Web-based supporting materials for

Indices of Non-Ignorable Selection Bias for Proportions

Estimated from Non-Probability Samples

by

Andridge, West, Little, Boonstra, and Alvarado-Leiton

Proof of Reduced Proxy Pattern-Mixture Formulation - Reducing Equation (5) to (7)

To show that (5) reduces to (7) under the stated assumptions, note first that since V is assumed to be uncorrelated with X for both selected and non-selected cases, $\beta_{x v \cdot v}^{(0)}=\beta_{x v \cdot v}^{(1)}=0$. Secondly, since X is assumed to be the best predictor of Y for both selected and non-selected cases,

$$
\begin{align*}
\beta_{u v \cdot v x}^{(j)} & =\beta_{u v \cdot v}^{(j)}-\frac{\sigma_{u x \cdot v}^{(j)} \beta_{x v \cdot v}^{(j)}}{\sigma_{x x \cdot v}^{(j)}} \tag{A1}\\
& =\beta_{u v \cdot v}^{(j)}=0
\end{align*}
$$

for $j=0,1$. Thus the model in (5) reduces to

$$
(U, X \mid V, S=j) \sim N_{2}\left(\binom{\beta_{u 0 \cdot v}^{(j)}}{\beta_{x 0 \cdot v}^{(j)}},\left(\begin{array}{ll}
\sigma_{u u \cdot v}^{(j)} & \sigma_{u x \cdot v}^{(j)} \tag{A2}\\
\sigma_{u x \cdot v}^{(j)} & \sigma_{x x \cdot v}^{(j)}
\end{array}\right)\right),
$$

which is the pattern-mixture model in (7) with $\mu_{u}^{(j)}=\beta_{u 0 \cdot v}^{(j)}, \mu_{x}^{(j)}=\beta_{x 0 \cdot v}^{(j)}, \sigma_{u u}^{(j)}=\sigma_{u u \cdot v}^{(j)}, \sigma_{x x}^{(j)}=$ $\sigma_{x x \cdot v}^{(j)}$, and $\rho_{u x}^{(j)}=\frac{\sigma_{u x}^{(j)}}{\sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}}}=\frac{\sigma_{u x \cdot v}^{(j)}}{\sqrt{\sigma_{u u \cdot v}^{(j)} \sigma_{x x \cdot v}^{(j)}}}$.

Supplemental Figure 1: $\operatorname{MUBP}(\phi)$ from the probit model (solid lines/solid symbols) and $\operatorname{MUB}(\phi)$ from the normal model (dotted lines/open symbols) versus the true estimated bias, shown for combinations of the biserial correlation $\operatorname{Corr}(U, X)=\rho_{u x}$ (rows) and the selection mechanism (columns), for $E[Y]=0.1$. Grey dashed line is equality (index $=$ estimated bias). Results are medians across 1000 simulated data sets for each scenario.

Supplemental Figure 2: $\operatorname{MUBP}(\phi)$ from the probit model (solid lines/solid symbols) and $\operatorname{MUB}(\phi)$ from the normal model (dotted lines/open symbols) versus the true estimated bias, shown for combinations of the biserial correlation $\operatorname{Corr}(U, X)=\rho_{u x}$ (rows) and the selection mechanism (columns), for $E[Y]=0.5$. Grey dashed line is equality (index $=$ estimated bias). Results are medians across 1000 simulated data sets for each scenario.

Supplemental Figure 3: Coverage of $[\operatorname{MUBP}(0), \operatorname{MUBP}(1)]$ and $[\operatorname{SMUB}(0), \operatorname{SMUB}(1)] \operatorname{ML} / M M L$ intervals, and Bayesian credible intervals ("Bayes"), shown as a function of the true estimated bias (x-axis), selection mechanism and estimation method (columns), proxy strength (rows), and $\mathrm{E}[Y]$ (shape). Coverages are estimated from 1000 simulated data sets.

