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and Rényi Entropies of Free Bosons and Fermions in 3d 129

4.1 Motivation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Evaluation of the EE Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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Abstract

In this thesis, I discuss three projects on modern approaches to quantum field theory. Firstly,

I present a novel approach to holographic renormalization, using an algorithmic method that

utilizes the Hamilton-Jacobi equation and the Hamiltonian formulation of gravity. Secondly,

I discuss the validity and applications of soft-subtracted on-shell recursion relations for ex-

ceptional effective field theories. In particular, using the soft bootstrap method, I examine

the possibility of a supersymmetric non-linear sigma model. I also study Galileon theories, in

terms of their compatibility with supersymmetry and possible higher-derivative corrections

to the so-called special Galileon. Finally, I calculate the logarithmic contribution to the

entanglement entropy of a free scalar or a free fermion in 3 spacetime dimensions.
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CHAPTER 1

Introduction

Quantum field theory (QFT) has been the theoretical foundation of particle physics of the

last century. The standard model of theoretical physics is a quantum field theory, whose

predictions have been verified by multiple experiments. Most analytic calculations in QFT

are performed in the context of perturbation theory. Despite the numerous successes of this

method, there are significant limitations that require new lines of attack. Strongly-coupled

systems with no small parameters, like low-energy quantum chromodynamics (the theory

of strong interactions) cannot be treated perturbatively. Even in weakly-coupled systems,

some calculations are too technical to carry out in practice, in part because of redundancy

in the traditional Lagrangian description of field theory.

Several new approaches to QFT have been introduced that try to circumvent these and

other problems. In this thesis, I discuss three such approaches: gauge-gravity duality, the

scattering amplitudes program, and an approach using quantum information theory. Study-

ing different techniques is essential for a complete understanding of quantum field theories.

1.1 Gauge-Gravity Duality

Gauge-gravity duality has been a major breakthrough of theoretical high-energy physics. It

has immediate applications in particle physics and gravitational physics, but it has also found

other applications, like the description and study of critical condensed matter systems.

Motivated by string theory, gauge-gravity duality relates physical quantities in quantum

field theories to quantities in a theory of gravity (like general relativity or string theory). The
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underlying principle of the duality, called the holographic principle, states that a gravitational

theory in the bulk of a spacetime can be described solely in terms of degrees of freedom and

interactions of a quantum field theory that lives on the boundary of this spacetime. A well-

known example of this is that the leading contribution to the Bekenstein-Hawking entropy

(a measure of degrees of freedom) of a black hole is proportional to the area of the black-hole

horizon instead of the volume of the enclosed space. The holographic principle is generic and

it is expected to be generally true for gravitational theories [1]. Nevertheless, only a handful

of pairs of dual gauge-gravity theories are well-understood.

Perhaps the most celebrated example of a gauge-gravity duality is the AdS/CFT corre-

spondence [2, 3, 4, 5]. The original form of the duality conjectured that type IIB string theory

on AdS5 × S5 (AdS5 stands for 5-dimensional anti-de Sitter space and S5 for 5-dimensional

sphere) is dual to N = 4 supersymmetric Yang-Mills theory that lives on the 4-dimensional

boundary of AdS. N = 4 supersymmetric Yang-Mills is a conformal field theory (CFT) i.e.

it is invariant under an extended group of spacetime symmetries that is larger than the usual

Lorentz and translational symmetries of ordinary quantum field theories. The large amount

of symmetry and supersymmetry that this system manifests, makes it an ideal playground

to understand the properties of gauge-gravity duality.

A very useful feature of the AdS/CFT correspondence is that it is a duality between weak

and strong couplings. Under certain conditions, the large-coupling limit of the gauge theory

is dual to the limit where the bulk string theory reduces to classical weakly-coupled super-

gravity, whose dynamics are described by Einstein’s equation. Therefore, using the duality

we can make predictions about strongly-coupled field theory (normally very cumbersome) by

performing relatively simpler calculations in the weakly-coupled gravitational theory. This

strong-weak correspondence is a generic feature in gauge-gravity duality, which makes it ap-

pealing for describing systems with large couplings like critical systems in condensed matter

physics, or potentially low-energy quantum chromodynamics.1

1There is no exact holographic dual known for quantum chromodynamics.
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A common artifact of calculations in quantum field theory is that they are often plagued

by infinities. These infinities often arise from integrals over a range of arbitrarily large

momenta. In the context of gauge-gravity duality, such infinities of the boundary field

theory correspond to infinities of the bulk gravitational theory that connect to the infinite

volume of the bulk spacetime.

The systematic procedure for removing infinities from a calculation in QFT and extract-

ing the physically interesting quantities is called renormalization. It involves modifying the

action of a model by the addition of counterterms, which are chosen such that their contri-

bution makes all physical quantities finite. The corresponding procedure in the bulk dual

is called holographic renormalization. As in the boundary case, it involves modifying the

action of the model by the addition of boundary counterterms that cancel the infinities in

all calculations of the gravitational model.

The traditional method of calculating the necessary counterterms [6, 7, 8, 9] involves a

laborious, yet algorithmic procedure. The first step of this procedure is to write the metric

and matter fields of the theory as a power series in the radial coordinate of AdS. This

expansion of the fields near the boundary is called the Fefferman-Graham (FG) expansion

[10]. The coefficients in the expansion are determined using Einstein’s equation and the

equations of motion for the matter fields. For each field there remain two undetermined

coefficients that correspond to the sources and vacuum expectation values of the operators

of the boundary theory. For the next step, one substitutes the Fefferman-Graham expansion

of the fields into the action integral of the model. This results in the on-shell action, which

is expressed as a power series in the radial coordinate, with coefficients that depend on the

free coefficients of the FG expansion and their derivatives. The terms in the expansion that

diverge near the boundary are the terms that need to be cancelled in order to cure the

infinities of the theory. The last step is to isolate these divergent terms (which recall are

written in terms of the free FG parameters) and by reversing the FG expansion write them in

terms of boundary values of the fields of the model. The resulting expression is the negative
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of the necessary counterterm action. Adding this to the original action will guarantee that

all infinities are cancelled.

This “brute force” procedure can in principle produce the counterterm action for any

holographic model. However, it seems redundant that one has to employ the FG expansion

only to reverse it at the end; a different approach to this calculation, one that employs the

Hamiltonian formulation of gravity and the Hamilton-Jacobi equation has been proposed

by several authors to resolve this redundancy. In fact, since the early days of AdS/CFT,

de Boer, Verlinde and Verlinde [11] have related this application of the Hamilton-Jacobi

equation to the Callan-Symanzik equation, which describes how fields of the (boundary)

quantum field theory behave under renormalization. (See also [12, 13, 14].)

In classical mechanics, the Hamilton-Jacobi equation,

∂Son-shell

∂t
+H = 0 , (1.1)

where H is the Hamiltonian of the system can be used to determine the on-shell action

of a system. Notice that if the Hamiltonian of the system is known, the Hamilton-Jacobi

equation is a differential equation that can be directly solved for the on-shell action at a

given time t. In a holographic system, the time t is replaced by the radial coordinate r

of anti-de Sitter space and the Hamilton-Jacobi equation is used to determine the on-shell

action for a given value of r. Specifically, we are interested in the case where the value of r

reaches the boundary value.

The first time the Hamilton-Jacobi equation was used to determine the counterterm

action was by Kalkkinen, Martelli, and Mueck in [15, 16]. Their idea was further developed

by Papadimitriou and Skenderis in a series of papers that used the Hamilton-Jacobi equation

to calculate the counterterm action for specific models [17, 18, 19, 20]. Their method,

however, is rather opaque and not as algorithmic as one would desire for a generally applicable

method. It moreover has certain limitations, since it cannot be applied to all holographic
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models because of the authors’ choice to organize their calculation using eigenfunctions of

the dilatation operator. As we explain in chapter 2, not all fields of a model can be expressed

in terms of such functions.

The goal of our work [21] was to present a simple algorithmic method for Hamilton-

Jacobi approach for holographic renormalization that is applicable to a generic class of

models. Our method significantly simplifies the “brute force” Fefferman-Graham approach

to holographic renormalization. We also avoid using the dilatation operator as an organizing

principle, to make our method more generically applicable. Instead we organize the different

terms in a derivative expansion, as was also suggested in [11, 16, 20]. Moreover, we have

provided detailed examples that demonstrate the mechanics of our method and we show that

it reproduces well-known results in the literature.

This work is discussed in detail in chapter 2. It is based on the paper titled “A Practical

Approach to the Hamilton-Jacobi Formulation of Holographic Renormalization” [21], written

in collaboration with Henriette Elvang and published in the Journal of High Energy Physics.

1.2 The Scattering Amplitudes Program

In particle physics, scattering experiments measure the probability of a final state f given an

initial state i. The probability is then used to calculate the scattering cross-section σ, which

can be directly compared to theoretical predictions. On the theory side, the probability

amplitude for transitioning from the initial to the final state,

An = 〈f |i〉 , (1.2)

is called the scattering amplitude. After integration over the phase space of the involved

particles,2 the squared scattering amplitude gives a theoretical prediction for the cross-section

2 For example, for 2-to-n particle scattering, the integration is taken over all possible values of the
momenta of the final-state particles, subject to energy and momentum conservation.
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of the interaction,

σ ∼
∫
|A|2 . (1.3)

Nowadays, the agreement between theoretical predictions and experimental results is as-

tonishing. The most celebrated example is the anomalous magnetic moment of the electron,

whose theoretical prediction and experimental measurements are in agreement with a preci-

sion of ten significant digits. This makes clear that, in order to keep testing our theoretical

models and possibly uncover new physics, we will need to calculate scattering amplitudes

with more and more precision and better understand their properties.

The textbook method of calculating the scattering amplitudes is by the use of Feynman

diagrams. In this method, each interaction term in the Lagrangian of the system is repre-

sented by a vertex. There are also propagators that connect two vertices and external lines

that represent the particles in the initial and final state. Using a well-defined set of rules (the

Feynman rules) each diagram is converted to a mathematical expression that contributes to

the scattering amplitude. The full amplitude is the sum of contributions from all diagrams

that have the correct initial and final states.

Feynman diagrams are a natural way to apply perturbation theory in a model of particle

physics with a small coupling constant. Each interaction vertex that enters a diagram cor-

responds to a power of the coupling constant. Therefore, the leading-order contribution to

the amplitude corresponds to Feynman diagrams that have the minimum number of vertices.

These are tree diagrams, with no closed loops. Sub-leading contributions correspond to more

complicated diagrams with an increasing number of loops, such that the loop expansion of

the amplitude corresponds to writing it as a power series in the small coupling.

Despite being a very well-defined and algorithmic method for calculating the scattering

amplitude, the Feynman method has drawbacks. In complicated theories, like a quantum

theory of gravity there is an infinite number of interaction terms in the Lagrangian, which

means an infinite number of interaction vertices to consider. Additionally, for processes

that involve a large number of initial and final particles, even for simpler theories, the vast
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number of diagrams one needs to consider often makes the calculation of the scattering

amplitude practically impossible. The canonical example of this is Yang-Mills theory. The

amplitude describing the scattering of 4 gluons requires the summation over 4 tree-level

Feynman diagrams. However, the one for scattering of 10 gluons requires more than a

million diagrams, even at tree-level. Although this situation seems hopeless, in 1985 Parke

and Taylor [22], motivated by earlier calculations of the 4, 5 and 6-gluon amplitudes, proposed

a simple formula for the squared amplitude of scattering of any number n of gluons in the

MHV configuration (Maximum Helicity Violation–2 gluons with positive helicity scatter to

n − 2 gluons of positive helicity). Their formula was soon proven recursively by Berends

and Giele [23], who showed that written in terms of the right variables (the so-called helicity

basis) the MHV amplitude has a simple one-line expression.

The above discussion makes clear that the Feynman approach to scattering amplitudes is

not always ideal, since, often, the calculations are plagued by massive redundancies. Consider

the case of vector bosons, for example gluons. In the Lagrangian picture these particles are

described by a Lorentz vector field Aµ(x). However, the physical quantities in the model are

invariant under an (infinitesimal) gauge transformation of the fieldAµ → Aµ+∂µΛ−ig[Aµ,Λ],

for any function Λ. This means that, in reality, each physical state corresponds to an infinite

class of field configurations. Often, one may choose to impose an additional condition on the

field Aµ, such that this gauge redundancy is resolved. This process is called gauge fixing.

In the Feynman calculation, different gauge choices may lead to the vanishing of different

subsets of diagrams, while the final result, which is the sum of all the remaining diagrams,

does not change. This leads to the conclusion that, as a result of the gauge freedom of

the gluon field, the information about the scattering amplitude is redundantly encoded in

the Feynman expansion and that there is a more efficient way to calculate gluon scattering

amplitudes.

During the last decades, there has been significant progress in finding more efficient ways

to calculate scattering amplitudes. This effort is known as the scattering amplitudes or
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modern S-matrix program. Its main philosophy is to explore the properties of scattering

amplitudes in order to find more efficient techniques to calculate them.

A major breakthrough of the S-matrix program was the development of on-shell recur-

sion relations for tree-level scattering amplitudes. The first example of an on-shell recursive

reconstruction of amplitudes was in the form of the Britto-Cachazo-Feng-Witten (BCFW)

recursion relations [24, 25]. With these, one can determine recursively the tree-level ampli-

tudes of the Yang-Mills model for any multiplicity of external states without the use of a

Lagrangian or Feynman rules.

The basic mechanism of BCFW recursion relies on the contour integral

∮
c

dz

2πi

Ân(z)

z
= 0 . (1.4)

Here, the external momenta are shifted by a quantity that depends on the complex variable

z, such that different values of z correspond to different kinematic configurations of the

external states. The amplitude then becomes a function of the complex parameter z; one

writes An → Ân(z). If the momentum shift is chosen appropriately, the integral (1.4) has

no contribution from a pole at infinity and by Cauchy’s integral theorem it vanishes when

the interior of the closed curve c contains all other finite poles. For a theory with local

interactions, the amplitude Ân has only simple poles, which occur when the sum of a subset

of the external momenta becomes on shell

P 2
I = 0 with PI =

∑
i∈I

pi . (1.5)

Unitarity of the S-matrix states that the residues of these simple poles are products of

amplitudes with a lower number of external states, for example A3×An−1, A4 × An−2 etc.

Then, knowing all the poles and residues of the integral in (1.4), one can readily solve for

the residue at z = 0 (the non-shifted amplitude) in terms of products of lower-multiplicity

amplitudes. This can be repeated recursively to construct all the amplitudes of Yang-Mills
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from only the 3-particle input.

After BCFW, tree-level on-shell recursion relations were soon extended to amplitudes

of gravity models [26, 27] and maximally supersymmetric theories [28, 29, 30]. For the

maximally suprsymmetric Yang-Mills theory, the notion of recursion was also generalized

to all loop orders for amplitude integrands [31]. Moreover, the authors of [32, 33] discuss

when and which recursion relations are valid for general classes of renormalizable and non-

renormalizable theories.

Going back to the Lagrangian description, recursion relations are expected to work for

these theories because their Lagrangian is almost completely fixed by their symmetries. The

couplings of the different interaction terms are related to each other in order to preserve the

symmetry of the model. For example, the Lagrangian of Yang-Mills

L = −1

2
tr (FµνF

µν) = tr
(
−∂µAν∂µAν + ∂µAν∂

νAµ + ig∂µAν [A
µ, Aν ] + g2AµAν [A

µ, Aν ]
)

(1.6)

would not be invariant under gauge transformations, were the coefficients of the different

terms not related in this fashion. Similarly, for the Lagrangian of a gravitational theory,

although there are infinite interaction terms, their coefficients must be related in a way such

that the sum is invariant under diffeomorphisms. Since the form and the coefficients of these

interactions are fully dictated by the symmetries of the model, the corresponding scattering

amplitudes must also be related. One should be able to reconstruct higher-multiplicity

amplitudes in the model from lower-multiplicity ones, if the underlying symmetry is taken

into account.

This situation is not always true. In fact, our work focuses on effective field theories,

which are quantum field theories that are only valid for a specific energy scale. They are often

used to describe the low-energy degrees of freedom of a model, without the need to know

specifically the high-energy dynamics. An effective field theory can in principle include any

number of operators in its Lagrangian, as long as they are compatible with the symmetries
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of the model. Each operator appears with an independent Wilson coefficient that is fixed by

matching to experimental results or the known high-energy completion of the model. In this

case, unitarity and locality, the only physical input in a recursion relation like (1.4), are not

enough to determine the amplitudes of the model. There needs to be some additional input.

One can gain some mileage for the special case of the so-called exceptional effective field

theories. These are theories that describe the massless Goldstone modes of spontaneously

broken symmetries. What makes these theories exceptional is that their Lagrangian is invari-

ant under shifts of the fields, because of the non-linearly realized symmetry. For example,

the Lagrangian of a non-linear sigma model, like the theory describing pions in low-energy

quantum chromodynamics, is invariant under a constant shift of the pion fields, φ→ φ+c. In

order to have a shift invariant Lagrangian, the Wilson coefficients of these theories must be

related with each other. For the scattering amplitudes of these theories, the shift symmetry

translates to low-energy theorems. When the relativistic energy-momentum of an external

state goes to zero, the amplitude vanishes. This is known in the literature as the Adler zero

[34].

The fact that the Lagrangian of exceptional effective field theories is heavily constrained

by the shift symmetry suggests that a recursive reconstruction of their amplitudes is possible.

This is achieved by the so-called soft-subtracted recursion relations [35]. In this construction,

instead of (1.4), one starts with the integral

∮
c

dz

2πi

Ân(z)

zF (z)
= 0 . (1.7)

Here, F (z) is a polynomial in z that is chosen to have zeroes exactly on the values of z

that correspond to one of the external momenta of the amplitude going to zero; this fully

determines the functional form of F (z) up to an insignificant overall constant. Including this

additional polynomial in the denominator improves the large z behavior of the integrand and

it is possible to avoid the pole at infinity. Moreover, no new poles are introduced, since the
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amplitude in the numerator also vanishes when F (z) vanishes, because of its low-energy

theorems. The rest of the recursion process proceeds as before.

Let us pause for a moment and reiterate why soft-subtracted recursion relations are good

for exceptional effective field theories. We stated that a BCFW-like recursion relation, like

(1.4), is not suitable for our purpose. We also know that what makes exceptional field

theories possibly constructible is the shift symmetry of the Lagrangian, or equivalently the

Adler zero of the amplitudes. For this reason, the soft-subtracted recursion relation (1.7) can

work because it takes into account information about the low-energy limit of the amplitude.

There are, however, limitations for this. In our work [36], we prove a precise criterion for

when soft-subtracted recursion relations are valid. We show that having a valid recursion

relation means that there is a unique scattering amplitude that has the correct low-energy

behavior and the correct pole structure. On the other hand, soft-subtracted recursion rela-

tions fail precisely when there can be independent contributions to the amplitude that can be

added with arbitrary coefficients without changing its low-energy behavior. Equivalently, in

the Lagrangian picture, when there are interaction terms one can introduce with an arbitrary

coupling constant that trivially satisfy the shift symmetry, recursion cannot be applied.

Soft-subtracted recursion relations are not only used for reconstructing the S-matrix of

known field theories, but they can also be used to probe the space of exceptional field theories.

This method is known as the soft bootstrap and its philosophy is the following. One starts

with basic assumptions about the spectrum of a model and the low-energy behavior of its

amplitudes and an ansatz for those amplitudes with the lowest possible number of external

states. Then, using the recursion relation, one calculates amplitudes with higher number

of external states. If the reconstructed amplitude has poles that are non-physical, then the

original assumptions were wrong and no theory can exist with the assumed characteristics.

On the other hand, if the reconstructed amplitude has no spurious poles, it is strong evidence

(yet no proof) for the existence of a theory with the assumed characteristics.

In the work presented in chapter 3, through specific examples, we show how the soft
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bootstrap method and soft-subtracted recursion relations can be applied to models that

include spin-1/2 and spin-1 particles, thus generalizing the work of [37] that focused only

on scalar theories. We also provide a general criterion for the validity of soft-subtracted

recursion relations, applicable for models that include particles of arbitrary spin. We then

proceed to tackle several interesting physical problems, by applying these techniques.

We first examine whether the CP1 non-linear sigma model is compatible with supersym-

metry. Note that, from an on-shell point of view, the constraints of supersymmetry in a

model take the form of supersymmetric Ward identities [38, 39]. These are linear relation-

ships between amplitudes with different external states; they are reviewed in section 3.5.

A surprising feature we find in our work [36] is the fact that extended supersymmetry en-

forces us to introduce 3-particle interactions in the model, which are not present in the

non-supersymmetric case. The presence of these interactions modifies the low-energy theo-

rems for the scalar fields of the model, such that their amplitudes are no longer generally

vanishing when an external momentum goes to zero.

Another problem we study in chapter 3 concerns the special Galileon theory [37, 40].

This is an exceptional scalar effective field theory with an enhanced shift symmetry of the

form φ → φ + c + vµx
µ + sµνx

µxν . Specifically, we show that it is possible to have higher-

derivative corrections to this theory. We verify our results using the soft bootstrap method

and independently using a double-copy construction.

The Bern-Carrasco-Johansson double copy [41, 42] is another remarkable achievement of

the S-matrix program. It relies on the so-called color-kinematics duality, a duality between

kinematic and group-theory factors in the Yang-Mills amplitude, to calculate amplitudes of

gravitons at tree-level, or amplitude integrands at loop-level.

At tree-level, the Bern-Carrasco-Johansson double copy is equivalent to the Kawai-

Lewellen-Tye relations [43]. These relations are proved in string theory and state that am-

plitudes of closed strings can be written as sums of products of amplitudes of open strings.

In the low-energy limit of string theory this translates to the fact that gravity amplitudes
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can be expressed as sums of products of amplitudes of Yang-Mills theory. This fact is known

colloquially as

(gravity) =
∑

(Yang-Mills)2 . (1.8)

It was later shown that other theories satisfy similar relations. In particular, the special

Galileon theory amplitudes can be expressed as sums of products of amplitudes of chiral

perturbation theory [44], the non-linear sigma model that describes pions. Borrowing the

notation of gravity, this can be written as

(special Galileon) =
∑

(chiral perturbation theory)2 . (1.9)

Assuming that this relation continues to be valid for higher-derivative corrections to these

models, in our work [36], we constructed the corrections of the special Galileon by first

calculating possible corrections to chiral perturbation theory.

We also compared the output of the double-copy construction to the output of the soft

bootstrap method, finding perfect agreement for the orders that are possible to check. Since

these results come from two different definitions of the special Galileon, their agreement is

a highly non-trivial consistency check. In the soft bootstrap approach, we define the special

Galileon as the effective field theory with the special Galilean symmetry, while in the double

copy approach, the theory is defined as the double copy of chiral perturbation theory. There

is no a priori reason to believe that these two definitions are equivalent. Their matching

beyond leading order is by itself remarkable.

All the details of these projects are presented in chapter 3. This work was published in a

paper titled “Soft Bootstrap and Supersymmetry” [36] in the Journal of High Energy Physics

in collaboration with Henriette Elvang, Callum R.T. Jones and Shruti Paranjape.
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1.3 Entanglement Entropy

In a quantum many-body system, often, the state of the system cannot be written as an

outer product of one-body states. For example, consider a system of two spins in the singlet

state |Ψ〉 = 1√
2

(|↑↓〉 − |↓↑〉). This state cannot be written as an outer product of single-

spin states. If the particles are indistinguishable it is not even meaningful to talk about

the state of one particle. This physical phenomenon is known as quantum entanglement. A

result of entanglement is that experimental observations on different parts of the system are

not independent from each other. For example, in the spin system described above, if one

particle is found to have spin up then the other must have spin down and vice versa.

Entanglement entropy is a quantitative measure of these correlations between observables

on an entangled system. The entropy of entanglement between a sub-system V and its

complement is defined as the von Neumann entropy

SV = − tr (ρV log ρV ) , (1.10)

where the trace is taken over all degrees of freedom of V . Here, ρV = trV̄ ρ is the reduced

density matrix of the subsystem V , where all degrees of freedom that do not belong in V have

been traced out from the full density matrix of the system. Another quantitative measure

of entanglement is Rényi entropies

S
(n)
V =

1

1− n
log tr ρnV . (1.11)

Notice that in the limit n → 1, the Rényi entropy is equal to the entanglement entropy.

In fact, it is often easier to first calculate the Rényi entropy S
(n)
V and then take the limit

n→ 1,3 rather than computing the entanglement entropy directly.

3There are subtleties regarding the n→ 1 limit; the integer parameter n is discrete and taking a continuous
limit is not a priori well-defined.
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V

Figure 1.1: Illustration of the Ryu-Takayanagi conjecture. The dashed line corresponds to
the boundary of AdS. The entanglement entropy of the black region V in the boundary field
theory is proportional to the length of the red extremal curve of the bulk.

Entanglement entropy is a very useful and well-studied physical quantity, with applica-

tions in many areas of physics and beyond. For example, it plays a central role in quantum

computing and the study of how information is distributed in quantum systems [45]. In the

context of high-energy physics and gauge-gravity duality, it provides another example of the

holographic principle that was presented in section 1.1 and how boundary field theory quan-

tities are encoded in those of the bulk gravitational theory. The Ryu-Takayanagi conjecture

[46, 47] states that the entanglement entropy of a sub-region V of the boundary field theory

is proportional to the area of the bulk extremal surface that has the same boundary as V (see

Figure 1.1). Entanglement entropy also has applications in black hole physics [48, 49, 50],

where the leading contribution to the Bekenstein-Hawking entropy of a black hole is equal to

the entanglement entropy of the sub-region of space that is outside the black hole horizon.

In quantum field theories, because of vacuum fluctuations and the constant creation and

annihilation of particle-antiparticle pairs, it is useful to talk about entanglement of space

itself and calculate the (Rényi) entanglement entropy of a spatial region. Because of short-

distance correlations of points that are very close to the region’s boundary entanglement

entropy is a divergent quantity. In order to regulate the divergence, one is forced to introduce

a short-distance cutoff ε in the calculation and express the result as a power series in ε with
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the following structure

S = gd−2ε
−(d−2) + . . .+ g1ε

−1 + g0 log ε+ g̃0 +O(ε) , (1.12)

where d is the number of spacetime dimensions. The coefficients gi with i ≥ 1 depend of

this expansion depend on the choice of cutoff and therefore cannot contain any physical

information. On the other hand, the coefficient of the logarithmic term g0 is independent of

the choice of regulator. Consider, for example, rescaling the short-distance cutoff by ε→ kε.

Then, in order for the entropy S to stay invariant, the coefficients gi must also be rescaled

by gi → kigi, for i ≥ 1. g0 must not change, while g̃0 is shifted by g̃0 → g̃0 − g0 log k.

For conformal theories in even spacetime dimensions, the logarithmic term is always

present and its coefficient is proportional to the central charge of the theory. For theories in

odd spacetime dimensions, the logarithmic term is absent if the boundary of the entangling

region is smooth. In this case, physical information is encoded in the constant term g̃0.

In 3 spacetime dimensions, in particular, the (Rényi) entanglement entropy has a log-

arithmic contribution only if the boundary of the entangling region has a sharp cusp (see

Figure 1.2); recall that in 3 spacetime dimensions (2-dimensional Euclidean space and time)

the boundary of a spatial region is a 1-dimensional closed curve and it has a sharp cusp if

the derivative of the curve does not exist at a given point. The coefficient of this logarithmic

contribution (usually called the corner coefficient) is universal, in that it does not depend on

the way one chooses to regulate the divergence of the entropy. It does nevertheless depend

on the particle spectrum and interactions of the model.

The calculation of the (Rényi) entanglement entropy in a quantum field theory is not re-

motely straightforward. For models with a holographic dual, one can use the Ryu-Takayanagi

formula [46, 47]. For generic theories, however, one has to use the so-called replica trick

[50, 51] (see also [52] for a review). This involves taking multiple copies of the spacetime and

“sewing” them together to create a complicated manifold with singularities at the boundary

16



Figure 1.2: Example of a region with a boundary that has a sharp angle. In 3 spacetime
dimensions entanglement entropy has a logarithmic contribution only in the presence of such
sharp angles.

of the entangling region. Using the replica trick, Casini, Huerta and Leitao [53, 54, 52] were

able to express the corner coefficient for the entanglement entropy of a free real scalar or

Dirac fermion in 3 spacetime dimensions, in terms of several rather complicated integrals.

Numerical evaluation of these integrals [55] by Bueno, Myers and Witczak-Krempa suggested

a simple proportionality relation (see equation (4.4)) between the corner coefficient of the

entanglement entropy and the central charge of these two theories. The authors of [55] con-

jectured that this relation must hold true for all conformal theories in 3 dimensions. Their

conjecture was checked numerically for a number of theories, including models with with a

holographic dual and Wilson-Fisher fixed points of the O(N) model [55, 56].

In our work [57], we were able to simplify the integral expressions of Casini et al. [53, 54,

52] and give analytic results for the corner coefficient of (Rényi) entanglement entropies. Our

results verified the conjecture of [55] for the case of a free real scalar or fermion. Furthermore,

we studied the large-n asymptotic behavior of the corner coefficient. We observed a simple

proportionality relation between this value and the large-n asymptotic value of the free

17



energy of a real scalar or fermion on a n-covered sphere. This observation was later proved

analytically in [58].

The details of our work are presented in chapter 4. They were published in a paper titled

“Exact results for corner contributions to the entanglement entropy and Rényi entropies of

free bosons and fermions in 3d” [57] in Physics Letters B in collaboration with Henriette

Elvang.

1.4 Other Projects

Beyond the projects I describe in this thesis, during my doctoral studies, I had the oppor-

tunity to work on several other aspects of theoretical physics, which I summarize here.

Most recently, using techniques from the scattering amplitudes program like general-

ized unitarity and the double copy, we studied electromagnetic duality in the context of

the Born-Infeld theory. Specifically, we wanted to understand whether electromagnetic du-

ality, a symmetry of the amplitudes of Born-Infeld at tree-level, is preserved by quantum

corrections (loop-level amplitudes) or by higher-derivative corrections to the model. This

work was published in a preprint titled “All-Multiplicity One-Loop Amplitudes in Born-Infeld

Electrodynamics from Generalized Unitarity” [59], in collaboration with Henriette Elvang,

Callum R.T. Jones and Shruti Paranjape. In this paper, we give exact expressions for an

infinite class of 1-loop amplitudes of Born-Infeld, while we further discuss the consequences

for electromagnetic duality in a paper in preparation.

Additionally, in a previous paper, also in collaboration with Henriette Elvang, Callum

R.T. Jones and Shruti Paranjape, we used the soft bootstrap technique to study the com-

patibility of Galileon theories with supersymmetry. The title of the paper is “On the Su-

persymmetrization of Galileon Theories in Four Dimensions” [60] and it was published in

Physics Letters B. Results of this work are also reviewed in chapter 3 of this thesis.

Finally, during the first years of my studies, I published the work I started during my
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undergraduate education. In this work, in collaboration with Martha Constantinou of Tem-

ple University and Haralambos Panagopoulos and Gregoris Spanoudes of the University of

Cyprus, we studied the renormalization of flavor-singlet operators in the context of lat-

tice quantum chromodynamics, a computational method to perform (perturbative and non-

perturbative) calculations in QCD. The title of this paper is “Singlet versus nonsinglet per-

turbative renormalization of fermion bilinears” [61] and it was published Physical Review

D.

The diverse topics, on which I have worked during the last years, are a reflection of my

broad interests in many aspects of quantum field theory. A complete understanding of this

rich and complex framework of theoretical physics can only be achieved through probing

several directions and using all the available tools. The development and application of new

methods that will simplify our existing problems and expand our abilities is and will continue

to be my personal endeavour.
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CHAPTER 2

A Practical Approach to the Hamilton-Jacobi

Formulation of Holographic Renormalization

2.1 Introduction

In many applications of gauge-gravity duality, there is a need to regulate divergences that ap-

pear near the boundary of the bulk theory; these are simply associated with UV divergences

in the dual quantum field theory. The divergences appear, for example, in calculations of con-

formal anomalies, correlation functions, and the free energy. The prescription for regulating

divergences is to include suitable local counterterms. The resulting process of holographic

renormalization is an old subject: it was discussed in the early days of AdS/CFT [3] and im-

plemented in the classic calculations of conformal anomalies [6], the trace of the stress-tensor

[7], and since then in countless other examples.

We focus on bulk spacetimes that are asymptotically AdS or Euclidean AdS. This includes

duals of conformal theories (CFTs) as well as holographic renormalization group flows with a

UV CFT. For a given gravity dual, the local counterterms are universal and one can calculate

them once and for all in any given gravitational model. We distinguish between infinite

counterterms and finite counterterms. The former are unambiguous and can be determined

using the bulk equations of motion. The finite counterterms, however, can typically only be

fixed using further constraints, such as supersymmetry. In this paper, we are concerned only

with the infinite counterterms.

There is a standard “brute force” procedure for determining the infinite counterterms
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[6, 7, 8, 9]. One expands the metric and fields near the AdS boundary using the Fefferman-

Graham (FG) expansion [10]. Solving the equations of motion relates various coefficients

in the FG expansion, but leaves unfixed the coefficients that correspond to the source and

vev rates for each field. Using a suitable cutoff, the on-shell action is evaluated near the

AdS boundary by plugging in the FG expansion, subject to the equations of motion. This

identifies the divergences, however, they will be expressed in terms of the free coefficients in

the FG expansion. This is not sufficient, as local counterterms must be expressed directly

in terms of the fields on the cutoff surface. So starting with the most divergent terms,

one works systematically backwards to convert each divergence to a local field expression,

thus basically reversing the FG expansion. This process identifies the field polynomials that

are responsible for the divergences in the on-shell action. The counterterm action is then

taken to be exactly minus those field expressions; this ensures that the renormalized action

Sbulk + Sct is finite. (This still leaves the possibility of ambiguities from finite counterterms;

we will discuss this briefly in the Discussion section.)

While straightforward for many simple models with just one or two scalar fields, the brute

force approach outlined above becomes increasingly tedious for models with multiple fields.

Moreover, it is fundamentally unsatisfying that one first abandons the field expressions in

favor of Fefferman-Graham only to reverse back to fields after identifying the infinite terms.

For this reason, another approach, based on the Hamiltonian formalism for gravity and the

Hamilton-Jacobi equation, has been proposed for holographic renormalization.

Early in the studies of holographic renormalization group flows, de Boer, Verlinde, and

Verlinde [11] proposed to use the Hamilton-Jacobi equation to derive first-order equations

for the supergravity model and they related it to the Callan-Symanzik equation. (See also

[12, 13] and the lectures [14].) The specific application of the Hamilton-Jacobi equation to

determine infinite counterterms was studied by Kalkkinen, Martelli, and Mueck in [15, 16]

and subsequently by Papadimitriou and Skenderis in [17] (see also [18, 19, 20]).

One limitation of the method as formulated in [17] is that the dilatation operator is used

21



to organize the calculation. This requires that the fields are eigenfunctions of the dilatation

operator, but that makes it more challenging to handle scalars dual to operators with scaling

dimension ∆ = d/2, because of their leading log-falloff.1 This is not an exotic case, but a very

common one; for example, in a d = 4 field theory, a scalar mass term is a relevant operator

of dimension ∆ = 2. Another challenge is that, as presented in [17], the Hamilton-Jacobi

method looks rather difficult to carry out in practice.

The goal of this work is to straighten out and simplify the Hamilton-Jacobi approach

for holographic renormalization. We will show that the application of the Hamilton-Jacobi

equation

∂Son-shell

∂r
+H = 0 (2.1)

(with the radial coordinate r playing the role of the usual time-coordinate), can be imple-

mented via an algorithm that significantly simplifies the process of computing the infinite

counterterms. To avoid the issue of the dilatation operator and have an approach that applies

more generally, we organize the calculation in terms of a derivative expansion (or inverse

metric expansion), as also suggested in for example [11, 16, 20].

We will be working with bulk actions of the form

S = − 1

2κ2

∫
M

dd+1x
√
g
(
R[g]− gµνGIJ∂µΦI∂νΦ

J − V (Φ)
)
, (2.2)

where we allow for a general metric GIJ = GIJ(Φ) on the scalar manifold. We consider

domain wall solutions with arbitrary slicing and assume that the asymptotic UV structure

of the metric is AdS (or Euclidean AdS). For such a system, we formulate the Hamilton-

Jacobi problem for the on-shell action Son-shell; (2.1) is basically a partial differential equation

for Son-shell and once derived, one no longer has to think about the Hamiltonian formulation

of general relativity. Instead, one systematically solves the Hamilton-Jacobi differential

equation for Son-shell by writing a suitable Ansatz for its divergent terms and then solving for

1One can work around this, see for example [18]. The issue is also addressed in [20].
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the coefficients in this Ansatz. The key point here is that scalars dual to relevant operators

in the field theory go to zero at the boundary. Therefore there can only be limited powers

of each field in the infinite counterterms, and that makes the Ansatz finite.

