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Key Points 

• Wind-curl upwelling contributes to Southern California primary productivity, 

especially during weak coastal upwelling intervals. 

• Intensified NPH leads to stronger denitrification through enhanced coastal 

upwelling and reduced rainfall. 

• California receives relatively more tropical water during the Medieval Climate 

Anomaly, and more subarctic water during the Little Ice Age. 
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Abstract 

Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water-column 

denitrification. When combined with additional productivity proxies, it provides insights 

into the driving forces behind long-term changes in water column oxygenation. High-

resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], 

Si/Ti and Ca/Ti) from Santa Barbara Basin, California were generated from a well-dated 

Kasten core (SPR0901-03KC). These records reveal the relationship between Southern 

California upwelling and oxygenation over the past 2000 years.  

Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export 

productivity proxy) suggest wind-curl upwelling influenced Southern California primary 

productivity, especially during intervals of weak coastal upwelling. Coherence between 

δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric 

circulation, as persistent Northerly Winds associated with an intensified North Pacific 

High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is 

used as a water mass tracer of denitrification signals transported north from the Eastern 

Tropical North Pacific (ETNP) via the California Undercurrent. A 1200-year δ15Nsed 

record from the Pescadero slope, Gulf of California lies between denitrifying subsurface 

waters in the ETNP and Southern California. During the Medieval Climate Anomaly, 

coherence between Pescadero and SBB δ15Nsed indicates connections between ETNP and 

Southern California on centennial time scales. Yet an out-of-phase relationship occurred 

when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest 

intensified nutrient-rich subarctic water advection might have transported high-15N nitrate 

into Southern California when the California Undercurrent and ETNP denitrification 

weakened. 

 

1 Introduction 
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Highly active biogeochemical processes in oxygen minimum zones (OMZs) play 

a significant role in global nutrient cycling through their impact on nitrogen (N) cycles. 

In the three largest OMZs (eastern tropical North Pacific, eastern tropical South Pacific, 

and the Arabian Sea), water-column denitrification and anammox (anaerobic ammonium 

oxidation) observed at ~200-800 m (Brandes et al., 1998) account for almost a half of the 

total oceanic N loss (Ganeshram et al., 2002; Ganeshram et al., 1995). Thus, OMZs cast 

control on global nutrients through the fixed N inventory and ocean nutrient limitation, 

contributing to the regulation of CO2 levels (Altabet, 2006b; Altabet and François, 1994; 

Deutsch et al., 2004; Ganeshram et al., 2002; Kienast et al., 2002). OMZs are anticipated 

to expand in a warming world due to reduced gas solubility and intensified stratification 

of the water column, yet the brevity of O2 concentration observations in these OMZs (<50 

years) makes separating long-term (multidecadal to centennial) natural oceanic variability 

from anthropogenic influences difficult. 

OMZ intensity controls water-column denitrification, as nitrate becomes the 

favorable electron acceptor after dissolved O2 is depleted in microbe-regulated organic 

carbon remineralization. δ15N is widely accepted as a proxy for water-column 

denitrification (Altabet et al., 1995; Altabet et al., 1999a; Thunell et al., 2004). 

Preferential removal of 14N by denitrification progressively enriches 15N in the remaining 

subsurface nitrate pool, which is then advected throughout the ocean. When this δ15N-

enriched nitrate is upwelled into the photic zone and incorporated in particulate organic 

carbon that is exported to the sea floor, the subsurface δ15N signal is preserved in the 

sediments, leading to elevated sedimentary δ15N (Altabet, 2006b; Altabet and François, 

1994; Deutsch et al., 2004; Ganeshram et al., 2002; Kienast et al., 2002). When O2 

supplies are reduced (e.g. due to lower solubility in a warmer climate) and/or O2 

consumption increases (e.g. due to greater availability of organic carbon for 

remineralization), sedimentary δ15N increases alongside intensified water-column 

denitrification. To use δ15N as an indicator of O2 concentration, complete nitrate 
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utilization in the photic zone must occur and δ15N cannot be compromised during 

sedimentary diagenesis (Prokopenko et al., 2006; Thunell et al., 2004). Incomplete nitrate 

consumption in the photic zone, however, leaves a high δ15Nnitrate signature due to 

preferential uptake of 14N in photosynthesis, complicating sedimentary δ15N 

interpretations (Altabet and François, 1994). The relative contribution of different N 

sources may also alter δ15N of the fixed N pool and sedimentary δ15N records (Fig. 2). 

