sj ⊆ E

and requires the `pj -norm of the loads of these edges to be at most cj , i.e.
∑

e∈Sj L
pj
e ≤ c

pj
j

where Le denotes the load of edge e. The objective is again to maximize the number of ac-
cepted requests. Note that if each |Sj| = 1 then we recover the classic setting of individual
edge capacities.

Example In Figure 3.2, there are four requests. (s1, t1) is satisfied by the yellow path,
(s2, t2) is satisfied by the blue path, (s3, t3) is not satisfied, and (s4, t4) is satisfied by the
red path. There are also three group of edges where we have `p-norm constraints, S1, S2,

and S3. Suppose we use `2-norm for all the groups. Then S1 has load ‖(1, 0, 1, 1)‖2 =
√

3,
S2 has load ‖(1, 0, 1, 0, 0)‖2 =

√
2 and S3 has load ‖(0, 3, 2, 2, 1, 0, 1, 1, 1, 0, 0)‖2 =

√
21.

In this section we assume (without loss of generality) that the subsets Sj form a partition
of E. By subdividing edges if necessary, we can ensure that the subsets Sj are disjoint. If
∪jSj ( E then we can just add a dummy group consisting of edges E \ ∪jSj and assign
a very high capacity to the dummy group. We denote the number of edges by m; as the
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Figure 3.2: Throughput maximization with `p-norm capacities example

groups are disjoint, the number of groups is at most m. We also use i to index requests, j
to index groups and e to index edges.

We provide two online algorithms for this problem. The first algorithm (in Section 3.4.2.1)
runs in polynomial time and achieves an O(logm)-competitive ratio when each cj =

Ω(logm) · |Sj|1/pj . Without the high-capacity assumption, this implies an O(logm)-
competitive ratio while violating capacities by an O(m1/p · logm) factor, where p =

minj pj . The second algorithm (in Section 3.4.2.2) allows for any capacities and achieves
anO(logm)-competitive ratio while violating capacities by anO(log1+1/pm) factor, where
p = minj pj . The second algorithm provides a better capacity violation than the first (for
arbitrary capacities). However, the second algorithm does not run in polynomial time. The
two algorithms rely on different convex relaxations, both of which correspond to our dual
problem (D). We note that in the absence of a high-capacity assumption (or some capac-
ity violation), there is no sub-polynomial randomized competitive ratio even in the special
case where |Sj| = 1 [19].

A randomized (α, β)-bicriteria competitive algorithm finds a solution that (i) violates
each capacity constraint by at most factor β with probability one, and (ii) has expected
objective value at least 1

α
times the offline optimum.

3.4.2.1 Polynomial-time (O(logm), O(m1/p logm)) bicriteria algorithm

Here we prove the first part of Theorem 3.1.4, which is restated below:

Theorem 3.4.1. Assume that cj = Ω(logm)·|Sj|1/pj for each j. Then there is a polynomial-

time randomized O(logm)-competitive online algorithm for throughput maximization with

`p-norm capacities, where m is the number of edges in the graph.
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In particular, we will show that (i) the algorithm’s solution satisfies all capacities with
probability one and (ii) has expected objective at least anO(logm) fraction of the optimum.

In a fractional version of the problem, a request can be satisfied by several paths and
the allocation of bandwidth can be in the range [0, 1] instead of being restricted to {0, 1}.
For request (si, ti), let Pi be the set of simple paths from si to ti. Variable fi,P is defined to
be the amount of flow on the path P for request (si, ti). The total profit is the (fractional)
number of requests served. The complete fractional relaxation is given below:

max
∑
i

∑
P∈Pi

fi,P (3.7)

s.t.
∑
P∈Pi

fi,P ≤ 1, ∀i (3.8)∑
i

∑
P∈Pi:e∈P

fi,P = µe, ∀e (3.9)

‖µ(Sj)‖pj ≤ cj, ∀j (3.10)

f ≥ 0. (3.11)

Constraint (3.8) ensures that at most one path is selected for each request, (3.9) assigns
to each variable µe the load on edge e and (3.10) is the capacity constraint on each group. It
is clear that when each fi,P ∈ {0, 1}we obtain an exact formulation of the routing problem.
Rewriting constraint (3.8) as

∑
P∈Pi fi,P = νi and νi ≤ 1, we have the following equivalent

relaxation:

max
∑
i

∑
P∈Pi

fi,P (3.12)

s.t.
∑
P∈Pi

fi,P = νi, ∀i (3.13)∑
i

∑
P∈Pi:e∈P

fi,P = µe, ∀e (3.14)

‖ν‖∞ ≤ 1, (3.15)

‖µ(Sj)‖pj ≤ cj, ∀j (3.16)

f ≥ 0. (3.17)

Note that this corresponds to the (dual) packing program (D). In particular, if zi and xe are
the primal variables corresponding to constraints (3.13) and (3.14) respectively, the primal
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problem is:

min
∑
j

cj‖x(Sj)‖qj +
∑
i

zi

s.t. zi +
∑
e∈P

xe ≥ 1, ∀i, ∀P ∈ Pi

x, z ≥ 0.

This is in the form of (P), so Theorem 3.1.2 can be applied. However, each request
is associated with an exponential number of constraints and to obtain a polynomial-time
algorithm we again need to apply a separation oracle. This is based on computing shortest
paths in a modified graph: we add a vertex s′i and edge (s′i, si) to graph G. Let zi be the
length of edge (s′i, si) and xe be the length of each edge e ∈ E, and let H denote this
edge-weighted graph.

Input : The ith request (si, ti).
Output: Current solution x, z.

1 When the ith request (si, ti) arrives
2 while shortest s′i − ti path in H has length less than 1

2
do

3 Let P ∈ Pi be the path corresponding to the shortest s′i − ti path in H;
4 Run Algorithm 4 with request zi +

∑
e∈P xe ≥ 1;

5 end
Algorithm 6: Online Algorithm for Throughput Maximization

The shortest path algorithm runs in polynomial time and it finds a constraint with zi +∑
e∈P xe <

1
2

(if any). To see that the number of iterations of Algorithm 6 is polynomial,
define potential function ψ = zi+

∑
e∈E xe. We know that ψ ≤ m+1 the number of edges

in H since our algorithm is minimal, that is, each iteration terminates with zi +
∑

e∈P xe =

1. In each iteration, ψ increases by at least 1
2
. So the total number of iteration is at most

2m. Finally, by doubling the variables z, x we have a feasible solution and the objective
increases by factor two.

Using Algorithm 4, we obtain an O(logm)-competitive online algorithm for the frac-
tional relaxation (3.12)-(3.17). To get an integer solution, we use a simple randomized
rounding algorithm. For each request i, choose a path P ∈ Pi with probability fi,P

8
, and

choose no path with the remaining probability 1 − 1
8

∑
P∈Pi fi,P . For each request i and

edge e, let Xi,e = 1 if the path chosen for request i contains edge e and Xi,e = 0 otherwise.
Let Xe =

∑
iXi,e denote the load on each edge e ∈ E; note that Xe is the sum of inde-

pendent 0 − 1 random variables. Also, by the rounding algorithm and constraint (3.14),
E(Xe) = µe

8
for each edge e. We use the following standard concentration inequality.
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Theorem 3.4.2 (Chernoff Bound 1). LetX =
∑

iXi whereXi = 1 with probability pi and

Xi = 0 with probability 1− pi, and all Xi are independent. Then

Pr[X ≥ (1 + ε)E[X]] ≤ e−
ε2

2+ε
E[X] for all ε > 0.

Let δ = 12 logm. Using this result on Xe =
∑

iXi,e with ε = 1 + 2δ/µe,

Pr

[
Xe >

µe
4

+
δ

4

]
= Pr [Xe > (1 + ε)E[Xe]] ≤ e

−
(1+ 2δ

µe
)2

2+(1+ 2δ
µe

)

µe
8 ≤ e−

µe+2δ
8 ≤ e−

δ
4 =

1

m3
.

Then by union bound over all m edges, we obtain that Xe ≤ µe
4

+ δ
4

for all e ∈ E, with
probability at least 1− 1/m2. Conditioned on this “good event” we have

∑
e∈Sj

Xpj
e ≤

∑
e∈Sj

(
µe
4

+
δ

4
)pj ≤

∑
e∈Sj

2pj(
µ
pj
e

4pj
+
δpj

4pj
)

=
1

2pj
(‖µ(Sj)‖pjpj + |Sj|δpj) < c

pj
j , ∀j. (3.18)

where the last inequality is by constraint (3.16) and the assumption cj = Ω(logm) · |Sj|
1
pj .

In order to guarantee that we always find a feasible solution (i.e. satisfy all the ca-
pacities) we simply terminate the algorithm when any capacity constraint is about to be
violated. Below ALG denotes the number of paths selected in the randomized rounding
and ALG is the number of paths selected before the algorithm is terminated.

To prove the O(logm)-competitive ratio, let OPT be the offline optimal value of the
throughput maximization instance. We first assume OPT = Ω(logm) and handle the case
OPT = O(logm) later. Define the following random variables:

• For each request i, Ai = 1 if the rounding satisfies request i and Ai = 0 otherwise.

• I = 0 if the rounding satisfies all capacities and I = 1 otherwise.

• ALG =
∑

iAi the number of requests satisfied by the rounding.

• ALG = ALG if I = 0 and ALG = 0 otherwise.

• G = min(ALG,OPT )−OPT · I .

Note that E[ALG] =
∑

i E[Ai] =
∑

i

∑
P∈Pi

fi,P
8
≥ OPT

O(logm)
because our fractional

online algorithm is O(logm)-competitive. Moreover, assuming OPT = Ω(logm) we
have E[ALG] = Ω(1).

By definition of G, we have ALG ≥ G because:

69



1. if the rounded solution is feasible (I = 0) then ALG = ALG ≥ min(ALG,OPT ),

2. if the rounded solution is infeasible (I = 1) then ALG ≥ 0 ≥ G.

Now we have

E[ALG] ≥ E[G] = E[min(ALG,OPT )]−OPT · E[I]

≥ E[min(ALG,OPT )]− OPT

m2
. (3.19)

The last inequality is by (3.18) which implies E[I] ≤ 1
m2 .

We now use the Chernoff bound on the lower tail.

Theorem 3.4.3 (Chernoff Bound 2). LetX =
∑

iXi whereXi = 1 with probability pi and

Xi = 0 with probability 1− pi, and all Xi are independent. Then

Pr[X ≤ (1− ε)E[X]] ≤ e−
ε2

2
E[X] for all 0 < ε < 1.

Recall E[ALG] = Ω(1) (using our assumption on OPT ) and Ai ∈ {0, 1} for all i. By
choosing ε = 1

2
in Theorem 3.4.3, with constant probability we have ALG ≥ 1

2
E[ALG] ≥

OPT
O(logm)

. Finally, using ALG ≥ 0 we have E[min(ALG,OPT )] = OPT
O(logm)

. Combined
with (3.19) we obtain E[ALG] = OPT

O(logm)
.