Our method departs from previous approaches as follows.2 We consider Son-shell as the

action on the cut-off boundary; this breaks the general diffeomorphism invariance in the

radial direction and therefore we must take seriously the explicit dependence on the radial

coordinate in Son-shell. Thus, the r partial-derivative in (2.1) plays a central role in our

method. In fact, the coefficients in our Ansatz will be allowed to have explicit r-dependence,

and the Hamilton-Jacobi equation then yields differential equations for these coefficients that

we can solve unambiguously in the near boundary limit.

We illustrate the use of the method in several contexts. To start out, we reproduce the

purely gravitational counterterms [8] in d-dimensions. To show how the method works for a

case with d odd, we reproduce the infinite counterterms of the d = 3 ABJM dual model of

[63]. We then turn to the example of the d = 4 FGPW model [64] whose two scalars have

∆ = 2 and ∆ = 3.

In the presence of a marginal scalar, more care must be taken. A marginal scalar gener-

ically goes to a finite value at the boundary and therefore the associated counterterms do

not enjoy the same suppression as the scalars dual to relevant operators. We handle this by

allowing the coefficients of our Ansatz for Son-shell to be functions of the marginal scalar. We

have applied this method successfully to calculate the counterterms for a ten-scalar model

dual to (a limit of) N = 1∗ theory on S4 [65]; this indeed served as a motivation for us

to revisit the subject of holographic renormalization. However, for the purpose of presen-

tation here, we restrict ourselves to simply show how our method reproduce the infinite

counterterms for the dilaton-axion system in [20].

This chapter is organized as follows. In Section 2.2, we present the Hamilton-Jacobi

equation for the bulk and describe our algorithm for determining the infinite counterterms.

2However, see [62] for a similar approach in dS space.
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Section 2.3 implements the method for pure gravity in d dimensions. The examples of the

ABJM model and FGPW can be found in Sections 2.4 and 2.5; these give very concrete

illustrations of how we implement the algorithm. The more advanced case of marginal

scalars is treated in Section 2.6. The three appendices relevant to this chapter contain various

technical details. Appendix A is a short list of useful identities for the metric variations of

gravitational curvatures. Appendix B gives details of the calculation of the gravitational

six-derivative terms needed for counterterms in d = 6. Finally, Appendix C offers explicit

calculation of the one-point functions in FGPW to illustrate that the one-point functions

determined from the renormalized action with our infinite counterterms are indeed all finite.

2.2 Hamiltonian Approach to Holographic Renormal-

ization

We start with a brief description of the essential parts of the Hamiltonian formulation needed

for holographic renormalization. We then formulate the problem of determining the on-shell

action in terms of the Hamilton-Jacobi equation and we present our algorithm for calculating

the divergent part of the on-shell action.

2.2.1 Hamiltonian Formalism of Gravity

We consider a general form of the bulk gravitational action:

S = − 1

2κ2

∫
M

dd+1x
√
g
(
R[g]− gµνGIJ∂µΦI∂νΦ

J − V (Φ)
)
− 1

κ2

∫
∂M

ddx
√
γK . (2.3)

The last term in (2.3) is the Gibbons-Hawking boundary term which ensures that the vari-

ational problem is well-defined. In this term, γij is the induced metric on the boundary and

K is its extrinsic curvature.
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We choose a gauge for the bulk metric gµν such that the line element takes the form

ds2 = dr2 + γij(r, x)dxidxj , (2.4)

where latin indices i, j, . . . are in the range i, j = 1, 2, . . . , d and will denote boundary

coordinates. This allows us to decompose the Ricci scalar in the action to get

S = − 1

2κ2

∫
M

ddx dr
√
γ
(
R[γ]+K2−KijK

ij−GIJΦ̇IΦ̇J−γijGIJ∂iΦ
I∂jΦ

J−V (Φ)
)
, (2.5)

where the extrinsic curvatures are

Ki
j =

1

2
γikγ̇kj and K =

1

2
γij γ̇ij . (2.6)

The dots denote derivatives with respect to r. The boundary Gibbons-Hawking term does

not appear in the expression (2.5), since it has been canceled by boundary terms that occur

from partial integration of second derivative terms in the expansion of R[g].

In the Hamiltonian formulation of holographic renormalization, the radial coordinate r

plays the role of the time coordinate. Therefore, the conjugate momenta to the fields are

given by

πij =
δS

δγ̇ij
=

1

2κ2

√
γ
(
Kij −Kγij

)
and πI =

δS

δΦ̇I
=

1

κ2

√
γGIJΦ̇J , (2.7)

and the Hamiltonian is

H =

∫
∂M

ddx
(
πij γ̇ij + πIΦ̇

I − L
)

=
1

2κ2

∫
∂M

ddx
√
γ
(
R[γ]−K2 +KijK

ij +GIJpIpJ − γijGIJ∂iΦ
I∂jΦ

J − V (Φ)
)
,

(2.8)

where, for simplicity, we have introduced pI ≡ κ2√
γ
πI .
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2.2.2 Hamilton-Jacobi Formulation

The Hamilton-Jacobi formulation is well-known in classical mechanics [66]. With the radial

coordinate r playing the role of time, the Hamilton-Jacobi equation takes the form

H +
∂Son-shell

∂r
= 0 . (2.9)

Just as in classical mechanics, it is key to emphasize that in the Hamilton-Jacobian formal-

ism, the Hamiltonian is a functional of canonical momenta defined by

πij =
δSon-shell

δγij
and pI =

κ2

√
γ
πI =

κ2

√
γ

δSon-shell

δΦI
, (2.10)

as opposed to the canonical definitions (2.7). When the momenta are defined via equa-

tion (2.7) with the extrinsic curvature given by (2.6), the Hamiltonian constraint of Ein-

stein’s equation is simply H = 0. If this were used with the Hamilton-Jacobi equation (2.9),

it would imply that the action has no explicit r-dependence; this is of course true for the

diffeomorphism-invariant gravitational bulk action whose metric equations-of-motion imply

the Hamiltonian constraint. However, it is not true for the on-shell action, which is an

action on the cut-off boundary. It has explicit r-dependence, as we shall see, and to deter-

mine it via the Hamilton-Jacobi equation we must use the definitions (2.10). With (2.10),

the Hamilton-Jacobi equation (2.9) should be thought of as a first-order partial differential

equation for Son-shell with respect to the fields, the metric, and r.

A practical approach is to use an Ansatz for the on-shell action: below we will be more

explicit about how we choose an appropriate Ansatz, but for now we will develop the general

formalism further. Let us write the Ansatz as

Son-shell =
1

κ2

∫
∂Mε

ddx
√
γ U(γ,Φ, r) . (2.11)
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The function U is a function of the induced (inverse) metric γij on the boundary and the

scalar fields ΦI , and it has also explicit dependence on r. The cutoff surface ∂Mε becomes

the boundary of the spacetime when ε→ 0.

Using the above Ansatz, the Hamilton-Jacobi equation takes the form

R[γ] +KijK
ij −K2 +GIJpIpJ − γijGIJ∂iΦ

I∂jΦ
J − V (Φ) + 2

∂U

∂r
= 0 . (2.12)

We emphasize that this equation is to be understood as an integral equation, i.e. it holds

up to total derivatives and we can manipulate it using partial integration in the boundary

coordinates.

As discussed above, the conjugate momenta in (2.12) will be given by derivatives of U .

For the scalar field conjugates, this straightforwardly gives

pI =
κ2

√
γ

δSon-shell

δΦI
⇒ pI =

δU

δΦI
. (2.13)

The conjugate momentum of the metric enters (2.12) via the extrinsic curvatures, since

Kij = 2κ2√
γ

(
πij − 1

d−1
γijπklγkl

)
, as follows from (2.7). Now in the context of the Hamilton-

Jacobi formalism, the extrinsic curvatures Kij in (2.12) must then be expressed in terms of

πij as given by (2.10). This gives

Ki
j = −2γik

δU

δγkj
− 1

d− 1

(
U − 2γmn

δU

δγmn

)
δij , (2.14)

where we have used γijγ
jk = δ ki =⇒ (δγij)γ

jk = −γij(δγjk) to express Ki
j in terms of

derivatives with respect to the inverse metric rather than the metric; this will be useful later.

It is convenient to define

Yij =
δU

δγij
and Y = γijYij . (2.15)
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One then finds from (2.14) that the dependence on extrinsic curvatures in the Hamilton-

Jacobi equation (2.12) is given in terms of U as

K ≡ KijK
ij −K2 = 4YijY

ij − 1

d− 1
(U − 2Y )2 − U2 . (2.16)

To summarize, our strategy for computing the on-shell action Son-shell is to use the Ansatz

(2.11) and solve the Hamilton-Jacobi equation

R[γ] +K +GIJpIpJ − γijGIJ∂iΦ
I∂jΦ

J − V (Φ) + 2
∂U

∂r
= 0 . (2.17)

with conjugate momenta given by (2.13) and K defined in (2.16). We remind the reader that

equation (2.17) has to hold only as an integral equation, so we are free to manipulate it using

partial integration. While this was derived using the Hamiltonian formalism of gravity, we

no longer need to think of the problem that way. Rather, we now have differential equation

(2.17) for the on-shell action Son-shell. Next, we explain how to solve it systematically.

2.2.3 Algorithm to Determine the Divergent Part of the On-shell

Action

Let us next address how we propose to use the Hamilton-Jacobi formulation to determine

the divergent part of the on-shell action and thereby the counterterms needed for a finite

result. We outline here the general approach, however the method is much better illustrated

by concrete examples; these follow in the next sections.

We assume that asymptotically the bulk metric approaches AdS space: in terms of the

choice of coordinates (2.4), ds2 = dr2 + γij(r, x)dxidxj, this means that

γij → e2r/L γ(0)ij + . . . as r →∞ , (2.18)

where L is the AdS radius. The boundary metric γ(0)ij can be Lorentzian or Euclidean, it
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can be flat or curved. For example, recent applications of holography considered the dual

field theory on d-dimensional compact Euclidean spaces, such as spheres. In the following,

γ(0)ij will be general.

The asymptotic behavior (2.18), gives
√
γ ∼ edr

√
γ(0). We are focusing only on the

divergent parts of the on-shell action, so we need terms in U only up to orders e−dr (possibly

including also terms polynomial in r). Since the inverse metric γij scales as e−2r, we can

ignore any terms with more than
⌊
d
2

⌋
inverse metrics. Any (boundary) derivatives that

appear in terms in U must necessarily be contracted pairwise by inverse metrics γij, so we

do not consider terms with more than d-derivatives. All in all, this makes it natural to

organize the Ansatz for U in a derivative expansion:

U = U(0) + U(2) + . . .+ U(2b d2c) , (2.19)

where the subscript represents the number of derivatives in each term. Curvature terms

such as the boundary Ricci scalar, Ricci tensor, and Riemann tensor are each order 2 (i.e.

they have two derivatives). Previous work, for example [11] and [20], have also organized

the on-shell action as a derivative expansion.

For the 0th order in the derivative expansion, we have Y(0)ij =
δU(0)

δγij
= 0, so (2.16) simply

gives

K(0) = − d

d− 1
U2

(0) . (2.20)

Thus at 0th order, the Hamilton-Jacobian equation (2.12) becomes

V (Φ) = GIJ δU(0)

δΦI

δU(0)

δΦJ
− d

d− 1
U2

(0) + 2
∂U(0)

∂r
. (2.21)

Without the last r-derivative term, we see that U(0) is essentially like a (fake) superpotential

for the scalar potential V ; this was also noted in [11] (see also [67, 20]). In general, it is

not easy to solve for a superpotential for a given V ; however, we will not need to since our

29



focus is on the generic asymptotically divergent terms only. As noted in the discussion below

(2.10) the presence of the explicit r-derivative term in the Hamilton-Jacobi equation, and

hence in (2.21), is crucial — this point does not seem to have been appreciated in previous

discussions of the method.

Let us for later convenience also record the results for K at two- and four-derivative order:

K(2) = − 2

d− 1
U(0)

[
U(2) − 2Y(2)

]
− 2U(0)U(2) ,

K(4) = 4Y(2)ijY
ij

(2) −
1

d− 1

[
U(2) − 2Y(2)

]2 − 2

d− 1
U(0)

[
U(4) − 2Y(4)

]
− U2

(2) − 2U(0)U(4) ,

(2.22)

where Y(k)ij =
δU(k)

δγij
.

We propose the following algorithm to determine the infinite terms in the on-shell action:

Step 1: Ansatz for U(2n). For each U(2n), we write a systematic Ansatz that includes all

potentially divergent terms of this order with undetermined coefficients,3 for example

U(0) = A0 + A1φ+ A3φ
2 + . . . and U(2) = B0R +B1Rφ+B2φ�φ+ . . . (2.23)

where the coefficients Ai and Bi can have explicit dependence on r. The Hamilton-Jacobi

equations will therefore give us differential equations of these coefficients which we solve

asymptotically, keeping only terms that give divergent contributions to the on-shell action.

Recall that the asymptotic behavior of a scalar with bulk mass m2
I is

ΦI → ΦI
(0)e
−(d−∆I)r/L,

where m2
IL

2 = ∆I(∆I − d). The two solutions for ∆I correspond to the source and vev-rate

falloffs. When a scalar approaches zero at the boundary, as is the case in many applications,

3Terms are considered equivalent if related by partial integration.
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we can immediately read off how many powers of the scalar can possibly appear in U(2n);

the number of possible terms is finite and limited by the fact that we are only interested in

the divergent terms.4 For example, if φ is a scalar with dimension ∆φ = 3 in d = 4, then

φ ∼ e−r, and we have to include powers up to φ4 in U(0) and φ�φ can appear in U(2). (Note:

such terms with e−dr falloff will be finite unless the r-dependence in the coefficient makes it

divergent.) On the other hand, if φ in (2.23) is a ∆φ = 2 scalar in d = 4, there can at most

be quadratic powers of φ in U(0) and the term φ�φ is not divergent, so it is not included in

the Ansatz for U(2).

One can impose symmetries of the theory in order to further simplify the Ansatz for

U(2n). If, for example, the bulk action has a symmetry φ→ −φ, we can drop any terms odd

under this symmetry in the Ansatz.

Step 2: Conjugate momenta. Next, using the leading asymptotic behaviors of the fields,

we determine the leading asymptotics of the conjugate momenta. Using this together with

pI = δU
δΦI

fixes some of the coefficients in U(0) quite easily.

Step 3: Solving the Hamilton-Jacobi equation. We plug the Ansatz for U(2n) into the

Hamilton-Jacobi equation and we solve it order by order by demanding that the coefficients of

the different field monomials vanish independently. When necessary, use partial integration

to eliminate potentially non-independent terms that appeared by varying U . We start with

U(0), then use those results to determine U(2), then U(4) etc.

Step 4: Counterterm action. Once the divergent terms in Son-shell have been determined,

the counterterm action is simply

Sct = −Son-shell

∣∣
div
. (2.24)

4We will also discuss cases with a marginal scalar m2
I = 0, for which there is no suppression near the

boundary and generically the scalar goes to a non-zero constant. For such cases, we allow the coefficients Ai
in our Ansatz to be functions of the marginal scalar. An example is presented in Section 2.6.
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This is added to the bulk action to get the regularized action Sreg = Sbulk + SGH + Sct from

which correlation functions can be computed and by construction are guaranteed to be finite.

In many cases, counterterm actions are presented in term of the Fefferman-Graham radial

coordinate ρ related to r via ρ = e−2r/L, so that the line element is

ds2 = L2 dρ2

4ρ2
+ γij dxidxj . (2.25)

We determine the divergent terms in the on-shell action using the r-coordinate, but convert

to ρ-coordinates for the final presentation of our counterterm actions. In terms of the ρ-

coordinate, the cutoff surface ∂Mε, introduced in (2.11), is then located at ρ = ε.

In the following sections, we demonstrate the procedure explicitly in a set of representative

explicit examples. We start with pure gravity in d-dimensions with d = 2, 3, 4, 5, 6, then move

on to a d = 3 ABJM dual model and the d = 4 two-scalar model known as FGPW. Finally,

we illustrate how our method works with marginal scalars (dilaton + axion in d = 4).

2.3 Pure Gravity

The simplest model one can consider is pure AdS gravity with no matter content in D = d+1

dimensions. Counterterms obtained by renormalizing this model will be present in every

other model and it is therefore useful to deal with them once and for all. The action we

consider is given by (2.3) with no scalar fields and constant scalar potential

V = −d(d− 1)

L2
. (2.26)

The Hamilton-Jacobi equation (2.17) simplifies to

R[γ] +K +
d(d− 1)

L2
+ 2

∂U

∂r
= 0 , (2.27)
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with K given by (2.16). Let us now apply the algorithmic procedure described in the previous

section in order to determine the necessary counterterms for this class of theories.

Step 1: Since there are no scalars, the general Ansatz for each order of the expansion of

U is

U(0) = A(r) , U(2) = B(r)R , U(4) = C1(r)RijR
ij + C2(r)R2 , (2.28)

where the four-derivative terms are only needed for d ≥ 4.5 We are not including terms like

�R since it is a total derivative and it will not contribute in the on-shell action. For d ≥ 6,

we need

U(6) = D1R
3 +D2RRijR

ij +D3R
j
i R

k
j R

i
k +D4R

ijRklRikjl +D5R�R+D6Rij�R
ij . (2.29)

This is not a complete list of independent six-derivative terms, but it turns out to be a

sufficient list.

It is important that all the coefficients in the above expressions for U depend on the

radial coordinate r, as this will capture the explicit r-dependence of the on-shell action.

Step 2: This step is irrelevant for the pure gravity case since there are no matter fields.

Step 3: We now solve Hamilton-Jacobi equation (2.27) order by order to determine the

unknown coefficients A, B, C1,2 and Di.

At zero-derivatives, (2.27) with K(0) given by (2.20) gives

2Ȧ− d

d− 1
A2 +

d(d− 1)

L2
= 0 , (2.30)

where the dot denotes differentiation with respect to r. For large r, the solution to the

5In U(4), one could also have included a term with the square of the Riemann tensor. However, it is not
hard to see that its coefficient will be set to zero in the HJ equation.
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differential equation is

A(r) = −d− 1

L
+O

(
e−dr/L

)
. (2.31)

The subleading terms in the large-r expansion of A give only finite contribution to the

on-shell action and we can drop it to simply have

U(0) = −d− 1

L
. (2.32)

This captures the leading divergence associated with the cosmological constant.

At two-derivative order, the HJ equation (2.27) with (2.22) gives

R− 2

d− 1
U(0)

(
U(2) − 2Y(2)

)
− 2U(0)U(2) + 2

∂U(2)

∂r
= 0 . (2.33)

The inverse-metric variation of U(2) simply gives Y(2)ij =
δU(2)

δγij
= BRij, so Y(2) = BR. With

the solution for U(0) in (2.32), we obtain the following differential equation for B:

2Ḃ + 2
d− 2

L
B + 1 = 0 . (2.34)

The differential equation for B has solution

B(r) =


− r

2
+O(1) for d = 2

− L
2(d−2)

+O
(
e−(d−2)r/L

)
for d > 2

(2.35)

In both cases, the subleading terms are not important since they give finite contributions to

the on-shell action. The result is therefore

U(2) =


− r

2
R for d = 2

− L
2(d−2)

R for d > 2

(2.36)

The linear r behavior in the d = 2 case is our first illustration of the explicit r-dependence in
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the on-shell action and the importance of keeping the ∂Son-shell

∂r
-term in the Hamilton-Jacobi

equation.

For the four-derivative terms, we calculate the inverse-metric variation of U4 using the

formulae in Appendix A. In particular, we find Y(4) = 2C1RijR
ij + 2C2R

2 (up to total

derivatives that can be dropped). Using this together with the results for Y(2) above, we can

calculate K(4) given in (2.22). At 4th order, the HJ equation (2.27) is simply K(4) +2
∂U(4)

∂r
= 0

and collecting terms gives

[
2Ċ1 +

2(d− 4)

L
C1 +

(
L

d− 2

)2
]
RijR

ij

+

[
2Ċ2 +

2(d− 4)

L
C2 −

dL2

4(d− 1)(d− 2)2

]
R2 = 0 .

Demanding the coefficients of the RijR
ij and R2 terms to vanish independently results in

two differential equation for the coefficients C1 and C2, which have solutions

C1 =


−L2r

8
+O(1) for d = 4

− L3

2(d−2)2(d−4)
+O

(
e−(d−4)r/L

)
for d > 4

(2.37)

C2 =


L2r
24

+O(1) for d = 4

dL3

8(d−1)(d−2)2(d−4)
+O

(
e−(d−4)r/L

)
for d > 4

(2.38)

Again, the subleading terms can be dropped because they give only finite contributions to

the on-shell action. Thus, the result for U(4) is

U(4) =


−L2r

8

(
RijR

ij − 1
3
R2
)

for d = 4

− L3

2(d−2)2(d−4)

(
RijR

ij − d
4(d−1)

R2
)

for d > 4

(2.39)
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Step 4: We now have all information needed to write the counterterm action.

Sct = − 1

κ2

∫
∂Mε

ddx
√
γ U = − 1

κ2

∫
∂Mε

ddx
√
γ
[
U(0) + U(2) + . . .+ U(2b d2c)

]
. (2.40)

Summarizing the above results, the purely gravitational counterterms are

d = 2: Sct =
1

κ2

∫
∂Mε

ddx
√
γ

[
1

L
− log ρ

L

4
R

]
,

d = 3: Sct =
1

κ2

∫
∂Mε

ddx
√
γ

[
2

L
+
L

2
R

]
,

d = 4: Sct =
1

κ2

∫
∂Mε

ddx
√
γ

[
3

L
+
L

4
R− log ρ

L3

16

(
RijR

ij − 1

3
R2

)]
,

d = 5: Sct =
1

κ2

∫
∂Mε

ddx
√
γ

[
4

L
+
L

6
R +

L3

18

(
RijR

ij − 5

16
R2

)]
,

d = 6: Sct =
1

κ2

∫
∂Mε

ddx
√
γ

[
5

L
+
L

8
R +

L3

64

(
RijR

ij − 3

10
R2

)
− log ρ

L5

256

(
Rij�R

ij − 1

20
R�R

+2RijRklRikjl +
1

5
RRijR

ij − 3

100
R3

)]
,

(2.41)

where we have used ρ = e−2r/L. The results for the six-derivative terms displayed for d = 6

are derived in Appendix B.

These purely gravitational counterterms reproduce results well-known in the literature,

see for example [8], but it is relevant to present them here in the context of our approach to

holographic renormalization. In particular, they will appear in the following examples.

2.4 Renormalization for the ABJM Model

ABJM theory [68] is the N = 6 superconformal Chern-Simons theory in d = 3 dimensions

with gauge group U(N)×U(N) and Chern-Simons levels k and−k. Its holographic dual is M-

theory on AdS4×S7/Zk. In the limit of large t’Hooft coupling (λ = N/k), M-theory reduces
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to eleven dimensional supergravity on AdS4 × S7/Zk. The recent paper [63] by Freedman

and Pufu explores the gauge-gravity dual description of F -maximization for ABJM theory

on a 3-sphere using a 4-dimensional holographic dual. We will use the model of [63] as a

very simple example to illustrate our approach to holographic renormalization.

The ABJM holographic model [63] is described by the Euclidean bulk action

Sbulk = − 1

2κ2

∫
M

d3x dr
√
g
(
R[g]− Lm

)
, (2.42)

where κ2 = 8πG4 and the matter Lagrangian is

Lm = 2
3∑

a=1

∂µz
a∂µz̄a

(1− zaz̄a)2
+ V (z, z̄) , V (z, z̄) =

1

L2

(
6−

3∑
a=1

4

1− zaz̄a

)
. (2.43)

In the Euclidean theory, the scalars za and z̄a are independent complex fields, not related by

complex conjugation. However, since only products of za and z̄a appear in this Lagrangian,

it is useful to define za → 1√
2

(χa + iψa) , z̄a → 1√
2

(χa − iψa), where χa and ψa are fields

that can take complex values.

Under this, the matter Lagrangian becomes

Lm =
3∑

a=1

∂µχ
a∂µχa + ∂µψ

a∂µψa[
1− 1

2
(χa)2 − 1

2
(ψa)2

]2 +V , V =
1

L2

(
6−

3∑
a=1

4

1− 1
2
(χa)2 − 1

2
(ψa)2

)
. (2.44)

Expanding the potential for small fields, we find

V =
1

L2

(
− 6− 2(χaχa + ψaψa)− (χaχa + ψaψa)2 + . . .

)
, (2.45)

so the six fields χa and ψa all have mass −2/L2. By our general discussion, this means that

their asymptotic falloff is generically e−r/L.

For simplicity, let us start out with a model with just one pair of the fields χ and ψ; since

the ABJM dual has the three pairs appear the same way and they do not mix, it is easy to
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generalize the result back to that case. Thus setting the fields with a = 2, 3 to zero, we will

consider the model described by the potential

V =
1

L2

(
− 2− 4

1− 1
2
χ2 − 1

2
ψ2

)
. (2.46)

In the notation (2.3), we have scalars ΦI = (χ, ψ) and the metric on the scalar target space

is GIJ =
(
1− 1

2
χ2 − 1

2
ψ2
)−2

δIJ with I, J = 1, 2. The Hamilton-Jacobi equation (2.17) for

this model is then

R +K −
(

1− 1

2
χ2 − 1

2
ψ2
)−2

γij(∂iχ∂jχ+ ∂iψ∂jψ)

+

(
1− 1

2
χ2 − 1

2
ψ2

)2 (
p2
χ + p2

ψ

)
− 1

L2

(
−2− 4

1− 1
2
χ2 − 1

2
ψ2

)
+ 2

∂U

∂r
= 0 , (2.47)

where K is given by equation (2.16) and the conjugate momenta pχ and pψ are the χ and ψ

derivatives of the on-shell action (2.13). We now proceed to determine the infinite countert-

erms for this model.

Step 1: Since we are working in d = 3 dimensions we need to include in our Ansatz only

terms with up to two derivatives:

U = U(0) + U(2) . (2.48)

Terms with four or more derivatives give finite contributions to the on-shell action.

Keeping only potentially divergent contributions means that for U(0) we only need to

consider terms up to cubic order in the scalar fields. However, we get strong constraints

on the Ansatz from the symmetries of the model: it is invariant under the transformations

χ → −χ, ψ → −ψ, and χ ↔ ψ. With these symmetries imposed, the most general Ansatz

at zero-derivative order is

U(0) = − 2

L
+ A(r)(χ2 + ψ2) . (2.49)
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The constant term is fixed from the purely gravitational calculation of Section 2.3. At two-

derivative order, the only potentially divergent term that preserves the symmetries of the

theory is purely gravitational and it was calculated in Section 2.3:

U(2) = −L
2
R . (2.50)

We can skip Step 2 because the model is so simple.

Step 3: We are now able to solve Equation (2.47). Keeping only zero-derivative terms and

using that K(0) = −3
2
U2

(0) from (2.16) we find that

− 3

2
U2

(0) +

(
1− 1

2
χ2 − 1

2
ψ2

)2

(p2
χ(0) + p2

ψ(0))− V (χ, ψ) + 2
∂U(0)

∂r
= 0 , (2.51)

where,

pχ(0) =
δU(0)

δχ
= 2Aχ , pψ(0) =

δU(0)

δψ
= 2Aψ . (2.52)

Putting everything together and collecting terms that are proportional to (χ2 + ψ2) gives

the following differential equation for A(r):

Ȧ+ 2A2 +
3

L
A+

1

L2
= 0 . (2.53)

This has solution

A = − 1

2L
+O

(
e−r/L

)
. (2.54)

Since A was the only unknown coefficient in the Ansatz for U , this concludes the calculation

of the infinite contributions in the on-shell action. Specifically, we have found that

U(0) = − 1

L

(
2 +

1

2
χ2 +

1

2
ψ2

)
= − 1

L
(2 + zz̄) . (2.55)
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Step 4: The counterterm action for the ABJM model is obtained by generalizing our result

to the three flavors of za and z̄a fields:

Sct =
1

κ2

∫
∂Mε

d3x
√
γ

[
1

L

(
2 +

3∑
a=1

zaz̄a
)

+
L

2
R

]
. (2.56)

This result is in perfect agreement with the counterterm action given in equations (6.4)-(6.5)

in [63]. For the applications in [63] one further needs to use supersymmetry to determine

the finite counterterms; we do not discuss this here.

2.5 Renormalization for the FGPW Model

The FGPW model [64] is the holographic dual of the single-mass limit of N = 1∗ gauge

theory in flat space. This non-conformal field theory is obtained from N = 4 SYM theory

by softly breaking the supersymmetry to N = 1 as follows. In N = 1 language, N = 4 SYM

consists of a vector multiplet and three chiral multiplets. The field theory dual to FGPW is

obtained by giving a mass to one of the chiral multiplets. In the UV, the conformal theory

of N = 4 SYM is recovered, while in the infrared, the theory flows to a Leigh-Strassler

fixed point. The holographic dual FGPW model captures the RG flow of this theory via

a flat-space sliced domain wall solution which approaches asymptotic AdS5 in the UV and

another AdS5 in the IR. The ratio of the AdS radii in the UV and IR translates to the ratio

of UV and IR central charges a in the field theory. More generally, the authors of [69, 64]

derived the first version of a holographic version of the c-theorem.

The holographic FGPW model is described by a D = 4 + 1-dimensional bulk action

S = − 1

2κ2

∫
M

d4x dr
√
g
(
R[g]− Lm

)
, (2.57)
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with matter Lagrangian given by6

Lm = ∂µφ∂
µφ+ ∂µψ∂

µψ + V (φ, ψ) = φ̇2 + ψ̇2 + γij∂iφ∂jφ+ γij∂iψ∂jψ + V (φ, ψ) . (2.60)

The scalars ψ and φ are dimension ∆ψ = 3 and ∆φ = 2 fields dual to the fermion and scalar

mass deformations of N = 4 SYM. They approach zero near the UV boundary as

ψ ∼ ψ0 e
−r/L and φ ∼ (φ0r + φ̃0) e−2r/L , (2.61)

as r →∞. For the purpose of holographic renormalization, we only need to keep the terms

in the potential that can give divergent terms in this limit, so we expand the potential in

small fields to find

V (φ, ψ) =
1

L2

(
−12− 4φ2 − 3ψ2 + cψ4 + . . .

)
. (2.62)

The masses of the scalars, m2
ψ = −3/L2 and m2

φ = −4/L2, are directly related to the scaling

dimensions ∆ψ = 3 and ∆φ = 2 via m2
IL

2 = ∆I(∆I − 4).

The actual FGPW model has c = 1 in (2.62), but here we keep the coefficients general.

This will serve to illustrate how the counterterms carry information that is specifically depen-

dent on coefficients in the scalar potential; i.e. one should in general expect model-dependent

terms in the counterterm action.

6In the paper [64], the scalar potential V is given in terms of a superpotential W as

VFGPW =
1

L2

(
1

2

∣∣∣∣∂W∂φ1
∣∣∣∣2 +

1

2

∣∣∣∣∂W∂φ3
∣∣∣∣2 − 4

3
W 2

)
, (2.58)

with

W =
1

4ρ2

[
cosh(2φ1)(ρ6 − 2)− (3ρ6 + 2)

]
and ρ = eφ3/

√
6 . (2.59)

Here, we have conformed to our normalization conventions by rescaling the scalars φ1 = ψ/
√

2 and φ3 =
φ/
√

2, and taken the potential to be V = 4VFGPW.
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The HJ equation (2.17) for the FGPW model takes the form

R[γ] +K + p2
φ + p2

ψ − γij∂iφ∂jφ− γij∂iψ∂jψ − V (φ, ψ) + 2
∂U

∂r
= 0 . (2.63)

with K defined in (2.16) and momenta

pφ =
δU

δφ
pψ =

δU

δψ
. (2.64)

Since we are working in d = 4 dimensions we need to keep terms with up to four deriva-

tives, so we write

U = U(0) + U(2) + U(4) . (2.65)

We now proceed with solving for the divergent terms of the on-shell action following the

algorithmic procedure described in Section 2.2.3:

Step 1: We begin by writing the most general Ansatz for each U(i). We only keep terms

that can give divergent contributions. With the scalar falloffs (2.61) and each inverse metric

giving e−2r, the most general Ansatz at 0th order is

U(0) = − 3

L
+ A1ψ + A2φ+ A3ψ

2 + A4φψ + A5ψ
3 + A6φ

2 + A7φψ
2 + A8ψ

4 , (2.66)

where the constant term is fixed by the purely gravitational analysis in Section 2.3. Each of

the coefficients Ai is considered a function of r.

At order 2 we use the Ansatz

U(2) = −L
4
R +B1Rψ +B2Rφ+B3Rψ

2 +B4ψ�ψ . (2.67)

We did not include (∂ψ)2, since it is equivalent to ψ�ψ after partial integration.

At order 4, the only option are the purely gravitational terms we have already solved, so
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we have

U(4) = −L
2r

8

(
RijR

ij − 1

3
R2

)
. (2.68)

Since the full FGPW model (2.58)-(2.59) is symmetric under ψ → −ψ, we can immedi-

ately set the following coefficients in the Ansatz to zero:

A1 = A4 = A5 = B1 = 0 . (2.69)

Step 2: At the leading order, the conjugate momenta obtained from (2.7) must agree with

those in (2.64). From (2.7), we have

pφ = φ̇ pψ = ψ̇ , (2.70)

and via (2.61) this gives

pφ = − 2

L

(
1− L

2r

)
φ+O

(
e−2r/L/r

)
, pψ = − 1

L
ψ +O

(
e−3r/L

)
. (2.71)

On the other hand (2.64) gives

pφ(0) =
δU(0)

δφ
= A2 + 2A6φ+ A7ψ

2 , pψ(0) =
δU(0)

δψ
= 2A3ψ + 2A7φψ + 4A8ψ

3 . (2.72)

Comparing (2.71) to terms in (2.72) at similar orders, we can directly infer that some of the

coefficients Ai must vanish:

A2 = A7 = 0 . (2.73)

Furthermore, we learn that A3 = − 1
2L

and A6 = − 1
L

(
1− L

2r

)
. However, let us leave A3 and

A6 unfixed for now for the purpose of illustrating how they are fixed using the HJ equation.

Step 3: We proceed to solve the HJ equation (2.63). We start from the terms at 0th order.

Keeping only terms without spatial derivatives and using K(0) = −4
3
U2

(0) from (2.20) we find
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that

− 4

3
U2

(0) + p2
φ(0) + p2

ψ(0) − V (φ, ψ) + 2
∂U(0)

∂r
= 0 . (2.74)

To solve this, we set the coefficient of each combination of fields to zero. For example,

collecting the terms proportional to ψ2 gives

Ȧ3 +
4

L
A3 + 2A2

3 +
3

2L2
= 0 =⇒ A3 = − 1

2L
+O

(
e−2r/L

)
. (2.75)

This is the solution for A3 we anticipated from comparing (2.71) and (2.72).

Similarly, one finds

φ2-terms: Ȧ6 +
4

L
A6 + 2A2

6 +
2

L2
= 0 =⇒ A6 = − 1

L
+

1

2r
+O

(L2

r2

)
,

ψ4-terms: Ȧ8 −
1

6L2
(1 + 3c) = 0 =⇒ A8 =

1

6L2
(1 + 3c) r +O

(
1
)
.

(2.76)

Terms proportional to φψ2 vanish directly; had we had a term bφψ2 in the expansion of the

scalar potential, the HJ equation would have shown that b 6= 0 is not consistent with the

EOM.

Having calculated all the unknown coefficients in the U(0) Ansatz, let us write down the

final result (with r = −L
2

log ρ):

U(0) = − 1

L

[
3 +

(
1 +

1

log ρ

)
φ2 +

1

2
ψ2 +

1

12

(
1 + 3c

)
ψ4 log ρ

]
. (2.77)

We can identify each of the contributions. The first one is related to the cosmological

constant and it is fixed for all models in D = 4 + 1 dimensions, as we saw in the pure gravity

case in Section 2.3. The terms that are quadratic in the fields are uniquely fixed by the mass

terms in the scalar potential and are as such universal for all models. Finally, the ψ4-terms

are clearly model-dependent, as can be seen from the explicit dependence on c.