Although oceanic N is usually sourced from N fixation (δ15N = -2-0‰), atmospheric 

deposition (δ15N ≈ -2‰), and terrestrial input (δ15N ≈ 4‰) (Altabet, 2006b; Sigman et al., 

2009a), increasing anthropogenic atmospheric deposition can decrease surface water δ15N 

(Ren et al., 2017), and δ15N-depleted terrestrial inorganic carbon input can bias 

sedimentary δ15N towards lower values (Kienast et al., 2005). Additionally, remotely 

advected water masses with different δ15N signatures supply extra N to the photic zone in 

upwelling regions (e.g., Southern California margin; Liu and Kaplan (1989)), 

transmitting unique δ15N signatures to sediments.  

Previous studies have shown that >1‰ δ15N shifts in the Arabian Sea and the east 

tropical north Pacific (ETNP) occurred between glacial and interglacial, as OMZs 

contracted during cool intervals and expanded as climate warmed (Altabet et al., 1995; 

Ganeshram et al., 1995; Pride et al., 1999). Although δ15N is assumed to be relatively 

stable in the late Holocene (Altabet, 2006a), several millennial-scale δ15N records have 

shown linkages between OMZ variability and the Intertropical Convergence Zone (ITCZ) 

migration (Agnihotri et al., 2008; Salvatteci et al., 2014). A more southerly ITCZ position 

associated with centennial/millennial-scale Northern Hemisphere (NH) cooling coincides 

with lower surface productivity and reduced denitrification off Peru (Agnihotri et al., 

2008), supporting an oceanic OMZ response to climate forcing via large-scale 

atmospheric circulation. 

A 2000-year high-resolution (~2 years) δ15Nsed record from the well-dated Kasten 

core SPR0901-03KC (34°16.99’N, 120°2.408’W; 586 m depth) in the Santa Barbara 
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Basin (SBB), Southern California was generated to explore long-term natural variability 

of δ15N in response to water-column oxygenation and/or N flux changes. Paired total 

organic carbon (TOC) and the scanning X-ray fluorescence (XRF) elemental analyses 

constrain the impacts of regional productivity and terrestrial N input on sedimentary δ15N. 

These records show coherence between δ15Nsed, export productivity, and local 

precipitation to reveal a local control of the Southern California denitrification. The SBB 

δ15Nsed was also compared to the 1200-year δ15Nsed record from the Pescadero slope, Gulf 

of California (Tems et al., 2016), and the Mt. Logan ice core record (Osterberg et al., 

2014) to investigate the coherence of northeast Pacific δ15N variability in response to 

larger-scale (regional or global) processes (e.g., tropical and extra-tropical forcing).  We 

will demonstrate competing influences of high-δ15N saline water from the ETNP OMZ 

and oxygenated fresh water from the subarctic ocean following multidecadal to 

centennial-scale climate change. 

 

2 Background 

The Santa Barbara Basin (SBB) is a semi-closed basin located on the Southern 

California margin. Sedimentation in SBB is associated with annual couplets formed by 

alternation of biogenic-rich (light laminae under the X-ray radiography) and siliciclastic-

rich sediments (dark laminae under the X-ray radiography). The lithogenic component 

accounts for ~70-80% of SBB sediments (Thunell et al., 1995) and is delivered to the 

basin via rivers draining the Western Transverse Ranges (Hendy et al., 2015). Under 

California’s Mediterranean climate, the North Pacific High (NPH) weakens and is 

displaced equatorward in winter, allowing a strengthened Aleutian Low (AL) to steer 

precipitation toward Southern California, driving increased river runoff and silicilastic 

sedimentation (Checkley and Barth, 2009; Warrick and Farnsworth, 2009a).  

In spring and summer, the NPH strengthens and migrates poleward, resulting in 

strong east-west pressure gradients that drive northerly upwelling-favorable alongshore 
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winds, generating strong coastal upwelling (Checkley and Barth, 2009; Chelton, 1981). 