We now handle the caseOPT = O(logm). Note that in this case, just selecting a single
path is an O(logm)-competitive solution. The overall algorithm runs with probability half
either the above rounding or the greedy choice of selecting any path for the first request.
Note that selecting any path P ∈ Pi leads to a feasible solution because of our capacity
assumption. Finally, the expected objective is OPT/O(logm), which completes the proof
of Theorem 3.4.1.

3.4.2.2 An (O(logm), O(log1+1/pm)) bicriteria algorithm

We now prove the second part of Theorem 3.1.4 (restated below).

Theorem 3.4.4. There is a randomized (O(logm), O(log1+1/pm))-bicriteria competitive

online algorithm for throughput maximization with `p-norm capacities, where m is the

number of edges in the graph and p = minj pj .

For this result we further strengthen the dual continuous relaxation to

max
∑
i

∑
P∈Qi

fi,P (3.20)
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s.t.
∑
P∈Qi

fi,P ≤ 1, ∀i (3.21)∑
i

∑
P∈Qi

|Sj ∩ P |fi,P ≤ c
pj
j , ∀j (3.22)∑

i

∑
P∈Qi:e∈P

fi,P = µe, ∀e (3.23)

‖µ(Sj)‖pj ≤ cj, ∀j (3.24)

f ≥ 0. (3.25)

Here Qi is the set of simple paths P between si and ti such that |Sj ∩ P | ≤ c
pj
j for all

groups j.

Lemma 3.4.5. Convex program (3.20)-(3.25) is a relaxation of the throughput maximiza-

tion problem.

Proof. We first observe that only paths in ∪iQi may be used in any feasible solution for
the throughput maximization problem. Suppose (for a contradiction) that some si − ti

path P ∈ Pi \ Qi is used. Then it is clear that the load induced by path P alone violates
some capacity cj , which contradicts the feasibility. This justifies using only fi,P variables
corresponding to the Qis.

Now, note that any feasible solution to the throughput maximization problem corre-
sponds to a solution (f, µ) with each fi,P ∈ {0, 1} that satisfies constraints (3.21), (3.23)
and (3.24). The objective value (number of accepted requests) is clearly (3.20). We only
need to show that the new constraints (3.22) are also satisfied. We know that the `pj load
on each edge subset Sj is at most cj . That is,∑

e

(
∑
i

∑
P∈Qi:e∈P

fi,P )pj ≤ c
pj
j , ∀j.

Then, using the fact that each fi,P ∈ {0, 1} we have for any group j,∑
e∈Sj

(
∑
i

∑
P∈Qi:e∈P

fi,P )pj ≥
∑
e∈Sj

∑
i

∑
P∈Qi:e∈P

fi,P =
∑
i

∑
e∈Sj

∑
P∈Qi:e∈P

fi,P

=
∑
i

∑
P∈Qi

|Sj ∩ P |fi,P .

Hence we obtain
∑

i

∑
P∈Qi |Sj ∩ P |fi,P ≤ c

pj
j for all j, as desired.
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Now, the relaxation (3.20)-(3.25) can be recast as

max
∑
i

∑
P∈Qi

fi,P (3.26)

s.t.
∑
P∈Qi

fi,P = νi, ∀i (3.27)∑
i

∑
P∈Qi

|Sj ∩ P |fi,P = λj, ∀j (3.28)∑
i

∑
P∈Qi:e∈P

fi,P = µe, ∀e (3.29)

‖ν‖∞ ≤ 1, (3.30)

‖µ(Sj)‖pj ≤ cj, ∀j (3.31)

‖λj‖∞ ≤ c
pj
j , ∀j (3.32)

f ≥ 0. (3.33)

This is exactly in the form of our dual program (D). If zi, yj and xe are primal variables
corresponding to (3.27), (3.28) and (3.29) respectively, the primal program is

min
∑
j

cj‖x(Sj)‖qj +
∑
j

c
pj
j yj +

∑
i

zi

s.t. zi +
∑
j

|Sj ∩ P |yj +
∑
e∈P

xe ≥ 1, ∀i, ∀P ∈ Qi,

x, y, z ≥ 0.

We can apply Theorem 3.1.2 to this primal formulation to obtain an O(logm) -competitive
online algorithm. However, there are an exponential number of constraints and in this case
we are not aware of an efficient separation oracle. The separation problem corresponds to
resource constrained shortest path [103] and to the best of our knowledge, no efficient (ap-
proximation) algorithms are known. So the running time of our fractional online algorithm
is exponential.

The online randomized rounding algorithm is the same as section 3.4.2.1. We again use
Chernoff bound to prove that with high probability the load on each edge e is small. Recall
that for each request i and edge e, random variable Xi,e the the indicator if the path chosen
for request i contains edge e, and Xe =

∑
iXi,e is the load on edge e. We also use Yi,P as

the indicator that path P ∈ Qi is selected for request i. We analyze the following two cases
separately.
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Case 1: µe ≥ 1. Let δ = 12 logm. By Chernoff bound (Theorem 3.4.2), we have

Pr[Xe >
µe
4

+
δ

4
] ≤ e

−
(1+ 2δ

µe
)2

2+(1+ 2δ
µe

)

µ
8 ≤ e−

µe+2δ
8 ≤ e−

δ
4 =

1

m3
.

So, with probability 1− 1
m3 we haveXe ≤ (3 logm)µe, which impliesXpj

e ≤ (3 logm)pjµ
pj
e

for all j.

Case 2: µe ≤ 1. Let random variableRe = 1 if some path using e is selected, andRe = 0

otherwise. Note thatRe ≤
∑

i

∑
P∈Qi:e∈P Yi,P . Again by Chernoff bound (Theorem 3.4.2),

Pr[Xe > 3 logm] ≤ 1

m3
.

Conditioned on Xe ≤ 3 logm, we have Xe ≤ 3 logm · Re because Xe = 0 if and only if
Re = 0. Then

Xpj
e ≤ (3 logm)pj ·Re ≤ (3 logm)pj

∑
i

∑
P∈Qi:e∈P

Yi,P , ∀j.

Let E denote the event that Xe ≤ (3 logm) ·max{µe, 1} for all edges e. It follow from
above that Pr[E ] ≥ 1− 1

m2 . Moreover, conditioned on E , we have for each group j:∑
e∈Sj

Xpj
e ≤

∑
e∈Sj

(3 logm)pjµpje +
∑
e∈Sj

(3 logm)pj
∑
i

∑
P∈Qi:e∈P

Yi,P

= (3 logm)pj
∑
e∈Sj

µpje + (3 logm)pj
∑
i

∑
e∈Sj

∑
P∈Qi:e∈P

Yi,P

= (3 logm)pj
∑
e∈Sj

µpje + (3 logm)pj
∑
i

∑
P∈Qi

|Sj ∩ P | · Yi,P

≤ (3 logm)pj · cpjj + (3 logm)pj
∑
i

∑
P∈Qi

|Sj ∩ P | · Yi,P . (3.34)

where the last inequality is by constraint (3.24).

By the constraints (3.22) and definition of Qi, we have:

E

[∑
i

∑
P∈Qi

|Sj ∩ P | · Yi,P
]
≤ c

pj
j and |Sj ∩ P | ≤ c

pj
j for all P ∈ ∪iQi.

Note that the random variables
∑

P∈Qi |Sj ∩P | ·Yi,P are independent across requests i and
bounded between 0 and cpjj . By Chernoff bound (Theorem 3.4.2) and union bound over

73



groups j, it follows that with probability at least 1− 1
m2 ,∑

i

∑
P∈Qi

|Sj ∩ P | · Yi,P ≤ (3 logm)c
pj
j , ∀j.

Let F denote the above event. Combined with (3.34), conditioned on E and F we obtain,∑
e∈Sj

Xpj
e ≤ (3 logm)pj · cpjj + (3 logm)pj · (3 logm)c

pj
j ≤ 2(3 logm)pj+1 · cpjj , ∀j.

As Pr[E∧F ] ≥ 1− 2
m2 , it follows that the capacities are violated by at most anO(log1+1/pm)

factor with high probability. Here p = minj pj .
The proof of the O(logm) competitive ratio and ensuring that the capacity bounds hold

with probability one, are identical to that in Section 3.4.2.1. This completes the proof of
Theorem 3.4.4.

3.5 Conclusion

In this chapter, we obtained a nearly tight O(log d+ log ρ)-competitive algorithm for frac-
tional online covering problems with `q-norm objectives and its dual packing problem.
We also demonstrated the applicability of this result in two settings: non-uniform buy-
at-bulk network design and throughput maximization under `p-norm capacities. It leads
to an improved result (by two logarithmic factors) for the former problem and the first
poly-logarithmic result for the latter one. Identifying online algorithms for other classes of
convex programs is an interesting direction. Another open question is to design online al-
gorithms for more combinatorial optimization problems using convex program relaxations.

Credits: The results in this chapter are from “Online Covering with Sum of `q-Norm
Objectives” [109], obtained jointly with Viswanath Nagarajan.
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CHAPTER 4

Stochastic Load Balancing

4.1 Introduction

Deterministic optimization assumes perfect information of the input. However, uncertainty
is an inevitable issue for almost all decision problems. It can be caused by many reasons,
such as the errors and noises in data measurements, the model parameters, or the inherent
nature of the problem. Dealing with uncertainty in the input is a fundamental issue in
practical optimization problems. Because estimates based on historical data are usually
available, stochastic optimization is a prominent approach in this area, where certain parts
of the input are represented by random variables and the algorithm needs to optimize the
expected performance [23]. Stochastic optimization has been studied for more than 60
years [45, 100, 83, 62, 84, 72, 110]. Recent years have witnessed a surge of interest in
solving combinatorial optimization problems under uncertainty [52, 46, 88, 80, 67, 66,
97]. It is well known that many combinatorial optimization problems are NP-hard. The
stochastic setting introduces considerable additional complications and makes some simple
questions even #P-hard [46, 88, 97]. Therefore, it is very unlikely that these stochastic
problems admit efficient algorithms that can solve them exactly. Again, a principled way
to deal with the computational intractability is to design polynomial time approximation
algorithms.

In this chapter, we consider the problem of scheduling jobs on machines to minimize
the maximum load (i.e., the problem of makespan minimization). This is a classic NP-
hard problem, with Graham’s list scheduling algorithm for the identical machines being
one of the earliest approximation algorithms known. If the job sizes are deterministic, the
problem is fairly well-understood, with PTASes for the identical [74] and related machines
cases [75], and a constant-factor approximation and APX-hardness [95, 117] for the case of
unrelated machines. Given we understand the basic problem well, it is natural to consider
settings which are less stylized, and one step closer to modeling real-world scenarios: what
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can we do if there is uncertainty in the job sizes?