With the 0th order result in hand, we are now able to continue solving HJ equation for

44



the two-derivative terms. Keeping only such terms from equation (2.63) gives

R− 8

3
U(0)

(
U(2) −

1

2
Y(2)

)
+ 2pφ(0)pφ(2) + 2pψ(0)pψ(2) − γij∂iφ∂jφ− γij∂iψ∂jψ + 2

∂U(2)

∂r
= 0 ,

(2.78)

where we used K(2) from (2.22). U(0), pφ(0) and pψ(0) are known from (2.72) and (2.77), while

we calculate pφ(2) and pψ(2), and Y(2) from the Ansatz (2.67) for U(2):

pφ(2) =
δU(2)

δφ
= B2R ,

pψ(2) =
δU(2)

δψ
= 2B3Rψ + 2B4�ψ ,

Y(2)ij =
δU(2)

δγij
= −L

4
Rij +B2Rijφ+B3Rijψ

2 +B4ψ∇i∇jψ ,

(2.79)

where we are dropping total derivatives. The result for Y(2)ij implies Y(2) = U(2). In the

HJ equation (2.78), we organize the terms according to the field monomials and set the

coefficients of divergent terms to zero. The terms simply proportional to R directly vanish

because we have already solved the purely gravitational part of the problem. The remaining

terms allow us to solve for the coefficients B2,3,4 :

Rφ-terms: Ḃ2 +
1

r
B2 = 0 =⇒ B2 = O

(1

r

)
,

Rψ2-terms: Ḃ3 −
1

12
= 0 =⇒ B3 =

1

12
r +O

(
1
)
,

ψ�ψ-terms: Ḃ4 +
1

2
= 0 =⇒ B4 = −1

2
r +O

(
1
)
.

(2.80)

As in the zero weight case the subleading terms related to integration constants are not

important because they lead to finite contributions to the action. The final expression for

U(2) is then

U(2) = −L
[

1

4
R− 1

4
ψ

(
�− 1

6
R

)
ψ log ρ

]
. (2.81)

The first term is purely gravitational. The second term is independent of details of the

higher order terms in the potential and thus fixed for all models that contain a scalar with
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m2L2 = −3. Finally, notice that the combination of the Laplace operator � and the Ricci

scalar R that appears in the last term is proportional, up to an overall constant to the

conformal Laplacian.

Step 4: We have now fully determined the counterterm action necessary to cancel the

divergences of the on-shell action. In particular we will have Sct = − 1
κ2

∫
d4x
√
γ U and

therefore,

Sct =
1

κ2

∫
∂Mε

d4x
√
γ

{
1

L

[
3 +

(
1 +

1

log ρ

)
φ2 +

1

2
ψ2 +

1

12
(1 + 3c)ψ4 log ρ

]

+ L

[
1

4
R− 1

4
ψ

(
�− 1

6
R

)
ψ log ρ

]
− 1

16
L3

(
RijR

ij − 1

3
R2

)
log ρ

}
.

(2.82)

This is our final result for the FGPW model.

As a test, we have calculated the one-point functions of the QFT operators that are dual

to the fields of the FGPW model. The one-point function of the operator dual to field φI

will be given by7

〈OφI 〉 = − lim
ρ→0

ρ−∆I/2

√
γ

δSren

δφI
, (2.83)

where the regularized action (ignoring possible finite counterterms) is

Sreg = Sbulk + SGH + Sct . (2.84)

In order to check that the expressions obtained are indeed finite, one must impose the

equations of motion on the coefficients in the Fefferman-Graham expansion of the fields. We

find that with our infinite counterterms, all three one-point functions in FGPW are indeed

finite. Details are presented in Appendix C.

7 In the special case where ∆I = d/2 the one-point function has an extra factor of log ρ.
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2.6 Renormalization of a Dilaton-Axion Model

In this section we present the procedure of renormalization of a dilaton-axion model. The

purpose of this example is to illustrate how the procedure for holographic renormalization

applies to theories that include marginal scalars. Specifically, we examine the renormalization

of the dilaton-axion model previously studied in [20]: the 5d bulk action is

Sbulk = − 1

2κ2

∫
M

d4x dr
√
g
(
R[g]− Lm

)
, (2.85)

with

Lm = ∂µϕ∂
µϕ+ Z(ϕ)∂µχ∂

µχ− 12

L2
. (2.86)

The fields ϕ and χ are massless and therefore correspond to marginal QFT operators

with scaling dimension ∆ = 4. Z denotes an arbitrary function of the dilaton field ϕ. Near

the asymptotic boundary, these scalars generically do not vanish but instead approach a

finite value. In particular, their asymptotic behavior is given by

ϕ(x, r) = ϕ(0)(x) +O
(
e−2r/L

)
, χ(x, r) = χ(0)(x) +O

(
e−2r/L

)
. (2.87)

As a consequence, we cannot regard the effective action as a power-expansion in these fields,

as higher powers are not suppressed. Instead, we will take the Ansatz to involve general

functions of ϕ and χ.

By defining the field Φ to be Φ = (ϕ, χ) and the Kähler metric to be G =
(

1 0
0 Z(ϕ)

)
, we

conclude that the HJ Equation (2.17) now becomes

R[γ] +K + p2
ϕ +

1

Z(ϕ)
p2
χ − γij∂iϕ∂jϕ− Z(ϕ)γij∂iχ∂jχ+

12

L2
+ 2

∂U

∂r
= 0 . (2.88)

The momenta are defined, in the usual way (2.13), as derivatives of U .

Let us now examine step-by-step the procedure introduced in the previous sections and
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spot any important differences.

Step 1: With d = 4, we need to keep terms with up to four derivatives:

U = U(0) + U(2) + U(4) . (2.89)

Taking into account that any possible function of the fields could give divergent contributions

in the on-shell action we write the following Ansatz for the zero, two and four derivative

parts of U respectively:

U(0) = A(ϕ, χ, r) , (2.90)

U(2) = B0R +B1(∇ϕ) · (∇χ) +B2(∇ϕ)2 +B3(∇χ)2 , (2.91)

U(4) = C1R
2 + C2RijR

ij + C3R�ϕ+ C4R�χ+ C5R(∇ϕ)2 + C6R(∇χ)2

+C7R(∇ϕ) · (∇χ) + C8R
ij∇iϕ∇jϕ+ C9R

ij∇iχ∇jχ+ C10R
ij∇iϕ∇jχ

+C11(�ϕ)2 + C12(�χ)2 + C13�ϕ�χ+ C14∇i∇jϕ∇i∇jϕ+ C15∇i∇jχ∇i∇jχ

+C16∇i∇jϕ∇i∇jχ+ C17�ϕ(∇ϕ)2 + C18�χ(∇χ)2 + C19�ϕ(∇χ)2

+C20�ϕ(∇ϕ) · (∇χ) + C21�χ(∇ϕ)2 + C22�χ(∇ϕ) · (∇χ) + C23

(
(∇ϕ)2

)2

+C24

(
(∇χ)2

)2
+ C25(∇ϕ)2(∇χ)2 + C26((∇ϕ) · (∇χ))2 + C27(∇ϕ)2(∇ϕ) · (∇χ)

+C28(∇χ)2(∇ϕ) · (∇χ) . (2.92)

The coefficients A, Bi and Ci are all considered functions of the radial coordinate r as well as

the fields ϕ and χ. We have omitted terms that up to total derivatives can be decomposed to

the ones already included. For example, since B�ϕ = ∇i(B∇iϕ)− ∂ϕB(∇ϕ)2 − ∂χB(∇ϕ) ·

(∇χ), such a term can be absorbed in B1 and B2, so it is redundant to include it in the

Ansatz.
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Step 2: We use equation (2.7) and the asymptotic behavior of the fields (2.87) to determine

the leading behavior of pϕ and pχ to be

pϕ = ϕ̇ = O
(
e−2r/L

)
, pχ = Z(ϕ)χ̇ = O

(
e−2r/L

)
. (2.93)

On the other hand, our Ansatz for U(0) gives

pϕ(0) =
δU(0)

δϕ
= ∂ϕA , pχ(0) =

δU(0)

δχ
= ∂χA . (2.94)

By comparing the two sets of expressions for the momenta, we understand that the coefficient

A can neither depend on ϕ nor χ, and thus pϕ(0) and pχ(0) vanish. This leaves U(0) to be

purely gravitational and thus we can use directly our result from Section 2.3:

U(0) = − 3

L
. (2.95)

Step 3: We now proceed to solve HJ equation and determine the unknown coefficients

of our Ansatz. Since the zero-derivatives contribution has already been fixed, we start our

analysis with the two-derivative terms. At this order, the HJ equation simplifies to

R− 8

3
U(0)

(
U(2) −

1

2
Y(2)

)
− (∇ϕ)2 − Z(ϕ)(∇χ)2 + 2

∂U(2)

∂r
= 0 (2.96)

using pϕ(0) = pχ(0) = 0. Here, Y(2) = γijY(2)ij is the trace of the tensor

Y(2)ij =
δU(2)

δγij
=B0Rij −∇i∇jB0 + �B0γij +

1

2
B1∇iϕ∇jχ

+
1

2
B1∇iχ∇jϕ+B2∇iϕ∇jϕ+B3∇iχ∇jχ .

(2.97)

After plugging everything into the HJ equation, one uses partial integration to eliminate

terms that were not in our original Ansatz and therefore were not independent. Demanding

that the coefficient of each independent term in the resulting HJ equation is zero, one finds
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that the two-derivative contribution to the on-shell action is

U(2) = −L
4

[
R− (∇ϕ)2 − Z(ϕ)(∇χ)2

]
. (2.98)

For terms with four spatial derivatives equation (2.88) simplifies to

− 8

3
U(0)

(
U(4) −

1

2
Y(4)

)
+ 4Y(2)ijY

ij
(2) −

4

3

(
U(2) −

1

2
Y(2)

)2

− Y 2
(2)

+ p2
ϕ(2) +

1

Z(ϕ)
p2
χ(2) + 2

∂U(2)

∂r
= 0 . (2.99)

The canonical momenta that appear in this equation are

pϕ(2) =
δU(2)

δϕ
= −L

2
�ϕ+

L

4
Z ′(ϕ)(∇χ)2

pχ(2) =
δU(2)

δχ
= −L

2
�χ− L

2
Z ′(ϕ)(∇ϕ) · (∇χ) .

(2.100)

It is useful to notice that

Y(4) = γij
δU(4)

δγij
= 2U(4) + total derivatives , (2.101)

and the complicated tensor Y(4)ij is not needed for the calculation. The total derivatives of

Y(4) will not contribute to HJ equation since they are multiplied by U(0), which is a constant,

and total derivatives can be dropped by the equation.

Demanding that the different kinds of terms that appear in the four-derivative equation

vanish independently yields the following solution for U(4):

U(4) =
L3

16

[
RijR

ij − 1

3
R2 − 2

(
Rij − 1

3
Rγij

)
(∇iϕ∇jϕ+ Z(ϕ)∇iχ∇jχ)

+

(
�ϕ− 1

2
Z ′(ϕ)(∇χ)2

)2

+ Z(ϕ)

(
�χ+

Z ′(ϕ)

Z(ϕ)
(∇ϕ) · (∇χ)

)2

+
2

3

(
(∇ϕ)2 + Z(ϕ)(∇χ)2

)2
+ 2Z(ϕ)

(
((∇ϕ) · (∇χ))2 − (∇ϕ)2(∇χ)2

)]
log ρ . (2.102)
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Step 4: This concludes the calculation of the counterterms that cancel the infinities of the

on-shell action for the dilaton-axion model. For completeness, let us write down the general

result.

Sct =
1

κ2

∫
∂Mε

d4x
√
γ

{
3

L
+
L

4

[
R− (∇ϕ)2 − Z(ϕ)(∇χ)2

]
− L3

16

[
RijR

ij − 1

3
R2 − 2

(
Rij − 1

3
Rγij

)
(∇iϕ∇jϕ+ Z(ϕ)∇iχ∇jχ)

+

(
�ϕ− 1

2
Z ′(ϕ)(∇χ)2

)2

+ Z(ϕ)

(
�χ+

Z ′(ϕ)

Z(ϕ)
(∇ϕ) · (∇χ)

)2

+
2

3

(
(∇ϕ)2 + Z(ϕ)(∇χ)2

)2
+ 2Z(ϕ)

(
((∇ϕ) · (∇χ))2 − (∇ϕ)2(∇χ)2

)]
log ρ

}
.

(2.103)

This result for the counterterm action agrees with the one found by a more complicated

route in [20].

2.7 Discussion

We have presented a simple implementation of the Hamiltonian approach to holographic

renormalization. The idea of using the Hamilton-Jacobi equation is not new, but we hope

that our presentation and algorithm makes the method more accessible and useful for others

to use. For our own purposes, it has shown great value in the application to the holographic

renormalization of a 10 scalar model dual to N = 1∗ gauge theory on S4, an analysis that

will be presented elsewhere [65].

Determining the infinite counterterms is typically only one part of holographic renor-

malization. One often needs the finite counterterms too, but just as in standard quantum

field theory, this typically amounts to being a scheme-dependent question. However, in the

presence of supersymmetry, one can fix the finite counterterms to be compatible with the

supersymmetries in the problem. In the case of flat-sliced domain walls, this can be done

using the Bogomolnyi-trick of writing the bulk action in terms of sums of squares that each
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vanish on the BPS equations. This rewriting requires a partial integration that leaves a

boundary term that exactly becomes the counterterm action and encodes both infinite and

finite counterterms. In the case of non-flat slicing, one can then argue that the universality

of the counterterms allows one to pick the finite counterterms of the flat-space Bogomolnyi

boundary term and use them in conjunction with the more general infinite counterterms dis-

cussed in this paper. This has worked successfully in several cases, for example [63] and [70].

The prescriptions does, however, have a bit of an ad hoc feel to it and it would be interesting

to understand better the relationship between the BPS equations for curved domain walls

and how/if they can be used to determine directly the infinite and finite counterterms.
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CHAPTER 3

Soft Bootstrap and Supersymmetry

3.1 Motivation and Results

Effective field theories (EFTs) encode the low-energy dynamics of the light degrees of freedom

in a physical system. The general principle of EFTs is to include all possible local interaction

terms permissible by symmetries up to a certain order in the derivative expansion. Irrele-

vant operators are suppressed by powers of the UV cutoff and have dimensionless Wilson

coefficients that parameterize the (possibly unknown) UV physics. Of particular interest,

both for formal and phenomenological applications, are the EFTs describing the low-energy

interactions of Goldstone modes of spontaneously broken symmetries. Traditionally, such

effective actions are constructed explicitly from the underlying symmetry breaking pattern

using the method of nonlinear realization [71, 72, 73].

However, constructing effective actions one by one is not an efficient approach to the

problem of classifying such models and studying the properties of the associated scattering

amplitudes. Similar to gauge and gravity theories, the Lagrangian description of EFTs has

an enormous redundancy in the form of nonlinear field redefinitions which are completely

invisible in the S-matrix[74, 75]. The modern on-shell approach completely avoids both the

redundant description and the associated process of calculating observables from explicitly

given Lagrangians. Instead one uses the required physical and mathematical properties of

the on-shell scattering amplitudes to constrain the underlying models and directly calculate

the physical scattering amplitudes.

The effective actions for Goldstone modes typically have the unusual property that while
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there may be an infinite number of gauge invariant local operators at a fixed order in the

derivative expansion, the associated infinite set of Wilson coefficients is determined in terms

of a finite number of independent parameters. How can this be understood in purely on-shell

terms? The traditional explanation is that the spontaneously broken symmetries are nonlin-

early realized on the fundamental fields and therefore mix operators in the effective action

of different valence. From a more physical perspective, the spontaneously broken symme-

tries manifest themselves on the physical observables via low-energy or soft theorems. The

non-independence of the Wilson coefficients is required to produce a cancellation between

Feynman diagrams that ensures the low-energy theorem to hold. This is a redundant state-

ment: while the number of independent parameters required to specify the effective action

at a given order is reparametrization invariant, the actual Wilson coefficients are not. As

we will see, from a purely on-shell perspective the collapse from an infinite number of free

parameters to a finite number is a symptom of the underlying recursive constructiblility of

the S-matrix, which itself can be understood as a consequence of the low-energy theorems.

It is instructive to consider an explicit example that illustrates these ideas. Consider

a flat 3-brane in 5d Minkowski space. There is a Goldstone mode φ associated with the

spontaneous breaking of translational symmetry in the direction transverse to the brane,

and it is well-known that the leading low-energy dynamics is governed by the Dirac-Born-

Infeld (DBI) action. In static gauge, it takes the form

SDBI = Λ4

∫
d4x

(√
det
(
ηµν + 1

Λ4∂µφ∂νφ
)
− 1
)
, (3.1)

where Λ4 is the brane tension. The action trivially has a constant shift symmetry φ→ φ+ c

which implies that the DBI amplitudes have vanishing single-soft limits. In particular, when

one of its momentum lines is taken soft,

pµsoft → ε pµsoft with ε→ 0 , (3.2)
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the Feynman vertex it sits on goes to zero as O(ε). There are no cubic interactions, so

propagators remain finite. Hence, every tree-level Feynman diagram goes to zero as O(ε).

What may be surprising is that a cancellation occurs between Feynman diagrams such that

the soft behavior of any tree-level DBI n-point amplitude is enhanced to O(ε2). For example

for the 6-point amplitude, the O(ε)-contributions of the pole diagrams cancel against those

of the 6-point contact term, leaving an overall O(ε2) soft behavior:

A6 =
∑

+︸ ︷︷ ︸
O(ε)

︸ ︷︷ ︸
O(ε)︸ ︷︷ ︸

O(ε2)
(3.3)

The cancellation of the O(ε)-contributions requires the coefficients of the 4- and 6-particle

interactions (∂φ)4 and (∂φ)6 to be uniquely related. Interestingly we can invert the logic

of this argument. Begin with the most general effective action constructed from the oper-

ators present in the DBI action, but now with a priori independent Wilson coefficients ci,

schematically

Seff ∼
∫

d4x
[
(∂φ)2 +

c1

Λ4
∂4φ4 +

c2

Λ8
∂6φ6 + ...

]
. (3.4)

Imposing that the amplitudes of this model satsify O(ε2) low-energy theorems generates

an infinite set of relations among the ci. Up to non-physical ambiguities related to field

redefinitions, the unique solution to these constraints is the DBI action. In that sense, DBI

is the unique leading-order 4d real single-scalar theory with O(ε2) low-energy theorems [76].

The cancellation of the O(ε)-terms in the DBI amplitudes is a manifestation of a less

obvious symmetry of the action. The broken Lorentz transformations transverse to the brane

induce an enhanced shift symmetry on the brane action of the form φ → φ + cµx
µ + . . .,

where the “+ . . .” stand for field-dependent terms. A theory with interaction terms built from

scalar fields with at least two derivatives on every field would trivially have the enhanced shift

symmetry that leads to the O(ε2) soft behavior, but this is not the case for DBI. Therefore
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DBI is in a class of EFTs that have been described in previous work as exceptional [76]. This

example illustrates the Lagrangian-based description of what is meant by an exceptional

EFT: a local field theory of massless particles with shift symmetries that lead to an enhanced

soft behavior of the scattering amplitudes beyond what is obvious from simple counting of

derivatives on the fields.1

The on-shell significance of the exceptional EFTs was first described in [35, 37]. It was

shown, for the case of scalar effective field theories, that the class of exceptional EFTs as

defined above coincides precisely with the class of EFTs for which there exists a valid method

of on-shell recursion. On-shell recursion for scattering amplitudes in the form of BCFW

[24, 25] or those based on various types of multi-line shifts [77, 30, 32, 33] have been around

for several years now, but they are often not valid in EFTs. Technically, this is because

higher-derivative interactions tend to give “bad” large-z behavior of the amplitudes under

the complex momentum shifts and as a result there are non-factorizable contributions from

a pole at z =∞. A more physical reason is that in order for a recursive approach to have a

chance, it has to be given information about how higher-point terms are possibly connected

to the lower-point interactions. Standard recursion relations basically only ‘know’ gauge-

invariance, so in the DBI example they have no opportunity to know about any relation

between the couplings of (∂φ)4 and (∂φ)6. So, naturally, a recursive approach to calculate

amplitudes in exceptional EFTs needs to know about the low-energy theorems, since —

as illustrated for DBI — this is what ties the higher-point interactions to the lower-point

ones. This is exactly the additional input introduced to define the soft subtracted recursion

relations presented in [35]; they provide a tool to calculate the leading (and possibly next-to-

leading) order contribution to the S-matrix of an exceptional EFT without explicit reference

to the action.

1This definition is a little imprecise. In standard usage, an EFT is defined by some physical data including
the spectrum of particles and associated symmetries and corresponds to an effective action with operators at
all orders in the derivative expansion. The defining property of an exceptional EFT however is typically only
valid at leading or next-to-leading order. The equivalent on-shell statement is that the scattering amplitudes
of the EFT are only recursively constructible at the same order in the expansion.
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The existence of valid recursion relations gives us our sought-after on-shell characteriza-

tion of the relation among the Wilson coefficients of Goldstone EFTs. The infinite set of a

priori independent local operators at leading order in the derivative expansion determine the

leading-order part of the S-matrix. For a generic EFT, the presence of independent operators

of valence n corresponds to the appearance of independent coefficients on contact contribu-

tions for amplitudes with n external particles. If the scattering amplitudes are recursively

constructible at a given order, then no such independent coefficients can appear since the

entire amplitude must be determined by factorization into amplitudes with fewer external

particles. Furthermore, the recursion must take as its input a finite set of seed amplitudes

that depend on only a finite number of parameters.

Beyond being an efficient method for calculating explicit scattering amplitudes in known

models, the subtracted recursion relations can be implemented as a numerical algorithm to

explore and classify the landscape of possible EFTs. We term this program the soft bootstrap

due to the structural similarity of the method with the conformal bootstrap [78, 79]. The

method is described in detail in Section 3.3.5, here we give a simplified description. We

consider EFTs as defined by a set of on-shell soft data: a spectrum of massless states,

linearly realized symmetries and low-energy theorems. We use general ansätze for scattering

amplitudes of low valence and low mass dimension, consistent with the assumed spectrum

and linear symmetries, as input for subtracted recursion. If the ansätze satisfy a certain

criterion guaranteeing the validity of the subtracted recursion relations and if the assumed

soft data corresponds to a valid EFT, then the output of the recursion should correspond to

a physical scattering amplitude. Here valid EFT means the existence of the assumed EFT

as a local, unitary, Poincaré invariant quantum field theory.

For tree-level scattering amplitudes this includes the requirement that the only singular-

ities of the amplitude correspond to factorization on a momentum channel. Conversely if

no such valid EFT exists, or equivalently if the assumed soft data is inconsistent, then the

output of the recursion generically will not correspond to a physical scattering amplitude

57



and this may be detected through the presence of non-physical or spurious singularities. In

practice, the ansätze are parametrized by a finite number of coefficients, and the removal of

spurious singularities often places constraints on these coefficients.

The soft bootstrap program was initiated in [37], where it was used to explore the land-

scape of real scalar EFTs with vanishing low-energy theorems. The results are reviewed and

extended in Section 3.4. This work should be understood as a continuation and generaliza-

tion of this program, incorporating richer soft data including spinning particles and linearly

realized supersymmetry. In Section 3.1.1 we provide a brief overview of exceptional EFTs

studied in our work before summarizing our main results in Section 3.1.2 that also provides

an outline of this chapter.

3.1.1 Overview of EFTs

In our work, we extend the application of the soft bootstrap from real scalars to any mass-

less helicity-h particle and we derive a precise criterion for the validity of the soft subtracted

recursion relations. By the new validity criterion, the on-shell characterization of an excep-

tional EFT will precisely be that its amplitudes are constructible using soft recursion.

Our work requires a precise definition of the degree of softness of the amplitude. This is

given in Section 3.3.1. For now, let us simply introduce the soft weight σ as

An(εp1, p2, . . .) = εσ S(0)
n +O(εσ+1) as ε→ 0 , (3.5)

where S(0)
n 6= 0. Table 3.1.1 summarizes the soft weights for various known cases of sponta-

neous symmetry breaking. The earlier example of DBI corresponds to the case of sponta-

neously broken higher-dimensional Poincaré symmetry; only the breaking of the translational

symmetry actually gives rise to a Goldstone mode [80] and it will have σ = 2.

Here follows a brief overview of exceptional EFTs that appear in this paper. We include

the connection between their soft behavior and Lagrangian shift symmetries:
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Soft degree σ Spin s Type of symmetry breaking
1 0 Internal symmetry (symmetric coset)
0 0 Internal symmetry (non-symmetric coset)
1 1/2 Supersymmetry
0 0 Conformal symmetry
0 1/2 Superconformal symmetry
2 0 Higher-dimensional Poincaré symmetry
0 0 Higher-dimensional AdS symmetry
3 0 Special Galileon symmetry

Table 3.1: The table lists soft weights σ associated with the soft theorems An → O(εσ)
as ε → 0 for several known cases. The soft limit is taken holomorphically in 4d spinor
helicity, see Section 3.3.1 for a precise definition. Conformal and superconformal breaking is
discussed in Section 3.5.3.

• DBI can be extended to a complex scalar Dirac-Born-Infeld theory and coupled super-

symmetrically to a fermion sector described by the Akulov-Volkov action of Goldsti-

nos from spontaneous breaking of supersymmetry. In extended supersymmetric DBI,

the vector sector is Born-Infeld (BI) theory. The soft weights are σZ = 2 for the com-

plex scalars Z of DBI, σψ = 1 for the fermions of Akulov-Volkov, and σγ = 0 for the BI

photon. The soft behaviors can be associated with shift symmetries Z → Z + c+ vµx
µ

and ψ → ψ + ξ, where ξ is a constant Grassmann-number.2 N = 1 supersymmetric

Born-Infeld couples the BI vector to the Goldstino of Akulov-Volkov.

• Nonlinear sigma models (NLSM) describe the Goldstone modes of sponteneously

broken internal symmetries and have scalars with constant shift symmetries that give

σ = 1 soft weights in the low-energy theorems. A common example of an NLSM

is chiral perturbation theory in which the scalars live in a coset space U(N) ×

U(N)/U(N).

The complex scalar CP1 NLSM can be supersymmetrized with a fermion sector that

is Nambu-Jona-Lasinio (NJL) model. The complex scalars have shift symmetry

Z → Z + c and σZ = 1 while the fermions have no shift symmetry and σψ = 0. We

2We leave out field-dependent terms for simplicity when stating the shift symmetries.

59



study both the N = 1 and 2 supersymmetric CP1 NLSM.3

• A NLSM can have a non-trivial subleading operator that respects the shift symmetry

and hence also the low-energy theorems with σ = 1. This operator is known as the

Wess-Zumino-Witten (WZW) term and has a leading 5-point interaction.

• Galileon scalar EFTs arise in various contexts and have the extended shift symmetry

φ → φ + c + vµx
µ that gives low-energy theorems with σ = 2. As such they can be

thought of as subleading operators of the DBI action, and are called DBI-Galileons.

They can also be decoupled from DBI (at the cost of having no UV completion).

In 4d there are two independent Galileon operators: the quartic and quintic Galileon.

(By a field redefinition, the cubic Galileon is not independent from the quartic and

quintic.) When decoupled from DBI, the quartic Galileon has an even further enhanced

shift symmetry φ→ φ + c + vµx
µ + sµνx

µxν that gives low-energy theorems with soft

weight σ = 3 and is then called the Special Galileon [37, 40].

• The quartic Galileon has a complex scalar version with σZ = 2 (but it cannot have

σZ = 3). It has an N = 1 supersymmetrization [81, 60] in which the fermion sector

trivially realizes a constant shift symmetry that gives σψ = 1.

• There is evidence [60] that the quintic Galileon may have an N = 1 supersymmetriza-

tion. This involves a complex scalar whose real part is a Galileon with σ = 2 and

imaginary part is an R-axion with σ = 1.

We now summarize the main results of this chapter.

3.1.2 Outline of Results

In Section 3.2 a brief review is given of the Wilsonian effective action. The notion of the

reduced dimension of an operator is defined and the relevance to power-counting in the

3In Section 3.6.2 we show that the N = 2 CP1 NLSM requires the presence of 3-point interactions and
the soft weight of the scalar is reduced to σZ = 0.
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derivative expansion is explained.

In Section 3.3 we present a review and elaboration on the method of soft subtracted re-

cursion. The asymptotic (large-z) behavior of a scattering amplitude under the momentum

deformation is determined using a novel method exploiting the properties of tree amplitudes

of massless particles under complex scale transformations. This result is then used to formu-

late a precise constructibility criterion (3.20) for the applicability of the method. The failure

of an EFT (at some order in the derivative expansion) to satisfy the criterion is shown to

be equivalent to the existence of independent local operators which are “trivially” invari-

ant under an extended shift symmetry. The systematics of the soft bootstrap algorithm for

constraining EFTs is described.

In Section 3.4 several numerical applications of the soft bootstrap are presented. The

landscape of constructible EFTs with simple spectra consisting of a single massless complex

scalar, Weyl fermion, or vector boson is exhaustively explored. In particular, our analysis

shows that there can be no vector Goldstone bosons with vanishing soft theorems. A similar

result follows from an algebraic analysis that appeared around the same time as this paper

[82].

In Section 3.5 we describe the interplay between soft behavior and supersymmetry. From

the supersymmetry Ward identities we show that the soft weights of the states in an N = 1

multiplet can differ by at most one. Implications for superconformal symmetry breaking and

constraints on low-energy theorems in extended supergravity are presented as examples.

In Section 3.6, we apply recursion to construct the scattering amplitudes of the N = 1, 2

CP1 nonlinear sigma models at leading (two-derivative) order. For theN = 1 case, it is shown

that recursive constructibility together with the conservation of U(1) charges by the seed

amplitudes implies that (at two-derivative order) all tree amplitudes of this model conserve

an additional accidental U(1) charge. For the N = 2 model, recursive constructibility is

non-trivial due to the presence of 3-point interactions and non-vanishing scalar soft limits,

but can be achieved using the supersymmetry Ward identities (see Appendix G). Using this,
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we show that all tree amplitudes satisfy the Ward identities of SU(2)R and conserve an

additional U(1)R under which the vector bosons are charged. (A detailed inductive proof of

the SU(2)R Ward identities is given in Appendix F.) The connection between the existence

of such chiral charges for vector bosons and known results about special Kähler geometry are

described, in particular we highlight the emergence of electric-magnetic duality. Finally, an

explicit form of the singular low-energy theorem for the vector bosons of the N = 2 model

is presented.

Section 3.7 contains brief comments on supersymmetrizations of DBI and Born-Infeld.

In Section 3.8 various applications of the soft bootstrap algorithm to Galileon-like models

are presented. Previous results on the N = 1 supersymmetrization of the quartic and quintic

Galileon are elaborated upon, in particular the various possible soft weight assignments to

the states in the multiplet are described in detail.

The existence of an extension of the special Galileon with non-trivial couplings to a mass-

less vector is considered and evidence is given in favor of the existence of such a model. The

soft bootstrap algorithm is applied to the problem of classifying higher-derivative correc-

tions to the special Galileon effective action that preserve the low-energy theorem via the

associated on-shell matrix elements. Compatible amplitudes are classified up to couplings of

dimension −12 for quartic interactions and −17 for quintic interactions. These results are

compared with the output of the double-copy in the form of the field theory KLT relations as

applied to chiral perturbation theory. These two constructions are found to agree for quartic

interactions but not for quintic.

In Appendix E many explicit forms of calculated amplitudes for various models considered

in this paper are presented.
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3.2 Structure of the Effective Action

The low-energy dynamics of a physical system can be described by a Wilsonian effective

action containing a set of local quantum fields for each of the on-shell asymptotic states with

all possible local interactions allowed by the assumed symmetries:

Seffective = S0 +
∑
O

cO
Λ∆[O]−4

∫
d4xO(x) . (3.6)

Here S0 denotes the free theory, i.e. the kinetic terms, Λ is a characteristic scale of the

problem, and cO are dimensionless constants. The sum is over all local Lorentz invariant

operators O(x) of the schematic form

O(x) ∼ ∂Aφ(x)Bψ(x)CF (x)D , (3.7)

where A, . . . , D are integer exponents. In this paper we focus on EFTs in which the operators

O are manifestly gauge invariant.4

We assign the following quantities to a local operator

• Dimension: ∆[O] defined as the engineering dimension with bosonic fields of dimension

1 and fermionic fields of dimension 3/2.

• Valence: N [O] defined as the sum of the total number of field operators appearing.

Equivalently, this is the valence of the Feynman vertex derived from such an interaction.

The schematic operator in (3.7) has ∆[O] = A+B + 3
2
C + 2D and N [O] = B + C +D.

In standard EFT lore, operators of lowest dimension dominate in the IR. In many cases

this means the marginal and relevant interactions dominate and the irrelevant interactions

4This need not be the case in more general scenarios (though of course we insist on overall gauge invari-
ance). For example in Yang-Mills theory, the gauge invariant operator trF 2 has a quadratic term which we
group into the free part S0 of the action while the interaction terms would be accounted for in the sum of
all operators O in (3.6). Similarly, for massless spin-2 fields when

√
−gR is expanded around flat space.
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are sub-dominant and suppressed by powers of the UV scale Λ. In other cases, such as

effective field theories describing the dynamics of Goldstone modes, there are only irrelevant

interactions and it may be less clear which operators dominate. It is therefore useful to

introduce the reduced dimension

∆̃[O] =
∆[O]− 4

N [O]− 2
(3.8)

for the operator basis (3.6). Operators that minimize ∆̃ dominate in the IR.

The authors of [76, 35, 37] consider only scalar EFTs and therefore operators of the form

O ∼ ∂mφn. They define a quantity

ρ ≡ m− 2

n− 2
= ∆̃[O]− 1 , (3.9)

to determine when two operators of this form produce tree-level diagrams with couplings of

the same mass dimension. Morally ρ is the same as the reduced dimension ∆̃[O]. The latter

is the natural generalization of ρ to operators containing particles of all spins.

The quantity ∆̃ is useful for clarifying the notion of what it means for an interaction to

be leading order in an EFT with only irrelevant interactions. In the deep IR, the relative

size of the dimensionless Wilson coefficients in the effective action is unimportant since lower

dimension operators will always dominate over higher dimension operators. It is therefore

only necessary to isolate the contributions that are leading in a power series expansion of

the amplitudes in the inverse UV cutoff scale Λ−1. The dominant interactions in the deep IR

are generated by operators that minimize this quantity. As an illustrative example, consider

an effective action for scalars with interaction terms of the form

Seffective ⊃
∫

d4x
[ c4

Λ4
∂4φ4 +

c5

Λ5
∂4φ5

]
. (3.10)

The reduced dimensions ∆̃ are 2 and 5/3 for the quartic and quintic interactions respectively.
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The quintic interaction should therefore dominate over the quartic in the deep IR. To see

this explicitly we have to compare amplitudes with the same number of external states, so

we compare the contributions from tree-level Feynman diagrams to the 8-point amplitude:

∼ 1
Λ12 ∼ 1

Λ10

This confirms that the diagrams arising from the quintic interaction dominate the 8-point

amplitude.

It is useful to introduce the notion of fundamental interactions (or fundamental operators)

in an EFT. These are the lowest dimension operator(s) whose on-shell matrix elements can

be recursed to define all matrix elements of the theory at leading order in the low-energy

expansion.

Consider the DBI action. The leading interaction comes from an operator of the form

1
Λ4∂

4φ4 and as discussed in the introduction, with the associated 4-point amplitude as in-

put, all other n-point amplitudes in DBI can be constructed with soft subtracted recursion

relations. If the action had contained an interaction term of the form c5
Λ5∂

5φ4, then 1
Λ4∂

4φ4

would not be sufficient to determine dominating contributions at n-point order, i.e. both

interactions would need to be considered fundamental for soft recursion.

The operators immediately subleading to DBI in the brane-effective action are encoded

in the DBI-Galileon. In 4d, there are two such independent couplings,5 namely for a quartic

interaction of the schematic form b4
Λ6∂

6φ4 and a quintic interaction of the form b5
Λ9∂

8φ5;

these both have ∆̃ = 3 whereas DBI has ∆̃ = 2. Thus the DBI-Galileon has a total of

three fundamental operators: the 4-point DBI interaction and the 4- and 5-point Galileon

interactions.

5The cubic Galileon interaction is equivalent to a particular linear combination of the quartic and quintic
Galileon after a field redefinition.
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3.3 Subtracted Recursion Relations

We review on-shell subtracted recursion relations for scattering amplitudes of Goldstone

modes [83, 76, 35, 37, 84] and derive a new precise criterion for their validity.