Nutrient-rich subsurface water upwells along the coast, producing spring-summer 

plankton blooms. In addition to coastal upwelling that is typically restricted within 5-30 

km along the coast (Checkley and Barth, 2009), offshore upwelling (up to 200 km) also 

plays a role in generating the high productivity observed in SBB. In the Southern 

California Current System (CCS), negative wind-curl in the North Pacific subtropical 

gyre is balanced by the positive wind-stress curl near-shore (Checkley and Barth, 2009; 

Pickett, 2003; Rykaczewski and Checkley, 2008). Upwelling driven by the positive wind-

curl usually has much lower velocities (0.1-0.2 m/d vs. 10-20 m/d for coastal upwelling) 

(Pickett, 2003). However, the volume transport of wind-curl upwelling is significant due 

to greater areal extent (Chelton et al., 2007; Jacox et al., 2014; Münchow, 2000). 

Together, coastal upwelling and wind-curl upwelling in SBB result in the annual 

formation of biogenic-rich sediment layers during times of NPH dominance. Finally, low 

O2 bottom water (<20 µmol/kg) preserves varves formed by the seasonal shift between 

biogenic and silicilastic sedimentation (Hendy et al., 2015; Schimmelmann et al., 1992; 

Schimmelmann et al., 1990), while high sedimentation rates (~1 mm/y) minimize 

sedimentary diagenesis, such that SBB sediments retain the original subsurface δ15N 

signal (Prokopenko et al., 2006). 

SBB waters are affected by the equatorward California Current (CC) and 

poleward California Undercurrent (CUC) (Fig. 1). As a part of the North Pacific Gyre, 

the CC originates in the bifurcation of the North Pacific Current (NPC) (Checkley and 

Barth, 2009). Occupying the upper 500 m and strongest at the surface, the CC transports 

cold, fresh, and oxygenated water from the subpolar region (Checkley and Barth, 2009; 

Hickey, 1978). CC strength is connected to large-scale gyral circulation and atmospheric 

forcing (strength of the Trade Winds/Westerlies). When the NPC is stable, CC transport 

is generally anti-correlated with Alaska Current strength (Rykaczewski and Checkley, 

2008). However, when the NPC intensifies, both CC and Alaska Current transport 
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increase, while when the NPC weakens, transport decreases (Cummins and Freeland, 

2007). Most observed low-frequency CC variability is associated with NPC transport 

changes (Cummins and Freeland, 2007). Satellite altimetry reveals in-phase NPC strength 

and Ekman pumping variations in the subpolar and subtropical gyres (Cummins and 

Freeland, 2007), further linking CCS strength to gyral circulation behavior. Finally, 

where the NPC bifurcates on the North America margin affects SBB water properties, as 

a poleward displacement leads to transport of fresher, nutrient-rich water from the 

subpolar gyre into the CCS (Freeland and Cummins, 2005; Sydeman et al., 2011).  

CUC is a subsurface poleward flow with a core depth of ~200-300 m occupying 

the nearshore region (within 25-40 km off the shelf break), which advects warm, salty, 

and low-oxygen water from the ETNP up the coast of North America (Hickey, 1978). 

Nutrient-rich CUC waters are upwelled to the surface along the coast, supporting 

biological productivity in the southern CCS (Hickey, 1978; McClatchie et al., 2016). Bi-

annual CUC intensification is observed in June and December (Chelton, 1984; Lynn and 

Simpson, 1987) and was linked to local processes (upwelling-enhanced subsurface flow 

in spring-summer and the strong Southern California Eddies in winter) (Connolly et al., 

2014; Hickey, 1978).  Recent studies, however, indicate that coastal-trapped Kelvin 

waves control CUC intensity, which propagate a sea level signal from the equator, 

providing a further connection between the southern CCS and the Tropics (Gómez-

Valdivia et al., 2015; Gómez-Valdivia et al., 2017).  