We take a stochastic optimization approach where the job sizes are random variables
with known distributions. In particular, the size of each job j on machine i is given by a
random variable Xij . Throughout this chapter we assume that the sizes of different jobs
are independent of each other. Given just this information, an algorithm has to assign these
jobs to machines, say resulting in jobs Ji being assigned to each machine i. The expected
makespan of this assignment is

E

[
m

max
i=1

∑
j∈Ji

Xij

]
, (4.1)

where m denotes the number of machines. The goal for the algorithm is to minimize this
expected makespan. Observe that the entire assignment of jobs to machines is done up-
front without knowledge of the actual outcomes of the random variables, and hence there
is no adaptivity in this problem.

4.1.1 Results and Techniques

Our main result is:

Theorem 4.1.1 (Stochastic load balancing result). There is an O(1)-approximation algo-

rithm for the problem of finding an assignment to minimize the expected makespan on

unrelated machines.

Our work naturally builds on the edifice of [88]. However, we need several new ideas
to achieve this. As mentioned above, the prior result for identical machines used the notion
of effective size, which depends on the number m of machines available. When machines
are not identical, consider just the “restricted assignment” setting where each job needs
to choose from a specific subset of machines: here it is not even clear how to define the
effective size of each job. Instead of working with a single deterministic value as the
effective size of any random variable Xij , we use all the βk(Xij) values for k = 1, 2, · · ·m.

Then we show that in an optimal solution, for every k-subset of machines, the total βk
effective size of jobs assigned to those machines is at most some bound depending on k.
Such a property for k = m was also used in the algorithm for identical machines. We
then formulate a linear program (LP) relaxation that enforces such a “volume” constraint
for every subset of machines. Although our LP relaxation has an exponential number of
constraints, it can be solved in polynomial time using the ellipsoid algorithm and a suitable
separation oracle.
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Finally, given an optimal solution to this LP, we show how to carefully choose the
right parameter for effective size of each job and use it to build an approximately optimal
schedule. Although our LP relaxation has an exponential number of constraints (and it
seems difficult to preserve them all), we show that it suffices to satisfy a small subset
of these constraints in the integral solution. Roughly, our rounding algorithm uses the LP
solution to identify the “correct” deterministic size for each job and then applies an existing
algorithm for deterministic scheduling [117].

Budgeted Makespan Minimization. In this problem, each job j has a reward rj (hav-
ing no relationship to other parameters such as its size), and we are given a target reward
value R. The goal is to assign some subset S ⊆ [n] of jobs whose total reward

∑
j∈S rj is

at least R, and to minimize the expected makespan of this assignment. Clearly, this gen-
eralizes the basic makespan minimization problem (by setting all rewards to one and the
target R = n).

Theorem 4.1.2 (Budgeted makespan minimization result). There is anO(1)-approximation

algorithm for the budgeted makespan minimization problem on unrelated machines.

To solve this, we extend the ideas for expected makespan scheduling to include an extra
constraint about high reward. We again write a similar LP relaxation. Rounding this LP
requires some additional ideas on top of those in Theorem 4.1.1. The new ingredient is
that we need to round solutions to an assignment LP with two linear constraints. To do this
without violating the budget, we utilize a “reduction” from the Generalized Assignment
Problem to bipartite matching [117] as well as certain adjacency properties of the bipartite
matching polytope [15].

Minimizing `q Norms. Finally, we consider the problem of stochastic load balancing
under `q norms. Note that given some assignment, we can denote the “load” on machine
i by Li :=

∑
j∈Ji Xij , and the “load vector” by L = (L1, L2, . . . , Lm). The expected

makespan minimization problem is to minimize E[‖L‖∞]. The q-norm minimization prob-

lem is the following: find an assignment of jobs to machines to minimize

E
[
‖L‖q

]
= E

[( m∑
i=1

(∑
j∈Ji

Xij

)q)1/q
]
.

Our result for this setting is the following:

Theorem 4.1.3 (Stochastic q-norm minimization result). There is anO( q
log q

)-approximation

algorithm for the stochastic q-norm minimization problem on unrelated machines.
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The main idea here is to reduce this problem to a suitable instance of deterministic q-
norm minimization with additional side constraints. We then show that existing techniques
for deterministic q-norm minimization [14] can be extended to obtain a constant-factor
approximation for our generalization as well. We also need to use/prove some probabilistic
inequalities to relate the deterministic sub-problem to the stochastic problem. We note that
using general polynomial concentration inequalities [87, 114] only yields an approximation
ratio that is exponential in q. We obtain a much better O(q/ log q)-approximation factor by
utilizing the specific form of the norm function. Specifically, we use the convexity of
norms, a second-moment calculation and a concentration bound [82] for the qth moment of
sums of independent random variables.

We note that Theorem 4.1.3 implies a constant-factor approximation for any fixed
q ≥ 1. However, our techniques do not extend directly to provide an O(1)-approximation
algorithms for all q-norms.

4.1.2 Related Work

Stochastic load-balancing problems are common in real-world systems where the job sizes
are indeed not known, but given the large amounts of data, one can generate reasonable
estimates for the distribution. Moreover static (non-adaptive) assignments are preferable in
many applications as they are easier to implement.

Inspired by work on scheduling and routing problems in several communities, Klein-
berg, Rabani, and Tardos first posed the problem of approximating the expected makespan
in 1997 [88]. They gave a constant-factor approximation for the identical machines case,
i.e., for the case where for each job j, the sizes Xij = Xi′j for all i, i′ ∈ [m]. A key con-
cept in their result was the effective size of a random variable (due to Hui [77]) which is a
suitably scaled logarithm of the moment generating function. This effective size (denoted
βm) depended crucially on the number m of machines. Roughly speaking, the algorithm in
[88] solved the deterministic makespan minimization problem by using the effective size
βm(Xj) of each job j as its deterministic size. The main part of their analysis involved
proving that the resulting schedule also has small expected makespan when viewed as a
solution to the stochastic problem. See Section 4.2 for a more detailed discussion.

Goel and Indyk [60] considered the stochastic load balancing problem on identical
machines (same setting as [88]) but for specific job-size distributions. For Poisson distri-
butions they showed that Graham’s algorithm achieves a 2-approximation, and for Expo-
nential distributions they obtained a PTAS. Despite these improvements and refined un-
derstanding of the identical machines case, the above stochastic load-balancing problem
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has remained open, even for the related machines setting. Recall that related machines

refers to the case where each machine i has a speed si, and the sizes for each job j satisfy
Xij si = Xi′j si′ for all i, i′ ∈ [m].

Kleinberg et al. [88] also considered stochastic versions of knapsack and bin-packing:
given an overflow probability p, a feasible single-bin packing here corresponds to any sub-
set of jobs such that their total size exceeds one with probability at most p. [60] gave
better/simpler algorithms for these problems, under special distributions.

Recently, Deshpande and Li [96], and Li and Yuan [98] considered several combi-
natorial optimization problems including shortest paths, minimum spanning trees, where
elements have weights (which are random variables), and one would like to find a solution
(i.e. a subset of elements) whose expected utility is maximized. These results also apply to
the stochastic versions of knapsack and bin-packing from [88] and yield bicriteria approx-
imations. The main technique here is a clever discretization of probability distributions.
However, to the best of our knowledge, such an approach is not applicable to stochastic
load balancing.

Stochastic scheduling has been studied in many different contexts, by different fields
(see, e.g., [111]). The work on approximation algorithms for these problems is more recent;
see [106] for some early work and many references. In this chapter we consider the (non-

adaptive) fixed assignment model, where jobs have to be assigned to machines up-front, and
then the randomness is revealed. Hence, there is no element of adaptivity in these prob-
lems. This makes them suitable for settings where the decisions cannot be instantaneously
implemented (e.g., for virtual circuit routing, or assigning customers to physically well-
separated warehouses). A number of papers [106, 102, 79, 69] have considered scheduling
problems in the adaptive setting, where assignments are done online and the assignment for
a job may depend on the state of the system at the time of its assignment. See Section 4.2
for a comparison of adaptive and non-adaptive settings in the load balancing problem.

Very recently, Molinaro [107] obtained anO(1)-approximation algorithm for the stochas-
tic q-norm problem for all q ≥ 1, which improves over Theorem 4.1.3. In addition to the
techniques in this chapter, the main idea in [107] is to use a different notion of effective
size, based on the L-function method [91]. We still present our algorithm/analysis for The-
orem 4.1.3 as it is conceptually simpler and may provide better constant factors for small q.

4.2 Preliminaries

The stochastic load balancing problem (STOCMAKESPAN) involves assigning n jobs to m
machines. For each job j ∈ [n] and machine i ∈ [m], we are given a random variable Xij
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which denotes the processing time (size) of job j on machine i. We assume that the random
variables Xij, Xi′,j′ are independent when j 6= j′ (the size of job j on different machines
may be correlated). We assume access to the distribution of these random variables via
some (succinct) representation. A solution is a partition {Ji}mi=1 of the jobs among the
machines, such that Ji ⊆ [n] is the subset of jobs assigned to machine i ∈ [m]. The
expected makespan of this solution is E

[
maxmi=1

∑
j∈Ji Xij

]
. Our goal is to find a solution

which minimizes the expected makespan.

The deterministic load balancing problem is known to be NP-hard. However, the
stochastic versions introduce considerable additional complications. For example, [88]
showed that given Bernoulli trials {Xj}, it is #P-hard to compute the overflow probability,
i.e. Pr[

∑
j Xj > 1]. We now show that it is #P-hard even to compute the objective value

of a given assignment in the identical machines setting.

Theorem 4.2.1 (#P-hardness). Given n jobs and m identical machines where each job

j has Bernoulli random size Xj of type (qj, sj), it is #P-hard to compute the expected

makespan of a given assignment.

Proof. We prove #P-hardness by a reduction from the problem of counting the number
of feasible solutions to the knapsack problem [53]. That is, given numbers y1, . . . , yn and
a bound B, we want to know how many subsets of {y1, . . . , yn} add up to at most B. We
consider the complementary problem of counting the number of subsets of {y1, . . . , yn}
that sum to more than B.

Given {y1, . . . , yn}, we create Bernoulli trialsX1, . . . , Xn such thatXj is of type (1
2
, yj)

and XB of type (B, 1) and XB+1 of type (B + 1, 1). Consider two instances of load
balancing. The first instance contains two machines and jobs X1, . . . , Xn and XB. The
second one contains two machines and jobs X1, . . . , Xn and XB+1. We want to compute
the expected makespan of the following assignment for these two instance: assign jobs
X1, . . . , Xn to machine 1 and the remaining job to machine 2. We use Obj1 and Obj2 to
denote the expected makespan of instance 1 and 2 respectively. Then we have

Obj1 =E

[
max

{
B,

n∑
j=1

Xj

}]
= B + E

[
max

{
0,

n∑
j=1

Xj −B
}]

=B +
∑
t≥B+1

Pr

(
n∑
j=1

Xj ≥ t

)
.
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Similarly,

Obj2 = B + 1 +
∑
t≥B+2

Pr

(
n∑
j=1

Xj ≥ t

)
.