3.3.1 Holomorphic Soft Limits and Low-Energy Theorems

We rely on the 4d spinor helicity formalism (for reviews, see [85, 86, 87, 88]) in which a

massless on-shell momentum is written p = −|p〉[p|. This presents an ambiguity in how

to take the soft limit (3.2): it could for example be taken democratically as {|p〉, |p]} →

{ε1/2|p〉, ε1/2|p]}, holomorphically {|p〉, |p]} → {ε|p〉, |p]}, or anti-holomorphically {|p〉, |p]} →

{|p〉, ε|p]}. These are all equivalent choices, because the momentum p is invariant under little

group scaling {|p〉, |p]} → {t|p〉, t−1|p]}. Amplitudes scale homogeneously under the little

group,

An
(
{|1〉, |1]} . . . {t|i〉, t−1|i]}+ . . .

)
= t−2hiAn

(
{|1〉, |1]} . . . {|i〉, |i]}+ . . .

)
, . (3.11)

so the choice of soft limit is simply reflected in a helicity-dependent overall scaling factor. We

choose to minimize the power of ε in the soft limit by letting the choice depend on the sign

of the helicity of the particle: specfically, we take psoft → ε psoft = −ε|s〉[s| holomorphically

for any state with non-negative helicity:6

|s〉 → ε|s〉 for hs ≥ 0 . (3.12)

For a negative-helicity particle, we use the anti-holomorphic prescription |s] → ε|s]. For

scalars, it makes no difference which choice is made.

6Taking the soft limit as simply as in (3.12) is not compatible with overall momentum conservation.
To stay on the algebraic locus of momentum conservation in momentum space, we take the limit with
appropriate shifts in a subset of the n− 1 other momentum variables. The precise prescription can be found
in equation (6) of [89]. The details will not affect the main line of the discussion in this paper, but we note
that all calculations are done manifestly on-shell, including the soft limits.
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We characterize the soft behavior of amplitudes of massless particles in terms of a holo-

morphic soft weight σ (or, for brevity, just soft weight). It is defined in terms of the holo-

morphic soft limit (3.12) as

An
(
{|1 , |1]} . . . {ε|s〉, |s]}+ . . .

)
= εσ S(0)

n +O(εσ+1) as ε→ 0 , (3.13)

where S(0)
n 6= 0. This way of taking the soft limit is closely correlated with the shifts

introduced for the soft subtracted recursion relations in the following.

3.3.2 Review of Soft Subtracted Recursion Relations

We consider complex momentum deformations of the form

pi → p̂i = (1− aiz)pi with
n∑
i=1

aipi = 0 . (3.14)

The label i = 1, 2, . . . , n runs over the n massless particles in the scattering amplitude. The

shifted momenta p̂i are on-shell by virtue of p2
i = 0 and satisfy momentum conservation

when the shift coefficients ai satisfy the condition in (3.14). (We discuss the solutions to

this condition in Section 3.3.5.) When evaluated on the shifted momenta p̂i, an n-point

amplitude becomes a function of z and we write it as Ân(z).

The subtracted recursion relations for an n-point tree-level amplitude An are derived from

the Cauchy integral ∮
dz

z

Ân(z)

F (z)
= 0 , (3.15)

where the contour surrounds all the poles at finite z and the function F is defined as

F (z) =
n∏
i=1

(1− aiz)σi . (3.16)

The vanishing of the integral in (3.15) requires absence of a simple pole at z =∞. We derive
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a sufficient criterion for this behavior in Section 3.3.3.

The shift (3.14) is implemented on the spinor helicity variables according to the sign of

the helicity hi of particle i as

hi ≥ 0: |i〉 → (1− aiz)|i〉 , |i]→ |i] ,

hi < 0: |i〉 → |i〉 , |i]→ (1− aiz)|i] .
(3.17)

The limit z → 1/ai is then precisely the soft limit p̂i → 0 of the ith particle in the de-

formed amplitude. Hence, if the amplitude satisfies low-energy theorems of the form (3.13)

with weights σi for each particle i, the integral (3.15) will not pick up any non-zero residues

from poles arising from the function F when it is chosen as in (3.16). Therefore the only

simple poles in (3.15) arise from z = 0 and factorization channels in the deformed tree am-

plitude. They occur where internal momenta go on-shell, P̂ 2
I = 0. The residue theorem then

states that the residue at z = 0 equals minus the sum of all such residues, and factorization

on these poles gives

An = Ân(z = 0) =
∑
I

∑
|ψ(I)〉

∑
±

Â(I)
L (z±I )Â(I)

R (z±I )

F (z±I )P 2
I (1− z±I /z

∓
I )

. (3.18)

The sums are over all factorization channels I, the two solutions z±I to P̂ 2
I = 0, and all possible

particle types |ψ(I)〉 that can be exchanged in channel I. These recursion relations are called

soft subtracted recursion relations. When F = 1, the recursion is called unsubtracted.

The expression for the solutions z±I to the quadratic equation P̂ 2
I = 0 involves square

roots, but those must cancel since the tree amplitude is a rational function of the kinematic

variables. On channels where the amplitude factorizes into two local lower-point amplitudes

(meaning that they have no poles), the cancellations of the square roots can be made man-

ifest. This is done by a second application of Cauchy’s theorem, which for each channel I

converts the sum of residues at z = z±I to the sum of the residues at z = 0 and z = 1/ai for

all i. Details are provided in Appendix D, here we simply state the result: if A(I)
L and A(I)

R
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are local for all factorization channels, the soft recursion relations take the form

An =
∑
I

∑
|ψ(I)〉

(
Â(I)
L (0)Â(I)

R (0)

P 2
I

+
n∑
i=1

Res
z= 1

ai

Â(I)
L (z)Â(I)

R (z)

z F (z) P̂ 2
I

)
. (3.19)

This form of the recursion relations is manifestly rational in the kinematic variables, and we

will be using (3.19) for the applications in this paper. Note that only the first term in (3.19)

has pole terms. Therefore the sum of the 1/ai residues over all channels must be a local

polynomial in the momenta.

3.3.3 Validity Criterion

The purpose of including F (z) in (3.15) is to improve the large-z behavior of the integrand

so that one can avoid a pole at z =∞. This is necessary in EFTs, where the large-z behavior

of the amplitude typically does not allow for unsubtracted recursion relations with F (z) = 1

to be valid without a boundary term from z = ∞. A sufficient condition for absence of a

simple pole at infinity is that the deformed amplitude vanishes as z → ∞. Below we show

that for a theory with a single fundamental interaction (see Section 3.2) of valence v and

coupling of mass-dimension [gv] the criterion for validity of the subtracted recursion relations

is

4− n− n− 2

v − 2
[gv]−

n∑
i=1

si −
n∑
i=1

σi < 0 . (3.20)

Here si is the spin (not helicity) of particle i and σi is its soft behavior (3.13). Alternatively,

one can write the constructibility criterion in terms of the reduced dimension ∆̃, introduced

in (3.8), as

4− n+ (n− 2)∆̃−
n∑
i=1

si −
n∑
i=1

σi < 0 . (3.21)

The criterion generalizes to theories with more than one fundamental coupling by re-

placing n−2
v−2

[gv] in (3.20) by the sum over all couplings contributing to the diagrammatic

expansion of the amplitude in question; the precise criterion is given in (3.29).
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Proof of the criterion (3.20). To avoid a pole at infinity in the Cauchy integral (3.15), it

is sufficient to require Ân(z)/F (z) → 0 as z → ∞. To start with, we determine the large-z

behavior of the deformed amplitude Ân(z). Generically, in a theory of massless particles

with couplings gk, a tree-level amplitude takes the form

An =
∑
j

(∏
k

g
njk
k

)
Mj , (3.22)

where
∏

k g
njk
k is a product of coupling constants and Mj is a function of spinor brackets

only. Since there can be no other dimensionful quantities entering Mj, the mass dimension

[Mj] can be determined via a homogenous scaling of all spinors:

|i〉 → λ1/2|i〉 and |i]→ λ1/2|i] =⇒ Mj → λ[Mj ]Mj . (3.23)

The mass dimension is also fixed by simple dimensional analysis to be

[Mj] = 4− n−
∑
k

njk[gk] , (3.24)

since an n-point scattering amplitude in 4d has to have mass-dimension 4− n.

It is useful to consider a modified scale transformation defined as

hi ≥ 0: |i〉 → λ|i〉 , |i]→ |i] ,

hi < 0: |i〉 → |i〉 , |i]→ λ|i] .
(3.25)

The effect of this scaling can be obtained from the uniform scaling (3.23) via a little group

transformation (3.11) on all momenta with t = λ1/2. Therefore under (3.25), Mj scales as

Mj → λ[Mj ]−
∑
i siMj, where si is the spin (not helicity) of particle i.

For the case of a theory with a single fundamental interaction of valence v with coupling
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gv, the number of couplings appearing in an n-point amplitude is n−2
v−2

, and therefore we have

An → λDAn , D = 4− n− n− 2

v − 2
[gv]−

∑
i

si (3.26)

under the modified scale transformation (3.25).

Under the momentum shift (3.17), the deformed tree amplitude Ân(z) can be written

Ân(z) = Ân
(
. . . {(1− aiz)|i , |i]}+ . . . {|j , (1− ajz)|j]}−

)
= Ân

(
. . . {z(1/z − ai)|i , |i]}+ . . . {|j , z(1/z − aj)|j]}−

)
= zD Ân

(
. . . {(1/z − ai)|i , |i]}+ . . . {|j , (1/z − aj)|j]}−

)
,

(3.27)

where the subscripts ± refer to the sign of the helicity of each particle. In the last line we

used the behavior (3.26) under the modified scaling (3.25).

At large z, the amplitude in the last line of (3.27) is the original unshifted amplitude

evaluated at a momentum configuration with qi = −aipi. These momenta are all on-shell

and satisfy, via (3.14), momentum conservation. The only way the tree amplitude could

have a singularity at this momentum configuration would be if an internal line went on-shell.

This can always be avoided for generic momenta.7 Thus we conclude from (3.27) that for

large z, the deformed amplitude behaves as

Ân(z)→ zN with N ≤ D , (3.28)

where D is given in (3.26). The inequality allows for the possibility that An could have a

zero at qi = −aipi.

Our mission was to find a criterion for Ân(z)/F (z) → 0 as z → ∞. By the definition

(3.16), we have F (z)→ z
∑
i σi for large z. From our analysis of the large-z behavior of Ân(z),

7The condition (3.14) has a trivial solution with all ai equal. Therefore any solution to (3.14) can be
shifted uniformly ai → ai+a for any real number a. Hence, we can always avoid the discrete set of momentum
configurations for which an internal line in An goes on-shell.
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we can therefore conclude that, at worst, Ân(z)/F (z) → zD−
∑
i σi . The sufficient criterion

for absence of a pole at infinity, and hence for validity of the subtracted recursion relation,

is then D −
∑

i σi < 0. This is precisely the condition (3.20). This concludes the proof.

It is straightforward to generalize the constructibility criterion to EFTs with more than

one fundamental interaction,

4− n−minj

(∑
k

njk[gk]
)
−

n∑
i=1

si −
n∑
i=1

σi < 0 . (3.29)

Recall that in effective field theories, the couplings have negative mass-dimension. This

means that the constructibility criterion tends to be dominated by the fundamental inter-

actions associated with operators of the highest mass-dimension that can contribute to the

n-point amplitude.

Example 1. Let us once again return to the example of DBI. The action has a fundamental

quartic vertex g4(∂φ)4 with a coupling of mass-dimension [g4] = −4. The constructibility

criterion (3.20) for the n-scalar amplitude is n(1 − σS) < 0, where σS is the soft behavior

of the scalar φ. Since σS = 2 in DBI, all DBI tree amplitudes are constructible via the

subtracted soft recursion relations, as claimed in the introduction.

The failure of the constructibility criterion for σS = 1 is simply the statement that an EFT

whose interactions are built from powers of (∂φ)2 trivially has a constant shift symmetry

and hence σS = 1, so there are no constraints from shift symmetry on the coefficients of

(∂φ)2k in terms of that of (∂φ)4 and then one has no chance of recursing A4 to get all-point

amplitudes.

Example 2. Consider a theory of massless fermions with quartic coupling of mass dimen-

sion [g4] = −2. The criterion (3.20) says that the n-fermion amplitudes are constructible

when 4 < n(1 + 2σψ). Thus all n > 4 point tree-amplitudes are constructible by (3.18) for

any soft weight σψ ≥ 0. No such theory exists for σψ > 0 (as we prove in Section 3.4.2),
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but for σψ = 0 this is exactly the Nambu–Jona-Lasinio (NJL) model, which consists of the

simple 4-fermion interaction ψ2ψ̄2 [90].

3.3.4 Non-Constructibility = Triviality

We have derived a constructibility criterion, but what does it mean? The answer is quite

simple: if an n-point amplitude can be constructed recursively from lower-point on-shell

amplitudes, there cannot exist a local gauge-invariant n-field operator that contributes to

the amplitude without modifying its soft behavior. We define a trivial operator to be one

with at least 4 fields whose matrix elements manifestly have a given soft weight σ. Let us

now assess what it takes to make an operator of scalar, fermion, and vector fields trivial.

Triviality. Scalars: Operators with at least m derivatives on each scalar field will trivially

have single-soft scalar limits with σS = m.

Fermions: We have chosen the soft limit (3.12) according to the helicity such that the fermion

wave-functions do not generate any soft factors of ε. Thus a trivial soft behavior must come

from derivatives on each fermion field in the Lagrangian. We conclude that the trivial soft

behavior σF = smallest number of derivatives on each fermion field.

Photons: Gauge invariance tells us that we should construct the interaction terms using the

field strength Fµν .
8 When associated with an external photon, the Feynman rule for Fµν

gives pµεν − pνεµ. Naively, it may seem to be linear in the soft momentum, but under the

holomorphic soft shift (3.17) it is actually O(ε0). Recall that in spinor helicity formalism, a

positive helicity vector polarization takes the form εµ+σ̄
ȧb
µ = εȧb+ = |q〉ȧ[p|b/〈pq〉, where q is a

reference spinor. Hence, for a positive helicity photon we have

(F+)a
b ≡ (σµν)a

bFµν −→ (σµν)a
b(pµε+ν − pνε+µ) ∼ |p]a〈p|ċ

|q〉ċ[p|b

〈pq〉
= |p]a[p|b . (3.30)

8Or covariant derivatives Dµ = ∂µ + igAµ. In this paper, we focus on scalars and fermions that do not
transform under any gauge-U(1), therefore photons must couple via Fµν .
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This is explicitly independent of the reference spinor q because Fµν is gauge invariant. For

a positive helicity particle, we take the soft limit holomorphically as |p〉 → ε|p〉 (while

|p]→ |p]), so we explicitly see that Fµν −→ |p][p| is O(ε0) when p is taken soft. Likewise, for

a negative helicity photon, (F−)ȧḃ −→ |p〉〈p|. We conclude that an operator with photons has

trivial soft behavior that is determined by the smallest number of derivatives on each field

strength Fµν . In an EFT where photon interactions are built only from the field strengths,

the matrix elements are O(1) when a photon is taken soft. This, for example, is exactly the

case for Born-Infeld theory in which the photons have σ = 0.

Constructibility. Suppose we study an n-particle amplitude with ns scalars, nf fermions,

and nγ photons in an EFT whose fundamental v-particle interactions all have couplings of

the same mass-dimension [gv]. The criterion (3.20) for constructibility via subtracted soft

recursion relations can be written as

4− n− nv[gv]−
1

2
nf − nγ − nsσs − nfσf − nγσγ < 0 , (3.31)

where nv = (n− 2)/(v − 2) is the number of vertices needed at n-point.

Non-constructibility = Triviality. Let us assess if there can be a local contact term

for an n-particle amplitude with ns scalars, nf fermions, and nγ photons and soft behaviors

σs, σf , and σγ, respectively. As discussed above, a contact term that has such trivial soft

behavior takes the form

gn (∂σsφ) · · · (∂σsφ)︸ ︷︷ ︸
ns

(∂σfψ) · · · (∂σfψ)︸ ︷︷ ︸
nf

(∂σγF ) · · · (∂σγF )︸ ︷︷ ︸
nγ

(3.32)
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(for brevity we have not distinguished ψ and ψ̄). In 4d, the mass-dimension of the coupling

gn is easily computed as

[gn] = 4−
(
ns + nsσs

)
−
(

3
2
nf + nfσf

)
−
(
2nγ + nγσγ

)
. (3.33)

Using n = ns + nf + nγ, we can rewrite this as

4− n− [gn]− 1

2
nf − nγ − nsσs − nfσf − nγσγ = 0 . (3.34)

Compare this with (3.31); we note that the constructibility criterion is simply that nv[gv] >

[gn], or maybe more intuitively, that gn has more negative mass-dimension than nv gv-

vertices. So, when constructibility holds, the n-particle amplitude constructed from the nv

v-valent vertices cannot be influenced by a contact term that trivially has the soft behavior:

such a contact term would be too high order in the EFT due to all the derivatives needed

to trivialize the soft behavior. That of course makes sense; were there such an independent

local contact term, it could be added to the result of recursion with any coefficient without

changing any of the properties of the amplitude. Hence recursion cannot possibly work in

that case. (This is analogous to the example in [85, 86] for constructibility in scalar-QED

via BCFW; the difference here is that the subtracted soft recursion relations “know” about

the soft behavior in addition to gauge-invariance.)

The argument is easily extended to the case where the theory has fundamental vertices

of different valences and mass-dimensions. We conclude that the constructibility criterion

(3.20) is equivalent to the non-existence of local n-particle operators with couplings of the

same mass-dimension and trivial soft behavior: Non-constructibility = Triviality.

3.3.5 Implementation of the Subtracted Recursion Relations

Here we present details relevant for the practical implementation of the soft subtracted

recursion relations.
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Solving the shift constraints. Conservation of the momentum for the shifted momenta

p̂i (3.14) requires the shift variables ai to satisfy

∑
i

aip
µ
i = 0. (3.35)

In 4d, the LHS can be viewed as a 4 × n matrix pµi of rank 4 (if n ≥ 5) multiplying a

n-component vector ai. Hence the valid choices of parameters ai form a vector space given

by the kernel of the matrix pµi . For n ≥ 5 any subset of four momenta are generically linearly

independent, so the pµi -matrix has full rank. By the rank-nullity theorem, the dimension of

the kernel is therefore n− 4. However, there is always a trivial solution which consists of all

ai’s equal, hence non-trivial solutions to (3.35) exist only when n ≥ 6.

Practically, the linear system of equations is solved by dotting in pj, i.e. we have

∑
i

sji ai = 0 for j = 1, 2, . . . , n . (3.36)

The symmetric n× n-matrix with entries sji has rank 4, so the linear system (3.36) can be

solved for say a1, a2, a3, and a4 in terms of the n− 4 other ai’s.

Soft bootstrap. Subtracted recursion relations can be used to calculate tree amplitudes

in EFTs of Goldstone modes in theories we already know well, such as DBI, Akulov-Volkov

etc. However, the soft subtracted recursion relations can also be used as a tool to classify

and assess the existence of exceptional EFTs with a given spectrum of massless particles and

low-energy theorems with given weights σ.

The approach to the classification of special EFTs is as follows:

(1) Model input: the spectrum of massless particles and the coupling dimensions of the

fundamental interactions in the model.

(2) Symmetry assumptions: the n-particle amplitudes have soft behavior with weight σi

for the ith particle.
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If the constructibility criterion (3.20) is not satisfied, the assumptions (1) and (2) are trivially

satisfied and we cannot constrain the couplings in the EFTs; it is not exceptional.

If the constructibility criterion (3.20) is satisfied for input (1) and (2), one can use the soft

subtracted recursion relations to test whether a theory can exist with the above assumptions.

One proceeds as follows.

The fundamental vertices give rise to local amplitudes which must be polynomials9 in

the spinor helicity brackets, and it is simple to construct the most general such ansatz for

the local input amplitudes. One can further restrict this ansatz by imposing on it the

soft behaviors associated with the assumed symmetries. The result of recursing this input

from the fundamental vertices is supposed to be a physical amplitude and therefore it must

necessarily be independent of the n− 4 parameters ai that are unfixed by (3.35). If that is

not the case for any ansatz of the fundamental input amplitudes (vertices), we learn that

there cannot exist a theory with the properties (1) and (2) above. On the other hand, an

ai-independent result is evidence (but not proof) of the existence of such a theory. It may

well be that ai-independence requires some of the free parameters in the input amplitudes

to be fixed in certain ways and this can teach us important lessons about the underlying

theory. The test of ai-independence can be done efficiently numerically, and this way one

can scan through theory-space to test which symmetries are compatible with a given model

input.

Additionally, one can impose further constraints from unbroken global symmetries, for

example, one can restrict the input from the fundamental amplitudes by imposing the su-

persymmetry Ward identities. We shall see examples of this in later sections.

4d and 3d consistency checks. There is a subtlety that must be addressed for n = 6.

In this case, the solution space is 2-dimensional, but one solution is the trivial one with all

ai equal. Furthermore, one can rescale all ai. This means that if the recursed result for the

9This is true at 4-point and higher; for 3-point, massless particle amplitudes are uniquely fixed by the
little group scaling.
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amplitude depends on the ai only through ratios of the form

(ai − aj)
(ak − al)

, (3.37)

it will appear to be ai-independent numerically, but the result will nonetheless have spurious

poles. To detect this problem numerically, we dimensionally reduce the recursed result to

3d.10 Then the space of solutions to (3.35) is (n − 3)-dimensional, so there are non-trivial

solutions and a numerical 3d test will reveal dependence on ratios such as (3.37) for n = 6.

We refer to the consistency checks of ai-independence as 4d and 3d consistency checks,

respectively, or simply as n-point tests when applied to construction of n-point amplitudes.

In this paper, we use 6-, 7- and 8-point tests. In Section 3.4, we present an overview of the

resulting space of exceptional pure real and complex scalar, fermion, and vector EFTs.

Special requirements for non-trivial 5-point interactions. Consider 5-particle inter-

actions which are non-trivial with respect to a given soft behavior. This could for example

be the Wess-Zumino-Witten (WZW) term, which with 4 derivatives on 5 scalars has a non-

trivial σ = 1 soft behavior. Or the 5-point Galileon, which with 8 derivatives on 5 scalars

has a non-trivial σ = 2. Constructibility tells us that one must be able to calculate such

5-point amplitudes from soft recursion relations via factorization, i.e.

A5 =
∑
I

Â3Â4

P 2
I

. (3.38)

However, there are no 3-point amplitudes available that could possibly make this work. The

reason is that the only 3-scalar interaction with a non-zero on-shell amplitude is φ3, which

gives rise to amplitudes with σ = −1 [89]. So we appear to have a contradiction: the con-

structibility criterion tells us that these 5-particle amplitudes are recursively constructible,

but it is obviously impossible to construct them from lower-point input.

10 The dimensional reduction from 4d to 3d is carried out by simply replacing all square spinors by angle
spinors.
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What goes wrong is that at 5-points, there are no non-trivial choices of the ai parameters

that give valid recursion relations in 4d. So we have to go to 3d kinematics to resolve this

issue. The above contradiction persists in 3d, so the only resolution is that these non-trivial

constructible 5-point amplitudes must vanish in 3d kinematics.

Indeed they do: for WZW term and the quintic Galileon, the 5-point matrix elements

are

AWZW
5 = g5 εµνρσp

µ
1p

ν
2p
ρ
3p
σ
4 , AGal

5 = g′5 (εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 )2 . (3.39)

The Levi-Civita contraction makes it manifest that these amplitudes vanish in 3d.

We conclude that any non-trivial (in the sense of soft behavior) 5-particle interaction

must vanish in 3d. Thus, it is no coincidence that the WZW and quintic Galileon 5-point

amplitudes are proportional to Levi-Civita contractions.

3.4 Soft Bootstrap

We now turn to examples of how the soft recursion relations can be used to examine the

existence of exceptional EFTs. The landscape of real scalar theories was previously studied

in [76, 33, 35, 37]. We outline it briefly below for completeness, but otherwise focus on new

results, in particular for complex scalars, fermions, and vectors. This section considers only

theories with one kind of massless particle. One can of course also couple scalars, fermions,

and vectors in EFTs, and this is discussed in Sections 3.6, 3.7, and 3.8.

3.4.1 Pure Scalar EFTs

Consider an EFT with a single real scalar field φ. There can only be non-vanishing 3-point

amplitudes in φ3-theory and this gives amplitudes with soft weight σ = −1. Focusing on

EFTs with soft weights σ ≥ 0, the lowest-point amplitude is 4-point.

The on-shell factorization diagrams that contribute in the recursion relations (3.19) for

A6(1φ 2φ 3φ 4φ 5φ 6φ) are composed of a product of two 4-point amplitudes, for example the
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123-channel diagram is

A(123)
6 = 2φ

1φ

3φ

−Pφ Pφ
5φ

4φ

6φ

=
ÂL(0)ÂR(0)

P 2
123

+
6∑
i=1

Resz= 1
ai

ÂL(z)ÂR(z)

z F (z) P̂ 2
123

,

where ÂL = Â4(1φ 2φ 3φ − Pφ) and ÂR = Â4(Pφ 4φ 5φ 6φ).11 One sums over the 10 indepen-

dent permutations corresponding to the 10 distinct factorization channels.12

For complex scalars, we assume that the input 4-point amplitudes are of the form

A4(1Z 2Z̄ 3Z 4Z̄);13 one can also consider more general input but it would not be compatible

with supersymmetry, so in the present paper we do not discuss such options. At 6-point,

there is only one type of amplitude that can arise from such 4-point input via recursion, and

that is A6(1Z 2Z̄ 3Z 4Z̄ 5Z 6Z̄). The 123-channel diagram is

A(123)
6 = 2Z̄

1Z

3Z

−PZ̄ PZ
5Z

4Z̄

6Z̄

(3.40)

To get the full amplitude, one must sum over all factorization channels:

A6(1Z 2Z̄ 3Z 4Z̄ 5Z 6Z̄) =
(
A(123)

6 + (2↔ 4) + (2↔ 6)
)

+ (1↔ 5) + (3↔ 5) . (3.41)

In the following we consider real and complex scalar theories with 4- and 5-point fundamental

vertices.

11The momenta in the hatted amplitudes are shifted; for simplicity, we do not write the hats on the
momentum variables explicitly. Note that in particular Pφ should really be understood as P̂φ with P̂ 2

φ = 0.
12We do not consider color-ordering in this section. With color-ordering, one only includes the factorization

diagrams from cyclic permutations of the external lines.
13There is no color-ordering implied in any of the amplitudes here. We simply alternate Z and Z̄ states as

odd/even numbered momentum lines. In later sections, other helicity states are grouped similarly, in partic-
ular for supersymmetric cases, states that belong to the positive helicity sector sit on odd-numbered lines and
negative helicity sector states on even-numbered lines. This is convenient for the practical implementation
but should not be misunderstood as an indication of color-ordering.
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Assumed value for σ
m −[g] Aansatz

4 (1φ2φ3φ4φ) 0 1 2 3 4
0 0 g φ4-theoroy F F F F
1 2 0 – F F F F
2 4 g (s2 + t2 + u2) – – DBI F F
3 6 g stu – – Gal4 Spec.Gal4 F
4 8 g (s4 + t4 + u4) – – – F F

Table 3.2: Ansatz for fundamental interactions corresponding to a schematic operator of the
form g ∂2mφ4 and the results of the recrsion test for different values of the soft degree σ.

Fundamental 4-point Interactions

Consider a theory of a single real scalar with fundamental 4-point interactions. We pa-

rameterize Aansatz
4 as the most general polynomial in the Mandelstam variables s, t, u (with

s+ t+ u = 0) and full Bose symmetry. We subject the recursed result for A6 to the test of

ai-independence, as described in Section 3.3.5. The results of the test for different values of

the soft degree σ are shown in Table 3.2.

In the table, we list the coupling dimension [g] of the fundamental quartic couplings along

with the most general ansatz for the corresponding 4-point amplitude. The dash, –, indicates

that the constructibility criterion (3.20) fails; this means “triviality” in the sense described

in Section 3.3.4). “F” indicates that the soft recursion fails to give an ai-independent result,

and hence no such theory can exist with the given assumptions. When a case passes the

6-point test, we are able to uniquely identify which theory it is. In the above table, the

non-trivial theories that pass the 6-point test are: φ4-theory, DBI, and the quartic Galileon.

The latter automatically has σ = 3 (which is called the Special Galileon) and passes 6-point

test for both σ = 2 and σ = 3.

The analysis for complex scalars proceeds similarly and the results are summarized in

Table 3.3. The non-trivial theories are |Z|4-theory, the CP1 NLSM (which is studied in

further detail in Section 3.6), and the complex scalar versions of DBI and the quartic Galileon.

Note that there does not exist a complex scalar version of the Special Galileon with σ = 3.

The results for the 6-point amplitudes of each of the theories with σ > 0 can be found in
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Assumed value for σ
m −[g] Aansatz

4 (1Z2Z̄3Z4Z̄) 0 1 2 3
0 0 g |Z|4-theoroy F F F
1 2 gt – CP1 NLSM F F
2 4 gt2 + g′su – – g′ = 0 complex DBI F
3 6 gt3 + g′stu – – g = 0 complex Gal4 F
4 8 gt4 + g′st2u+ g′′s2u2 – – – F

Table 3.3: Ansatz for fundamental interactions corresponding to a schematic operator of the
form g ∂2mZ2Z̄2 and the results of the recrsion test for different values of the soft degree σ.

Appendix E.

Fundamental 5-point Interactions

At 5-point, the input amplitudes are constructed as polynomials of Mandelstam variables

sij and Levi-Civita contractions of momenta. They must obey (1) momentum conservation,

(2) Bose symmetry, and (3) assumed soft behavior σ. In many cases, these constraints on

the 5-point input amplitudes are sufficient to rule out such theories (assuming no other

interactions) without even applying soft recursion.

As discussed at the end of Section 3.3.5, non-trivial 5-point amplitudes must vanish in

3d kinematics, so they are naturally written using the Levi-Civita tensor, as in the two cases

of WZW and the quintic Galileon (3.39).

We can summarize the results in the following:

• 1 real scalar. There are only two non-trivial theories based on a fundamental 5-point

interaction, namely φ5-theory, which has [g5] = −1 and σ = 0, and the quintic Galileon,

which has [g5] = −9 and σ = 2.

• 1 complex scalar. We assume input amplitudes of the form A5(1Z2Z̄3Z4Z̄5Z). Two

cases pass the 8-point test: The quintic g5(Z3Z̄2 + Z2Z̄3)-theory with [g5] = −1 has

σZ = 0. The complex-scalar version of the quintic Galileon with [g5] = −9 and σZ = 2.
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The 5-point amplitude is

A5(1Z2Z̄3Z4Z̄5Z) = g5(εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 )2 , (3.42)

same as for the real-scalar quintic Galileon. The fact that it passes the 8-point test

is somewhat trivial: because of the two explicit factors of momentum for 4 out of 5

particles, the residues at 1/ai vanish identically for each factorization channel. The

same is true for the real Galileon, so the 8-point test is not really effective as an

indicator of whether such a theory may exist.

Suppose the putative complex-scalar quintic Galileon is coupled to the complex scalar

DBI. Then we can conduct a 7-point test based on factorization into a quantic Galileon

and a quartic DBI subamplitude. The test of ai-independence requires the coupling

constant g5 to vanish. This means that the DBI-Galileon with a complex scalar cannot

have a 5-point interaction.

At [g5] = −9, there is a 6-parameter family of 5-point amplitudes with σZ = 1. The

EFT with such amplitudes is generally non-constructible. However, a 1-parameter sub-

family is compatible with the constraints of supersymmetry. As discussed in [60] and

further in Section 3.8.1 this may be a candidate for a supersymmetric quintic Galileon

with a limited sector of constructible amplitudes.

3.4.2 Pure Fermion EFTs

Let us now consider EFTs with only fermions and fundamental interactions of the form

∂2mψ2ψ̄2. This is not the only choice, but it is the option compatible with supersymmetry.

Moreover, we have found that couplings of “helicity violating” 4-point interactions in the

fermion sector must vanish by the 6-point test in all pure-fermion cases we tested. The

calculations proceed much the same way as for scalars, except that one must be more careful

with signs when inserting fermionic states on the internal line. The diagrams needed for the
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Assumed value for σ
m −[g] Aansatz

4 (1ψ2ψ̄3ψ4ψ̄) = 〈24〉[13]× 0 1 2 3
0 2 g NJL F F F
1 4 gt – AV F F
2 6 gt2 + g′su – – F F
3 8 gt3 + g′stu – – g = 0 new F

Table 3.4: Ansatz for fundamental interactions corresponding to a schematic operator of the
form g ∂2mψ2ψ̄2 and the results of the recrsion test for different values of the soft degree σ.

recursive calculation of the 6-fermion amplitude A6(1+
ψ 2−ψ 3+

ψ 4−ψ 5+
ψ 6−ψ ) are just like those in

the scalar case (3.40), but now the permutations have to be taken with a sign:

A6(1+
ψ 2−ψ 3+

ψ 4−ψ 5+
ψ 6−ψ ) =

(
A(123)

6 − (1↔ 5)− (3↔ 5)
)
− (2↔ 4)− (2↔ 6). (3.43)

The input 4-point amplitudes A4(1+
ψ 2−ψ 3+

ψ 4−ψ ) are fixed by little group scaling to be

〈24〉[13] times a Mandelstam polynomial of degree m that must be symmetric under s↔ u

to ensure Fermi antisymmetry for identical fermions. The most general input amplitudes

for low values of m are summarized in Table 3.4 that also shows the result of the recursive

6-point test.

We comment briefly on these results:

• The NJL model has the fundamental 4-fermion interaction ψ̄2ψ2 and the result of

recursing it to 6-point is given in Appendix E.1. The relevance of this model will for

our purposes be as part of the supersymmetrization of the NLSM (see Section 3.6).

• Akulov-Volkov theory of Goldstinos is the only non-trivial EFT with coupling of

mass-dimension −4. The Goldstinos in this theory have low-energy theorems with

σ = 1. The 6-fermion amplitude is given in (E.14) in Appendix E.2.

• There are no constructible purely fermionic EFTs with fundamental quartic coupling

[g4] = −6. Nonetheless, as was shown in [60], the quartic Galileon has a supersym-

metrization with a 4-fermion fundamental interaction, however, the fermion has σ = 1,
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so the all-fermion amplitudes in that theory are not constructible by soft recursion: one

needs additional input from supersymmetry. We refer the reader to [60] and present

some further details in Section 3.8.1.

• For [g] = −8 and σ = 2, the 6-point numerical test is passed in 4d kinematics with-

out constraints on g and g′; that is because the recursed result depends only on ra-

tios (3.37). When the 3d consistency check is employed, we learn that we must set

g = 0 to ensure ai-independence. (This is not a strong test since the particular form

of the interaction, stu, ensures that all 1/ai-poles cancel in each factorization indi-

vidual diagram.) Hence, the theory that passes the 6-point test with σ = 2 has

A4(1ψ, 2ψ̄, 3ψ, 4ψ̄) = g′〈24〉[13]stu. The subtracted recursion relations fail at n > 6,

which means that at 8-point and higher, this model is not uniquely determined by

its symmetries. The Lagrangian construction of this theory has been studied as a

fermionic generalization of the scalar Galileon [91].

3.4.3 Pure Vector EFTs

Pure abelian vector EFTs consist of interaction terms built from Fµν-contractions, possibly

dressed with extra derivatives. In 4d, the Cayley-Hamilton relations imply that theories

built from just field strengths Fµν can be constructed from two types of index-contractions,

namely (see for example [92])

f = −1

4
FµνF

µν and g = −1

4
FµνF̃

µν , (3.44)

where F̃ µν = 1
2
εµνρσFρσ. If one assumes parity, the Lagrangian can only contain even powers

of g. One can then write an ansatz for the Lagrangian as

L = f +
b1

Λ4
f 2 +

b2

Λ4
g2 +

b3

Λ8
f 3 +

b4

Λ8
fg2 + . . . (3.45)

85



As established in Section 3.3.4, a model with photon interactions built of Fµν-contractions

only have soft behavior σ = 0. The simplest 4-photon interactions may naively look like

the vector equivalent of the constructible φ4 scalar EFT. However, that is not the case. For

the scalar, the 6-particle operator 1
Λ2φ

6 is subleading to the pole contributions with two φ4-

vertices. However, for photons the pole terms with two 1
Λ4F

4 vertices are exactly the same

order as 1
Λ8F

6. Therefore amplitudes in a theory with F n interactions and σ = 0 are non-

constructible, in other words it is trivial to have σ = 0 for any choice of coefficients bi. One

may ask if it is possible to choose the parameters bi in (3.45) such that the amplitudes have

enhanced soft behavior σ > 0. The 6-point soft recursive test shows that this is impossible,

i.e. no models exist with Lagrangians of the form (3.45) and σ > 0.