 

3 Methods 

Core SPR0901-03KC was scanned using an ITRAX X-ray fluorescence (XRF) 

core scanner (Cox Analytical Instruments) at the Large Lakes Observatory, University of 

Minnesota, Duluth. The scanner was equipped with a Cr X-ray tube and was operated at 

200-µm resolution with an 8-second scan time at 30 kV and 15 mA. The output data are 

recorded as counts per 8 seconds and are semi-quantitative (Croudace et al., 2006; Hendy 
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et al., 2015). A split of SPR0901-03KC was sampled continuously at 2-mm interval (~2 

years per sample). Individual samples were freeze-dried and ground to produce bulk 

samples for δ15N and TOC measurements. Bulk sedimentary δ15N was measured on a 

Euro Elemental Analyzer interfaced to a GV Isoprime continuous flow isotope-ratio mass 

spectrometer (IRMS) at University of South Carolina on unacidified samples. δ15N is 

defined as [(15N/14Nsample)/(15N/14Nstandard)-1]×1000 with the standard of atmospheric N2. 

The reference standards used for data normalization were N-1 (δ15N = 0.4‰), N-2 (δ15N 

= 20.41‰), N-3 (δ15N = 4.7‰), and USGS-40 (δ15N = -4.52‰). For TOC measurements, 

~250 mg aliquots were acidified to remove carbonate with 10 mL 5% HCl on a 50 °C 

hotplate for three times. Acidified samples were oven-dried at 65 °C for at least 48 hrs 

and then ground for TOC measurements. Eight to 12 mg of acidified samples were 

loaded into tin capsules and measured on a Costech ECS 4010 Elemental Analyzer at 

University of Michigan. Acetanilide (C = 71.09 wt. %) and atropine (C = 70.56 wt.%) 

were used as standards, and the standard deviation of repeated measurements was within 

2%. Flood and turbidite layers were removed from the geochemical time series as they do 

not reflect background marine sedimentation and siliciclastic sediment input causes 

significant dilution (Hendy et al., 2013).   

The age model of SPR0901-03KC was constructed by correlation with nearby 

cores. Forty nine mixed planktonic foraminifera accelerator mass spectrometry (AMS) 
14C dates (Du et al., 2018; Hendy et al., 2013) from SPR0901-06KC (34°16.914’ N, 

120°02.419’ W, 591 m water depth) were mapped on the master core SPR0901-03KC 

using sediment fabric characteristics. Varve counted dates of marker layers (e.g., gray 

layers at 1861-62 CE and 1761 CE, the Macoma layer at 1841 CE, and a turbidite layer at 

1811 CE) were used instead of 14C to constrain the past 300 years (Hendy et al., 2015; 

Schimmelmann et al., 1992). Instantaneous packets of sediments produced by floods and 

turbidites were removed from the core depths. An age-depth model for 03KC scanning 

XRF records was then generated using Bacon 2.2 (Blaauw and Christen, 2011; Du et al., 
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2018), where 14C ages were converted to calendar ages using the Marine13 calibration 

curves (Reimer et al., 2013) with variable reservoir ages from Hendy et al. (2013). This 

age model was then applied to the suite of SBB cores using 31 tie points including known 

turbidites, flood layers, and 12 visually distinct additional marker horizons determined by 

distinguishable core fabric differences (e.g., varve color and thicknesses). 

Geochemical data were interpolated to obtain evenly spaced time series (sampling 

resolution of 2.28 years after interpolation) prior to statistical analyses. Cross-wavelet 

analysis was used to calculate squared wavelet coherence and phase differences on a 

time-frequency plane to reveal regional coherence between individual time series 

(Grinsted et al., 2004; Torrence and Compo, 1997) . All wavelet coherence is calculated 

using the analytical Morlet wavelet (central frequency ω0 = 6) in MATLAB. 

 

4 Results 

Bulk sedimentary δ15N in the core SPR0901-03KC varies between 6.78‰ and 

8.33‰ with a mean value of 7.74‰ (Fig. 3b). There is no long-term trend through the 

record; however, several low- δ15Nsed intervals occur, including ~1000-1100 CE during 

the Medieval Climate Anomaly (MCA) and 1460-1750 CE during the Little Ice Age 

(LIA). δ15N values decline from ~1800 to the core top (~1900 CE).  

Bulk TOC concentrations are low at the base of the core (from 170 BCE to 0) 

with a minimum value of 2.63 wt.% (Fig. 3c), and generally increase toward the core top, 

varying between 4.89 wt.% and 3.77 wt.% (excluding instantaneous depositional events). 