It follows that Pr
(∑n

j=1Xj ≥ B + 1
)

= Obj1 − Obj2 + 1. The theorem follows from
the fact that the number of subsets of {y1, . . . , yn} that sum to more than B is equal to
Pr (

∑n
i=1Xj ≥ B + 1) · 2n.

Guess-and-verify approach Using a standard binary search approach, in order to obtain
an O(1)-approximation algorithm for STOCMAKESPAN it suffices to solve the following
problem G(M). Given a bound M > 0, either find a solution with expected makespan
O(M) or establish that the optimal expected makespan is Ω(M). The guess-and-verify
approach is

Input : Instance of STOCMAKESPAN and a constant ε.
Output: A guess of the optimal makespan

1 LB ← maxj mini E[Xij]; UB ←
∑

j mini E[Xij];
2 M ← UB+LB

2
;

3 while UB − LB > εLB do
4 if G(M) a solution with expected makespan O(M) then
5 UB ←M ; M ← UB+LB

2
;

6 else
7 LB ←M ; M ← UB+LB

2
;

8 end
9 end

10 Return M = UB;
Algorithm 7: The guess-and-verify approach

By the definition of G(M), we know that there is solution with expected makespan
O(M) and the optimal expected makespan is at least Ω(LB). By assuming we know op-
timal makespan is M , we will lose at most an additional factor of ε in the approximation
ratio. There is a trivial upper bound on the optimal expected, which is

∑
j mini E[Xij] ≤

nmaxj mini E[Xij], given by assigning each job to the machine where its expected size
is minimal. Hence this approach runs in O(log n) time. Moreover, by scaling down all
random variables by factor M , we may assume that M = 1.

We now provide some definitions and background results that will be used extensively
in the rest of the chapter.
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4.2.1 Truncated and Exceptional Random Variables

It is convenient to divide each random variable Xij into its truncated and exceptional parts,
defined below:

• X ′ij := Xij · I(Xij≤1) (called the truncated part),

• X ′′ij := Xij · I(Xij>1) (called the exceptional part).

The reason for doing this is that these two kinds of random variables (r.v.s) behave very
differently with respect to the expected makespan. It turns out that expectation is a good
notion of “deterministic” size for exceptional r.v.s, whereas one needs a more nuanced
notion (called effective size) for truncated r.v.s: this is discussed in detail below.

We will use the following result (which follows from [88]) to handle exceptional r.v.s.

Lemma 4.2.2 (Exceptional Items Lower Bound). Let X1, X2, . . . , Xt be non-negative dis-

crete random variables each taking value zero or at least L. If
∑

j E[Xj] ≥ L then

E[maxj Xj] ≥ L/2.

Proof. The Bernoulli case of this lemma appears as [88, Lemma 3.3]. The extension to the
general case is easy. For eachXj , introduce independent Bernoulli random variables {Xjk}
where each Xjk corresponds to a particular instantiation sjk of Xj , i.e. Pr[Xjk = sjk] =

Pr[Xj = sjk]. Note that maxkXjk is stochastically dominated by Xj: so E[maxj Xj] ≥
E[maxjkXjk]. Moreover,

∑
jk E[Xjk] =

∑
j E[Xj] ≥ L. So the lemma follows from the

Bernoulli case.

4.2.2 Effective Size and Its Properties

As is often the case for stochastic optimization problems, we want to find some determinis-
tic quantity that is a good surrogate for each random variable, and then use this deterministic
surrogate instead of the actual random variable. Here, we use the effective size, which is
based on the logarithm of the (exponential) moment generating function [77, 85, 55].

Definition 4.2.3 (Effective Size). For any random variable X and integer k ≥ 2, define

βk(X) :=
1

log k
· logE

[
e(log k)·X] . (4.2)

Also define β1(X) := E[X].
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Example For the following random variable X , we show some of its effective size value.

x 0 1/2 1

Pr[X = x] 0.4 0.1 0.5

Table 4.1: Distribution of X

k 1 2 4 8 16 32

Effective size 0.5500 0.6243 0.6893 0.7425 0.7844 0.8169

Table 4.2: Effective size of X

Useful properties of βk To get some intuition for effective size, consider independent
r.v.s Y1, . . . , Yn. Then if

∑
i βk(Yi) ≤ b,

Pr[
∑
i

Yi ≥ c] = Pr[elog k
∑
i Yi ≥ e(log k)c] ≤ E[elog k

∑
i Yi ]

e(log k)c
=

∏
i E[e(log k)Yi ]

e(log k)c
.

Taking logarithms, we get

log Pr[
∑
i

Yi ≥ c] ≤ log k ·
[∑

i

βk(Yi)− c
]

=⇒ Pr[
∑
i

Yi ≥ c] ≤ 1

kc−b
.

The above calculation, very reminiscent of the standard Chernoff bound argument, can
be summarized by the following lemma (shown, e.g., in [77]).

Lemma 4.2.4 (Upper Bound). For independent random variables Y1, . . . , Yn, if
∑

i βk(Yi) ≤
b then Pr[

∑
i Yi ≥ c] ≤ (1/k)c−b.

The usefulness of this definition comes from a partial converse, proved in [88]:

Lemma 4.2.5 (Lower Bound). Consider independent Bernoulli random variables Y1, . . . , Yn

where each Yi has non-zero size si being an inverse power of 2 such that 1/(log k) ≤ si ≤
1. If

∑
i βk(Yi) ≥ 7 then Pr[

∑
i Yi ≥ 1] ≥ 1/k.

Outline of the algorithm for identical machines In using the effective size, it is impor-
tant to set the parameter k carefully. For identical machines [88] used k = m the total
number of machines. Using the facts discussed above, we can now outline their algo-
rithm/analysis (assuming that all r.v.s are truncated). If the total effective size is at most
(say) 20m then the jobs can be assigned to m machines in a way that the effective-size
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load on each machine is at most 21. By Lemma 4.2.4 and union bound, it follows that the
probability of some machine exceeding load 23 is at most m · (1/m)2 = 1/m. On the other
hand, if the total effective size is more than 20m then even if the solution was to balance
these evenly, each machine would have effective-size load at least 7. By Lemma 4.2.5 it
follows that the load on each machine exceeds one with probability 1/m, and so with m
machines this gives a certificate that the makespan is Ω(1).

Challenges with unrelated machines For unrelated machines, this kind of argument
breaks down even in the restricted-assignment setting where each job can go on only some
subset of machines. This is because we don’t know what probability of success we want
to aim for. For example, even if the machines had the same speed, but there were jobs
that could go only on

√
m of these machines, and others could go on the remaining m −

√
m of them, we would want their effective sizes to be quite different. (See the example

below.) And once we go to general unrelated machines, it is not clear if any combinatorial
argument would suffice. Instead, we propose an LP-based lower bound that enforces one
such constraint (involving effective sizes) for every subset of machines.

Bad example for simpler effective sizes For stochastic load balancing on identical ma-
chines [88] showed that any algorithm which maps each r.v. to a single real value and per-
forms load balancing on these (deterministic) values incurs an Ω( logm

log logm
) approximation

ratio. This is precisely the reason they introduced the notion of truncated and exceptional
r.v.s. For truncated r.v.s, their algorithm showed that it suffices to use βm(Xj) as the de-
terministic value and perform load balancing with respect to these. Exceptional r.v.s were
handled separately (in a simpler manner). For unrelated machines, we now provide an ex-
ample which shows that even when all r.v.s are truncated, any algorithm which maps each
r.v. to a single real value must incur approximation ratio at least Ω( logm

log logm
). This sug-

gests that more work is needed to define the “right” effective sizes in the unrelated machine
setting.

There are m machines and m +
√
m jobs. Each r.v. Xj takes value 1 with probability

1√
m

(and 0 otherwise). The first
√
m jobs can only be assigned to machine 1. The remaining

m jobs can be assigned to any machine. Note that OPT ≈ 1 + 1/e which is obtained by
assigning the first

√
m jobs to machine 1, and each of the remaining m jobs in a one-to-

one manner. Given any fixed mapping of r.v.s to reals, note that all the Xj get the same
value (say θ) as they are identically distributed. So the optimal value of the corresponding
(deterministic) load balancing instance is

√
m · θ. Hence the solution which maps

√
m jobs

to each of the first 1 +
√
m machines is an optimal solution to the deterministic instance.
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However, the expected makespan of this assignment is Ω( logm
log logm

).

We will use the following specific result in dealing with truncated r.v.s.

Lemma 4.2.6 (Truncated Items Lower Bound). Let X1, X2, · · ·Xn be independent [0, 1]

r.v.s, and {Ji}mi=1 be any partition of [n]. If
∑n

j=1 βm(Xj) ≥ 17m then

E

[
m

max
i=1

∑
j∈Ji

Xj

]
= Ω(1).

Proof. This is a slight extension of [88, Lemma 3.4], with two main differences. Firstly,
we want to consider arbitrary instead of just Bernoulli r.v.s. Secondly, we use a different
definition of effective size than they do. We provide the details below for completeness.

At the loss of factor two in the makespan, we may assume (by rounding down) that
the only values taken by the Xj r.v.s are inverse powers of 2. For each r.v. Xj , applying
[88, Lemma 3.10] yields independent Bernoulli random variables {Yjk} so that for each
power-of-2 value s we have

Pr[Xj = s] = Pr[s ≤
∑
k

Yjk < 2s].

Let Xj =
∑

k Yjk, so Xj ≤ Xj < 2 · Xj and βm(Xj) =
∑

k βm(Yjk). Note also that
βm(Xj) ≥ βm(Xj). Hence

∑
jk βm(Yjk) ≥

∑n
j=1 βm(Xj) ≥ 17m. Now, consider the

assignment of the Yjk r.v.s corresponding to {Ji}mi=1, i.e. for each i ∈ [m] and j ∈ Ji, all the
{Yjk} r.v.s are assigned to part i. Then applying [88, Lemma 3.4] which works for Bernoulli
r.v.s, we obtain E

[
maxmi=1

∑
j∈Ji

∑
k Yjk

]
= Ω(1). Observe that the above lemma used a

different notion of effective size: β′1/m(X) := min{s, sqms} for any Bernoulli r.v.X taking
value s with probability q. However, as shown in [88, Prop 2.5], βm(X) ≤ β′1/m(X) which
implies the version that we use here.

Finally, using Xj >
1
2
Xj we obtain

E

[
m

max
i=1

∑
j∈Ji

Xj

]
≥ 1

2
E

[
m

max
i=1

∑
j∈Ji

Xj

]
=

1

2
E

[
m

max
i=1

∑
j∈Ji

∑
k

Yjk

]
= Ω(1),

which completes the proof.

4.2.3 Non-Adaptive and Adaptive Solutions

We note that our model involves computing an assignment that is fixed a priori, before
observing any random instantiations. Such solutions are commonly called non-adaptive.
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A different class of solutions (called adaptive) involves assigning jobs to machines se-
quentially, observing the random instantiation of each assigned job. Designing approxima-
tion algorithms for the adaptive and non-adaptive models are mutually incomparable. For
makespan minimization on identical machines, Graham’s list scheduling already gives a
trivial 2-approximation algorithm in the adaptive case (in fact, it is 2-approximate on an
per-instance basis), whereas the non-adaptive case is quite non-trivial and the Kleinberg et
al. [88] result was the first constant-factor approximation.