Nonetheless, the class of theories with pure F n interactions do include one particularly

interesting case, namely Born-Infeld (BI) theory. The BI Lagrangian can be written in 4d

as

LBI = Λ4

(
1−

√
− det

(
ηµν + Fµν/Λ2

))
. (3.46)

Upon expansion, the Lagrangian will take the form (3.45) with some particular coefficients bi.

As noted, these particular coefficients do not change the single-soft behavior of amplitudes,

the BI photon also has σ = 0. Nonetheless, BI theory does have the distinguishing feature of

being the vector part of a supersymmetric EFT. In particular, N = 1 supersymmetric Born-

Infeld theory couples the BI vector to a Goldstino mode whose self-interactions are described

by the Akulov-Volkov action. One can also view Born-Infeld as the vector part of the N = 2

or N = 4 supersymmetrization of DBI. It was argued recently [92] that supersymmetry

ensures BI amplitudes to vanish in certain multi-soft limits. Based on that, the BI amplitudes

can be calculated unambiguously using on-shell techniques [92]. Alternatively, one can show

that the N = 1 supersymmetry Ward identities uniquely fix the BI amplitudes in terms of

amplitudes with Goldstinos.

Next, one can consider EFTs in which the field strengths are dressed with derivatives,
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for example

L = −1

4
F 2 +

c1

Λ6
∂2F 4 +

c1

Λ12
∂4F 6 + . . . (3.47)

Theories with fundamental 4-point interactions are non-constructible for σ = 0 and fail the

soft recursion ai-independence 6-point test for σ > 0. One implication of this is that there

can be no vector Goldstone bosons with vanishing low-energy theorems. This conclusion

was also reached in [82], but from a very different algebraically-based analysis. A second

implication is that the pure vector sector of an N ≥ 2 Galileon model is non-constructible

with the basic soft recursion, and other properties (such as supersymmetry) have to be

specified in order to determine those amplitudes recursively.

There are other interesting vector EFTs: we study in detail the N = 2 supersymmetric

NLSM in Section 3.6. Furthermore, massive gravity [93, 94, 95] motivates the existence of a

vector-scalar theory coupling Galileons to a vector field; we explore this in Section 3.8.2.

3.5 Soft Limits and Supersymmetry

For models with unbroken supersymmetry, the on-shell amplitudes satisfy a set of linear

relations known as the supersymmetry Ward identities [38, 39]. (For recent reviews and

results, see [96, 85, 86].) In this section, we use N = 1 supersymmetry to derive general

consequences for the soft behavior for massless particles in the same supermultiplet. It is not

assumed that these particles are Goldstone or quasi-Goldstone modes; the results apply to all

N = 1 supermultiplets of massless particles. The consequences for extended supersymmetry

are directly inferred from the N = 1 constraints.

3.5.1 N = 1 Supersymmetry Ward Identities

We consider N = 1 chiral and vector supermultiplets. We use the following shorthand for

the action of the supercharges on individual particles with momentum label i: for chiral
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multiplets

state i Q · i An prefactor Q† · i An prefactor

ψ+ Z |i] 0 0

Z 0 0 ψ+ −|i〉

Z ψ− |i] 0 0

ψ− 0 0 Z −|i〉

(3.48)

where Z is a complex scalar and ψ is a Weyl fermion. The superscripts ± refer to the helicity

of the particle. Q† raises helicity by 1/2 while Q lowers it by 1/2. The prefactor is what

goes outside the amplitude when the supercharge acts on it, e.g.

Q · An
(
1Z2+

ψ3+
ψ4Z . . .

)
= 0 + |2]An

(
1Z2Z3+

ψ4Z . . .
)
− |3]An

(
1Z2+

ψ3Z4Z . . .
)

+ |4]An
(
1Z2+

ψ3+
ψ4−ψ . . .

)
+ . . . (3.49)

Due to the Grassmann nature of the supercharges, there is a minus sign for each fermion

that the supercharge has to move past to get to the ith state.

Similarly for a vector multiplet:

state i Q · i An prefactor Q† · i An prefactor

γ+ ψ+ |i] 0 0

ψ+ 0 0 γ+ −|i〉

ψ− γ− −|i] 0 0

γ− 0 0 ψ− |i〉

(3.50)

where ψ is a Weyl fermion and γ is a vector boson.

In this notation, the supersymmetry Ward identities are equivalent to the statement that
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the following action of the supercharges annihilates the amplitude [85, 86, 96]

0 = Q · An (1, . . . , n) =
n∑
i=1

(−1)Li+Pi |i]An (1, . . . ,Q · i, . . . , n) ,

0 = Q† · An (1, . . . , n) =
n∑
i=1

(−1)Li+Pi |i〉An
(
1, . . . ,Q† · i, . . . , n

)
, (3.51)

where Li is equal to the number of fermions to the left of Q(†) · i and the factors Pi = 0 or 1

correspond to the additional minus signs associated with the spinor prefactors as described

in equations (3.48) and (3.50). Note that the action of the supercharges always changes the

number of fermions by ±1, but that amplitudes are non-vanishing only if the number of

fermions is even. So to get an interesting relation among amplitudes on the right-hand-side,

the amplitude on the left-hand-side must vanish identically.

3.5.2 Soft Limits and Supermultiplets

We consider the chiral multiplet and vector multiplet separately and then extend the results

to enhanced supersymmetry.

Chiral multiplet. Define the soft factors S(i)
n as the momentum dependent coefficients in

the holomorphic soft expansion taken here for simplicity on the first particle

An ({ε|1〉, |1]}Z , . . .) → S(0)
n (1Z , . . .) ε

σZ + S(1)
n (1Z , . . .) ε

σZ+1 +O
(
εσZ+2

)
,

An
(
{ε|1〉, |1]}+

ψ , . . .
)
→ S(0)

n (1+
ψ , . . .) ε

σψ + S(1)
n (1+

ψ , . . .) ε
σψ+1 +O

(
εσψ+2

)
.

(3.52)

The soft weights are σZ and σψ for the scalar and fermion, respectively. To see how super-

symmetry forces relations among the soft weights and soft factors we use (3.51) to write

An (1Z , . . . , n) =
n∑
i=2

(−1)Li+Pi+1 [Xi]

[X1]
An
(
1+
ψ , . . . ,Q · i, . . . , n

)
,

An
(
1+
ψ , . . . , n

)
=

n∑
i=2

(−1)Li+Pi+1 〈Xi〉
〈X1〉

An
(
1Z , . . . ,Q† · i, . . . , n

)
,

(3.53)
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where the arbitrary X-spinor cannot be proportional to |1〉 or |1].

Taking the holomorphic soft expansion on the right-hand-side of these expressions, in the

second line only, an extra power of ε appears in the denominator and we find

S(0)
n (1Z , . . .) ε

σZ +O
(
εσZ+1

)
=

n∑
i=2

(−1)Li+Pi+1 [Xi]

[X1]
S(0)
n (1+

ψ , . . . ,Q · i, . . .) ε
σψ +O

(
εσψ+1

)
,

S(0)
n (1+

ψ , . . .) ε
σψ +O

(
εσψ+1

)
=

n∑
i=2

(−1)Li+Pi+1 〈Xi〉
〈X1〉

S(0)
n (1Z , . . . ,Q† · i, . . .) εσZ−1 +O (εσZ ) .

The leading power of ε on the right-hand-side must match the leading power on the left. It is

possible that cancellations among the terms on the right-hand-side may effectively increase

the leading power but never decrease it. This then gives the following inequalities

σZ ≥ σψ and σψ ≥ σZ − 1 , (3.54)

for which there are only two solutions

σZ = σψ + 1 or σZ = σψ . (3.55)

These two options have different consequences for the soft factors. For σZ = σψ + 1, we have

0 =
n∑
i=2

(−1)Li+Pi [Xi]S(0)
n

(
1+
ψ , . . . ,Q · i, . . .

)
,

S(0)
n

(
1+
ψ , . . .

)
=

n∑
i=2

(−1)Li+Pi+1 〈Xi〉
〈X1〉

S(0)
n

(
1Z , . . . ,Q† · i, . . .

)
,

(3.56)

while for σφ = σψ, we have

0 =
n∑
i=2

(−1)Li+Pi〈Xi〉S(0)
n

(
1Z , . . . ,Q† · i, . . .

)
,

S(0)
n (1Z , . . .) =

n∑
i=2

(−1)Li+Pi+1 [Xi]

[X1]
S(0)
n

(
1+
ψ , . . . ,Q · i, . . .

)
.

(3.57)

90



In addition there will be an infinite number of similar relations which come from matching

higher powers in ε.

Vector multiplet. We define the soft factors as

An
(
{ε|1〉, |1]}+

γ , . . .
)
→ S(0)

n (1+
γ , . . .) ε

σγ + S(1)
n (1+

γ , . . .) ε
σγ+1 +O

(
εσγ+2

)
. (3.58)

The analysis of the supersymmetry Ward identities proceeds similarly to that of the chiral

multiplet and results in only two options for the soft weights:

σψ = σγ + 1, or σψ = σγ . (3.59)

The consequences for the soft factors are for σψ = σγ + 1

0 =
n∑
i=2

(−1)Li+Pi [Xi]S(0)
n

(
1+
γ , . . . ,Q · i, . . .

)
,

S(0)
n

(
1+
γ , . . .

)
=

n∑
i=2

(−1)Li+Pi+1 〈Xi〉
〈X1〉

S(0)
n

(
1+
ψ , . . . ,Q

† · i, . . .
)
,

(3.60)

and for σγ = σψ

0 =
n∑
i=2

(−1)Li+Pi〈Xi〉S(0)
n

(
1+
ψ , . . . ,Q

† · i, . . .
)
,

S(0)
n

(
1+
ψ , . . .

)
=

n∑
i=2

(−1)Li+Pi+1 [Xi]

[X1]
S(0)
n

(
1+
γ , . . . ,Q · i, . . .

)
.

(3.61)

Note that we have made no assumptions about the sign of σ, so the relations derived

here are totally general. Also, the supersymmetry Ward identities hold at all orders in

perturbation theory, so the relations among the soft behaviors remain true at loop-level.

Extended supersymmetry. Relations between the soft weights of particles in the same

massless supermultiplets in extended supersymmetry follow directly from the N = 1 results
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above, since the supersymmetry Ward identities take the same form for each pair of (s, s+ 1
2
)-

multiplets. In particular, the soft weights of the boson (σB) and fermion (σF ) in a (s, s+ 1
2
)-

multiplet are related as


σB = σF + 1 or σB = σF for s integer ,

σB = σF − 1 or σB = σF for s half-integer .

(3.62)

These relations will be useful in later applications in this paper. For now, we make a

small aside and demonstrate the application of (3.62) to the case of spontaneously broken

superconformal symmetry and for unbroken extended supergravity.

3.5.3 Application to Superconformal Symmetry Breaking

The breaking of conformal symmetry gives rise to a single Goldstone mode [80], often called

the dilaton. It has been established in the literature [97, 98, 99] that this dilaton obeys low-

energy theorems with σ = 0. In a superconformal theory, breaking of conformal invariance

must be accompanied by breaking of the superconformal symmetries. This follows from the

algebra: {S,S†} = K, [Q,K] = S† and [Q†,K] = S, where K are the generators of conformal

boosts, S and S† are the superconformal fermionic generators, and Q and Q† are the regular

supercharges with {Q,Q†} = P .

Assuming Q-supersymmetry to be unbroken, the dilaton will be joined by a Goldstone

mode from the broken R-symmetry to form a complex scalar Z with σZ = 0.14 It follows

from our general analysis that the fermionic partner of Z will have σ = 0 or σ = −1. For

the latter, Yukawa-interactions are necessary [89] and supersymmetry then requires cubic

scalar interactions Z|Z|2 + h.c. which would imply σ = −1 for the dilaton. Since σZ = 0,

σ = −1 is not possible for the dilaton and we conclude that the Goldstino mode associated

with the breaking of the superconformal fermionic symmetries generated by S and S† must

14An example of the bosonic part of an N = 1 effective action of the dilaton and a U(1)R Goldstone boson
can be found in [100].
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helicity state σ
+2 graviton −3

+3/2 gravitino −2
+1 graviphoton −1
+1/2 fermion 0

0 scalar 0 or +1
-1/2 fermion +1

-1 graviphoton +1
-3/2 gravitino +1

-2 graviton +1

Table 3.5: Holomorphic soft weights σ for the N = 8 supermultiplet.

have low-energy theorems with soft weight σ = 0.

An example is N = 4 SYM on the Coulomb branch with the simplest breaking pattern.15

The R-symmetry is broken from SO(6) to SO(5) and the five broken generators give rise

to five Goldstone modes which join the dilaton of the conformal breaking to be the 6 real

scalars of an N = 4 massless multiplet. The supermultiplet also contains the 4 Goldstinos

associated with the four broken superconformal generators. The supermultiplet is capped off

by a U(1) vector whose soft weight, by the above analysis, must be either σ = 0 or −1. The

states that are charged under this U(1) are the massive W -multiplets and in their presence,

one can have σ = −1, otherwise σ = 0 for the vector.

3.5.4 Application to Supergravity

It is well-known that gravitons have a universal soft behavior [102]: when the soft limit (3.12)

is applied to a single graviton, the amplitude diverges as 1/ε3, i.e. the soft weight is σ2 = −3.

(In this section, we use a subscript on the soft weight to indicate the spin of the particle.)

Applying (3.62) shows that the gravitino can have σ3/2 = −2 or −3. However, unitarity and

locality constraints show [89] that amplitudes cannot be more singular than 1/ε2 for a single

soft gravitino, so it must be that σ3/2 = −2. This must be true in any supergravity theory.

Consider now a graviphoton in N ≥ 2 supergravity. Its supersymmetry Ward identi-

15See [101, 99] for explicit amplitudes on the Coulomb branch of N = 4 SYM.
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ties with the gravitino imply σ1 = −2 or σ1 = −1. The σ1 = −2 behavior requires the

graviphoton, and by supersymmetry also the gravitino, to interact with a pair of electrically

charged particles via a dimensionless coupling; however, for the gravitino such a coupling is

inconsistent with unitarity and locality [89]. So there is only one option, namely σ1 = −1.

In pure N ≥ 3 supergravity, we also have spin-1
2

fermions in the graviton supermultiplet.

By (3.62) and the previous results, they can have either σ1/2 = −1 or 0. The analysis in [89]

shows that σ1/2 = −1 requires a dimensionless coupling of the spin-1
2

particle with two other

particles, for example via a Yukawa coupling. Since there are no dimensionless couplings in

pure supergravity, it follows from [89] that the amplitude has to be O(ε0) or softer. This

leaves only one option, namely that σ1/2 = 0 in pure supergravity.

In pure N ≥ 4 supergravity, the scalars in the supermultiplet can have σ0 = 0 or σ0 = 1.

If we focus on the MHV sector, the supersymmetry Ward identities give

An(1Z 2Z̄ 3−h 4+
h . . . n

+
h ) =

〈13〉4

〈23〉4
An(1+

h 2−h 3−h 4+
h . . . n

+
h ) , (3.63)

where Z and Z̄ denote any pair of conjugate scalars and h are gravitons. Taking line 1 soft

holomorphically, |1〉 → ε|1〉, the graviton amplitude on the RHS diverges as 1/ε3 but the

prefactor vanishes as ε4. It follows that the MHV amplitude vanishes as O(ε) in the single

soft-scalar limit. In other words, for MHV amplitudes σ0 = 1. It is tempting to conclude

that one must have σ0 = 1 for all amplitudes, but that is too glib, as we now explain.

It is known that the scalar cosets ofN ≥ 4 pure supergravity theories in 4d are symmetric,

and therefore lead to σ0 = 1 vanishing low-energy theorems. But at the level of the on-shell

amplitudes, this conclusion does not follow from the supersymmetry Ward identities alone: as

we have seen, they give σ0 = 1 or σ0 = 0. That analysis has to remain true at all loop-orders.

In N = 4 supergravity, for example, the anomaly of the U(1) R-symmetry can be expected

to affect the soft behavior at some order. Our arguments show that it cannot happen in

the MHV sector, but does not rule it out beyond MHV; this is what the σ0 = 0 accounts
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for. Furthermore, one can add higher-derivative operators to the supergravity action such

that supersymmetry is preserved but the low-energy theorems are not. Indeed, string theory

does this in the α′-expansion by adding to the N = 8 tree-level action a supersymmetrizable

operator α′3e−6φR4. This operator does not affect the soft behavior of MHV amplitudes, but

it is known that it does result in non-vanishing single soft scalar limits for 6-particle NMHV

amplitudes at order α′3 [103, 104].

The results for N = 8 supersymmetry are summarized in Table 3.5. Note that the soft

weights in this table follow from taking the soft limit holomorphically, |i〉 → ε|i〉 for all states,

independently of the sign of their helicity. At each step in the spectrum, the soft weight

either changes by 1 or not at all. Note that one could also have used the anti-holomorphic

definition |i] → ε|i] of taking the soft limit; in that case the soft weights would just have

reversed, to start with σ = −3 for the negative helicity graviton, but no new constraints

would have been obtained on the scalar soft weights. In N = 8 supergravity, the 70 scalars

are Goldstone bosons of the coset E7(7)/SU(8) and hence σ = 1. Including higher-derivative

corrections may change this behavior to σ = 0 depending on whether the added terms are

compatible with the coset structure.

3.5.5 MHV Classification and Examples of Supersymmetry Ward

Identities

For later convenience, we state here the explicit form of the supersymmetry Ward identities

(3.51) for a few particularly useful cases. We focus on the chiral multiplet, but similar results

apply to the vector multiplet.

First we make the simple observation that amplitudes with all Z’s or only one Z̄ and rest

Z’s vanish:

An
(
1Z 2Z 3Z 4Z . . . nZ

)
= 0 and An

(
1Z 2Z̄ 3Z 4Z . . .

)
= 0 . (3.64)
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This follows from the supersymmetry Ward identities such as

0 = Q · An
(
1+
ψ 2Z 3Z 4Z . . . nZ

)
= |1]An

(
1Z 2Z 3Z 4Z . . . nZ

)
,

0 = Q · An
(
1+
ψ 2Z̄ 3Z 4Z . . . nZ

)
= |1]An

(
1Z 2Z̄ 3Z 4Z . . . nZ

)
− |2]An(1+

ψ 2−ψ 3Z 4Z . . . nZ
)
.

Dotting in [2| gives (3.64). Similarly An(1+
ψ 2−ψ 3Z 4Z . . . nZ

)
= 0 and so on. In the context

of gluon scattering, the equivalent statements are that amplitudes with helicity structure

+ + + . . .+ or − + + . . .+ vanish. These helicity configurations are often called “helicity

violating”.

The simplest non-vanishing amplitudes are often denoted MHV (Maximally Helicity Vi-

olating) in the context of gluon scattering and we adapt the same nomenclature here. MHV

amplitudes obey the simplest supersymmetry Ward identities in that they are just linear

proportionality relations. For example, it follows from

0 = Q · An
(
1+
ψ 2Z̄ 3Z 4Z̄ 5Z . . . nZ

)
= |1]An

(
1Z 2Z̄ 3Z 4Z̄ . . .

)
− |2]An(1+

ψ 2−ψ 3Z 4Z̄ . . .
)
− |4]An(1+

ψ 2Z̄ 3Z 4−ψ . . .
) (3.65)

upon dotting in [4| that

An(1+
ψ 2−ψ 3Z 4Z̄ 5Z . . . nZ) =

[14]

[24]
An(1Z 2Z̄ 3Z 4Z̄ 5Z . . . nZ). (3.66)

Similarly, one finds that the MHV amplitude with four fermions is proportional to the one

with two fermions. To summarize, MHV amplitudes satisfy

An(1+
ψ 2−ψ 3+

ψ 4−ψ 5Z . . . nZ) =
[13]

[14]
An(1+

ψ 2−ψ 3Z 4Z̄ 5Z . . . nZ)

=
[13]

[24]
An(1Z 2Z̄ 3Z 4Z̄ 5Z . . . nZ) .

(3.67)

The second-simplest class of supersymmetric Ward identities relate amplitudes in the NMHV

class. In this paper, the 6-particle amplitudes play a central role, so we write down the 6-
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point NMHV supersymmetry Ward identities explicitly:

|1]A6(1Z 2Z̄ 3Z 4Z̄ 5Z 6Z̄)− |2]A6(1+
ψ 2−ψ 3Z 4Z̄ 5Z 6Z̄)

− |4]A6(1+
ψ 2Z̄ 3Z 4−ψ 5Z 6Z̄)− |6]A6(1+

ψ 2Z̄ 3Z 4Z̄ 5Z 6−ψ ) = 0 ,

(3.68)

|1]A6(1Z 2−ψ 3+
ψ 4Z̄ 5Z 6Z̄) + |3]A6(1+

ψ 2−ψ 3Z 4Z̄ 5Z 6Z̄)

− |4]A6(1+
ψ 2−ψ 3+

ψ 4−ψ 5Z 6Z̄)− |6]A6(1+
ψ 2−ψ 3+

ψ 4Z̄ 5Z 6−ψ ) = 0 ,

(3.69)

|1]A6(1Z 2−ψ 3+
ψ 4−ψ 5+

ψ 6Z̄) + |3]A6(1+
ψ 2−ψ 3Z 4−ψ 5+

ψ 6Z̄)

+ |5]A6(1+
ψ 2−ψ 3+

ψ 4−ψ 5Z 6Z̄)− |6]A6(1+
ψ 2−ψ 3+

ψ 4−ψ 5+
ψ 6−ψ ) = 0 .

(3.70)

We now turn to applications of these results.

3.6 Supersymmetric Non-linear Sigma Model

Perhaps the simplest and most familiar class of models that exhibit both linearly realized su-

persymmetry and interesting low-energy theorems are the supersymmetric non-linear sigma

models. Of particular interest are the coset sigma models for which the target manifold is

a homogeneous space G/H. At lowest order, the coset sigma model captures the universal

low-energy behavior of the scalar Goldstone modes of a spontaneous symmetry breaking

pattern G → H, where G and H are the isometry and isotropy groups of the target man-

ifold respectively. If the target manifold is additionally a symmetric space and there are

no 3-point interactions, then the off-shell Ward-Takahashi identities for the spontaneously

broken currents imply σ = 1 vanishing low-energy theorems for the Goldstone scalars. An

interesting recent perspective on coset sigma models can be found in [105].

At leading order it is fairly straightforward to calculate the on-shell scattering amplitudes

for such a model from the (two-derivative) non-linear sigma model effective action. Using

the methods of on-shell recursion, the use of an effective action is unnecessary. Instead, we

may assume low-energy theorems and on-shell Ward identities of the isotropy group H as
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the on-shell data that defines the model. Using the procedure of the soft bootstrap described

in Section 3.3.5, we may apply subtracted recursion to construct the contributions to the

S-matrix at leading order.

A particularly simple and well-studied example of such a construction has previously

been given for the U(N)×U(N)
U(N)

coset sigma model [35, 83]. There are several nice features of

this model which make it an appealing toy-model to study on-shell. As will be discussed

in Section 3.8.4, at leading order (∆̃ = 1 or equivalently two-derivative) the isotropy U(N)

symmetry allows for the construction of flavor -ordered partial amplitudes with only (n− 3)!

independent amplitudes for the scattering of n Goldstone scalars.

The situation is somewhat less straightforward for models describing the low-energy dyna-

mics of the Goldstone modes of internal symmetry breaking with some amount of linearly

realized supersymmetry.16 There are several interesting consequences of this combination of

symmetries. The states must form mass degenerate multiplets of the supersymmetry algebra,

which in this case means that the Goldstone scalars must always transform together with

additional massless spinning states. As discussed in Section 3.5.2, the low-energy theorems

of each of the particles in these Goldstone multiplets are not independent.

It is well-known in the literature of supersymmetric field theories that to construct a

supersymmetric action, the massless scalar modes must parametrize a target space manifold

with Kähler structure for N = 1 supersymmetry [106]. For N = 2 supersymmetry the target

space manifold must have the structure

MN=2 =MV ×MH, (3.71)

where the scalars of the vector multiplets parametrize the special-Kähler manifoldMV while

the scalars belonging to hyper multiplets parametrize the hyper-Kähler manifoldMH [107].

As a consequence, despite the obvious virtues of a flavor ordered representation, this makes

16In this more general context internal symmetry includes R-symmetry. For our purposes the relevant
property is that the conserved charges are Lorentz scalars and so correspond to a spectrum of spin-0 Goldstone
modes.
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studying the supersymmetrization of the U(N)×U(N)
U(N)

coset sigma model using subtracted

recursion more difficult, since even in the N = 1 case the target manifold is not Kähler.

This does not mean that the internal symmetry breaking pattern U(N) × U(N) → U(N)

is impossible in an N = 1 supersymmetric model. Rather it means that the target space

contains U(N)×U(N)
U(N)

as a non-Kähler submanifold and includes additional directions in field

space or equivalently includes additional massless quasi-Goldstone scalars [108]. In general

there is no unique way to extend the symmetry breaking coset to a Kähler manifold, because

in any given example the spectrum of quasi-Goldstone modes depends on the details of the

UV physics. Correspondingly, the quasi-Goldstone scalars do not satisfy the kind of universal

low-energy theorems necessary for us to construct the scattering amplitudes recursively.

Instead, in this section we will study the interplay of low-energy theorems and supersym-

metry by considering the simplest symmetric coset that is both Kähler and special-Kähler

SU(2)

U(1)
∼= CP1 , (3.72)

and therefore should admit both anN = 1 andN = 2 supersymmetrization. Our assumption

here is that the target manifold is the coset manifold and therefore the massless spectrum

should contain only two real scalar degrees of freedom, both Goldstone modes. They form a

single complex scalar field Z,Z which carries a conserved charge associated with the isotropy

U(1). These properties uniquely determine the Goldstone multiplets as an N = 1 chiral and

N = 2 vector multiplet respectively.

The main results of this section are (1) the demonstration that both the N = 1 and

N = 2 CP1 non-linear sigma models are constructible on-shell using recursion without the

need to explicitly construct an effective action. And (2) this construction gives a new on-

shell perspective on the relationship between the linearly realized target space isotropies of

MV and electric-magnetic duality transformations of the associated vector bosons.
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3.6.1 N = 1 CP1 NLSM

The N = 1 CP1 non-linear sigma model is defined by the following on-shell data:

• A spectrum consisting of a massless N = 1 chiral multiplet (Z, Z̄, ψ+, ψ−).

• Scattering amplitudes satisfy N = 1 supersymmetry Ward identities.

• Scattering amplitudes satisfy isotropy U(1) Ward identities under which Z, Z̄ are

charged.

• σZ = σZ̄ = 1 soft weight for the scalars.

Using the approach of the soft bootstrap, we begin by constructing the most general on-shell

amplitudes at lowest valence that are consistent with the above data and minimize ∆̃. There

are no possible 3-point amplitudes consistent with the assumptions and so we must begin at

4-point. A |Z|4 interaction, corresponding to ∆̃ = 0, is consistent with U(1) conservation but

violates the assumed low-energy theorem. The next-to-lowest reduced dimension interactions

correspond to ∆̃ = 1 and have a unique 4-point amplitude consistent with the assumptions

A4(1Z 2Z̄ 3Z 4Z̄) =
1

Λ2
s13. (3.73)

Note that at 4-point, the conservation of the U(1)-charge for the complex scalar is auto-

matically enforced as a consequence of the supersymmetry Ward identitites. We will see

that this implies the conservation of the U(1) charge for amplitudes with arbitrary number

of external particles corresponding to ∆̃ = 1. Note that this is not automatic for higher

order (∆̃ > 1) corrections and must be imposed as a separate constraint. Using (3.67) the

remaining 4-point amplitudes are completely determined by supersymmetry; it is convenient

to summarize the component amplitudes in a single superamplitude [109]

A4(1Φ+2Φ−3Φ+4Φ−) =
1

Λ2
[13]δ(2)(Q̃) =

1

2Λ2
[13]

4∑
i,j=1

〈ij〉ηiηj . (3.74)
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Here we have introduced two chiral superfields Φ+ and Φ− that contain the positive and

negative helicity fields of the N = 1 chiral multiplet as

Φ+ = ψ+ + ηZ , Φ− = Z̄ − η ψ−. (3.75)

η is the Grassmann coordinate of N = 1 on-shell superspace and ηi denotes the η-coordinate

of the ith superfield. We can obtain all the component amplitudes by projecting out compo-

nents of the superfield. For example, the all-fermion amplitude can be derived as follows

A4(1+
ψ2−ψ3+

ψ4−ψ ) =
∂

∂η2

∂

∂η4

A4(1Φ+2Φ−3Φ+4Φ−) = − 1

Λ2
[13]〈24〉. (3.76)

It is useful to note that the expression (3.74) is manifestly local. It follows that all com-

ponent amplitudes are free of factorization singularities, indicating the absence of 3-point

interactions in this theory. Note also that the pure fermion sector is exactly the NJL model

detected by the soft bootstrap in Section 3.4.2.

Next, we use these 4-point amplitudes to recursively construct n-point amplitudes. Fol-

lowing the discussion in Section 3.5, we note that the soft weight of the fermion must be either

σψ = 0 or σψ = 1. Making the conservative choice σψ = 0, we evaluate the constructibility

criterion on the above on-shell data,

4 < 2ns + nf , (3.77)

where nf is the number of external fermion states of the n-point amplitude and ns = n−nf

is the number of external scalar states. For n > 4, this condition is satisfied for all n-

point amplitudes. We find that recursively constructing the 6-point amplitudes yields an

ai-independent expression. All the 6-point amplitudes can be found in Appendix E.1. Since

our input 4-point amplitudes are MHV, the only non-zero constructible amplitudes at 6-

point are NMHV and can be verified to satisfy the NMHV 6-point Ward identities (3.68),
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(3.69), (3.70).

If however we make the stronger assumption σψ = 1, the recursively constructed 6-

point amplitude is ai-dependent and therefore fails the consistency checks. As a result we

conclude that the true soft weight of the fermion of our theory is σψ = 0 and this is sufficient

to construct the S-matrix at leading order from the 4-point seed amplitudes (3.74).

The recursive constructibility of the S-matrix has non-trivial consequences for the possible

conserved additive quantum numbers. In a recursive model the only non-zero amplitudes

are those which can be constructed by gluing together lower-point on-shell amplitudes

...
...An ∼=

∑
I,X

PI
AL... AR ...

X X

where the states X, X̄ on either side of the factorization channel I have CP conjugate quan-

tum numbers. As discussed further in Appendix F, if an additive quantum number is con-

served by all seed amplitudes then it must be conserved by all recursively constructible

amplitudes.

For example, in the present context the seed amplitudes conserve two independent U(1)

charges:

U(1)A U(1)B

Z qA 0

Z̄ −qA 0

ψ+ 0 qB

ψ− 0 −qB

η −qA qB

Φ+ 0 qB

Φ− −qA 0

We know to expect the existence of an isotropy U(1) under which the scalars are charged, but

from our on-shell construction it is unclear whether this should be U(1)A or a combination
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of U(1)A and U(1)B. We have presented the charges as two independent R-symmetries but

more correctly we should consider them as a single global U(1) and a U(1)R. The presence

of a second conserved quantum number is not part of the definition of the CP1 non-linear

sigma model but is instead an emergent or accidental symmetry at lowest order in the EFT.

In general one would expect U(1)A × U(1)B to be explicitly broken to the isotropy U(1) by

higher dimension operators.

3.6.2 N = 2 CP1 NLSM

The N = 2 CP1 NLSM is defined by the following on-shell data:

• A spectrum consisting of a massless N = 2 vector multiplet (Z, Z̄, ψa+, ψ−a , γ
+, γ−),

where a = 1, 2.

• Scattering amplitudes satisfy N = 2 supersymmetry Ward identities.

• Scattering amplitudes satisfy isotropy U(1) Ward identities under which Z, Z̄ are

charged.

Note that, importantly, we do not impose the the soft weight of the scalars σZ = σZ̄ = 1.

As we will explain further below, no model with the above properties and vanishing scalar

soft limits exists.

To proceed, interactions with reduced dimension ∆̃ = 0 (such as Yukawa interactions) are

incompatible with N = 2 supersymmetry for a single vector multiplet. Thus, the minimal

value is ∆̃ = 1; that is of course also the value for the N = 1 model. It is curious to note

that N = 2 supersymmetry is sufficient to uniquely construct the S-matrix at this order in

∆̃. As we show in the following, without assuming vanishing scalar soft limits, the restriction

of the external states to a single chiral multiplet (Z, Z̄, ψ1+, ψ−1 ) reproduces the N = 1 CP1

sigma model.

As in the previous section, for ∆̃ = 1 the 4-point scalar amplitude takes the form (3.73).

All 4-point component amplitudes are uniquely fixed by the 4-scalar amplitudes by theN = 2
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supersymmetry Ward identities and they can be encoded compactly into superamplitudes

using two chiral superfields [109]

Φ+ = γ+ + η1ψ
1+ + η2ψ

2+ − η1η2Z,

Φ− = Z̄ + η1ψ
−
2 − η2ψ

−
1 − η1η2γ

− .

(3.78)

Here η1 and η2 are the Grassmann coordinates of N = 2 on-shell superspace. The R-indices

on ψa are raised and lowered using εab, so ψ−2 = ε21ψ
1− = ψ1− and ψ−1 = ε12ψ

2− = −ψ2−. In

terms of the superfields, the 4-point superamplitude can be expressed as

A4(1Φ+2Φ−3Φ+4Φ−) =
1

Λ2

[13]

〈13〉
δ(4)(Q̃) =

1

4Λ2

[13]

〈13〉

2∏
a=1

4∑
i,j=1

〈ij〉ηiaηja. (3.79)

We use ηia to denote the ath Grassmann coordinate of the ith external superfield. In contrast

to (3.74), the superamplitude (3.79) generates component amplitudes that are not local due

to the factorization singularity at P 2
13 → 0. For example, consider the following component

amplitude

A4(1+
γ 2−γ 3+

ψ14
−
ψ1

) = − ∂

∂η21

∂

∂η22

∂

∂η31

∂

∂η42

A4(1Φ+2Φ−3Φ+4Φ−) = − 1

Λ2

[13][14]〈24〉
[24]

. (3.80)

Locality and unitarity imply that this 4-point amplitude must factorize into 3-point ampli-

tudes on the singularity at P 2
13 → 0. Denoting the helicity of the exchanged particle h, the

amplitude factorizes as

1+
γ

3+
ψ1

P h
13 −P−h13

2−γ

4−ψ1
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The contribution to the residue on the singularity takes the form

P 2
13A4(1+

γ 2−γ 3+
ψ14
−
ψ1

)

∣∣∣∣
P 2
13=0

= A3

(
1+
γ 3+

ψ1(P13)h
)
A3

(
(−P13)−h2

−
γ 4−ψ1

)
=
(g1

Λ
[13]3/2−h[1P13]1/2+h[3P13]−1/2+h

)(g2

Λ
〈24〉3/2−h〈2P13〉1/2+h〈4P13〉−1/2+h

)
=
g1g2

Λ2
(−1)2h[13]3/2−h〈24〉3/2+h[23]−1/2+h[14]1/2+h , (3.81)

with the 3-point amplitudes completely determined by Poincaré invariance and little group

scaling. Comparing with the explicit form of the residue calculated from (3.80)

P 2
13A4(1+

γ 2−γ 3+
ψ14
−
ψ1

)

∣∣∣∣
P 2
13=0

=
1

Λ2
[13][14]〈24〉2, (3.82)

we find that h = 1/2 and g1g2 = −1. The exchanged particle of helicity h = 1/2 can be either

ψ1+ or ψ2+. The locality of the A4(1+
ψ12
−
ψ1

3+
ψ14
−
ψ1

) and A4(1+
ψ22
−
ψ2

3+
ψ24
−
ψ2

) tells us that they do

not factorize on the (P13)2 → 0 pole. We conclude that A3(1+
γ 2+

ψ1
3+
ψ1

) = A3(1+
γ 2+

ψ2
3+
ψ2

) = 0,

while

A3(1+
γ 2+

ψ1
3+
ψ2

) =
g1

Λ
[12][13] , A3(1−γ 2−ψ1

3−ψ2
) =

g2

Λ
〈12〉〈13〉 . (3.83)

We carry out a similar exercise with A4(1+
γ 2−γ 3+

γ 4−γ ) for a particle of helicity h in the P 2
13 → 0

factorization channel. Comparing with the 4-point amplitude (3.79) fixes h = 0. This could

correspond to either Z or Z̄ exchange. The absence of a P 2
14 → 0 pole in A4(1+

γ 2−γ 3Z4Z̄)

shows that A3(1+
γ 2+

γ 3Z̄) = 0 and

A3(1+
γ 2+

γ 3Z) =
g3

Λ
[12]2 , A3(1−γ 2−γ 3Z̄) =

g4

Λ
〈12〉2 , (3.84)

where g3g4 = 1. Demanding that all non-local 4-point amplitudes factorize correctly fixes
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−g1 = g2 = g3 = g4 = −1. The 3-point superamplitudes are

A3(1Φ−2Φ−3Φ−)=δ(4)(Q̃) =
1

4Λ

2∏
a=1

3∑
i,j=1

〈ij〉ηiaηja ,

A3(1Φ+2Φ+3Φ+)=
1

Λ
δ(2)(η1[23] + η2[31] + η3[12]) =

1

Λ

2∏
a=1

(η1a[23] + η2a[31] + η3a[12]) ,

(3.85)

where
∏2

a=1 fa is defined as f1f2. It is interesting to observe that even though the N = 0, 1

and 2 CP1 NLSM have the pure scalar 4-point amplitude in common, in the latter case the

extended supersymmetry together with locality require the presence 3-point interactions.