TOC concentrations are not statistically significant different between cooler (e.g., Dark 

Age Cold Period at 400-765 CE (Helama et al., 2017) and LIA) and warmer climate 

intervals (e.g., MCA), yet they have a statistically significant correlation with δ15N (r = 

0.0760, p<0.05). Despite overall coherence, the positive correlation disappears between 

950-1550 CE and after 1800s. The elemental, isotopic, and organic geochemical 

composition of organic carbon in SBB indicates marine sources with significant 
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contributions from terrestrial organic carbon, notably in flood sediments (Sarno et al., 

2019). Background SBB sediment δ13C values of -21.75‰ support a marine source, as 

terrestrial contributions (primarily from the Santa Clara River (Warrick and Farnsworth, 

2009b) are characterized by bedload sediment δ13C values of -28.15‰ (Meyers, 1997; 

Sarno et al., 2019).  

The first principal component (PC1) of the scanning XRF elements in SPR0901-

02KC has been used as a proxy for lithogenic sediment delivery to SBB by river runoff, 

with higher PC1 corresponding to wetter intervals (Fig. 3a) (Heusser et al., 2015). PC1 is 

anti-correlated with TOC (r = -0.4004, p < 0.0001), and has a statistically significant 

negative correlation with δ15Nsed (r = -0.1617, p < 0.001). Stronger coherence between 

PC1 and δ15Nsed is observed during wetter intervals (50-100 CE, 950-1130 CE, 1530-

1700 CE), whereas the correlation is lost during drier periods (770-1000 CE). This 

negative correlation also disappears after ~1800 as δ15Nsed decreases monotonically (Fig. 

3a and b).  

Scanning XRF elemental records of Ca/Ti and Si/Ti are used here as proxies for 

inorganic carbon (Hendy et al., 2015) and biogenic silica (Brown et al., 2007), 

respectively. Ca/Ti varies on a decadal to centennial time scale but no longer-term trend 

is observed. Several low biogenic silica periods are observed in the Si/Ti record, 

including 450-890, 1000-1100, 1150-1260, 1310-~1370, and 1520-1650 CE (Fig. 4e). 

These intervals correspond to intervals of low upwelling silicoflagellate (Distephanus 

speculum) and diatom (Rhizosolenia spp.) abundance (Barron et al. (2015), Fig. 4d). A 

significant positive correlation is found between Ca/Ti and TOC (r = 0.3532, p < 0.001). 

High Si/Ti (high biogenic silica) generally coincides with increased TOC (e.g., ~1100-

1170 CE and ~870-1000 CE, Fig. 4). Yet a weak anti-correlation is observed between 

TOC and Si/Ti (r = -0.0941, p < 0.05), notably between 570-970, 1000-1100, 1150-1270, 

and 1320-1370 CE. 
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5 Discussions 

5.1 Export productivity proxies and upwelling 

In Southern California, upwelling (coastal and wind-curl) brings subsurface high-

nutrient denitrified waters to the euphotic zone to support export productivity. Water-

column denitrification (increasing δ15N) is subsequently intensified by increased export 

productivity when organic carbon remineralization uses nitrate as the electron acceptor in 

low-O2 waters. Export productivity and upwelling variability thus need to be 

reconstructed using biogenic sediments (e.g., TOC, biogenic carbonate and silica) to 

understand local water-column denitrification.  

TOC is commonly employed as a proxy for carbon export from the upper ocean.  

An overall increase of TOC (~1 wt. %) occurs over the last two millennia, indicating a 

general increase in export productivity, with significant variability on centennial 

timescales (Fig. 3c). However, the bulk sediment TOC concentration could subject to 

sedimentary diagenesis, causing the record to deviate from carbon export. In high-

sedimentation rate settings (>0.03 cm/y, Canfield (1994)), OC could continue to 

decompose downcore via anaerobic pathways in reducing porewaters, leading to lower 

sedimentary TOC (Canfield et al., 1993). Additionally, higher TOC values (enhanced OC 

preservation) could occur beneath instantaneous depositional events (e.g., flood and 

turbidite layers) that reduce O2 penetration and aerobic OC degradation (i.e., the ‘coffin-

lid’ effect, Schimmelmann (2011)).  