We now provide an instance with identical machines where there is an Ω( logm
log logm

) gap
between the best non-adaptive assignment (the setting of this chapter) and the best adaptive
assignment. The instance consists of m machines and n = m2 jobs each of which is iden-
tically distributed taking size 1 with probability 1

m
(and 0 otherwise). Recall that Graham’s

algorithm considers jobs in any order and places each job on the least loaded machine. It
follows that the expected makespan of this adaptive policy is at most 1 + 1

m
· E[Xj] = 2.

On the other hand, the best static assignment has expected makespan Ω( logm
log logm

), which is
obtained by assigning m jobs to each machine.

4.2.4 Useful Probabilistic Inequalities

Theorem 4.2.7 (Jensen’s Inequality). Let X1, X2, . . . , Xt be random variables and

f(x1, · · · , xt) be any convex function. Then

E[f(X1, · · · , Xt)] ≥ f(E[X1], · · · ,E[Xt]).

Theorem 4.2.8 (Rosenthal Inequality). [112, 82, 91] Let X1, X2, . . . , Xt be independent

non-negative random variables. Let q ≥ 1 and K = Θ(q/ log q). Then it is the case that

E
[(∑

j

Xj

)q]
≤ Kq ·max

{(∑
j

E[Xj]

)q

,
∑
j

E[Xq
j ]

}
.

4.3 Makespan Minimization

The main result of this section is:

Theorem 4.1.1 (Stochastic load balancing result). There is an O(1)-approximation algo-

rithm for the problem of finding an assignment to minimize the expected makespan on

unrelated machines.
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Using a binary search scheme and scaling, it suffices to find one of the following:

(i) upper bound: a solution with expected makespan at most O(1), or

(ii) lower bound: a certificate that the optimal expected makespan is more than one.

Hence, we assume that the optimal solution for the instance has unit expected makespan,
and try to find a solution with expected makespan b = O(1); if we fail we output a lower
bound certificate.

At a high level, the ideas we use are the following: first, in Section 4.3.1 we show a
more involved lower bound based on the effective sizes of jobs assigned to every subset
of machines. This is captured using an exponentially-sized LP which is solvable in poly-
nomial time. Then, to show that this lower bound is a good one, we give a new rounding
algorithm for this LP in Section 4.3.2 to get an expected makespan within a constant factor
of the lower bound.

4.3.1 A New Lower Bound

Our starting point is a more general lower bound on the makespan. The (contrapositive of
the) following lemma says that if the effective sizes are large then the expected makespan
must be large too. This is much the same spirit as Lemma 4.2.5, but for the general setting
of unrelated machines.

Lemma 4.3.1. Consider any feasible solution that assigns jobs Ji to each machine i ∈ [m].

If the expected makespan E
[
maxmi=1

∑
j∈Ji Xij

]
≤ 1, then

m∑
i=1

∑
j∈Ji

E[X ′′ij] ≤ 2, and (4.3)∑
i∈K

∑
j∈Ji

βk(X
′
ij) ≤ O(1) · k, for all K ⊆ [m], where k = |K|. (4.4)

Proof. The first inequality (4.3) focuses on the exceptional parts, and loosely follows from
the intuition that if the sum of biases of a set of independent coin flips is large (exceeds 2

in this case) then you expect one of them to come up heads. Formally, the proof follows
from Lemma 4.2.2 applied to {X ′′ij : j ∈ Ji, i ∈ [m]}.

For the second inequality (4.4), consider any subset K ⊆ [m] of the machines. Then
the total effective size of the jobs assigned to these machines must be small, where now the
effective size βk can be measured with parameter k = |K|. Formally applying Lemma 4.2.6
only to the k machines in K and the truncated random variables {X ′ij : i ∈ K, j ∈ Ji}
corresponding to jobs assigned to these machines, we obtain the desired inequality.
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Given these valid inequalities, our algorithm now seeks an assignment satisfying (4.3)–
(4.4). If we fail, the lemma assures us that the expected makespan must be large. On
the other hand, if we succeed, such a “good” assignment by itself is not sufficient. The
challenge is to show the converse of Lemma 4.3.1, i.e., that any assignment satisfying (4.3)–
(4.4) gives us an expected makespan of O(1).

Indeed, towards this goal, we first write an LP relaxation with an exponential number
of constraints, corresponding to (4.4). We can solve this LP using the ellipsoid method.
Then, instead of rounding the fractional solution to satisfy all constraints (which seems
very hard), we show how to satisfy only a carefully chosen subset of the constraints (4.4)
so that the expected makespan can still be bounded. Let us first give the LP relaxation.

In the ILP formulation of the above lower bound, we have binary variables yij to denote
the assignment of job j to machine i, and fractional variables zi(k) denote the total load
on machine i in terms of the deterministic effective sizes βk. Lemma 4.3.1 shows that the
following feasibility LP is a valid relaxation:

m∑
i=1

yij = 1, ∀j ∈ [n], (4.5)

zi(k)−
n∑
j=1

βk(X
′
ij) · yij = 0, ∀i ∈ [m], ∀k = 1, 2, · · ·m, (4.6)

m∑
i=1

n∑
j=1

E[X ′′ij] · yij ≤ 2, (4.7)∑
i∈K

zi(k) ≤ b · k, ∀K ⊆ [m] with |K| = k, ∀k = 1, 2, · · ·m, (4.8)

yij, zi(k) ≥ 0, ∀i, j, k. (4.9)

In the above LP, b = O(1) denotes the constant multiplying k in the right-hand-side of (4.4).

Although this LP has an exponential number of constraints (because of (4.8)), we can
give an efficient separation oracle. Indeed, consider a candidate solution (yij, zi(k)), and
some integer k; suppose we want to verify (4.8) for sets K with |K| = k. We just need
to look at the k machines with the highest zi(k) values and check that the sum of zi(k) for
these machines is at most bk. So, using the Ellipsoid method we can assume that we have
an optimal solution (y, z) for this LP in polynomial time. We can summarize this in the
following proposition:

Proposition 4.3.2. The linear program (4.5)–(4.9) can be solved in polynomial time. More-

over, if it is infeasible, then the optimal expected makespan is more than 1.
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4.3.2 The Rounding

Intuition In order to get some intuition about the rounding algorithm, let us first consider
the case when the assignment variables yij are either 0 or 1, i.e., the LP solution assigns
each job integrally to a machine. In order to bound the expected makespan of this solution,
let Zj denote the variable Xij , where j is assigned to i by this solution. First consider the
exceptional parts Z ′′j of the random variables. Constraint (4.7) implies that

∑
j E[Z ′′j ] is at

most 2. Even if the solution assigns all of these jobs to the same machine, the contribution
of these jobs to the expected makespan is at most

∑
j E[Z ′′j ], and hence at most 2. Thus,

we need only worry about the truncated Z ′j variables.

Now for a machine i and integer k ∈ [m], let zi(k) denote the sum of the effective
sizes βk(Z ′j) for the truncated r.v.s assigned to i. We can use Lemma 4.2.4 to infer that if
zi(m) =

∑
j assigned to i βm(Zj) ≤ b, then the probability that these jobs have total size at

most b + 2 is at least 1 − 1/m2. Therefore, if zi(m) ≤ b for all machines i ∈ [m], then
by a trivial union bound the probability that makespan is more than b + 2 is at most 1/m.
Unfortunately, we are not done. All we know from constraint (4.8) is that the average

value of zi(m) is at most b (the average being taken over the m machines). However, there
is a clean solution. It follows that there is at least one machine i for which zi(m) is at
most b, and so the expected load on such machines stays O(1) with high probability. Now
we can ignore such machines, and look at the residual problem. We are left with k < m

machines. We recurs on this sub-problem (and use the constraint (4.8) for the remaining
set of machines). The overall probability that the load exceeds O(1) on any machine can
then be bounded by applying a union bound.

Next, we address the fact that yij may be not be integral. It seems very difficult to round
a fractional solution while respecting all the (exponentially many) constraints in (4.8). In-
stead, we observe that the expected makespan analysis (outlined above) only utilizes a
linear number of constraints in (4.8), although this subset is not known a priori. Moreover,
for each machine i, the above analysis only uses zi(k) for a single value of k (say ki).
Therefore, it suffices to find an 2 integral assignment that bounds the load of each machine
i in terms of effective sizes βki . It turns out that this problem is precisely an instance of the
Generalized Assignment Problem (GAP), for which we utilize the algorithm from [117].

The rounding procedure We now describe the iterative procedure formally in Algo-
rithm 8. Assume we have an LP solution {yij}i∈[m],j∈[n], {zi(k)}i,k∈[m].

Recall that in an instance I of GAP, we are given a set of m machines and n jobs. For
each job j and machine i, we are given two quantities: pij is the processing time of j on
machine i, and cij is the cost of assigning j to i. We are also given a makespan bound b.
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Input : LP solution y, z.
Output: Integer assignment of jobs to machines.

1 Initialize `← m, L← [m], cij ← E[X ′′ij];
2 while (` > 0) do
3 Set L′ ← {i ∈ L : zi(`) ≤ b}. Machines in L′ are said to be in class `;
4 Set pij ← β`(X

′
ij) for all i ∈ L′ and j ∈ [n];

5 Set L← L \ L′ and ` = |L|;
6 end
7 Define a deterministic instance I of the GAP as follows: the set of jobs and

machines remains unchanged. For each job j and machine i, define pij and cij as
above, see Figure 4.1 for an example. The makespan bound is b. Use the
algorithm of Shmoys and Tardos [117] to find an assignment of jobs to machines.
Output this solution.;

Algorithm 8: Stochastic load balancing rounding procedure

class 1 class k class m

i

j

pi,j = βk(X
′
i,j), ci,j = E[X ′′

i,j]

jobs

machines

Figure 4.1: Deterministic instance example

Our goal is to assign jobs to machines to minimize the total cost of assignment, subject to
the total processing time of jobs assigned to each machine being at most b. If the natural
LP relaxation has optimal value C? then the algorithm in [117] finds an assignment with
cost at most C? and makespan is at most B + maxi,j pij in polynomial-time.

4.3.3 The Analysis

We begin with some simple observations:

Observation 4.3.3. The above rounding procedure terminates in at mostm iterations. Fur-

thermore, for any 1 ≤ ` ≤ m, there are at most ` machines of class at most `.

Proof. The first statement follows from the fact that L′ 6= ∅ in each iteration. To see this,
consider any iteration involving a set L of `machines. The LP constraint (4.8) for L implies
that

∑
i∈L zi(k) ≤ b · `, which means there is some i ∈ L with zi(`) ≤ b, i.e., L′ 6= ∅. The

second statement follows from the rounding procedure: the machine classes only decrease

90



over the run of the algorithm, and the class assigned to any unclassified machine equals the
current number of unclassified machines.