We are now in a position to address the constructibility of general n-point amplitudes.

Since we are not assuming vanishing soft limits as part of our on-shell data, we are not able

to make use of subtracted recursion. This is only problematic for a subset of the amplitudes

in this model, at least at leading order. The unsubtracted constructibility criterion for this

model reads

4 < nf + 2nv, (3.86)

where nf and nv are the number of fermions and vector bosons respectively. It turns out

that the amplitudes that do not satisfy this criterion can be determined from the N =

2 supersymmetry Ward identities in terms of those that do; explicit formulae are given

in Appendix G. Remarkably, without making any strong assumptions about the structure

of low-energy theorems for the scalars, which usually characterize the sigma model coset

structure, the N = 2 supersymmetry is sufficient at leading order to both construct the

entire S-matrix and reproduce the amplitudes of the N = 1 and N = 0 models as special

cases.

This same statement can be made in the perhaps more familiar language of local field

theory. At this order in the EFT expansion, the S-matrix elements should be calculable from

some effective action, the bosonic sector of which should be described by a two-derivative
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Lagrangian of the general form

Leff = P
(
|Z|2

)
|∂µZ|2 +Q

(
|Z|2

)
Z F 2

+ + h.c. (3.87)

where P (|Z|2) and Q(|Z|2) are some functions analytic around Z ∼ 0. Insisting that the

S-matrix elements satisfy the on-shell N = 2 supersymmetry Ward identities is equivalent to

requiring the existence of off-shell N = 2 supersymmetry transformations under which the

effective action is invariant. The on-shell uniqueness result is equivalent to the statement

that the off-shell N = 2 supersymmetry uniquely (up to field redefinitions) determines the

form of the two-derivative effective action. In particular, the function P (|Z|2) is uniquely

determined to be

P
(
|Z|2

)
=

(
1

1 + |Z|2

)2

, (3.88)

corresponding to the Fubini-Study metric on CP1.

Since the entire S-matrix is determined, we can explicitly demonstrate how the presence of

the vector bosons modifies the structure of the low-energy theorems from the naive vanishing

soft limits suggested by the coset structure. Consider the following relation among 5-point

amplitudes given by the N = 2 supersymmetry Ward identities

A5

(
1+
γ , 2

+
γ , 3Z , 4Z , 5Z̄

)
=
〈34〉2

〈45〉2
A5

(
1+
γ , 2

+
γ , 3

+
γ , 4Z , 5

−
γ

)
. (3.89)

The amplitude on the right-hand-side satisfies (3.86) and therefore is constructible using

unsubtracted recursion. This gives the non-constructible amplitude on the left-hand-side as

A5

(
1+
γ , 2

+
γ , 3Z , 4Z , 5Z̄

)
=

1

Λ3
〈34〉2

(
[12][34]

〈12〉〈34〉
+

[23][14]

〈23〉〈14〉
+

[31][24]

〈31〉〈24〉

)
. (3.90)

The soft limits on particles 1, 2, 3 and 4 vanish, as expected. The soft limit on particle 5,

however, is O(1), contrary to the expected soft behavior for a Goldstone mode of a symmetric
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coset. Explicitly

A5

(
1+
γ , 2

+
γ , 3Z , 4Z , 5Z̄

) |5]→ε|5]−−−−→ 1

Λ3
[12]2 +O(ε). (3.91)

It is interesting that the coupling to the photons, required by N = 2 supersymmetry, results

in non-vanishing soft scalar limits for a theory with a symmetric coset. In principle, this

amplitude could have had a contact contribution of the form ∝ [12]2, but our calculation

shows that such a term would be incompatible with N = 2 supersymmetry.

The maximal R-symmetry group that this model can realize is U(2)R = U(1)R×SU(2)R.

We will now verify that the SU(2)R symmetry Ward identities hold for the seed amplitudes,

the U(1)R we will address separately. To do this we choose a basis for the generators of

SU(2)R. The scalars and vectors both transform as SU(2) singlets. The positive helicity

fermion species ψ1,2+ will transform in the fundamental representation under

T0 =

1 0

0 −1

 , T+ =

0 1

0 0

 , T− =

0 0

1 0

 . (3.92)

The negative helicity fermions transform in the anti-fundamental with T̄i = −T †i . This tells

us that the T0-Ward identity is satisfied as long as the fermion species appear in pairs of (a)

different helicity, same species or (b) same helicity, different species. This is true of all the

non-zero amplitudes in this model. The action of T+ and T− are

state i T+ · i An prefactor T− · i An prefactor T0 · i An prefactor

ψ1+ 0 0 ψ2+ 1 ψ1+ 1

ψ2+ ψ1+ 1 0 0 ψ2+ −1

ψ−1 ψ−2 −1 0 0 ψ−1 −1

ψ−2 0 0 ψ−1 −1 ψ−2 1

(3.93)

We find that all 3-point and 4-point amplitudes in this model satisfy the SU(2)R Ward
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identities, for example

T− · A4(1+
ψ12
−
ψ2

3+
ψ14
−
ψ1

) = A4(1+
ψ22
−
ψ2

3+
ψ14
−
ψ1

)−A4(1+
ψ12
−
ψ1

3+
ψ14
−
ψ1

) +A4(1+
ψ12
−
ψ2

3+
ψ24
−
ψ1

)

= − [13]

[24]
(s+ t+ u) = 0 .

(3.94)

As discussed above, we conclude that at leading order the SU(2)R Ward identities are sat-

isfied by all amplitudes in the N = 2 model.

Following the same approach as described for the N = 1 model, conservation laws satis-

fied by the seed amplitudes imply that the same quantities are conserved by all leading-order

amplitudes if they are recursively constructible (see Appendix F). This result extends to

non-Abelian symmetries, which in the on-shell language correspond to Ward identities for

non-diagonal generators; this is shown for SU(2) in Appendix F. The amplitudes that are

not constructible using recursion are fixed by supersymmetry in terms of those that are.

Therefore, they will also respect the conservation laws and non-Abelian symmetries of the

seed amplitudes.

This model also conserves a separate U(1)R charge. We know to expect the conservation

of the charge associated with the U(1) isotropy group. In the N = 1 case we found that

the scattering amplitudes conserve an R-charge U(1)A assigned only to the complex scalar

but it was consistent with the existence of U(1)B that the isotropy U(1) might also assign

a charge to the fermion or even to assign equal charges in the form of a global symmetry.

In the present context we also have two independent U(1) symmetries. The first is the

U(1) ⊂ SU(2)R which assigns opposite charges to the fermions ψ1+ and ψ2+. The second

assigns charges to each of the states which, up to overall normalization can be deduced from

the 3- and 4-point seed amplitudes and are summarized in the following table:
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U(1)R SU(2)R

Z −4 1

Z̄ 4 1

ψa+ −1 2

ψ−a 1 2

γ+ 2 1

γ− –2 1

ηa 3 2

Φ+ 2 1

Φ− 4 1

These are the only linear symmetries compatible with the seed amplitudes. The isotropy

U(1) must therefore be identified with some linear combination of U(1)R and U(1) ⊂ SU(2)R.

This is perhaps surprising, it tells us that the massless vector boson must also be charged

under the isotropy U(1). Just as for the fermions, the vector charges are chiral meaning that

the positive and negative helicity states have opposite charges. Such charges for vectors are

associated with electric-magnetic duality symmetries.

Such an extra U(1)R symmetry is possible because the maximal outer-automorphism

group of the N = 2 supersymmetry algebra is U(2)R. The assignment of the associated

charges is, up to normalization, fixed by the charge of the highest helicity state in the

multiplet. It is interesting to observe that in the present context, knowledge of the non-

vanishing 4-point amplitudes is insufficient to determine the U(1)R charge assignments. It

is only from considering the 3-point amplitudes that we find the assignment of a non-zero

chiral charge for the vector bosons unavoidable. Consider for example the amplitudes (3.84).

Since the scalar is required to be charged under the isotropy U(1), which in this case must be

the U(1)R since there are no other symmetries under which the scalar is charged, we see that

the vector must also be charged and satisfy 2q[γ+] = −q[Z]. The existence of fundamental

3-point interactions in this model was deduced by demanding that the singularities of the
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4-point amplitudes be identified with physical factorization channels. From an on-shell point

of view, it is therefore an unavoidable consequence of locality, unitarity and supersymmetry

that the MV isotropy group of an N = 2 non-linear sigma model acts on the vector bosons

as an electric-magnetic duality transformation.

The necessary existence of the fundamental 3-point amplitudes (3.83) and (3.84) has

a further interesting consequence for the low-energy behavior of the vector boson. In [89]

it was shown that singular low-energy theorems arise from the presence of certain 3-point

amplitudes. In the notation used in [89] the 3-point amplitudes (3.83) and (3.84) are classified

as a = 1 in the soft limit of a positive helicity vector boson. Therefore a vector boson present

in amplitudes which contain at least one of the following other particles: Z, ψa+ or γ+ has

soft weight σγ = −1. Using the general formalism developed in [89], we can write down the

low-energy theorem of the vector bosons in this subclass of amplitudes

An+1

(
s+
γ , 1, 2, ..., n

) ps→εps as ε→0−−−−−−−−−→
n∑
k=1

[sk]

ε〈sk〉
An (1, 2, ...,F+ · k, ..., n) +O

(
ε0
)
. (3.95)

Here we are using a notation similar to [110] with the introduction of an operator F+ which

acts on the one-particle states as

state i F+ · i An prefactor

Z γ− 1

ψ1+ ψ−2 −1

ψ2+ ψ−1 −1

γ+ Z −1

(3.96)

and annihilates the states of the negative helicity multiplet. A similar operator F− can be

defined for the soft limit of a negative helicity vector. Using equation (3.60) in conjunction

with the soft behavior (3.95) of the n + 1-point amplitude results in the following identity
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for the residual n-point amplitudes

n∑
i=1

n∑
j=1

(−1)Li+Pi
[Xi][Y j]

〈Y j〉
An (1, 2, ...,Q1 · i, ...,F+ · j, ..., n) = 0 , (3.97)

where here Pi = 0 or 1 corresponds to the additional signs associated with the prefactors of

both the supersymmetry Ward identities and the operator F+ given in Table 3.96. Note that

the action of Q1 and F+ commute on all physical states, so there is no ambiguity when i = j

in the sums. Moreover, rearranging the order of the sums, it becomes clear that for each

fixed j, the sum over i expresses a supersymmetry Ward identity for the n-point amplitudes.

As such, the identity (3.97) does not impose further constraints beyond supersymmetry.

3.7 Super Dirac-Born-Infeld and Super Born-Infeld

In the soft bootstrap analysis of Section 3.4, we encountered three theories with a funda-

mental quartic interaction whose couplings are of mass-dimension −4: DBI, Akulov-Volkov,

and Born-Infeld. These EFTs can all be related by supersymmetry. We will discuss them in

further detail in future work, so for now we simply note the following:

• The N = 1 supersymmetric Dirac-Born-Infeld model has as its pure scalar sector the

complex scalar DBI theory with σZ = 2 and as its pure fermion sector Akulov-Volkov

theory with σψ = 1. All amplitudes are constructible with soft subtracted recursion.

We present the expressions for the 4- and 6-point amplitudes in Appendix E.2.

• The N = 1 supersymmetric Born-Infeld model combines Akulov-Volkov theory with

Born-Infeld theory with σγ = 0. All amplitudes are constructible with the soft sub-

tracted recursion relations of Section 3.3, except the pure vector ones, but they are

uniquely fixed by the supersymmetry Ward identities. The 4- and 6-point amplitudes

are given in Appendix E.3.

• Extended supersymmetry binds BI, Akulov-Volkov, and DBI into one supersymmetric
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exceptional EFT. For the case with N = 4 supersymmetry, the amplitudes can be

constructed using the CHY approach [111].

3.8 Galileons

Galileons are scalar effective field theories that arise in a multitude of contexts and as a

result can be defined in different ways. In 4d, Galileons are

1. Higher-derivative scalar field theories with second-order equations of motion and ab-

sence of Ostrogradski ghosts. These theories have three free parameters: the cubic,

quartic and quintic interaction coupling constants. A field redefinition removes the

cubic interaction in favor of a linear combination of the quartic and quintic. The

scattering amplitudes are of course invariant under the field redefinition, so for the

purpose of studying perturbative scattering amplitudes, we consider only the quartic

and quintic Galileons.

2. The non-linear realization of the algebra Gal(4, 1) which is an İnönü-Wigner contrac-

tion of the ISO(4, 1) symmetry algebra [112]. Truncated to leading order in the reduced

dimension ∆̃, this gives an effective field theory of a real massless scalar φ with σ = 2

vanishing soft limits and coupling dimensions [g4] = −6 and [g5] = −9 for the quartic

and quintic interactions respectively.

3. Subleading contributions to the low-energy effective action on a 3-brane embedded in

a 5d Minkowski space. The leading contribution to this EFT is the DBI action and

including the Galileon terms, the model is often called the DBI-Galileon. In the limit of

infinite brane tension, the Galileons decouple from DBI. The non-Z2-symmetric cubic

and quintic interactions arise from considering the effective action on an end-of-the-

world brane.
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4. Scalar effective field theories that arise from the massless decoupling limit of Fierz-

Pauli-type massive gravity [94, 93] and from the decoupling limit of Proca theories.

It is not obvious if these definitions are equivalent. The equivalence between Definitions

2 and 3 is straightforward since ISO(4, 1) is the Poincaré symmetry of the 5d embedding

space. In the brane picture of Definition 3, the DBI-Galileon scalar is a Goldstone boson

that arises from the spontaneous breaking of translational symmetry transverse to the brane,

with the contraction of the 5d Poincaré algebra equivalent to the non-relativistic limit of the

fluctuations of the brane into the extra dimension [113].

In an approach based on scattering amplitudes, it is natural to use the second definition

of Galileon theories, based on their soft weight σ = 2 and fundamental coupling dimension.

This is what we do in the following, however, we do comment on the connections to the

other definitions. In Section 3.8.1, we briefly review our recent results about the supersym-

metrization of (DBI-)Galileon theories in 4d and cover some details that were left out in [60].

Motivated by Definition 4, we investigate the possibility of a scalar-vector Galileon theory

in Section 3.8.2. In Sections 3.8.3 and 3.8.4, we focus our attention on the Special Galileon.

In Section 3.8.3 we address the question of subleading operators respecting the enhanced

σ = 3 soft behavior. In Section 3.8.4, we approach the same question from a double-copy

construction.

3.8.1 Galileons and Supersymmetry

This section reviews and expands on the results of [60] for N = 1 supersymmetrization of

Galileon models. Two approaches to forming a complex scalar Z = φ+ iχ are considered:

(a) Both φ and χ are Galileons so that the complex scalar Z has soft weight σZ = 2, or

(b) φ is a Galileon but χ only has constant shift symmetry; then σφ = 2 and σχ = 1, and

hence σZ = 1. A natural interpretation of χ is as an R-axion.

Both options were considered in [60].
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Option (a). Consider first the quartic Galileon. As discussed in Section 3.5.5, to be

compatible with supersymmetry, the 4-point complex scalar amplitudes must have two Z’s

and two Z̄’s; such an amplitude is in the MHV class. It is also clear from the table of

“soft bootstrap” results in Table 3.3 that there is a unique complex scalar quartic Galileon

theory17 with σZ = 2 based on the 4-point interaction with A4(1Z 2Z̄ 3Z 4Z̄) = g4stu. The

other 4-point amplitudes in a supersymmetric theory are fixed by A4(1Z 2Z̄ 3Z 4Z̄) using the

supersymmetry Ward identity (3.67).

By (3.55), the soft behavior of the fermion must be either σψ = 1 or 2. The all-fermion

amplitudes are constructible when σψ = 2, and our soft bootstrap results for fermion theories

(see Table 3.4) show that no such theory exists. Therefore, the fermions in a supersymmetric

Galileon theory with σZ = 2 must have σψ = 1.

In a supersymmetric quartic Galileon theory with σZ = 2 and σψ = 1, the constructibility

criterion (3.20) for n-point amplitudes with ns scalars and nf fermions is nf < 4. Thus at 6-

point, we can only use soft subtracted recursion to compute the amplitudes with at most two

fermions. However, as discussed in [60], two of the six supersymmetry Ward identities (3.68)-

(3.70) uniquely determine the 4- and 6-fermion amplitudes. The remaining four identities in

(3.68)-(3.70) are used as consistency checks. The expressions for the 6-point amplitudes of

the supersymmetric quartic Galileon can be found in Appendix E.4. We have checked that

the recursively constructed 4- and 6-point amplitudes match those that we calculate from

the Lagrangian superspace construction of the quartic Galileon in [81].

The supersymmetry Ward identities at 8-point and higher do not uniquely determine the

non-constructible amplitudes of the supersymmetric quartic Galileon. We therefore suspect

that the quartic Galileon fails to be unique at 8-point and higher [60].

The quintic Galileon does not admit a supersymmetrization with σZ = 2 for the complex

scalar. As discussed at the end of Section 3.4.1, there are no obvious obstructions from the

soft-recursion tests to a complex scalar decoupled quintic Galileon with A5(1Z 2Z̄ 3Z 4Z̄ 5Z) =

17That analysis also shows that it is impossible for this kind of model to have special Galileon symmetry
with σZ = 3.
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(εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 )2. However, it is not compatible with the 5-point supersymmetry Ward iden-

tities. It follows that the cubic Galileon also cannot be supersymmetrized with σZ = 2.

Option (b). Consider a quartic complex scalar theory where the real part of the complex

scalar Z is the Galileon φ and the imaginary part is an R-axion χ. The constructibility

criterion with σφ = 2 and σχ = σψ = 1 is 2nχ + nf < 4, so there are only two mixed

amplitudes to check; they do not restrict the 2-parameter family of input amplitudes [60].

We have checked that the constructible 6-point amplitudes are compatible with DBI.

For a quintic Galileon with σZ = 1, we found [60] a unique solution to the supersymmetry

Ward identities

A5(1Z 2Z̄ 3Z 4Z̄ 5Z) = − [24]

[25]
A5(1Z 2Z̄ 3Z 4ψ̄ 5ψ) =

[24]

[35]
A5(1Z 2ψ̄ 3ψ 4ψ̄ 5ψ) , (3.98)

namely

A5(1Z 2Z̄ 3Z 4Z̄ 5Z) = s24

[
6s24s25s45 +

(
4s12s23s45 + 2s12s24s34 + 2s2

25s45 + s24s
2
25 + (2↔ 4)

)
+ (1↔ 5) + (3↔ 5)

]
− 4s2

24 .

(3.99)

The amplitudes A5(1Z̄ 2Z 3Z̄ 4Z 5Z̄), A5(1Z̄ 2Z 3Z̄ 4ψ5ψ̄), and A5(1Z̄ 2ψ 3ψ̄ 4ψ 5ψ̄) follow from

conjugation of the above.18 It is interesting that the fermions in these 5-point amplitudes

automatically have σψ = 1.

To test consistency of a supersymmetric quintic Galileon with σφ = 2, σχ = 1, and

σψ = 1, we consider the 7-point and 8-point amplitudes in the decoupled Galileon theory. In

both cases, the constructibility criterion is 2nχ +nf < 4. The (few) non-trivial constructible

amplitudes pass the soft subtraction recursive tests of ai-independence. We have also tested

compatibility with the supersymmetric DBI interactions: at 7-point the constructibility

18These 5-point amplitudes are not required to vanish in 3d kinematics (and they do not) because they do
not satisfy the constructibility criterion.
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criterion is 2nχ + nf < 8 and again the constructible 7-point amplitudes pass the test.

This indicates that there may indeed be a supersymmetric brane-theory with both quartic

and quintic terms subleading to DBI. The scalar φ is the Goldstone mode of the broken

transverse translational symmetry whereas the scalar χ is an R-axion. The fermion ψ is a

genuine Goldstino of partial broken supersymmetry. We discuss such scenarios further in

forthcoming work.

3.8.2 Vector-Scalar Special Galileon

It is known that scalar Galileon theories arise in certain limits of massive gravity [93, 94]

(for a review, see [95]). An on-shell massive graviton in 4d has 5 polarization states and

the decoupling limit gives one real massless scalar (the Galileon) and a massless photon in

addition to the massless graviton. So we expect there to be an EFT of a real Galileon scalar

coupled to vector.19 The vector couples quadratically to the scalar and was consistently

truncated off in [94]. Some subsequent studies have discussed the photon-scalar coupling of

Galileons, see for example [114]. Here, we use soft recursion to give some definitive results

about the possible scattering amplitudes in such a theory.

If the scalar has σφ = 2, only the scalar amplitudes are constructible, and we are not

able to say anything about the vector sector and its couplings to the scalar. If however the

couplings are tuned in such a way that the cubic and quintic Galileon interactions are set to

zero then in the scalar sector the soft weight of the scalar is enhanced to σφ = 3, the special

Galileon scenario. At present it is unknown whether this enhancement of symmetry can be

understood in some natural way from the decoupling limit of some model of massive gravity.

Moreover, it is not a priori clear if the σφ = 3 enhancement can survive coupling to other

particles.

We use the power of the soft bootstrap to construct the most general amplitudes consis-

tent with the special Galileon low-energy theorem. We use the 6-point test to exclude EFTs

19The decoupling of these interactions from the graviton is not clear [95].
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with a special Galileon coupled non-trivially to a photon with σγ > 0. For the model with

σφ = 3 and σγ = 0, we find that the soft recursion 6-point test reduces the most general

4 real-parameter ansatz for the scalar and scalar-vector interactions to a 3 real-parameter

family:

A4(1φ 2φ 3φ 4φ) = g1stu ,

A4(1φ 2φ 2+
γ 4+

γ ) = 0 ,

A4(1−γ 2φ 3φ 4+
γ ) = g1〈12〉[24]〈13〉[34]u ,

A4(1φ 2φ 3−γ 4−γ ) = 0 .

(3.100)

The couplings of the pure vector sector are unconstrained; the most general ansatz is

A4(1+
γ 2+

γ 3+
γ 4+

γ ) = g3

(
[12]2[34]2s+ [13]2[24]2t+ [14]2[23]2u

)
,

A4(1−γ 2−γ 3+
γ 4+

γ ) = g4〈12〉2[34]2s ,

A4(1−γ 2−γ 3−γ 4−γ ) = g∗3

(
〈12〉2〈34〉2s+ 〈13〉2〈24〉2t+ 〈14〉2〈23〉2u

)
.

(3.101)

The most interesting feature of the above result is the relation between the coefficients of the

amplitudes A4(1φ 2φ 3φ 4φ) and A4(1−γ 2φ 3φ 4+
γ ). The former is the familiar quartic Galileon,

while the latter would arise from an operator of the form

O ∼ g1(∂µF
αβ
+ )(∂µF α̇β̇

− )(σναα̇∂νφ)(σρ
ββ̇
∂ρφ), (3.102)

where F± are as defined in and below (3.30)

The relation between the couplings strongly indicates the existence of a non-linear sym-

metry which mixes the scalar and vector modes. Describing the action of this symmetry and

its consequences is left for future work.
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3.8.3 Higher Derivative Corrections to the Special Galileon

The real quartic Galileon has low-energy theorems with σ = 3 soft weight. Being agnostic

about the origin of the special Galileon, from an EFT perspective, one should write a La-

grangian with all possible operators that respect the symmetries of the theory in a derivative

expansion. The authors of [115] found that among a specific subclass of Lagrangian oper-

ators, namely those with the schematic form ∂4φ4, ∂6φ4 and ∂8φ5, the special Galileon is

the unique choice that can give enhanced soft limits with σ = 3 soft weight. In this section,

we investigate much more exhaustively the possible higher-derivative quartic and quintic

operators compatible with σ = 3 soft behavior. This is done using soft-subtracted recursion

relations to calculate the 6- and 7-point scattering amplitudes of the model.

Let us start our discussion with the 6-point case. The constructibility criterion (3.31)

implies that recursion relations are valid if the coupling constant g6 of the 6-point amplitude

satisfies

[g6] > −20 . (3.103)

Given that this coupling is the product of two quartic couplings and that the leading order

quartic coupling has mass dimension −6 recursion relations can probe contributions to the

4-point amplitude with mass dimension in the range

− 14 < [g4] ≤ −6 . (3.104)

Taking into account Bose symmetry, the most general ansatz one can write down for the
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4-point matrix element of local operators is

A4(1φ2φ3φ4φ) =
c0

Λ6
stu

+
c1

Λ8

(
s4 + t4 + u4

)
+
c2

Λ10

(
s5 + t5 + u5

)
+

1

Λ12

(
c3

(
s6 + t6 + u6

)
+ c′3s

2t2u2
)

+O(Λ−14) .

(3.105)

The leading term with coupling c0/Λ
6 is the usual quartic Galileon. The terms suppressed by

higher powers of the the UV cutoff Λ encode all possible higher-derivative quartic operators

of the scalar field up to order Λ−14.

We apply the 6-point test with σ = 3 and find that consistency requires c1 = c3 = 0 in

the ansatz (3.105). The 4-point amplitude then becomes

A4(1φ 2φ 3φ 4φ) =
c0

Λ6
stu+

c2

Λ10

(
s5 + t5 + u5

)
+

c′3
Λ12

s2t2u2 +O(Λ−14) . (3.106)

From this, we understand that there cannot exist an 8-derivative Lagrangian operator that

preserves the special Galileon symmetry. Additionally, at 6-, 10- and 12-derivative order

there exist unique quartic operators compatible with σ = 3. In Section 3.8.4, we show

explicitly that the result (3.106) can also be obtained from an application of the BCJ double-

copy.

Next we examine the possible existence of quintic operators compatible with σ = 3. We

combine input from the quartic Galileon with the most general possible ansatz for the 5-

point matrix elements and use the 7-point test to assess compatibility with σ = 3. The soft

subtracted recursion relations at 7 points are valid if

[g7] > −24 . (3.107)

Since the 7-point coupling constant is the product of a quartic (with mass dimension −6 or
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lower) and a quintic coupling, the latter must then satisfy

[g5] > −18 . (3.108)

With Bose symmetry and the requirement that the ansatz for the 5-point amplitude must

have soft weight σ = 3, we are left with

A5(1φ 2φ 3φ 4φ 5φ) =
d1

Λ15
ε(1234)

∑
P

(−1)|P |sP1P2sP2P3sP3P4sP4P5sP5P1

+
1

Λ17

[
d2 ε(1234)4 + d3ε(1234)

∑
P

(−1)|P |sP1P2s
2
P2P3

(
s2
P2P3

sP3P4 − s2
P1P2

sP2P4

)
+ d4

(
4

5

∑
i<j

s3
ij

∑
i<j

s5
ij +

∑
i<j

∑
k 6=i,j

(
20s2

ijs
3
iks

3
jk + 9s4

ijs
2
iks

2
jk − 2s6

ijsiksjk
))]

+O(Λ−19) .

(3.109)

In the above, ε(1234) = εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 , the sum

∑
i<j means

∑4
i=1

∑5
j=i+1, while the sum∑

P is over all permutations of {1, 2, 3, 4, 5}, (−1)|P | is the signature of the permutation

and Pi is its ith element. There are no contributions to the amplitude that have less than

14 derivatives. The 1/Λ14-term satisfies the constructibility criterion and vanishes in 3d

kinematics, in agreement with the discussion of Section 3.3.5. Two of the 1/Λ17-terms also

vanish in 3d kinematics, but this was not a priori expected since they are too high order to

satisfy constructibility.

The 7-point test implies no constraints on the coefficients d1, d2, d3 and d4. This is

evidence in favor of the existence of four 5-point operators that preserve the special Galileon

symmetry. Next, in Section 3.8.4, we investigate whether this result can be obtained from a

double-copy prescription, similar to the 4-point case.
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3.8.4 Comparison with the Field Theory KLT Relations

The significance of the special Galileon extends well beyond the contraction limit of the

3-brane effective field theory and the decoupling limit of massive gravity. The enhancement

of the soft behavior to σ = 3 (which degenerates to σ = 2 when the DBI interactions

are re-introduced) or correspondingly the extension of the non-linearly realized symmetry

algebra suggests that this model has a fundamental significance of its own that is at present

only partially understood. Perhaps one of the deepest and least understood aspects of the

special Galileon is its role in the (field theory) KLT algebra as the product of two copies

of the U(N)×U(N)
U(N)

non-linear sigma model. For N = 2, 3 this coset sigma model has been

intensively studied as a phenomenological model of the lightest mesons under the name

Chiral Perturbation Theory (χPT). Henceforth we will use this name to avoid confusion

with the CP1 non-linear sigma model discussed in Section 3.6.

The double-copy relation between χPT and the special Galileon was first understood

in the CHY auxilliary world-sheet formalism[44]. Specifically, it was shown in the CHY

formalism that the leading order contribution to scattering in the special Galileon model

can be obtained from the KLT product

AsGal
n =

∑
α,β

AχPT
n [α]SKLT[α|β]AχPT

n [β] , (3.110)

where α, β index the (n − 3)! independent color(flavor) orderings.20 The KLT summation

kernel SKLT[α|β] is universal in the sense that the explicit form of the relations (3.110) are

identical to the perhaps more familiar field theory KLT relations giving a double-copy con-

struction of Einstein-dilaton-Bµν gravity from two copies of Yang-Mills theory. Concretely,

20We use square brackets for the arguments of a color-ordered amplitude.
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the first few relations have the form

AsGal
4 (1, 2, 3, 4) = −s12AχPT

4 [1, 2, 3, 4]AχPT
4 [1, 2, 4, 3] ,

AsGal
5 (1, 2, 3, 4, 5) = s23s45AχPT

5 [1, 2, 3, 4, 5]AχPT
5 [1, 3, 2, 5, 4] + (3↔ 4) ,

AsGal
6 (1, 2, 3, 4, 5, 6) = −s12s45AχPT

6 [1, 2, 3, 4, 5, 6]
(
s35AχPT

6 [1, 5, 3, 4, 6, 2]

+(s34 + s35)AχPT
6 [1, 5, 4, 3, 6, 2]

)
+ P(2, 3, 4) , (3.111)

where P(2, 3, 4) denotes the sum of all permutations of legs 2, 3 and 4.

For the formulae (3.110) and (3.111) to even be well-defined, the color-ordered amplitudes

on the right-hand-side must satisfy a number of non-trivial relations to reduce the number

of independent partial amplitudes to (n− 3)! for the scattering of n particles. The existence

of a color-ordered representation is itself non-trivial and not guaranteed to be satisfied in

all models with color structure[116]. In all known cases where the double-copy relations

(3.110) give a sensible, physical output, the reduction to a reduced basis of size (n − 3)!

is accomplished by two sets of identities among the partial amplitudes, namely the Kleiss-

Kuijf and fundamental Bern-Carrasco-Johansson relations. That these identites obtain for

amplitudes calculated in the leading two-derivative action of χPT was first established in

[117] using semi-on-shell recursion techniques developed in [118].

Our goal in this section is to connect two (possibly discrepant) definitions of the special

Galileon model:

1. The special Galileon is the most general effective field theory of a real massless scalar

with σ = 3 vanishing soft limits.

2. The special Galileon is the double-copy of two copies of χPT.

What we have described above is the known fact that these definitions agree at the lowest

non-trivial order. In the previous section we used soft subtracted recursion to construct the

most general 4- and 5-point amplitudes consistent with the first definition up to order Λ−12
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and Λ−17 respectively. To determine if these results agree with the second definition we

must first construct the most general 4- and 5-point amplitudes in χPT compatible with the

requirements of the double-copy. Here we are following the approach of [116] and making

the most conservative possible assumptions. Specifically we assume that both the explicit

form of the double-copy (3.111) and the relations the amplitudes must satisfy to reduce the

basis of partial amplitudes to size (n− 3)! are identical to what is required at leading order.

Let us begin with the 4-point amplitudes. The relations we impose are cyclicity (C)

AχPT
4 [1, 2, 3, 4] = AχPT

4 [2, 3, 4, 1] , (3.112)

Kleiss-Kuijf (KK) or U(1)-decoupling

AχPT
4 [1, 2, 3, 4] +AχPT

4 [2, 1, 3, 4] +AχPT
4 [2, 3, 1, 4] = 0 , (3.113)

and the fundamental BCJ relation

(−s− t)AχPT
4 [1, 2, 3, 4]− tAχPT

4 [1, 2, 4, 3] = 0 . (3.114)

Since there are no additional quantum number labels in the partial amplitudes, at each order

the 4-point amplitude is determined by a single polynomial function of the available Lorentz

singlets

AχPT
4 [1, 2, 3, 4] = F (0)(s, t) +

1

Λ2
F (2)(s, t) +

1

Λ4
F (4)(s, t) + . . . (3.115)

The superscript k counts both the mass dimension of the function and the number of deriva-

tives in the underlying effective operator. In this language, the double-copy-compatibility
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conditions take the form

C: F (k)(s, t) = F (k)(−s− t, t) ,

KK: F (k)(s, t) + F (k)(s,−s− t) + F (k)(−s− t, s) = 0 ,

BCJ: (−s− t)F (k)(s, t)− tF (k)(s,−s− t) = 0 .

(3.116)

We make a general parametrization of the polynomial functions as

F (0)(s, t) = c
(0)
1 ,

F (2)(s, t) = c
(2)
1 s+ c

(2)
2 t,

F (4)(s, t) = c
(4)
1 s2 + c

(4)
2 st+ c

(4)
3 t2,

F (6)(s, t) = c
(6)
1 s3 + c

(6)
2 s2t+ c

(6)
3 st2 + c

(6)
4 t3,

F (8)(s, t) = c
(8)
1 s4 + c

(8)
2 s3t+ c

(8)
3 s2t2 + c

(8)
4 st3 + c

(8)
5 t4,

(3.117)

and so on. Imposing the conditions (3.116) gives a system of linear relations among the

coefficients c
(k)
i . These are straightforward to solve and give

AχPT
4 [1, 2, 3, 4] =

g2

Λ2
t+

g6

Λ6
t(s2 + t2 + u2) +

g8

Λ8
t(stu) + . . . (3.118)

A few comments about this result. As expected, the leading 2-derivative contribution is

compatible with the conditions (3.116). Surprisingly, there are no compatible contributions

from 4-derivative operators, but there are unique contributions at 6- and 8-derivative order.

Moreover, the structure of the result here agrees with the 4-point amplitude of Abelian

Z-theory [119]. The Z-theory model is a top-down construction which gives open string

scattering amplitudes as the field theory double-copy of Yang-Mills and a higher-derivative

extension of χPT. The Z-amplitudes are by construction guaranteed to satisfy the double-

copy-compatibility conditions but with Wilson coefficients gi having precise values calculated

from the known string amplitudes. The method of this section can be understood as the
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bottom-up converse of the Z-theory construction, and at 4-point we find agreement.

To summarize, we have shown that up to 8-derivative order there is a 3-parameter family

of operators that generate 4-point matrix elements compatible with the conditions required

for the double-copy to be well-defined. We could continue this to higher order, but our

ability to compare with the methods of Section 3.8.3 are bounded above at this order by the

constructibility criterion.