To exclude the fore-mentioned complexities, an independent export productivity 

indicator is needed to account for likely diagenetic processes affecting TOC records. 

Inorganic carbon determined by scanning XRF Ca/Ti is a productivity proxy representing 

biogenic carbonate production (primarily foraminifera and coccolithophores, Fig. 4c). In 

SBB, well-preserved inorganic carbon is unaffected by sedimentary anaerobic OC 

degradation and/or enhanced OC preservation, and thus provides an independent measure 

of export productivity that can be compared to TOC. Ca/Ti and TOC are generally 
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coherent on decadal to centennial timescales. This statistically significant correlation (r = 

0.3532, p < 0.01) suggests TOC preservation below instantaneous deposition events was 

not enhanced, nor were there significant changes in TOC anaerobic decomposition 

downcore.  Thus, sedimentary TOC is likely primarily recording export productivity in 

SBB. 

Additionally, biogenic silica (largely produced by diatoms and silicoflagellates) is 

another major contributor to export productivity, especially during coastal upwelling 

events. Scanning XRF Si/Ti is used here as a proxy for biogenic silica, with the 

expectation that higher Si/Ti corresponds to enhanced export productivity. Coherent TOC 

and Si/Ti maxima are observed (e.g., 1130 and 1300 CE), yet negative correlations 

between Si/Ti and TOC are shown during intervals of low Si/Ti, during which TOC 

remains relatively stable (Fig. 4b and e). Anti-correlations between TOC and biogenic 

silica have also been recorded in the Gulf of California, where biogenic silica is the 

primary biogenic sediment component (Pichevin et al., 2012; Thunell, 1998b). Previous 

studies have related this inverse relationship to either Fe limitation (Firme et al., 2003) 

and/or enhanced silica preservation during strong coastal upwelling events due to silica 

supersaturation in porewaters (Pichevin et al., 2012). However, SBB sediments are 

dominated by lithogenic input (50-80%), with much lower biogenic silica contributions 

(~15%-20% in SBB vs. up to ~75% during upwelling in the Guaymas Basin, Gulf of 

California) (Thunell, 1998a; Thunell, 1998b). Thus, SBB porewaters are always 

undersaturated for silica, as indicated by the absence of weakly silicified species (Barron 

et al., 2015; Reimers et al., 1990). Iron limitation due to upwelled Fe-depleted waters 

and/or low riverine input usually occurs along narrow shelf areas (e.g., the northern and 

central California coast) (Bruland et al., 2001; Firme et al., 2003). However, relatively 

high dissolved Fe (dFe) concentrations (>1 nM) have been observed at the surface in 

SBB with increasing dFe in depth (up to ~30 nM at 560 m), arguing against reduced 

organic carbon production because of Fe limitation (John et al., 2012; King and Barbeau, 
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2011). Therefore, the lack of TOC and biogenic silica correspondence in SBB requires 

another explanation. 

In the Gulf of California, negative correlations between biogenic silica and TOC 

usually happen during intervals associated with strong coastal upwelling (Pichevin et al., 

2012) In SBB, however, negative relationships are more prominent during weak biogenic 

silica production intervals indicated by the low abundance of coastal upwelling diatom 

(Rhizosolenia spp.) and silicoflagellate species (Distephanus speculum) (Fig. 4d) (Barron 

et al., 2015). Despite undersaturated porewaters leading to biogenic silica dissolution, 

Si/Ti shows consistent variability with independently measured upwelling diatoms and 

silicoflagellates. Sedimentary Si/Ti increases when Rhizosolenia spp. and Distephanus 

speculum become abundant at 1110-1160, 1270-1310, and 1370-1490 CE, supporting the 

interpretation of intensified coastal upwelling (Fig. 4d) (Barron et al., 2015). Low Si/Ti is 

coincident with a scarcity of these upwelling species during 570-870, 1000-1100, 1155-

1265, and 1310-1370 CE, suggesting weakened coastal upwelling. Si/Ti thus appears to 

be an indicator of coastal upwelling but not necessarily export productivity, and can be 

decoupled from TOC when coastal upwelling is weak.  