Observation 4.3.4. The solution y is a feasible fractional solution to the natural LP relax-

ation for the GAP instance I. This solution has makespan at most b and fractional cost

at most 2. The rounding algorithm of Shmoys and Tardos [117] yields an assignment with

makespan at most b+ 1 and cost at most 2 for the instance I.

Proof. Recall that the natural LP relaxation is the following:

min
∑
ij

cijyij

s.t.
∑
j

pijyij ≤ b, ∀i, (4.10)∑
i

yij = 1, ∀j, (4.11)

yij = 0, ∀j s.t. pij > 1, (4.12)

y ≥ 0.

Firstly, note that by (4.5), y is a valid fractional assignment that assigns each job to one
machine, which satisfies (4.11).

Next we show (4.10), i.e., that maxmi=1

∑n
j=1 pij · yij ≤ b. This follows from the def-

inition of the deterministic processing times pij . Indeed, consider any machine i ∈ [m].
Let ` be the class of machine i, and L be the subset of machines in the iteration when i is
assigned class `. This means that pij = β`(X

′
ij) for all j ∈ [n]. Also, because machine

i ∈ L′, we have zi(`) =
∑n

j=1 β`(X
′
ij) · yij ≤ b. So we have

∑n
j=1 pij · yij ≤ b for each

machine i ∈ [m].

Finally, since the random variableX ′ij is at most 1, we get that for any parameter k ≥ 1,
βk(X

′
ij) ≤ 1; this implies that pmax := maxi,j pij ≤ 1 and hence the constraints (4.12) are

vacuously true. Finally, by (4.7), the objective is
∑m

i=1

∑n
j=1 cij ·yij =

∑m
i=1

∑n
j=1 E[X ′′ij] ·

yij ≤ 2. Therefore the rounding algorithm [117] yields an assignment of makespan at most
b+ pmax ≤ b+ 1, and of cost at most 2.

In other words, if Ji be the set of jobs assigned to machine i by our algorithm, Obser-
vation 4.3.4 shows that this assignment has the following properties (let `i denote the class
of machine i):
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m∑
i=1

∑
j∈Ji

E[X ′′ij] ≤ 2, and (4.13)∑
j∈Ji

β`i(X
′
ij) ≤ b+ 1, ∀i ∈ [m]. (4.14)

Note that we ideally wanted to give an assignment that satisfied (4.3)–(4.4), but instead of
giving a bound for all sets of machines, we give just the bound on the β`i values of the jobs
for each machine i. The next lemma shows this is enough.

Lemma 4.3.5. The expected makespan of the assignment {Ji}i∈[m] is at most 4b+ 10.

Proof. Let Ihi denote the index set of machines of class 3 or higher. Observation 4.3.3
shows that there are at most 3 machines which are not in Ihi. For a machine i, let Ti =∑

j∈Ji X
′
ij denote the total load due to truncated sizes of jobs assigned to it. Clearly, the

makespan is bounded by

max
i∈Ihi

Ti +
∑
i/∈Ihi

Ti +
m∑
i=1

∑
j∈Ji

X ′′ij.

The expectation of third term is at most two, using (4.13). We now bound the expectation
of the second term above. A direct application of Jensen’s inequality (Theorem 4.2.7) for
concave functions shows that βk(X) ≥ E[X] for any random variable X and any k ≥ 1.
Then applying inequality (4.14) shows that E[Ti] ≤ b+ 1 for any machine i. Therefore, the
expected makespan of our solution is at most

E
[
max
i∈Ihi

Ti

]
+ 3(b+ 1) + 2. (4.15)

It remains to bound the first term above.

Observation 4.3.6. For any machine i, Pr
[∑

j∈Ji X
′
ij > b+ 1 + α

]
≤ `−αi for all α ≥ 0.

Proof. Inequality (4.14) for machine i shows that
∑

j∈Ji β`i(X
′
ij) ≤ b+1. But recalling the

definition of the effective size (Definition 4.2.3), the result follows from Lemma 4.2.4.

Now we can bound the probability of any machine in Ihi having a high makespan.

Lemma 4.3.7. For any α > 2, Pr [maxi∈Ihi Ti > b+ 1 + α] ≤ 22−α/(α− 2).
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Proof. Using a union bound, we get

Pr

[
max
i∈Ihi

Ti > b+ 1 + α

]
≤

m∑
`=3

∑
i:`i=`

Pr [Ti > b+ 1 + α]

≤
m∑
`=3

`−α · (# of class ` machines)

≤
m∑
`=3

`−α+1 ≤
∫ ∞
x=2

x−α+1dx =
2−α+2

α− 2
.

The first inequality uses a trivial union bound, the second uses Observation 4.3.6 above,
and the third inequality is by Observation 4.3.3.

Using the above lemma, we get

E[max
i∈Ihi

Ti] = (b+ 4) +

∫ ∞
α=3

Pr[max
i∈Ihi

Ti > b+ 1 + α]dα

≤ (b+ 4) +

∫ ∞
α=3

22−αdα ≤ b+ 5.

Inequality (4.15) now shows that the expected makespan is at most (b+5)+3(b+1)+2.

This completes the proof of Theorem 3.1.2.

4.4 Budgeted Makespan Minimization

We now consider a generalization of the STOCMAKESPAN problem, called BUDGETSTOC-
MAKESPAN, where each job j also has reward rj ≥ 0. We are required to schedule some
subset of jobs whose total reward is at least some target value R. The objective, again,
is to minimize the expected makespan. If the target R =

∑
j∈[n] rj then we recover the

STOCMAKESPAN problem. We show:

Theorem 4.1.2 (Budgeted makespan minimization result). There is anO(1)-approximation

algorithm for the budgeted makespan minimization problem on unrelated machines.

Naturally, our algorithm/analysis will build on the ideas developed in Section 4.3, but
we will need some new ideas to handle the fact that only a subset of jobs need to be sched-
uled. As in the case of STOCMAKESPAN problem, we can formulate a suitable LP re-
laxation. A similar rounding procedure reduces the stochastic problem to a deterministic
problem, which we call BUDGETED GAP. An instance of BUDGETED GAP is similar to
that of GAP, besides the additional requirement that jobs have rewards and we are required
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to assign jobs of total reward at least some target R. Rounding the natural LP relaxation for
BUDGETED GAP turns out to be non-trivial. Indeed, using ideas from [117], we reduce this
rounding problem to rounding a fractional matching solution with additional constraints,
and solve the latter using polyhedral properties of bipartite matching polyhedra.

As before, using a binary-search scheme (and by scaling down the sizes), we can as-
sume that we need to either (i) find a solution of expected makespan O(1), or (ii) prove that
the optimal value is more than 1. We use a natural LP relaxation which has variables yij for
each job j and machine i. The LP includes the constraints (4.6)-(4.9) for the base problem,
and in addition it has the following two constraints:

m∑
i=1

yij ≤ 1, ∀j = 1, · · ·n, (4.16)

n∑
j=1

rj ·
m∑
i=1

yij ≥ R. (4.17)

The first constraint (4.16) replaces constraint (4.5) and says that not all jobs need to be
assigned. The second constraint (4.17) ensures that the assigned jobs have total reward
at least the target R. For technical reasons that will be clear later, we also perform a
preprocessing step: for i, j pairs where E[X ′′ij] > 2, we force the associated yij variable to
zero. Note that by Lemma 4.3.1, this variable fixing is valid for any integral assignment
that has expected makespan at most one (in fact, we have

∑
i

∑
j E[X ′′ij] · yij ≤ 2 for

such an assignment). As in Section 4.3.1 this LP can be solved in polynomial time via
the ellipsoid method. If the LP is infeasible we get a proof (using Lemma 4.3.1) that the
optimal expected makespan is more than one. Hence we may assume the LP is feasible,
and proceed to round the solution along the lines of Section 4.3.2.

Recall that the rounding algorithm in Section 4.3.2 reduces the fractional LP solution
to an instance of the generalized assignment problem (GAP). Here, we will use a further
generalization of GAP, which we call BUDGETED GAP. An instance of this problem is
similar to an instance of GAP. We are givenmmachines and n jobs, and for each job j and
machine i, we are given the processing time pij and the associated assignment cost cij . Now
each job j has a reward rj , and there are two “target” parameters: the reward target R and
the makespan target B. We let pmax and cmax denote the maximum values of processing
time and cost respectively. A solution must assign a subset of jobs to machines such that
the total reward of assigned jobs is at least R. Moreover, as in the case of GAP, the goal is
to minimize the total assignment cost subject to the condition that the makespan is at most
B. Our main technical theorem of this section shows how to round an LP relaxation of this
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BUDGETED GAP problem.

Theorem 4.4.1. There is a polynomial-time rounding algorithm for BUDGETED GAP that

given any fractional solution to the natural LP relaxation of cost C∗, produces an integer

solution having total cost at most C∗ + cmax and makespan at most B + 2pmax.

Before we prove this theorem, let us use it to solve the BUDGETSTOCMAKESPAN,
and prove Theorem 4.1.2. Proceeding as in Section 4.3.2, we perform Steps 1-2 from
the rounding procedure. This rounding gives us values pij and cij for each job/machine
pair. Now, instead of reducing to an instance of GAP, we reduce to an instance I ′ of
BUDGETED GAP. The instance I ′ has the same set of jobs and machines as in the original
BUDGETSTOCMAKESPAN instance I. For each job j and machine i, the processing time
and the assignment cost are given by pij and cij respectively. Furthermore, the reward rj for
job j, and the reward target R are same as those in I. The makespan bound b = O(1) (as
in (4.8)). It is easy to check that the fractional solution yij is a feasible fractional solution
to the natural LP relaxation for I ′ (given below), and the assignment cost of this fractional
solution is at most 2. Applying Theorem 4.4.1 yields an assignment {Ji}mi=1, which has the
following properties:

• The makespan is at most b+ 2 = O(1); i.e.,
∑

j∈Ji pij ≤ b+ 2pmax ≤ b+ 2 for each
machine i. Here we used the fact that pmax ≤ 1.

• The cost of the solution,
∑m

i=1

∑
j∈Ji cij , is at most 4. This uses the fact that the LP

cost C∗ =
∑
cij · yij ≤ 2 and cmax ≤ 2 by the preprocessing on the E[X ′′ij] values.

• The total reward for the assigned jobs,
∑

j∈∪iJi rj , is at least R.

Now arguing exactly as in Section 4.3.2, the first two properties imply that the expected
makespan is O(1). The third property implies the total reward of assigned jobs is at least
R, and completes the proof of Theorem 4.1.2.

4.4.1 Proof of Theorem 4.4.1

Proof of Theorem 4.4.1. Let I be an instance of BUDGETED GAP as described above. The
natural LP relaxation for this problem is as follows:

min
∑

ij cijyij∑
j pijyij ≤ B, ∀i, (4.18)
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∑
i yij ≤ 1, ∀j, (4.19)∑

i,j yijrj ≥ R, (4.20)

yij = 0, ∀j s.t. pij > b, (4.21)

y ≥ 0.