To construct the associated amplitudes in the special Galileon model (according to the

second definition described above) we use the first relation in (3.111). The result is

AsGal
4 (1, 2, 3, 4) =

c1

Λ6
stu+

c2

Λ10

(
s5 + t5 + u5

)
+

c3

Λ12
s2t2u2 + . . . , (3.119)

in precise agreement with the special Galileon amplitude (3.106).

As an additional check to the results obtained above, we calculate the 6-point ampli-

tudes of both χPT and the special Galileon. Up to order O(Λ−6) the χPT amplitude can

be calculated using soft subtracted recursion with (3.118) as input. Note that only three

factorization channels contribute to this calculation because the rest do not preserve color

ordering. The resulting amplitude,

AχPT
6 [1, 2, 3, 4, 5, 6] =

g2
2

Λ4

[
s13s46

p2
123

+
s24s15

p2
234

+
s35s26

p2
345

− s246

]
+O(Λ−8) , (3.120)

satisfies all C, KK and BCJ constraints. Contributions subleading to the ones listed above do

not satisfy the constructibility criterion (3.31) and cannot be calculated using soft subtracted

recursion. However, we were able to uniquely determine them up to order O(Λ−10), by

demanding that they have the correct pole structure, consistent with unitarity and locality,

have σ = 1 soft weight and satisfy C, KK and BCJ conditions. The result of this calculation

is listed in (E.30).

We are now in position to calculate the 6-point special Galileon amplitude with two dif-

ferent methods. We can either use the 6-point KLT relation in (3.111) or use soft subtracted
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recursion with (3.119) as input. The results of these calculations match perfectly up to order

O(Λ−18), which is the furthest the recursive calculation can go.

Shifting our focus to 5-point amplitudes, we find that it is not possible to reproduce

(3.109) as a double-copy of two (identical or non-identical) color-ordered scalar amplitudes,

despite the perfect agreement at 4- and 6-points. Starting from a general ansatz for the

scalar color-ordered amplitude, we find that the leading contribution that satisfies all C, KK

and BCJ constraints is O(Λ−15) corresponding to a valence 5 scalar-field operator with 14

derivatives. The existence of such an operator at all is interesting since there are apparently

no odd point amplitudes in Z-theory [119]! At this order we find that the kinematic structure

of Z-theory does not coincide with the most general possible double-copy-compatible higher-

derivative extension of χPT. Or perhaps said differently, just like string theory fixes the

Wilson coefficients in the 4-point result (3.118) to take particular (non-zero) values, it appears

to fix the Wilson coefficients of the odd-point amplitudes to be zero.

When we use the second relation of (3.111) with this result, we obtain a 5-point scalar

amplitude of order O(Λ−33), which is significantly subleading to the amplitude (3.109) we

calculated in the previous section for the special Galileon.

3.9 Outlook

There are several interesting questions that remain unanswered in this work. In Section 3.4

we applied the soft bootstrap to classes of models with simple spectra consisting of a single

particle of a particular spin. Furthermore, we gave a limited examination of classes of models

with linearly realized supersymmetry with spectra consisting of a single multiplet. There

is a potentially vast landscape of constructible models with more complicated spectra and

possible futher interesting linearly realized symmetries.

We have already seen examples of this; in Section 3.6 further symmetry (in this case elec-

tromagnetic duality symmetry) emerges as an unavoidable consequence of the combination
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of low-energy theorems and linear N = 2 supersymmetry. Similarly we should expect the

soft bootstrap to reveal models with complicated non-linear symmetries. In Section 3.8.2 we

have given evidence in favor of the existence of such a symmetry underlying a vector-scalar

extension of the special Galileon.

Our results also suggest two additional applications for the soft bootstrap. The first is

to the classification of higher-derivative operators. The method applied in Sections 3.8.3

and 3.8.4 to the special Galileon and χPT is generalizable to a large class of EFTs with

manifest advantages over traditional methods. The second is as a useful cross-check on

results concerning exceptional EFTs obtained via the double copy. In Section 3.8.4 we found

the puzzling result that there exist valence 5 operators invariant under the special Galileon

symmetry which apparently cannot be constructed as the double copy of subleading χPT

operators.

It would be reasonable to expect further, similarly rich and unexpected, phenomena to

be present throughout the landscape of constructible EFTs.
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CHAPTER 4

Exact Results for Corner Contributions to

the Entanglement Entropy and Rényi

Entropies of Free Bosons and Fermions in 3d

4.1 Motivation and Results

For a 3d conformal field theory (CFT) in the ground state, the entanglement entropy S for

a region whose boundary has a sharp corner with angle θ can be written as

S = B
L

ε
− a(θ) log

(L
ε

)
+O(1) . (4.1)

Here L is a length scale associated with the size of the entangling region, ε is a short distance

cutoff, and B is a non-universal constant. The corner contribution to the entanglement

entropy is the scheme-independent positive function a(θ) of the opening angle θ [120, 53, 121].

Since the entanglement entropy of the region equals that of the complement region, the corner

contribution satisfies a(2π−θ) = a(θ). If the curve bounding the entangling region is smooth,

the logarithmic term is absent, hence a(θ) must vanish in the limit θ → π and it does so

quadratically as

a(θ) = σ (θ − π)2 + . . . for θ → π . (4.2)

The value of the corner coefficient σ depends on the theory.

For the theory of a free real scalar or a Dirac fermion, Casini, Huerta, and Leitao [54, 52,
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53] derived expressions that give a(θ) implicitly in terms of some rather involved integrals.

In the limit θ → π one can extract double-integral expressions for the corner coefficient σ in

(4.2). These integrals have been evaluated numerically [52, 55] and the results indicate that

the exact values are [55]

σ(B) =
1

256
and σ(F ) =

1

128
(4.3)

for the free boson and free fermion, respectively.

Bueno, Myers, and Witczak-Krempa [55] conjectured that the ratio of the coefficient σ

in (4.2) to the central charge CT is universal in 3d CFTs and that it takes the value

conjecture [55]:
σ

CT
=
π2

24
. (4.4)

The conjecture (4.4) has passed non-trivial holographic tests for gravity models with a family

of higher derivative corrections [55, 56]. The central charge CT is defined as the coefficient

of the vacuum 2-point function of the stress tensor (see eq. (3) in [55]). For free bosons and

fermions, Osborn and Petkou [122] found that C
(B)
T = 3/(32π2) and C

(F )
T = 3/(16π2) in 3d.

So with the values (4.3), the ratio σ/CT is indeed π2/24 for both free bosons and fermions.

In our work, we evaluate analytically the integral expressions [55] of Casini, Huerta, and

Leitao [54, 52, 53] for σ(B) and σ(F ) and prove that their exact values are indeed those in

(4.3). This verifies the universality conjecture (4.4) for the case of free bosons and fermions.

One way of viewing the conjecture is simply as the statement that the corner coefficient σ

in (4.2) does not contain independent information about the CFT, but is fixed in terms of

the central charge CT .

Turning to the Rényi entropies Sn, one can define a similar corner contribution an(θ)

which in the smooth limit θ → π goes to zero as an(θ) = σn (θ−π)2 + . . . for n = 2, 3, 4, . . . .

(The n → 1 limit of the Rényi entropy is the entanglement entropy.) It is not known if

σn/CT has any universal properties.

We calculate σn analytically for the free boson and free fermion using integral expressions
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n σ
(B)
n Numerical approximation

2 1
48π2 0.00211086

3 1
108
√

3π
0.00170163

4 8+3π
1152π2 0.00153255

5

√
25−2

√
5

1000π
0.00144219

6 81+34
√

3π
19440π2 0.00138643

7
2 cot π

14
+5 cot 3π

14
+5 tan π

7

4116π
0.00134874

8
32+9π(1+

√
2)

10752π2 0.00132161

9
27
√

3+10 cot π
18

+28 tan π
9

+35 tan 2π
9

34992π
0.00130116

10
125+6π

√
565+142

√
5

54000π2 0.00128522

Table 4.1: Exact results and approximate numerical values for the corner coefficient of the
first 9 Rényi entropies of a free scalar field.

for σn derived in [54, 52, 53].1 For the free scalar we find

σ(B)
n =

n−1∑
k=1

k(n− k)(n− 2k) tan
(
kπ
n

)
24π n3(n− 1)

. (4.5)

Note that when n is even, the contribution from k = n/2 must be evaluated carefully using

limk→n/2(n− 2k) tan
(
kπ
n

)
= 2n/π. The result for the free fermion is

σ(F )
n =

(n−1)/2∑
k=−(n−1)/2

k(n2 − 4k2) tan
(
kπ
n

)
24π n3(n− 1)

, (4.6)

where the sum is to be taken in integer steps from −n−1
2

to n−1
2

.

For low values of n, the finite sums of the trigonometric functions in (4.5) and (4.6)

simplify quite nicely. The results and approximate numerical values for the first nine values

of σn are presented in Tables 4.1 and 4.2, for the free scalar field and fermion respectively.

In the case of the scalar, the exact n = 2, 3 results were guessed by the authors of [55] based

1We are grateful to Horacio Casini for sharing with us the integral expression for σ
(F )
n .

131



n σ
(F)
n Numerical approximation

2 1
64π

0.00497359

3 5
216
√

3π
0.00425408

4 1+6
√

2
768π

0.00393133

5

√
425+58

√
5

2000π
0.00374840

6 261+20
√

3
25920π

0.003630613

7
13 cot π

14
+22 cot 3π

14
+15 tan π

7

8232π
0.00354841

8
1+6
√

2+4
√

274+17
√

2

7168π
0.00348777

9
135
√

3+68 cot π
18

+77 tan π
9

+130 tan 2π
9

69984π
0.00344118

10
5+300

√
5+4
√

425+58
√

5

72000π
0.00340427

Table 4.2: Exact results and approximate numerical values for the corner coefficient of the
first 9 Rényi entropies of a free fermion.

on their high precision numerical evaluation of the integrals.

Since the ratios of the central charges of free fermions and bosons differ only by a factor of

2, universality of the ratio σn/CT would require that σ
(B)
n /σ

(F )
n obeys some simple, possibly n-

dependent, relation. Based on our results above, there is no hint of such a simple relationship.

Of course to fully exclude this, one would need values of σn for other 3d CFTs.

As a function of n, the Rényi corner coefficient σn decreases monotonically, as shown on

the left in figure 4.1. When n is large, σn asymptotes to a constant value, which we calculate

analytically:

σ(B)
∞ =

3ζ(3)

32π4
and σ(F )

∞ =
ζ(3)

4π4
. (4.7)

The appearance of the Riemann zeta-function is intriguing since ζ(3) ≈ 1.20206 also shows

up in the free energies and Rényi entropies for free scalars/fermions on a 3-sphere, as shown

by Klebanov, Pufu, Sachdev, and Safdi [123]. Specifically, the free energy of a free real scalar
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Figure 4.1: Left: Plot showing that σn decreases monotonically from the entanglement
entropy value included for n = 1 to the asymptotic value σ∞ for free scalars (blue circles)

and free Dirac fermions (maize squares). The asymptotic values σ
(B)
∞ = 3ζ(3)

32π4 ≈ 0.0011569

(black) and σ
(F )
∞ = ζ(3)

4π4 ≈ 0.00308507 (gray) are indicated as horizontal lines. Right: The plot

illustrates our numerical fit σn = σ∞
(
1+ b1

n
+ b2
n2 + b3

n3 +. . .
)
, for which we find b1 = b2 = b3 = 1

for the free scalar, and b1 = 1 and b2 = b3 = 1 − π2

12ζ(3)
≈ 0.31578 for the free fermion; the

solid curves are b2
n2 + b3

n3 for those respective values of b2 and b3.

or free fermion on an n-covered 3-sphere behaves as2 Fn → nF∞ for n→∞ with

F (B)
∞ =

3ζ(3)

8π2
and F (F )

∞ =
ζ(3)

π2
. (4.8)

Thus, for both free scalars and fermions we have

σ(B/F )
∞ =

1

4π2
F (B/F )
∞ . (4.9)

For finite n, there is no apparent relation between Fn and σn, however there are some

similarities in the subleading large-n behaviors, as we discuss in section 4.4. The plot on the

right in figure 4.1 shows the large-n behaviors of the Rényi corner coefficients σn. A priori

it is not clear if there is any relation at large n between σn and Fn, but it would be curious

to test (4.9) in other examples.

The remainder of this chapter details the derivations of the results summarized above.

In section 4.2, we derive the results (4.3) for the entanglement entropy corner coefficient σ.

2The authors of [123] work with a complex scalar, so the free energy there is twice that of a real scalar.
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We then evaluate the Rényi entropy corner coefficients σn in section 4.3. In section 4.4, we

discuss the asymptotic behavior at large n.

4.2 Evaluation of the EE Integrals

In this section we describe the procedure for analytically evaluating the integrals for the

coefficients σ(B) and σ(F ) of the entanglement entropy. Our starting point is the integrals

[54, 52, 53] presented in equations (B1)-(B3) of [55]. After a change of integration variable

from m to µ =
√

4m2 − 1, the integrals take the form

σ(B) = −1

2

∫ ∞
0

dµ

∫ ∞
0

db µ2Ha (1− a)
π

cosh2
(
πb
) , (4.10)

σ(F ) = −
∫ ∞

0

dµ

∫ ∞
0

db

[
µ2Ha (1− a)− µF

4π

]
π

sinh2
(
πb
) , (4.11)

where a = 1/2 + ib for the scalar and a = ib for the fermion. The functions H and F are

defined as

H = −T
2

(
c

h
X1 +

1

c
X2

)
+

1

16πa (a− 1)
, F = −F1

F2

, (4.12)

with3

F1 = 4πchHa (1− a)
[
(2a− 1)2 + µ2

]
− 1

4
ch2
(
µ2 + 1

)
, (4.13)

F2 =
ch
[
(2a− 1)2 + µ2

]2
2 (2a− 1)µ

. (4.14)

3We simplified the expression for F1 in [55] by writing it in terms of H.
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The functions h, c, X1, X2, and T are defined as follows:

h =
2 (µ2 + (2a− 1)2) sin2 (πa)

(µ2 + 1) (cos (2πa) + cosh (πµ))
,

c =
22aπa (1− a) sec

(
πa+ iπµ

2

)
Γ
(

3
2
− a+ iµ

2

)√
µ2 + 1 (Γ(2− a))2 Γ

(
−1

2
+ a+ iµ

2

) ,

X1 = −
Γ(−a)

[
π sinh

(
πµ
2

)
+ i cosh

(
πµ
2

) (
ψ
(

1
2

+ a+ iµ
2

)
− ψ

(
1
2

+ a− iµ
2

))]
22a+1µΓ(a+ 1) Γ

(
1
2
− a+ iµ

2

)
Γ
(

1
2
− a− iµ

2

) (
cos (2πa) + cosh (πµ)

) ,
X2 =

(
X1 with a replaced by (1− a)

)
,

T =
1

2

√
h [(h+ 1) (µ2 + 1)− 4a (1− a)] . (4.15)

Here ψ denotes the digamma function, ψ(z) = d
dz

log Γ(z).

Our first line of attack involves calculating the quantities cX1/h and X2/c that appear in

H in (4.12). Beyond the immediate cancellations that occur in these ratios, one can perform

further simplifications using identities involving gamma functions. Namely, one can use the

recurrence relation

Γ(1 + z) = zΓ(z) (4.16)

and the reflection relation

Γ(1− z) Γ(z) =
π

sin (πz)
. (4.17)

Surprisingly, all the gamma functions cancel after a series of such substitutions, giving

c

h
X1 =

√
µ2 + 1 csc (πa)

16πµ (a− 1) a

[
π sinh

(
πµ
2

)
+ i cosh

(
πµ
2

) (
ψ
(

1
2

+ a+ iµ
2

)
− ψ

(
1
2

+ a− iµ
2

))]
,

1

c
X2 =

√
µ2 + 1 csc (πa)

16πµ (a− 1) a

[
π sinh

(
πµ
2

)
+ i cosh

(
πµ
2

) (
ψ
(

3
2
− a+ iµ

2

)
− ψ

(
3
2
− a− iµ

2

))]
.

(4.18)

It is suggestive that the pre-factors and the form of these two results are the same. We then

proceed by adding them together as in (4.12). The linear combination of digamma functions
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that appears in the result can be simplified using properties easily derived from (4.16) and

(4.17). In the form that is useful for our purpose, these identities are

ψ
(

3
2
− a± iµ

2

)
= ψ

(
1
2
− a± iµ

2

)
+

1
1
2
− a± iµ

2

and

ψ
(

1
2

+ a± iµ
2

)
− ψ

(
1
2
− a∓ iµ

2

)
= π tan

(
πa± iπµ

2

)
.

Then the combination of X1 and X2 that appears in H simplifies to

c

h
X1 +

1

c
X2 =

√
µ2 + 1

4πa(1− a)

(
π sin(πa) sinh

(
πµ
2

)
µ [cos(2πa) + cosh(πµ)]

−
csc(πa) cosh

(
πµ
2

)
(1− 2a)2 + µ2

)
. (4.19)

The last ingredient we need to construct H in (4.12) is T . Using (4.15), it is

T =

√√√√((1− 2a)2 + µ2
)2

sin2(πa) cosh2
(
πµ
2

)
(µ2 + 1)

(
cos(2πa) + cosh(πµ)

)2 . (4.20)

Further simplifications of H depend on the nature of variable a, as we will see when we

specialize to the cases of the free scalar and the free fermion.

Free scalar. To proceed with the evaluation of the integral σ(B), we set a = 1/2 + ib as

prescribed for the free scalar. It is furthermore convenient to change integration variable

b→ b/2. Using that both µ and b are positive, the integrand of σ(B) simplifies dramatically

and becomes

σ(B) =

∫ ∞
0

dµ

∫ ∞
0

db
µ [π (µ2 − b2) sinh(πµ) + 2µ cosh(πb)− 2µ cosh(πµ)]

64[cosh(πb)− cosh(πµ)]2
. (4.21)

Next, we integrate by parts. Writing

σ(B) =
1

64

∫ ∞
0

dµ

∫ ∞
0

db

[
∂

∂µ

(
µ (µ2 − b2)

cosh (πb)− cosh (πµ)

)
+

b2 − µ2

cosh (πb)− cosh (πµ)

]
, (4.22)
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we see that the boundary term vanishes and we get

σ(B) =
1

256

∫ +∞

−∞
dµ

∫ +∞

−∞
db

b2 − µ2

cosh (πb)− cosh (πµ)
. (4.23)

We have extended the limits of integration to facilitate the change of integration variables

µ = x− y and b = x+ y . (4.24)

This separates the two integrations and reduces the expression to

σ(B) =

(
1

8

∫ +∞

−∞
dx

x

sinh (πx)

)2

=
1

256
. (4.25)

This completes the derivation of the result (4.3) for the free scalar.

Free fermion. With F1 given in terms of H as in (4.13), we have already done most of

the leg-work needed to compute σ(F ). For the free fermion, we have to take a = ib and it is

again convenient to change integration variable b→ b/2. After putting everything together,

we have

σ(F ) = − 1

32

∫ ∞
0

dµ

∫ ∞
0

db
µ
[
π (µ2 − b2 − 1) sinh(πµ)− 2µ cosh(πb)− 2µ cosh(πµ)

]
[cosh(πb) + cosh(πµ)]2

.

(4.26)

We can express the integrand as a total derivative plus remaining terms as

σ(F ) =
1

32

∫ ∞
0

dµ

∫ ∞
0

db

[
∂

∂µ

(
µ (µ2 − b2 − 1)

cosh(πb) + cosh(πµ)

)
+

1− µ2 + b2

cosh(πb) + cosh(πµ)

]
. (4.27)

As before, the boundary term vanishes and we are left with the expression (after extending

the limits of integration)

σ(F ) =
1

128

∫ +∞

−∞
dµ db

1− µ2 + b2

cosh(πb) + cosh(πµ)
=

1

128

∫ +∞

−∞
dx dy

1 + 4xy

cosh(πx) cosh(πy)
. (4.28)
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In the last step, we changed integration variables using (4.24). Since x/ cosh(πx) is odd,

that part of the integral vanishes and the result is therefore simply

σ(F ) =
1

128

(∫ +∞

−∞
dx

1

cosh(πx)

)2

=
1

128
. (4.29)

Thus we have derived the result (4.3) for the free fermion.

4.3 Rényi Entropies

We now proceed to calculate the corner coefficients σn for the Rényi entropies.

Free scalar. For the scalar field, the Rényi corner coefficient is given by the integral (B7)

in [55]. We change the integration variable m to µ =
√

4m2 − 1 to write it as

σ(B)
n = −

n−1∑
k=1

k (n− k)

2n2 (n− 1)

∫ ∞
0

dµ µ2Hk/n , (4.30)

where Hk/n is H in (4.12) with a replaced by k/n. With the simplified expression for H from

section 4.2, we get

σ(B)
n =

n−1∑
k=1

sin2
(
πk
n

)
32πn2(n− 1)

×
∫ ∞

0

dµ
µ [(n− 2k)2 + µ2n2] π sinh(πµ)− 2µ2n2

[
cos
(

2πk
n

)
+ cosh(πµ)

][
cos
(

2πk
n

)
+ cosh(πµ)

]2 . (4.31)

As before, we write the integrand as a total derivative plus remaining terms:

σ(B)
n = −

n−1∑
k=1

sin2
(
πk
n

)
32πn2(n− 1)

×
∫ ∞

0

dµ

[
∂

∂µ

(
µ [(n− 2k)2 + µ2n2]

cos
(

2πk
n

)
+ cosh(πµ)

)
− (n− 2k)2 + µ2n2

cos
(

2πk
n

)
+ cosh(πµ)

]
. (4.32)
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The boundary term vanishes and the expression simplifies to

σ(B)
n =

n−1∑
k=1

sin2
(
πk
n

)
32πn2(n− 1)

∫ ∞
0

dµ
(n− 2k)2 + µ2n2

cos
(

2πk
n

)
+ cosh(πµ)

. (4.33)

The contribution of k = n/2 is easy to calculate and is equal to

1

64π (n− 1)

∫ ∞
0

dµ
µ2

sinh2
(
πµ
2

) =
1

48π2 (n− 1)
. (4.34)

For k 6= n/2, there are contributions from two integrals:

I
(1)
n;k =

∫ ∞
0

dµ

cos
(

2πk
n

)
+ cosh(πµ)

=
2 tan−1

(
tan
(
πk
n

))
π sin

(
2kπ
n

) =
2

sin
(

2kπ
n

) ×


k
n
, k < n/2

k
n
− 1 , k > n/2

(4.35)

and

I
(2)
n;k =

∫ ∞
0

µ2 dµ

cos
(

2πk
n

)
+ cosh(πµ)

=
2i
[

Li3
(
− e 2ikπ

n

)
− Li3

(
− e− 2ikπ

n

)]
π3 sin

(
2kπ
n

)
= −

i log
(
e

2ikπ
n

)[
π2 + log2

(
e

2ikπ
n

)]
3π3 sin

(
2kπ
n

) =
2

sin
(

2kπ
n

) ×


k(n2−4k2)
3n3 , k < n/2

− (n−k)(n−2k)(3n−2k)
3n3 , k > n/2 .

(4.36)

Above, we manipulated the tri-logarithm Li3 using the polylog identity

Li3(z)− Li3
(
z−1
)

= −1

6
log3 (−z)− π2

6
log (−z) , (4.37)

which holds for z /∈ ]0, 1[.

Combining the results (4.35) and (4.36), we find that the result is the same for 1 < k <
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n/2 and n/2 < k < n, namely

∫ ∞
0

dµ
(n− 2k)2 + µ2n2

cos
(

2πk
n

)
+ cosh(πµ)

= (n− 2k)2I
(1)
n;k + n2I

(2)
n;k =

8k(n− k)(n− 2k)

3n sin
(

2kπ
n

) . (4.38)

Thus, having evaluated the integral in (4.33), we can write σ
(B)
n as the finite sum

σ(B)
n =

1

24π n3 (n− 1)

n−1∑
k=1

k (n− k) (n− 2k) tan
(
πk
n

)
. (4.39)

Note that taking the limit k → n/2 as described below (4.5), the summand evaluates precisely

to the special case (4.34). The expression (4.39) is the result for the Rényi corner coefficient

presented in (4.5), so this completes our evaluation for the free scalar.

Free fermion. For the fermion field, the Rényi corner coefficient is given by the integral

σ(F )
n = − 2

n− 1

1
2

(n−1)∑
k>0

∫ ∞
0

dµ

[
a (1− a)µ2H − µF

4π

]
a=k/n

, (4.40)

where the sum is over k from 1/2 (n even) or 1 (n odd) in integer steps to 1
2
(n − 1).

Substituting the expressions for H and F obtained earlier gives

σ(F )
n =

1
2

(n−1)∑
k>0

sin2
(
πk
n

)
8π(n− 1)

×
∫ ∞

0

dµ
2µ2

[
cos
(

2πk
n

)
+ cosh(πµ)

]
− µ

(
4k2

n2 + µ2 − 1
)
π sinh(πµ)[

cos
(

2πk
n

)
+ cosh(πµ)

]2 . (4.41)

We then use integration by parts to simplify the integral

σ(F )
n =

1
2

(n−1)∑
k>0

sin2
(
πk
n

)
8π(n− 1)

∫ ∞
0

dµ

 ∂

∂µ

 µ
(

4k2

n2 + µ2 − 1
)

cos
(

2πk
n

)
+ cosh(πµ)

− 4k2

n2 + µ2 − 1

cos
(

2πk
n

)
+ cosh(πµ)

 .
(4.42)
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The boundary term integrates to zero and the expression simplifies to

σ(F )
n =

1
2

(n−1)∑
k>0

sin2
(
πk
n

)
8π(n− 1)

∫ ∞
0

dµ
1− µ2 − 4k2

n2

cos
(

2πk
n

)
+ cosh(πµ)

. (4.43)

The result of the integral again involves a difference of two tri-logarithms and it can be

simplified using equation (4.37). The result is even in k → −k, so we can write the final

answer as

σ(F )
n =

1

24π n3 (n− 1)

1
2

(n−1)∑
k=− 1

2
(n−1)

k
(
n2 − 4k2

)
tan

(
πk

n

)
. (4.44)

This is the formula we presented in (4.6). Values for low n were tabulated in section 4.1 for

both σ
(B)
n and σ

(F )
n .

4.4 Asymptotic Behavior of the Rényi Entropies

Let us now study the large n behavior of the Rényi entropy corner coefficients σn. In

particular, we evaluate analytically the value for the coefficients σn in the limit where n→∞.

This is done by introducing a new variable x = k/n and multiplying by n∆x = 1. Then in

the n→∞ limit, the sum becomes an integral and we have

σ(B)
∞ =

1

24π

∫ 1

0

dx x (x− 1) (2x− 1) tan (πx) =
3ζ(3)

32π4
, (4.45)

σ(F )
∞ =

1

24π

∫ 1/2

−1/2

dx x
(
1− 4x2

)
tan (πx) =

ζ(3)

4π4
. (4.46)

These values turn out to be proportional to the asymptotic values of the Fn → nF∞ calcu-

lated on the n-covered 3-sphere [123]; as noted in Equation (4.9) we have σ
(B/F )
∞ = 1

4π2F (B/F )
∞ .

On the right of figure 4.1, we illustrated the asymptotic behavior of the corner coefficient

which we find to be

σn = σ∞

(
1 +

b1

n
+
b2

n2
+
b3

n3
+ . . .

)
. (4.47)
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Numerical fits show that b1, b2, and b3 are 1 for the free boson while b1 is 1 and b2 = b3 ≈

0.31578 in (4.47) for the free fermion. In fact, fitting up to O(1/n16), we find numerical

evidence that b2k = b2k+1 for both the scalar and fermion. This indicates that a factor of

(n+ 1)/n can be factored out of the function in (4.47), so that

σn = σ∞
n+ 1

n

(
1 +

b2

n2
+
b4

n4
+
b6

n6
+ . . .

)
. (4.48)

It is also interesting to study the ratios of the Rényi corner coefficients at large n: based

on numerical fits in the range n = 100 to 2000 we find

σ
(B)
n

σ
(F )
n

=
3

8

[
1 +

π2

12ζ(3)

1

n2
− 0.93871149

1

n4
+O

( 1

n5

)]
. (4.49)

The value of the 1/n2-coefficient is inferred from the numerics. Specifically, we fit to the

function

3

8

(
1 +

d1

n
+
d2

n2
+
d3

n3
+ . . .

)
, (4.50)

and find that d1 < 10−26,
∣∣d2− π2

12ζ(3)

∣∣ < 10−23, d3 < 10−19, d4 = −0.93871149 . . . , d5 < 10−13

etc. The vanishing of the odd powers in (4.50) is consistent with (4.48). Note also that we

can now identify the number b2 = b3 ≈ 0.31578 from the fit (4.47) of the free fermion Rényi

entropy corner coefficient at large n as 1 − π2

12ζ(3)
; this is the value given in the caption of

figure 4.1.

Taking the Hurwitz zeta-function expressions for F (B/F )
n from [123] and using (4.50) to

perform a similar fit at large n in the range 30 to 300, we find

F (B)
n

F (F )
n

=
3

8

[
1− π2

12ζ(3)

1

n2
+ 0.937106586

1

n4
+O

( 1

n5

)]
. (4.51)

Again, the value of the 1/n2-coefficient is inferred from the numerics which give d1 < 10−20,∣∣d2 + π2

12ζ(3)

∣∣ < 10−17, d3 < 10−14, d4 = 0.937106586 . . . , d5 < 10−12 etc. The behaviors of

F (B/F )
n individually is, however, very different that that of the Rényi corner coefficients. We
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find that F (B)
n ∼ nF (B)

∞
(
1 +O( 1

n4 )
)

while F (F )
n ∼ nF (F )

∞
(
1 + π2

12ζ(3)
1
n2 +O( 1

n4 )
)
.

It is not clear whether the similarities observed at large n between σn and Fn have any

significance or if it is a coincidence. Perhaps future investigations will clarify this.
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APPENDIX A

Metric Variation Formulae

We present here a list of formulae that are useful to computing the metric variations of

various contractions of curvature tensors:

∫
ddx
√
γ X

δR

δγij(y)
=
√
γ
(
RijX + (�X)γij −∇i∇jX

)
, (A.1)∫

ddx
√
γ X

δ(RklR
kl)

δγij(y)
=
√
γ
(

2RikR
k
jX +∇k∇l(XR

kl)γij + �(XRij)− 2∇k∇i(XRkj)
)
,

(A.2)∫
ddx
√
γ X

δRk
mln

δγij(y)
=
√
γ

(
− 1

2
∇m∇lXγinδ

k
j −

1

2
∇n∇lXγjmδ

k
i +

1

2
∇k∇lXγimγjn

)
,

(A.3)∫
ddx
√
γ X

δ�Y
δγij(y)

=
√
γ

(
X∇i∇jY +∇i(X∇jY )− 1

2
∇k(X∇kY )γij

)
+

∫
ddx
√
γ�X

δY

δγij(y)
. (A.4)

All fields on the RHS of these equations depend on y.
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APPENDIX B

Six-derivative Counterterms for Pure Gravity

In d = 6 dimensions one needs to consider counterterms with up to six derivatives. For the

pure gravity case, the six-derivative Ansatz is given by equation (2.29). In this Ansatz, it is

possible to include terms with contractions of two or three Riemann tensors, but it is easy

to show that the coefficients of such terms will be zero.

The HJ equation at six-derivative order becomes

K(6) + 2
∂U(6)

∂r
= 0 . (B.1)

The total derivatives of Y(4)ij that appear in K(6) are now important because they are mul-

tiplied by the non-constant Y(2)ij = BRij. In particular, we have that

Y(4)ij = C1

(
2RklRikjl+

1

2
�Rγij+�Rij−∇i∇jR

)
+C2

(
2RRij+2�Rγij−2∇i∇jR

)
. (B.2)

The coefficients B and C1,2 are those calculated in Section 2.3. Additionally, in the product

Y(2)ijY
ij

(4) , terms proportional to Rij∇i∇jR can be changed to R∇i∇jR
ij = 1

2
R�R by

adding appropriate total derivatives and using the Bianchi identity. Finally, by using the

variation rules of Appendix A, one realizes that Y(6) = 3U(6) up to total derivative terms

that can be ignored because Y(6) is only multiplied by the constant U(0). Putting everything

together and demanding that the coefficient of each of the independent terms is zero gives
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differential equations for the coefficients D1,2,3,4,5,6:

R3-terms: Ḋ1 +
d− 6

L
D1 −

dL4

16(d− 1)2(d− 2)3
= 0 ,

RRijR
ij-terms: Ḋ2 +

d− 6

L
D2 +

L4

4(d− 1)(d− 2)2(d− 4)
= 0 ,

R j
i R

k
j R

i
k -terms: Ḋ3 +

d− 6

L
D3 = 0 ,

RijRklRikjl-terms: Ḋ4 +
d− 6

L
D4 +

2L4

(d− 2)3(d− 4)
= 0 ,

R�R-terms: Ḋ5 +
d− 6

L
D5 −

L4

4(d− 1)(d− 2)3(d− 4)
= 0 ,

Rij�R
ij-terms: Ḋ6 +

d− 6

L
D6 +

L4

(d− 2)3(d− 4)
= 0 . (B.3)

Keeping only divergent contributions from the solutions of these equations, we obtain the

result (for d = 6)

U(6) = −L
4r

128

(
Rij�R

ij − 1

20
R�R + 2RijRklRikjl +

1

5
RRijR

ij − 3

100
R3

)
. (B.4)
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APPENDIX C

One-point Functions

In this appendix we calculate the one-point functions for the quantum field theory operators

dual to the fields of the FGPW model and explicitly check that the counterterm contributions

cancel the divergences that come from the bulk action. One may consider three different

one-point functions, 〈Oφ〉, 〈Oψ〉 and 〈Tij〉, where the QFT operators Oφ/ψ are dual to the

bulk fields φ/ψ respectively and the QFT energy-momentum tensor Tij is dual to the metric

γij.

These one point functions can be calculated by variations of the renormalized action

Sren = lim
ρ→0

Sreg = lim
ρ→0

(Sbulk + SGH + Sct) , (C.1)

where the regularized action Sreg is the sum of the bulk action (2.57), the Gibbons-Hawking

boundary term, and the counterterm action (2.82). In particular, the three correlation

functions are given by:

〈Oφ〉 = − lim
ρ→0

log ρ

ρ

1
√
γ

δSreg

δφ
, 〈Oψ〉 = − lim

ρ→0

1

ρ3/2

1
√
γ

δSreg

δψ
, 〈Tij〉 = − lim

ρ→0

1

ρ

2
√
γ

δSreg

δγij
.

(C.2)

The variation of the bulk action gives only a boundary term since the rest of the contributions
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are set to zero by the equations of motion. Namely, one gets

δSbulk

δφ
=

1

κ2

√
γ
(
− 2

L
ρ∂ρφ

)
,

δSbulk

δψ
=

1

κ2

√
γ
(
− 2

L
ρ∂ρψ

)
,

δSbulk

δγij
=

1

2κ2

√
γ
ρ

L

(
∂ργij − γmn∂ργmnγij

)
. (C.3)

On the other hand, the variation of the counterterm action has been already calculated

during the renormalization process and it is related to the conjugate momenta of the fields:

δSct

δφ
= −πφ = − 1

κ2

√
γpφ ,

δSct

δψ
= −πψ = − 1

κ2

√
γpψ ,

δSct

δγij
= −πij = − 1

κ2

√
γ

(
Yij −

1

2
Uγij

)
. (C.4)

After putting everything together, the following expressions are obtained:

〈Oφ〉 = − 1

κ2
lim
ρ→0

log ρ

ρ

[
− 2

L
ρ∂ρφ+

2

L

(
1 +

1

log ρ

)
φ

]
, (C.5)

〈Oψ〉 = − 1

κ2
lim
ρ→0

1

ρ3/2

[
− 2

L
ρ∂ρψ +

1

L
ψ +

(
1

3L
(1 + 3c)ψ3 − L

2

(
�− 1

6
R

)
ψ

)
log ρ

]
, (C.6)

〈Tij〉 = − 1

κ2

2

ρ

[
1

2L
ρ (∂ργij − γijγmn∂ργmn)− Yij +

1

2
Uγij

]
, (C.7)

with

Yij =
L

4
Rij +

[
L

24
(Rijψ

2 + 4∇iψ∇jψ − 2ψ∇i∇jψ − (∇ψ)2γij − ψ�ψγij)

+
L3

96
(4RRij − 12RklRkilj + �Rγij + 2∇i∇jR− 6�Rij)

]
log ρ , (C.8)

and U as calculated in Section 2.5.