Let {yij} denote an optimal fractional solution to this LP. For each machine i, let ti :=

d∑j yije be the (rounded) fractional assignment to machine i. Using the algorithm in
Theorem 2.1 of [117], we obtain a bipartite graph G = (V1 ∪ V2, E) and a fractional
matching y′ in G, where:

• V1 = [n] is the set of jobs and V2 (indexed by i′ = 1, . . . ,m′) consists of ti copies for
each machine i ∈ [m]. The cost ci′j = cij for any job j ∈ [n] and any machine-copy
i′ of machine i ∈ [m].

• for each job j ∈ [n] we have
∑m′

i=1 y
′
ij =

∑m
i=1 yij ≤ 1 for all j ∈ [n].

• the reward
∑n

j=1 rj
∑m′

i=1 y
′
ij ≥ R and the cost

∑m′

i′=1

∑n
j=1 ci′jy

′
ij = C∗ are same as

for y.

• the jobs of V1 incident to copies of any machine i ∈ [m] can be divided into (possibly
overlapping) groups Hi,1, · · ·Hi,ti where∑

j∈Hi,g

y′ij = 1 for all 1 ≤ g ≤ ti − 1, and
∑
j∈Hi,ti

y′ij ≤ 1,

and for any two consecutive groupsHi,g andHi,g+1 we have pij ≥ pij′ for all j ∈ Hi,g

and j′ ∈ Hi,g+1. Informally, this is achieved by sorting the jobs in non-increasing
order of pij , and assigning the kth unit of

∑
j yij to the kth machine-copy for each

1 ≤ k ≤ ti.

A crucial property of this construction shown in [117] is that any assignment that places at
most one job on each machine-copy has makespan at mostB+pmax in the original instance
I (where for every machine i, we assign to it all the jobs which are assigned to a copy of
i in this integral assignment). We will use the following simple extension of this property:
if the assignment places two jobs on one machine-copy and at most one job on all other
machine-copies, then it has makespan at most B + 2pmax in the instance I.

Observe that the solution y′ is a feasible solution to the following LP with variables
{zij}(i,j)∈E .

min
∑

ij cijzij (4.22)
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∑
i∈[m′]:(ij)∈E zij ≤ 1, ∀j ∈ [n], (4.23)∑
j∈[n]:(ij)∈E zij ≤ 1, ∀i ∈ [m′], (4.24)∑
(ij)∈E rj · zij ≥ R, (4.25)

z ≥ 0. (4.26)

So the optimal value of this auxiliary LP is at most C∗. We note that its integrality gap is
unbounded even when cmax is small; see the example below. So this differs from [117] for
the usual GAP where the corresponding LP (without (4.25)) is actually integral. However,
we show below how to obtain a good integral solution that violates the matching constraint
for just a single machine-copy in V2.

Indeed, let z be an optimal solution to this LP: so cT z ≤ C∗. Note that the feasible
region of this LP is just the bipartite-matching polytope on G intersected with one extra
linear constraint (4.25) that corresponds to the total reward being at least R. So z must be
a convex combination of two adjacent extreme points of the bipartite-matching polytope.
Using the integrality and adjacency properties (see [15]) of the bipartite-matching polytope,
it follows that z = λ1 · 1M1 + λ2 · 1M2 where:

• λ1 + λ2 = 1 and λ1, λ2 ≥ 0.

• M1 and M2 are integral matchings in G.

• The symmetric difference M1 ⊕M2 is a single cycle or path.

For any matching M let c(M) and r(M) denote its total cost and reward respectively.
Without loss of generality, we assume that r(M1) ≥ r(M2). If c(M1) ≤ c(M2) then M1 is
itself a solution with reward at least R and cost at most C∗. So we assume c(M1) > c(M2)

below.

If M1⊕M2 is a cycle then we output M2 as the solution. Note that the cycle must be an
even cycle: so the set of jobs assigned by M1 and M2 is identical. As the reward function
is only dependent on the assigned jobs (and not the machines used in the assignment) it
follows that r(M2) = r(M1) ≥ R. So M2 is indeed a feasible solution and has cost
c(M2) ≤ cT z ≤ C∗.

Now consider the case that M1⊕M2 is a path. If the set of jobs assigned by M1 andM2

are the same then M2 is an optimal integral solution (as above). The only remaining case
is that M1 assigns one additional job (say j∗ to i∗) over the jobs in M2. Then we return the
solution M2∪{(j∗, i∗)}. Note that this is not a feasible matching. But the only infeasibility
is at machine-copy i∗ which may have two jobs assigned; all other machine-copies have
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at most one job. The reward of this solution is r(M1) ≥ R. Moreover, its cost is at most
c(M2) + ci∗j∗ ≤ C∗ + cmax.

Now using this (near-feasible) assignment gives us the desired cost and makespan
bounds, and completes the proof of Theorem 4.4.1.

Integrality Gap for Budgeted Matching LP. Here we show that the LP (4.22)–(4.26)
used in the algorithm for budgeted GAP has an unbounded integrality gap, even if we
assume that cmax � OPT . The instance consists of n jobs and m = n− 1 machines. For
each machine i ∈ [m], there are two incident edges in E: one to job i (with cost 1) and the
other to job i+1 (with cost n). SoE is the disjoint union of two machine-perfect matchings
M1 (of total cost m) and M2 (of total cost mn). (See also Figure 4.4.1 as an illustration)
The rewards are

rj =


1, if j = 1,

4, if 2 ≤ j ≤ n− 1,

2, if j = n.

and the target R = 4(n − 2) + 1 + ε where ε → 0. Note that the only (minimal) integral
solution involves assigning the jobs {2, 3, · · · , n} which has total reward 4(n − 2) + 2.
This solution has cost OPT = mn and corresponds to matching M2. On the other hand,
consider the fractional solution z = ε1M2 + (1 − ε)1M1 . This is clearly feasible for the
matching constraints, and its reward is ε(4(n− 2) + 2) + (1− ε)(4(n− 2) + 1) = R. So z
is a feasible fractional solution. The cost of solution z is at most m+ ε(mn)� OPT .

machines

jobs

i

i i+ 1

1 4 4 4 2

1 n1 n 1 n 1 n n 1

Figure 4.2: Example for the matching instance
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4.5 `q-norm Objectives

In this section, we prove Theorem 4.1.3. Given an assignment {Ji}mi=1, the load Li on
machine i is the r.v. Li :=

∑
j∈Ji Xij . Our goal is to find an assignment to minimize the

expected q-norm of the load vector L := (L1, L2, . . . , Lm). Recall that the makespan is
‖L‖∞ which is approximated within constant factors by ‖L‖logm. So the q-norm problem
is a generalization of STOCMAKESPAN. Our main result here is:

Theorem 4.1.3 (Stochastic q-norm minimization result). There is anO( q
log q

)-approximation

algorithm for the stochastic q-norm minimization problem on unrelated machines.

We begin by assuming that we know the optimal value M of the q-norm. Our approach
parallels that for the case of minimizing the expected makespan, with some changes. In
particular, the main steps are: (1) find valid inequalities satisfied by any assignment for
which E[‖L‖q] ≤ M , (2) reduce the problem to a deterministic assignment problem for
which any feasible solution satisfies the valid inequalities above, (3) solve the deterministic
problem by writing a convex programming relaxation, and give a rounding procedure for
a fractional solution to this convex program, and (4) prove that the resulting assignment of
jobs to machines has small q-norm of the load vector.

4.5.1 Useful Bounds

We start with stating some valid inequalities satisfied by any assignment {Ji}mi=1. For each
j ∈ [n] define Yj = Xij where j ∈ Ji. By definition of M , we know that

E

( m∑
i=1

(
∑
j∈Ji

Yj)
q

)1/q
 ≤M. (4.27)

As in Section 4.3, we split each random variable Yj into two parts: truncated Y ′j =

Yj · IYj≤M and exceptional Y ′′j = Yj · IYj>M . The claim below is analogous to (4.3), and
states that the total expected size of the exceptional parts cannot be too large.

Claim 4.5.1. For any schedule satisfying (4.27), we have
∑n

j=1 E[Y ′′j ] ≤ 2M .

Proof. Suppose for a contradiction that
∑n

j=1 E[Y ′′j ] > 2M . We have Lemma 4.2.2 implies
E[maxnj=1 Y

′′
j ] > M . Now using the monotonicity of norms and the fact that Y ′′j ≤ Yj ,

n
max
j=1

Y ′′j ≤ ‖(Y ′′1 , · · · , Y ′′n )‖q ≤
(

m∑
i=1

(
∑
j∈Ji

Yj)
q

)1/q

,
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which contradicts (4.27).

Our next two bounds deal with the truncated r.v.s Y ′j . The first one states that if we
replace Y ′j by its expectation E[Y ′j ], the q-norm of this load vector of expectations cannot
exceed M . The second bound states that the expected qth moment of the vector (Y ′j )

n
j=1 is

bounded by a constant times M q.

Claim 4.5.2. For any schedule satisfying (4.27) we have

m∑
i=1

(∑
j∈Ji

E[Y ′j ]

)q
≤M q.

Proof. Since the function

f(Y ′1 , · · ·Y ′n) :=

(
m∑
i=1

(
∑
j∈Ji

Y ′j )
q

)1/q

is a norm and hence convex, Jensen’s inequality (Theorem 4.2.7) implies E[f(Y ′1 , · · ·Y ′n)] ≥
f(E[Y ′1 ], · · ·E[Y ′n]). Raising both sides to the qth power and using (4.27), the claim fol-
lows.

Claim 4.5.3. Let α = 2q+1 + 8. For any schedule satisfying (4.27) we have

n∑
j=1

E[(Y ′j )
q] ≤ α ·M q.

Proof. Define Z :=
∑n

j=1(Y ′j )
q as the quantity of interest. Observe that it is the sum

of independent [0,M q] bounded random variables. Since q ≥ 1 and the r.v.s are non-
negative, Z ≤ ∑m

i=1(
∑

j∈Ji Y
′
j )
q. Thus (4.27) implies E[Z1/q] ≤ M . However, now

Jensen’s inequality cannot help upper-bound E[Z].
Instead we use a second-moment calculation. To reduce notation let Zj := (Y ′j )

q, so
Z =

∑n
j=1 Zj . The variance of Z is var(Z) = E[Z2]−E[Z]2 ≤∑n

j=1 E[Z2
j ] ≤M q ·E[Z]

as each Zj is [0,M q] bounded. By Chebyshev’s inequality,

Pr

[
Z <

E[Z]

2
− 4M q

]
≤ var(Z)

(E[Z]/2 + 4M q)2
≤ var(Z)

(E[Z]/2) · 4M q
≤ 2M q · E[Z]

E[Z] · 4M q
≤ 1

2
.

This implies

E[Z1/q] ≥ 1

2

(
E[Z]

2
− 4M q

)1/q

.
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Using the bound E[Z1/q] ≤ M from above, we now obtain E[Z] ≤ 2 · ((2M)q + 4M q) as
desired.

In the next sections, we show that the three bounds above are enough to get a meaning-
ful lower bound on the optimal q-norm of load.

4.5.2 Reduction to a Deterministic Scheduling Problem

We now formulate a surrogate deterministic scheduling problem, which we call q-DETSCHED.
An instance of this problem has n jobs andmmachines. For each job j and machine i, there
is a processing time pij and two costs cij and dij . There are also bounds C and D on the
two cost functions respectively. The goal is to find an assignment of jobs to machines that
minimizes the q-norm of the machine loads subject to the constraint that the total c-cost and
d-cost of the assignments are at most C and D respectively. We now show how to convert
an instance Istoc of the (stochastic) expected q-norm minimization problem to an instance
Idet of the (deterministic) q-DETSCHED problem.

Suppose Istoc has m machines and n jobs, with random variables Xij for each machine
i and job j. As before, let X ′ij = Xij · IXij≤M and X ′′ij = Xij · IXij>M denote the truncated
and exceptional parts of each random variable Xij respectively. Then instance Idet has the
same set of jobs and machines as those in I. Furthermore, define

• the processing time pij = E[X ′ij],

• the c-cost cij = E[X ′′ij] with bound C = 2M ,

• the d-cost dij = E[(X ′ij)
q] with bound D = α ·M q.

Observation 4.5.4. If there is any schedule of expected q-norm at most M in the instance

Istoc, then optimal value of the instance Idet is at most M .

Proof. This follows directly from Claims 4.5.1, 4.5.2 and 4.5.3.

4.5.3 Approximation Algorithm for q-DETSCHED

Our approximation algorithm for the q-DETSCHED problem is closely based on the algo-
rithm for unrelated machine scheduling to minimize `q-norms [14]. We show:

Theorem 4.5.5. There is a polynomial-time algorithm that given any instance Idet of q-
DETSCHED, finds a schedule with (i) q-norm of processing times at most 21+2/q·OPT (Idet),

(ii) c-cost at most 3C and (iii) d-cost at most 3D.
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Proof. We only provide a sketch as many of these ideas parallel those from [14]. Start with
a convex programming “relaxation” with variables xij (for assigning job j to machine i).

min
m∑
i=1

`qi +
∑
ij

pqij · xij

s.t. `i =
∑
j

pij · xij, ∀i,∑
i

xij = 1, ∀j,∑
ij

cij · xij ≤ C,∑
ij

dij · xij ≤ D.

This convex program can be solved to arbitrary accuracy and its optimal objective value is
V ≤ 2 ·OPT (Idet)q. Let (x, `) denote the optimal fractional solution below.

We now further reduce this q-norm problem to GAP. The GAP instance Igap has the
same set of jobs and machines as those in Idet. For a job j and machine i, the processing
time remains pij . However, the cost of assigning j to i is now γij :=

cij
C

+
dij
D

+
pqij
V

.
Furthermore, we impose a bound of `i on the total processing time of jobs assigned to each
machine i (i.e., the makespan on i is constrained to be at most `i). Note that the solution
x to the convex program is also a feasible fractional solution to the natural LP-relaxation
for GAP with an objective function value of

∑
ij γij · xij ≤ 3. The rounding algorithm

in [117] can now be used to round x into an integral assignment {Aij} with γ-cost also at
most 3, and load on each machine i being Li ≤ `i + mi, where mi denotes the maximum
processing time of any job assigned to machine i by this algorithm. The definition of γ and
the bound on the γ-cost implies that the c-cost and d-cost of this assignment are at most 3C

and 3D respectively. To bound the q-norm of processing times,

m∑
i=1

Lqi ≤ 2q−1

(∑
i

`qi +
∑
i

mq
i

)
≤ 2q−1

(
V +

∑
ij

pqij · Aij
)

≤ 2q−1(V + 3V ) = 2q+1 · V.

Above, the first inequality uses (a + b)q ≤ 2q−1(aq + bq), and the third inequality uses
the fact that pqijAij ≤ V · γijAij ≤ 3V by the bound on the γ cost. The proof is now
completed by using V ≤ 2 ·OPT (Idet)q.
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4.5.4 Interpreting the Rounded Solution

Starting from an instance Istoc of expected q-norm minimization problem, we first con-
structed an instance Idet of q-DETSCHED. Let J = (J1, . . . , Jm) denote the solution
found by applying Theorem 4.5.5 to the instance Idet. If the q-norm of processing times of
this assignment (as a solution for Idet) is more than 21+2/qM then using Observation 4.5.4
and Theorem 4.5.5, we obtain a certificate that the optimal value of Istoc is more than M .
So we assume that J has objective at most 21+2/qM (as a solution to Idet). We use exactly
this assignment as a solution for the stochastic problem as well. It remains to bound the
expected q-norm of this assignment.

By the reduction from Istoc to Idet, and the statement of Theorem 4.5.5, we know that

m∑
i=1

∑
j∈Ji

E[X ′′ij] =
m∑
i=1

∑
j∈Ji

cij ≤ 6M, (4.28)

m∑
i=1

(∑
j∈Ji

E[X ′ij]

)q
=

m∑
i=1

(
∑
j∈Ji

pij)
q ≤ 2q+2 ·M q, (4.29)

m∑
i=1

∑
j∈Ji

E[(X ′ij)
q] =

m∑
i=1

∑
j∈Ji

dij ≤ 3αM q. (4.30)

We now derive properties of this assignment as a solution for Istoc.

Claim 4.5.6. The expected q-norm of exceptional jobs E[(
∑

i(
∑

j∈Ji X
′′
ij)

q)1/q] ≤ 6M .

Proof. This follows from (4.28), since the `q-norm of a vector is at most its `1-norm.

Claim 4.5.7. The expected q-norm of truncated jobs E[(
∑

i(
∑

j∈Ji X
′
ij)

q)1/q] ≤ O( q
log q

)M .

Proof. Define random variables Qi := (
∑

j∈Ji X
′
ij)

q, so that the q-norm of the loads is

Q := (
∑m

i=1Qi)
1/q = (

∑m
i=1(
∑

j∈Ji X
′
ij)

q)1/q.

Since f(Q1, · · ·Qm) = (
∑m

i=1 Qi)
1/q is a concave function for q ≥ 1, using Jensen’s

inequality (Theorem 4.2.7) again,

E[Q] ≤
( m∑

i=1

E[Qi]

)1/q

. (4.31)

We can bound each E[Qi] separately using Rosenthal’s inequality (Theorem 4.2.8):

E[Qi] = E
[(∑

j∈Ji

X ′ij
)q] ≤ Kq ·

((∑
j∈Ji

E[X ′ij]
)q

+
∑
j∈Ji

E[(X ′ij)
q]

)
,
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where K = O(q/ log q). Summing this over all i = 1, . . . ,m and using (4.29) and (4.30),
we get

m∑
i=1

E[Qi] ≤ Kq · (2q+2 + 3α)M q. (4.32)

Recall from Claim 4.5.3 that α = 2q+1 + 8. Now plugging this into (4.31) we obtain
E[Q] ≤ O(K) ·M .

Finally, using Claims 4.5.6 and Claim 4.5.7 and the triangle inequality, the expected
q-norm of solution J is O( q

log q
) ·M , which completes the proof of Theorem 4.1.3.

Explicit approximation ratio Here we show the approximation ratio explicitly. By equa-
tions (4.31) and (4.32), we have the expected q-norm of truncated jobs is

E[Q] ≤ (Kq·(2q+2+3α)M q)1/q = (Kq·(2q+2+3(2q+1+8))M q)1/q = (10+3·23−q)1/q2KM.

And the expected q-norm of exceptional jobs is at most 6M by Claim 4.5.6. By the triangle
inequality, the expected q-norm of solution J is at most (6+(10+3 ·23−q)1/q2K)M. Note
that for any constant ε > 0, we can get M to ε close to the optimal objective value by the
binary search approach. Hence the overall approximation ratio for q-norm is (6 + (10 + 3 ·
23−q)1/q2K)(1 + ε), for any ε > 0, where K is the parameter in Theorem 4.2.8.

The following known result provides a bound of the parameter Kq in Theorem 4.2.8.

Theorem 4.5.8 ( [78]). Let Z denote a random variable with Poisson distribution with

parameter 1, i.e., Pr[Z = k] = e−1/k!, k = 0, 1, 2, . . . . The best constant Kq in Theo-

rem 4.2.8 is EZq.

Example For `2-norm, K2 ≤ EZ2 = 2 ⇒ K =
√

2. The overall approximation ratio
for `2-norm minimization is (6 + (10 + 3 · 21)1/22

√
2)(1 + ε) = (6 + 8

√
2)(1 + ε) =

17.31(1 + ε). For `3-norm, K3 = 5 ⇒ K = 3
√

5. The overall approximation ratio for
`3-norm minimization is (6 + (10 + 3)1/32 3

√
5)(1 + ε) = 14.04(1 + ε).

4.6 Conclusion

In this chapter, we obtained the first constant-factor approximation for the general case
of unrelated machines. We also consider two generalizations. The first is the budgeted
makespan minimization problem and the second problem involves q-norm objectives. An
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interesting open problem is to extend the techniques to deal with other discrete optimization
problems in stochastic setting, such as routing [33].

Credit: The results in this chapter are from “Stochastic load balancing on unrelated
machines” [64], obtained jointly with Anupam Gupta, Amit Kumar, and Viswanath
Nagarajan.
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[95] Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

[96] Li, J., Deshpande, A.: Maximizing expected utility for stochastic combinatorial
optimization problems. In: FOCS, pp. 797–806 (2011)

[97] Li, J., Liu, Y.: Approximation algorithms for stochastic combinatorial optimization
problems. Journal of the Operations Research Society of China 4(1), 1–47 (2016)

[98] Li, J., Yuan, W.: Stochastic combinatorial optimization via poisson approximation.
In: STOC, pp. 971–980 (2013)

[99] Magen, A., Moharrami, M.: Robust algorithms for on minor-free graphs based on
the Sherali-Adams hierarchy. In: APPROX and RANDOM, vol. 5687, pp. 258–271
(2009)

[100] Mangasarian, O., Rosen, J.: Inequalities for stochastic nonlinear programming
problems. Operations Research 12(1), 143–154 (1964)

[101] Mathieu, C., Sinclair, A.: Sherali-adams relaxations of the matching polytope. In:
STOC, pp. 293–302 (2009)

[102] Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research 31(3), 513–525 (2006)

112



[103] Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: ESA, pp.
326–337 (2000)

[104] Menache, I., Singh, M.: Online caching with convex costs: Extended abstract. In:
SPAA, pp. 46–54 (2015)

[105] Meyerson, A.: Online algorithms for network design. In: SPAA, vol. 4, pp. 275–280
(2004)
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