To determine whether the above expressions are finite, one has to use the Fefferman-
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Graham expansions for the metric and the scalar fields of the theory:

γij =
1

ρ
γ(0)ij +

(
γ(2)ij + γ(2,1)ij log ρ

)
+ ρ
(
γ(4)ij + γ(4,1)ij log ρ+ γ(4,2)ij log2 ρ

)
+O(ρ2) (C.9)

ψ = ρ1/2ψ(0) + ρ3/2
(
ψ(2) + ψ(2,1) log ρ

)
+O(ρ5/2) (C.10)

φ = ρ
(
φ(0) + φ(0,1) log ρ

)
+O(ρ2) (C.11)

Notice that for the special case of the φ-field there is a logarithmic term even in leading order

in ρ. (This is generally true for all fields with scaling dimension ∆ = d/2.) All the coefficients

of the above expansions can be determined in terms of γ(0)ij, γ(4)ij, φ(0), φ(0,1), ψ(0) and ψ(2)

using the equations of motion for the fields and the metric. These undetermined coefficients

encode information about the boundary QFT. Namely, the leading order coefficients φ(0,1)

and ψ(0) are related to the source of the respective QFT operators, while coefficients φ(0)

and ψ(2) are related to their vev rate. Additionally, the leading coefficient γ(0)ij in the

expansion of γ is the background metric of the boundary QFT. Finally, although γ(4)ij is not

fully determined, its trace and covariant divergence can be related to the other expansion

coefficients using Einstein’s equation.

The substitution of the expansion (C.11) for φ into 〈Oφ〉 directly leads to cancellation of

all of the divergences, without using the equations of motion, and the result is

〈Oφ〉 = − 1

κ2

2

L
φ(0) . (C.12)

Plugging the expansion (C.10) for ψ into 〈Oψ〉 leads to direct cancellation of the divergent

terms in leading order, i.e. those proportional to 1/ρ, however, a logarithmic divergence
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remains:

〈Oψ〉 =
1

κ2

(
2

L
ψ(2) +

2

L
ψ(2,1)

)
+

1

κ2
lim
ρ→0

[
2

L
ψ(2,1) −

1

3L
(1 + 3c)ψ3

(0) +
L

2

(
�(0) −

1

6
R(0)

)
ψ(0)

]
log ρ , (C.13)

where R(0) ≡ R[γ(0)] is the Ricci scalar obtained by the metric γ(0) and

�(0)ψ(0) ≡
1
√
γ(0)

∂i

(√
γ(0)γ

ij
(0)∂jψ(0)

)
. (C.14)

In order to see the desired cancellations, one has to calculate the expansion coefficient ψ(2,1)

via the equation of motion for the field ψ,

L2�γψ + 4ρ2∂2
ρψ + 4ρ∂ρψ + 2ρ2∂ρψTr(γ−1∂ργ) + 3ψ − 2cψ3 = 0 . (C.15)

By the asymptotic expansions for ψ and the metric, the terms proportional to ρ3/2 give

ψ(2,1) = −1

4

(
L2�(0) + Tr(γ−1

(0)γ(2))− 2cψ2
(0)

)
ψ(0) . (C.16)

Finally, γ(2) is determined using Einstein’s equation:

Rµν [g] = ∂µφ∂νφ+ ∂µψ∂νψ +
1

3L2
V (φ, ψ)gµν . (C.17)

The ij component of this equation is

L2Rij[γ] = 2ρ2∂2
ργij + 2ρ∂ργij + ρ2 Tr(γ−1∂ργ)∂ργij − 2ρ2γmn∂ργmi∂ργnj

− 1

2
ρ2 Tr(γ−1∂ργ

−1∂ργ)γij + ρ2 Tr(γ−1∂2
ργ)γij + ρTr(γ−1∂ργ)γij

+ L2∂iφ∂jφ+ L2∂iψ∂jψ + 2ρ2(∂ρψ)2γij + 2ρ2(∂ρψ)2γij +
2

L2
V (φ, ψ)γij .

(C.18)
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Expanding it and keeping terms up to O(1) one finds

γ(2)ij = −L
2

2

(
R(0)ij −

1

6
R(0)γ(0)ij

)
− 1

6
ψ2

(0)γ(0)ij. (C.19)

Now using these results for ψ(2,1) and γ(2) in 〈Oψ〉 exactly cancels the logarithmic term and

gives the following finite result for the one-point function:

〈Oψ〉 =
1

κ2

[
2

L
ψ(2) −

L

2

(
�(0) −

1

6
R(0)

)
ψ(0) +

1

3L
(1 + 3c)ψ3

(0)

]
. (C.20)

A similar approach leads to the renormalized one-point function of the energy-momentum

tensor. A direct substitution of the asymptotic expansions in equation (C.7) leads to the

cancellation of the leading O(ρ−2) divergences. However, the remaining divergences can be

canceled only after solving Einstein’s equation for γ(4,1) and γ(4,2). Terms proportional to

ρ log ρ give

γ(4,2)ij = −1

6
φ2

(0,1)γ(0)ij , (C.21)

while terms proportional to ρ give

γ(4,1)ij =
L4

8

(
Rkl

(0)R(0)ikjl −
1

3
R(0)R(0)ij

)
− L4

32

(
Rkl

(0)R(0)kl −
1

3
R2

(0)

)
γ(0)ij

+
L4

16

(
�(0)R(0)ij −

1

3
∇i∇jR(0) −

1

6
�(0)R(0)γ(0)ij

)
+
L2

4
ψ(0)

(
1

3
∇i∇j +

1

6
γ(0)ij�(0) −

1

6
R(0)ij

)
ψ(0)

− L2

6

(
∇iψ(0)∇jψ(0) −

1

4
γkl(0)∇kψ(0)∇lψ(0)γ(0)ij

)
− 1

24
(1 + 3c)ψ4

(0)γ(0)ij −
1

3
φ(0)φ(0,1)γ(0)ij .

(C.22)
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Then, the renormalized energy momentum tensor will be given by:

〈Tij〉 =− 2

L
γ(4)ij −

1

L

(
1

3
φ2

(0) − φ(0)φ(0,1) +
2

3
φ2

(0,1) −
1

72
(1− 3c)ψ4

(0) + ψ(0)ψ(2)

)
γ(0)ij

+
L

8

(
γkl(0)∇kψ(0)∇lψ(0) + ψ(0)

(
�(0) −

1

9
R(0)

)
ψ(0)

)
γ(0)ij

− L

4
ψ(0)

(
∇i∇j −

1

2
R(0)ij

)
ψ(0) +

L3

32

(
R(0)klR

kl
(0) +

1

9
R2

(0) + �(0)R(0)

)
γ(0)ij

+
L3

4

(
R k

(0)i R(0)kj −
3

2
Rkl

(0)R(0)ikjl +
1

4
∇i∇jR(0) −

3

4
�(0)R(0)ij

)
.

(C.23)

The trace of the stress-tensor one-point function gives a much simpler expression, since the

trace Tr(γ−1
(0)γ(4)) can be obtained from the ρρ component of Einstein’s equation, which gives

ρ2 Tr(γ−1∂ργγ
−1∂ργ)− 2ρ2 Tr(γ−1∂2

ργ)− 2ρTr(γ−1∂ργ) = (2ρ∂ρφ)2 + (2ρ∂ρψ)2 +
L2

3
V (φ, ψ) .

(C.24)

Keeping only terms of order O(ρ2) in this yields

Tr(γ−1
(0)γ(4)) =

L4

16

(
R(0)ijR

ij
(0) −

2

9
R2

(0)

)
− L2

8
ψ(0)

(
�(0) −

5

18
R(0)

)
ψ(0)

− 1

3
(2φ2

(0) + φ2
(0,1)) +

1

9

(
1 +

3

2
c

)
ψ4

(0) − ψ(0)ψ(2) .

(C.25)

After plugging in the above result the trace anomaly becomes

〈T ii 〉 =
1

L

(
4φ(0)φ(0,1) − 2φ2

(0,1) −
1

6
(1 + 3c)ψ4

(0) − 2ψ(0)ψ(2)

)
+
L

2

(
ψ(0)�(0)ψ(0) + γij(0)∂iψ(0)∂jψ(0)

)
− L3

8

(
R(0)ijR

ij
(0) −

1

3
R2

(0)

)
. (C.26)

We must emphasize that the above results for the one-point functions are true only up

to contributions from finite counterterms in the action.
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APPENDIX D

Derivation of Manifestly Local

Soft-Subtracted Recursion Relation

In this appendix, we derive the manifestly local form (3.19) of the subtracted recursion

relations. For a given factorization channel, consider from the recursion relations (3.18) the

expression

Â(I)
L (z±I )Â(I)

R (z±I )

F (z±I )P 2
I (1− z±I /z

∓
I )

=
∑
zI=z±I

Resz=zI
Â(I)
L (z)Â(I)

R (z)

z F (z) P̂ 2
I

=

∮
C
dz
Â(I)
L (z)Â(I)

R (z)

z F (z) P̂ 2
I

, (D.1)

where the contour surrounds only the two poles z±I . The second equality is non-trivial and

deserves clarification. In the second expression, the subamplitudes Â(I)
L (z) and Â(I)

R (z) are

only defined precisely on the residue values z = z±I for which the internal momentum P̂I

is on-shell; in general one cannot just think of Â(I)
L,R(z) as functions of z. However, in the

product Â(I)
L (z)Â(I)

R (z), one can eliminate the internal momentum P̂I in favor of the n shifted

external momenta by using momentum conservation. Then the resulting expression can be

analytically continued in z away from the residue value. This is implicitly what has been

done in performing the second step in (D.1).

Let us assess the large-z behavior of the integrand in (D.1). The L and R subamplitudes

have couplings gL and gR such that gLgR = gn, with gn the coupling of An. Their mass-

dimensions are related as [gL] + [gR] = [gn]. Hence, using nL + nR = n + 2 and (3.26), we
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find that the numerator behaves at large z as

Â(I)
L (z)Â(I)

R (z)→ zDLzDR = z6−n−[gn]−
∑n
i=1 si−2sP = zD+2−2sP , (D.2)

where sP denotes the spin of the particle exchanged on the internal line and D is the large

z behavior of the An which we know satisfies D −
∑n

i=1 σi < 0, by the assumption that

the amplitude An is recursively constructible by the criterion (3.20). We therefore conclude

that the integrand in (D.1) behaves as zD−1−
∑n
i=1 σi−2sP , i.e. it goes to zero as 1/z2 or faster.

Hence, there is no simple pole at z →∞.

If we deform the contour, we get the sum over all poles z 6= z±I in
Â(I)
L (z)Â(I)

R (z)

z F (z) P̂ 2
I

. Let us

assume that A(I)
L and A(I)

R are both local: they have no poles and hence we pick up exactly

the simple poles at z = 0 and z = 1/ai for i = 1, 2, . . . , n. We then conclude that the soft

recursion relations take the form

An =
∑
I

∑
z′=0, 1

a1
,..., 1

an

∑
|ψ(I)〉

Resz=z′
Â(I)
L (z)Â(I)

R (z)

z F (z) P̂ 2
I

, (D.3)

where F (z) =
∏n

i=1(1 − aiz)σi . This form of the recursion relation is manifestly rational in

the momenta.

Note that only the z = 0 residues give pole terms in An. Therefore the sum of the 1/ai

residues over all channels must be a local polynomial in the momenta.
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APPENDIX E

Explicit Expressions for Amplitudes

In this appendix, we present expressions for the 4- and 6-point amplitudes of the theories

discussed in the main text. The 6-point amplitudes were reconstructed with the 4-point ones

as input, by means of the subtracted recursion relations and the the supersymmetry Ward

identities also discussed in the main text.

E.1 Supersymmetric CP1 NLSM

Below, we list the amplitudes for the CP1 N = 1 supersymmetric NLSM. This model is

discussed in Section 3.6 as an illustration of our methods.

The 4-point amplitudes are:

A4(1Z2Z̄3Z4Z̄) =
1

Λ2
s13 , (E.1)

A4(1Z2Z̄3+
ψ4−ψ ) = − 1

Λ2
[23]〈24〉 =

1

2Λ2
〈4|p1 − p2|3] , (E.2)

A4(1+
ψ2−ψ3+

ψ4−ψ ) = − 1

Λ2
[13]〈24〉 . (E.3)
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They serve as the input for computing the 6-point amplitudes recursively:

A6(1Z2Z̄3Z4Z̄5Z6Z̄)

=
1

Λ4

[(
s13s46

p2
123

+ (1↔ 5) + (3↔ 5)

)
+ (2↔ 4) + (2↔ 6) + 3p2

135

]
, (E.4)

A6(1Z2Z̄3Z4Z̄5+
ψ6−ψ )

=
1

Λ4

[(
s13[54]〈46〉

p2
123

+ (2↔ 4)

)
−
(
s24[51]〈16〉

p2
156

+ (1↔ 3)

)
−
((

[54]〈4|p126|2]〈26〉
p2

126

+ (1↔ 3)

)
+ (2↔ 4)

)
+ 〈6|p135|5]

]
, (E.5)

A6(1Z2Z̄3+
ψ4−ψ5+

ψ6−ψ )

=
1

Λ4

[
−
(

[31]〈1|p123|5]〈46〉
p2

123

− (3↔ 5)

)
+

(
[35]〈4|p126|2]〈26〉

p2
126

− (4↔ 6)

)
−
((

[51]〈16〉[32]〈24〉
p2

156

− (3↔ 5)

)
− (4↔ 6)

)]
, (E.6)

A6(1+
ψ2−ψ3+

ψ4−ψ5+
ψ6−ψ )

=
1

Λ4

[(
[13]〈2|p123|5]〈46〉

p2
123

− (1↔ 5)− (3↔ 5)

)
− (2↔ 4)− (2↔ 6)

]
. (E.7)

Note that only the pure scalar amplitudes and the 2-fermion amplitudes have local terms.

The 6-point amplitudes satisfy the NMHV supersymmetry Ward identities in (3.68)-(3.70).

E.2 Supersymmetric Dirac-Born-Infeld Theory

The amplitudes of N = 1 supersymmetric Dirac-Born-Infeld theory are all recursively con-

structible. The 4-point amplitudes are

A4(1Z2Z̄3Z4Z̄) =
1

Λ4
s2

13 , (E.8)

A4(1Z2Z̄3+
ψ4−ψ ) =

1

Λ4
s13[32]〈24〉 =

1

2Λ4
s13〈4|p1 − p2|3] , (E.9)

A4(1+
ψ2−ψ3+

ψ4−ψ ) = − 1

Λ4
s13[13]〈24〉 . (E.10)
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and the results of soft subtracted recursion for the 6-point amplitudes are

A6(1Z2Z̄3Z4Z̄5Z6Z̄)

=
1

Λ8

[(
s2

13s
2
46

p2
123

+ (1↔ 5) + (3↔ 5)

)
+ (2↔ 4) + (2↔ 6)− p6

135

]
, (E.11)

A6(1Z2Z̄3Z4Z̄5+
ψ6−ψ )

=
1

Λ8

[((
s26s35[54]〈4|p126|1]〈16〉

p2
126

+ (1↔ 3)

)
+ (2↔ 4)

)
+

(
s2

13s46[54]〈46〉
p2

123

+ (2↔ 4)

)
−
(
s15s

2
24[51]〈16〉
p2

156

+ (1↔ 3)

)
+
(
s13s24 − (s13 + s24) p2

135

)
〈6|p24|5]

]
, (E.12)

A6(1Z2Z̄3+
ψ4−ψ5+

ψ6−ψ )

=
1

Λ8

[
(s24 + s26) p2

135[35]〈46〉 −
((

s15s24[51]〈16〉[32]〈24〉
p2

156

− (3↔ 5)

)
− (4↔ 6)

)
−
(
s13s46[32]〈2|p123|5]〈46〉

p2
123

− (3↔ 5)

)
+

(
s26s35[35]〈4|p126|2]〈26〉

p2
126

− (4↔ 6)

)]
,

(E.13)

A6(1+
ψ2−ψ3+

ψ4−ψ5+
ψ6−ψ )

=
1

Λ8

[(
s13s46[13]〈2|p123|5]〈46〉

p2
123

− (1↔ 5)− (3↔ 5)

)
− (2↔ 4)− (2↔ 6)

]
. (E.14)

The 6-point amplitudes satisfy the NMHV supersymmetry Ward identities in (3.68)-(3.70).

As in the case of the NLSM, only the pure scalar amplitudes and the 2-fermion amplitudes

have local terms.

E.3 Supersymmetric Born-Infeld Theory

In this subsection, we list the amplitudes of Born-Infeld theory. This theory is the leading

order contribution to the effective field theory of a Goldstone N = 1 vector multiplet. The
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4-point amplitudes are

A4(1+
ψ2−ψ3+

ψ4−ψ ) = − 1

Λ4
[13]〈24〉s13 , (E.15)

A4(1+
ψ2−ψ3+

γ 4−γ ) =
1

Λ4
[13][23]〈24〉2 = − 1

2Λ4
[13]〈4|p1 − p2|3]〈24〉 , (E.16)

A4(1+
γ 2−γ 3+

γ 4−γ ) =
1

Λ4
[13]2〈24〉2 . (E.17)

Except for the all-vector amplitudes, all amplitudes are constructible with soft subtracted

recursion. The all-vector amplitudes are the amplitudes of Born-Infeld theory, and they

are fixed in terms of the other amplitudes using the supersymmetry Ward identities. In

particular, at 6-points, we use (3.70) and the remaining five identities in (3.68)-(3.70) are

used as checks. The results are

A6(1+
ψ2−ψ3+

ψ4−ψ5+
ψ6−ψ )

=
1

Λ8

[(
s13s46[13]〈2|p123|5]〈46〉

p2
123

− (1↔ 5)− (3↔ 5)

)
− (2↔ 4)− (2↔ 6)

]
, (E.18)

A6(1+
γ 2−γ 3+

ψ4−ψ5+
ψ6−ψ )

=
1

Λ8

[(
s46[13]2〈2|p123|5]〈23〉〈46〉

p2
123

− (3↔ 5)

)
+

(
s35[14][35]〈6|p124|1]〈24〉2

p2
124

− (4↔ 6)

)
−
((

[13][14]〈4|p134|5]2〈52〉〈26〉
p2

134

− [13]〈2|p35|1]〈6|p46|5]〈24〉 − (3↔ 5)

)
− (4↔ 6)

)]
,

(E.19)

A6(1+
γ 2−γ 3+

γ 4−γ 5+
ψ6−ψ )

=
1

Λ8

[(
[13]2〈2|p123|5]2〈54〉〈46〉

p2
123

+ (2↔ 4)

)
+

(
[35][36]〈6|p124|1]2〈24〉2

p2
124

+ (1↔ 3)

)
+

((
[15]2[36]〈2|p125|3]〈25〉〈46〉2

p2
125

+ (1↔ 3)

)
+ (2↔ 4)

)
+ [13]2〈6|p24|5]〈24〉2

]
,

(E.20)

A6(1+
γ 2−γ 3+

γ 4−γ 5+
γ 6−γ )

=
1

Λ8

[(
[13]2〈2|p123|5]2〈46〉2

p2
123

+ (1↔ 5) + (3↔ 5)

)
+ (2↔ 4) + (2↔ 6)

]
. (E.21)
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In this case, only A6(1+
γ 2−γ 3+

γ 4−γ 5+
ψ6−ψ ) and A6(1+

γ 2−γ 3+
ψ4−ψ5+

ψ6−ψ ) have local terms.

E.4 Supersymmetric Quartic Galileon Theory

Below, we list the amplitudes of an N = 1 supersymmetric quartic Galileon. This model

was discussed in detail in [60] and reviewed in Section 3.8. The 4-point amplitudes are

A4(1Z2Z̄3Z4Z̄) =
1

Λ6
s12s13s23 , (E.22)

A4(1Z2Z̄3+
ψ4−ψ ) =

1

Λ6
s12s23[32]〈24〉 =

1

2Λ6
s12s23〈4|p1 − p2|3] , (E.23)

A4(1+
ψ2−ψ3+

ψ4−ψ ) = − 1

Λ6
[13]〈24〉s12s23 . (E.24)

At 6-point, only the amplitudes with at most two fermions are constructible with soft sub-

tracted recursion relations. The remaining ones are fixed by the supersymmetry Ward iden-

tities (3.68)-(3.70), and we find

A6(1Z2Z̄3Z4Z̄5Z6Z̄)

=
1

Λ12

[(
s12s13s23s45s46s56

p2
123

+ (1↔ 5) + (3↔ 5)

)
+ (2↔ 4) + (2↔ 6)

]
, (E.25)

A6(1Z2Z̄3Z4Z̄5+
ψ6−ψ )

=
1

Λ12

[(
s12s13s23s45s56[54]〈46〉

p2
123

+ (2↔ 4)

)
−
(
s16s23s24s34s56[51]〈16〉

p2
156

+ (1↔ 3)

)
+

((
s12s16s34s45[53]〈3|p126|2]〈26〉

p2
126

+ (1↔ 3)

)
+ (2↔ 4)

)]
, (E.26)

A6(1Z2Z̄3+
ψ4−ψ5+

ψ6−ψ )

=
1

Λ12

[(
s12s23s45s56[31]〈1|p46|5]〈46〉

p2
123

− (3↔ 5)

)
+

(
s12s16s34s45[35]〈4|p16|2]〈26〉

p2
126

− (4↔ 6)

)
−
((

s16s23s34s56[32]〈24〉[51]〈16〉
p2

156

− (3↔ 5)

)
− (4↔ 6)

)]
, (E.27)
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A6(1+
ψ2−ψ3+

ψ4−ψ5+
ψ6−ψ )

=
1

Λ12

[(
s12s23s45s56[13]〈2|p13|5]〈46〉

p2
123

− (1↔ 5)− (3↔ 5)

)
− (2↔ 4)− (2↔ 6)

]
.

(E.28)

None of the amplitudes have local terms.

E.5 Chiral Perturbation Theory

Below, we list the color-ordered amplitudes of the U(N)×U(N)
U(N)

sigma model, with higher deriva-

tive corrections, referred to as chiral perturbation theory in the main text. Different color

orderings are related to the ones listed by momentum relabelling. At 4-point we have

A4[1, 2, 3, 4] =
g2

Λ2
t+

g6

Λ6
t
(
s2 + t2 + u2

)
+
g8

Λ8
st2u+O(Λ−10) (E.29)
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and at 6-point

A6[1, 2, 3, 4, 5, 6]

=
g2

2

Λ4

[
s13s46

p2
123

+
s24s15

p2
234

+
s35s26

p2
345

− s24 − s26 − s46

]
+
g2g6

Λ8

[
s13s46

p2
123

(
s2

12 + s2
13 + s2

23 + s2
45 + s2

46 + s2
56

)
+
s24s15

p2
234

(
s2

23 + s2
24 + s2

34 + s2
56 + s2

15 + s2
16

)
+
s35s26

p2
345

(
s2

34 + s2
35 + s2

45 + s2
16 + s2

26 + s2
12

)
− 2
(
s3

26 + s23s
2
26 + s25s

2
26 + s34s

2
26 + s45s

2
26 + s2

23s26 + s2
25s26 + s2

34s26 + s2
35s26 + s2

45s26

+ s23s34s26 + s23s35s26 + s25s35s26 + s34s36s26 + s23s45s26 + s34s45s26 + s36s45s26

+ s3
46 + s24s

2
25 + s24s

2
35 + s24s

2
45 + s23s

2
46 + s25s

2
46 + s34s

2
46 + s35s

2
46 + s36s

2
46

+ s45s
2
46 + s24s35s36 + s2

25s46 + s2
34s46 + s2

35s46 + s2
36s46 + s2

45s46 + s23s25s46

+ s25s34s46 + s23s45s46 + s34s45s46 + s35s45s46 + s36s45s46

)
− 4
(
s3

24 + s25s
2
24 + s35s

2
24 + s45s

2
24 + s2

23s24 + s2
34s24 + s2

36s24 + s23s25s24 + s25s34s24

+ s23s35s24 + s25s35s24 + s34s35s24 + s26s36s24 + s23s45s24 + s25s45s24 + s34s45s24

+ s35s45s24 + s36s45s24 + s23s25s26 + s25s26s34 + s25s26s45 + s2
23s46 + s25s26s46

+ s23s34s46 + s23s35s46 + s34s35s46 + s23s36s46 + s25s36s46 + s26s36s46 + s34s36s46

+ s35s36s46 + s25s45s46 + s26s45s46

)
− 6
(
s23s

2
24 + s34s

2
24 + s36s

2
24 + s2

26s24 + s2
46s24 + s23s26s24 + s25s26s24 + s23s34s24

+ s26s34s24 + s23s36s24 + s25s36s24 + s26s45s24 + s25s46s24 + s35s46s24 + s45s46s24

+ s26s
2
46 + s25s34s36 + s25s36s45 + s2

26s46 + s23s26s46 + s26s34s46

)
− 8s24

(
s24s26 + s34s36 + s23s46 + s24s46 + s34s46 + s36s46

)
− 12s24s26s46

]
+O(Λ−10) .

(E.30)

These amplitudes are discussed in further detail in Section 3.8.4.
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APPENDIX F

Recursion Relations and Ward Identities

We show that if the seed amplitudes of a recursive theory satisfy a set of Ward identities,

then all recursively constructible n-point amplitudes also satisfy them. For Abelian groups,

this follows from two features:

(a) additive charges have Ward identities that simply state that the sum of charges of the

states in an amplitude must vanish.

(b) CPT conjugate states sitting on either end of a factorization channel have equal and

opposite charges.

Hence recursion will result in amplitudes that respect the Abelian symmetry so long as the

seed amplitudes do.

Now consider Ward identities generated by elements of a semi-simple Lie algebra. In

the root space decomposition of the algebra, we can choose a triplet of generators: raising

operators T+, lowering operators T−, and “diagonal” T0 generators, for each positive root

that satisfy the algebra

[T+, T−] = T0 , [T+, T0] = −2T+ , [T−, T0] = 2T− . (F.1)

In order for representations of this algebra to be physical, CPT must be an algebra auto-

morphism. The CPT charge conjugation generator C must also flip the sign of the additive
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T0-charge. So we determine the action of C to be

C · T0 ·X = −T0 · C ·X = −T0 · X̃ ,

C · T+ ·X = −T− · C ·X = −T− · X̃ ,

C · T− ·X = −T+ · C ·X = −T+ · X̃ , (F.2)

where X is a physical state and we have defined the conjugate state X̃ to be the charge

conjugate of X, i.e. X̃ = C ·X.

If the S-matix is recursively constructible (at some order in the derivative expansion)

then each n-point amplitude is given as a sum over factorization singularities with residues

given in terms of a product of amplitudes with fewer external states

An(1, · · · , n) =
∑
I

∑
X

Res
z=z±I

Â(I)
L (z)Â(I)

R (z)

zP̂I(z)2F (z)
, (F.3)

where I labels all possible factorization channels and X the exchanged internal states. Since

T0 is diagonal, the Ward identity generated by T0 works just like in the Abelian case –

charges can be assigned to the physical states and recursion preserves this charge in any

n-point amplitude. More complicated are the non-diagonal generators T±. For simplicity,

we present the argument explicitly for SU(2)R Ward identities as they apply to the N = 2

NLSM described in Section 3.6.2. For SU(2)R, the action of T+ on the fermion helicity states

is given in (3.93). The scalar and vectors are singlets under SU(2)R.

The statement of the SU(2)R Ward identity is that T+ · An(1, ..., n) = 0. The inductive

assumption is that this holds true for the lower-point amplitudes in the recursive expression

for An(1, ..., n). We already know from Section 3.6.2 that SU(2)R is a symmetry of the 3-

and 4-point amplitudes, so that provides the basis of induction.
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The action of T+ on the recursive expression for an n-point amplitude is

T+ · An(1, ..., n) ≡
n∑
i=1

(−1)PiAn(1, ..., T+ · i, ..., n) (F.4)

=
∑
I

∑
X

Res
z=z±I

[∑
i∈I

(−1)Pi
Â(I)
L (. . . , T+ · i, . . . , X)Â(I)

R (. . .)

zP̂I(z)2F (z)

+
∑
i/∈I

(−1)Pi
Â(I)
L (. . .)Â(I)

R (X̃, . . . , T+ · i, . . .)
zP̂I(z)2F (z)

]
, (F.5)

where Pi = 0 or 1 corresponds to the additional signs in the prefactors for the action of

T+ as given in Table 3.93. We now prove that this expression vanishes channel by channel.

Without loss of generality, we will show that the contribution from the (1 . . . k)± channel

vanishes independently, where + means the contribution from the z± residue. The argument

follows for all other factorization channels by replacing (1 . . . k)± by I±. For the (1 . . . k)-

channel, the relevant part of (F.4) that we want to show vanishes is

∑
X

[( k∑
i=1

(−1)PiÂL(1, . . . , T+ · i, . . . , k,X)

)
ÂR(X̃, k + 1, . . . , n)

+ ÂL(1, . . . , k,X)

( n∑
i=k+1

(−1)PiÂR(X̃, k + 1, . . . , T+ · i, . . . , n)

)]
. (F.6)

By the inductive assumption, the lower-point amplitudes respect the T+ Ward identities

k∑
i=1

(−1)PiÂL(1, . . . , T+ · i, . . . , k,X) = (−1)PX+1ÂL(1, . . . , k, T+ ·X) , (F.7)

and similarly for ÂR. Using this relation and splitting the sum over particles X allows us to

rewrite (F.6) as

−
∑
X

(−1)PX
[
ÂL(1, . . . , k, T+ ·X)ÂR(X̃, k + 1, . . . , n)

]
−
∑
X′

(−1)PX̃′
[
ÂL(1, . . . , k,X ′)ÂR(T+ · X̃ ′, k + 1, . . . , n)

]
.

(F.8)
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In the second line we have made a change of dummy summation variable that we now exploit

further.

It is non-trivial, but turns out to be true for SU(2)R as we have explicitly checked, that

if we define X ′ = T+ ·X and sum over X instead of X ′, the second line of (F.8) gives exactly

the same result. We can then write (F.8) as

−
∑
X

[
(−1)PX ÂL(1, . . . , k, T+ ·X)ÂR(X̃, k + 1, . . . , n)

+ (−1)PX̃′ ÂL(1, . . . , k, T+ ·X)ÂR(T+ · C · T+ ·X, k + 1, . . . , n)
]
.

(F.9)

Since T+ · C · T+ ·X = T+ · T− · X̃, this becomes

−
∑
X

[
(−1)PX ÂL(1, . . . , k, T+ ·X)ÂR(X̃, k + 1, . . . , n)

+ (−1)
PT−·X̃

+QX̃+1ÂL(1, . . . , k, T+ ·X)ÂR(T+ · T− · X̃, k + 1, . . . , n)
]
.

(F.10)

where QX refers to the prefactors for the action of T− as given in Table 3.93. This vanishes

when T+ · T− · X̃ = X̃ and PT−·X̃ + QX̃ = 0 for any state X such that T+ · X 6= 0. For

SU(2)R, we can check explicitly that these conditions are satisfied. The only states for

which T+ ·X 6= 0 are X = ψ2+ and ψ−1 . Their conjugates are X̃ = ψ−2 and ψ2+, respectively,

and by (3.93) we have

T+ · T− · ψ1+ = T+ · ψ2+ = ψ1+ T+ · T− · ψ−2 = T+ · ψ−1 = ψ−2 , (F.11)

PT−·ψ1+ +Qψ1+ = 0 + 0 = 0 PT−·ψ−2 +Qψ−2
= 1 + 1 = 0 (mod 2) . (F.12)

If follows that from the inductive step that all amplitudes satisfy the SU(2)R Ward identities

when the seed amplitudes do.
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APPENDIX G

Amplitude Relations in N = 2 CP1 NLSM

Below are explicit formulae, derived from N = 2 supersymmetry Ward identities, for all

amplitudes in this model with total spin ≤ 1 expressed as linear combinations of amplitudes

with strictly greater total spin. Collectively these formulae allow us to construct every tree-

level amplitude in the N = 2 CP1 sigma model using unsubtracted recursion. The needed

relations are:

A2n (1Z , 2Z̄ , 3Z , 4Z̄ ..., (2n)Z̄)

=
n−1∑
k=1

〈1, 2k + 1〉
〈12〉

A2n

(
1Z , 2

−
ψ1
, 3Z , 4Z̄ , ..., (2k + 1)+

ψ1 , ..., (2n)Z̄

)
(G.1)

A2n

(
1+
ψ1 , 2

−
ψ1
, 3Z , 4Z̄ , ..., (2n)Z̄

)
=

n−1∑
k=1

[2, 2k + 2]

[21]
A2n

(
1+
γ , 2

−
ψ1
, 3Z , 4Z̄ , ..., (2k + 2)−ψ2

, ..., (2n)Z̄
)

(G.2)

A2n+1

(
1+
γ , 2

+
γ , 3Z , 4Z̄ , ..., (2n+ 1)Z

)
=

n−2∑
k=1

〈3, 2k + 3〉
〈34〉

A2n+1

(
1+
γ , 2

+
γ , 3Z , 4

−
ψ2
, 5Z , ..., (2k + 3)+

ψ2 , ..., (2n+ 1)Z

)
(G.3)

A2n

(
1+
ψ1 , 2

−
γ , 3

+
ψ2 , 4Z̄ , 5Z , ..., (2n)Z̄

)
=

n−1∑
k=1

[3, 2k + 2]

[31]
A2n

(
1+
γ , 2

−
γ , 3

+
ψ2 , 4Z̄ , ..., (2k + 2)−ψ2

, ..., (2n)Z̄

)
(G.4)

166



A2n

(
1+
γ , 2

−
γ , 3Z , 4Z̄ , 5Z , ..., (2n)Z̄

)
=

n−1∑
k=1

[1, 2k + 2]

[13]
A2n

(
1+
γ , 2

−
γ , 3

+
ψ2 , 4Z̄ , ..., (2k + 2)−ψ2

, ..., (2n)Z̄

)
(G.5)

A2n+1

(
1+
γ , 2

+
ψ1 , 3

+
ψ2 , 4Z , 5Z̄ , ..., (2n+ 1)Z̄

)
= −〈42〉
〈45〉
A2n+1

(
1+
γ , 2

+
γ , 3

+
ψ2 , 4Z , 5

−
ψ2
, 6Z , ..., (2n+ 1)Z̄

)
+

n−2∑
k=1

〈4, 2k + 4〉
〈45〉

A2n+1

(
1+
γ , 2

+
ψ1 , 3

+
ψ3 , 4Z , 5

−
ψ2
, 6Z , ..., (2k + 4)+

ψ2 , ..., (2n+ 1)Z̄

)
(G.6)

A2n

(
1+
ψ1 , 2

−
ψ1
, 3+

ψ2 , 4
−
ψ2
, 5Z , 6Z̄ , ..., (2n)Z̄

)
=

[32]

[31]
A2n

(
1+
γ , 2

−
γ , 3

+
ψ2 , 4

−
ψ2
, 5Z , 6Z̄ , ..., (2n)Z̄

)
+

n−2∑
k=1

[3, 2k + 4]

[31]
A2n

(
1+
γ , 2

−
ψ1
, 3+

ψ2 , 4
−
ψ2
, 5Z , ..., (2k + 4)−ψ2

, ..., (2n)Z̄

)
(G.7)

A2n

(
1+
ψ1 , 2

−
ψ1
, 3+

ψ1 , 4
−
ψ1
, 5Z , 6Z̄ , ..., (2n)Z̄

)
=

[42]

[41]
A2n

(
1+
γ , 2

−
γ , 3

+
ψ1 , 4

−
ψ1
, 5Z , 6Z̄ , ..., (2n)Z̄

)
+

n−2∑
k=1

[4, 2k + 4]

[41]
A2n

(
1+
γ , 2

−
ψ1
, 3+

ψ1 , 4
−
ψ1
, 5Z , ..., (2k + 4)−ψ2

, ..., (2n)Z̄

)
(G.8)

A2n+1

(
1+
ψ1 , 2

+
ψ1 , 3

+
ψ2 , 4

+
ψ2 , 5Z̄ , 6Z , ..., (2n+ 1)Z̄

)
= −〈21〉
〈25〉
A2n+1

(
1+
γ , 2

+
ψ1 , 3

+
ψ2 , 4

+
ψ2 , 5

−
ψ2
, 6Z , 7Z̄ , ..., (2n+ 1)Z̄

)
+

n−2∑
k=1

〈2, 2k + 4〉
〈25〉

A2n+1

(
1+
ψ1 , 2

+
ψ1 , 3

+
ψ2 , 4

+
ψ2 , 5

−
ψ2
, 6Z , ..., (2k + 4)+

ψ2 , ..., (2n+ 1)Z̄

)
. (G.9)
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