Nevertheless, anti-correlations between Si/Ti and TOC contradicts sediment trap 

studies in SBB, where export particulate organic carbon (POC) is positively correlated 

with opal fluxes on an annual basis (Thunell et al., 2007). This may relate to the 

limitation of the short duration sediment trap study. Weak coastal upwelling in the 

paleoproductivity record is sustained on decadal to centennial timescales, such that this 

observed low-frequency variability might be associated with processes that have not yet 

been observed in the annual trap data.  

When biogenic silica indicates weak coastal upwelling, Ca/Ti and TOC support 

normal to increased productivity (e.g., 1000-1100 and 1310-1370 CE, Fig. 4b, c, and e), 

indicating that nutrients are being supplied by processes other than coastal upwelling. 

Discrepancies between high foraminifera production and biogenic silica were also 
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observed in the northern CCS during the Last Glacial Maximum, and were attributed to 

increased wind-curl upwelling (Ortiz et al., 1997). Coastal upwelling is usually associated 

with high nutrient delivery due to high vertical velocity and a shoaling of the nearshore 

nutricline (Rykaczewski and Checkley, 2008; Taylor et al., 2015a), producing diatom 

blooms (high Si/Ti) and physically larger plankton. In the southern CCS, modeled total 

upwelling transport (including both coastal and wind-curl upwelling), however, is not 

significantly correlated with the coastal upwelling index calculated from atmospheric sea 

level pressure (Bakun, 1973). Rather, the nearshore high primary productivity band 

contains both coastal (<50 km) and wind-curl upwelling nutrient contributions (50-200 

km) (Jacox et al., 2014).  

The contribution of wind-curl upwelling is difficult to reconstruct, as the bloom-

forming taxa associated with strong coastal upwelling events (e.g., upwelling diatoms 

that favor high nutrient environments) can overprint physically smaller planktonic taxa 

that dominate offshore and more oligotrophic environments associated with slow and 

broad wind-curl upwelling (Ortiz et al., 1995). Yet, the importance of wind-curl 

upwelling on southern CCS planktic biomass is widely reported. Wind-stress modeling 

shows strong wind-curl upwelling transport adjacent to coastal promontories (e.g., Point 

Conception) (Pickett, 2003) – a prediction corroborated by wind stress and upwelling rate 

observations (Enriquez and Friehe, 1995). The biological significance of wind-curl 

upwelling has been observed in seasonal offshore (100 km) zooplankton abundances 

(Chelton et al., 1982).  Chlorophyll a concentrations (proxy for primary productivity) are 

significantly correlated with the wind-curl upwelling but not the coastal upwelling rate, 

and corroborate the active role of curl-driven upwelling in Southern California primary 

productivity (Rykaczewski and Checkley, 2008). Wind-curl upwelling could thus be an 

important driver of export productivity in SBB over the last 2000 years, such that 

intervals of weaker coastal upwelling (low Si/Ti) may have been offset by greater wind 
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curl upwelling to maintain stable/high export productivity (TOC and inorganic carbon) 

(Fig. 4).  

5.2 Santa Barbara Basin δ15N history over the past 2000 years  

Use of δ15Nsed as a proxy for water column denitrification requires both complete 

nitrate utilization and the absence of sedimentary diagenesis. Diagenetic isotopic 

alteration of δ15N should be negligible in SBB as high sedimentation rates and low-

oxygen bottom waters only allow a small fraction of aerobic OC decomposition before 

burial (Altabet et al., 1999b; Prokopenko et al., 2006). A minimal (<0.5‰) offset 

between the sediment trap δ15N time series and down-core δ15Nsed records supports this 

premise (Davis et al., 2019). Preservation of the original δ15N of sinking OC thus allows 

water-column denitrification reconstructions from the δ15Nsed record in SBB. Resolution 

of our record (~2 years), however, is insufficient to resolve O2 entrainment/solubility 

shifts induced by seasonal wind-driven mixing/upwelling oscillations. Our δ15Nsed record, 

therefore, can only reveal water-column δ15N variability averaged over decadal or longer 

timescales. 

Despite an ~1 wt.% increase of TOC over the last 2000 years (Fig. 3c), relatively 

invariant δ15Nsed values (varying within ~1‰) indicate a general stability of water-

column oxygenation and/or δ15N input from different N sources. Exceptions to this 

stability occurred, however. Sustained low δ15Nsed values during ~1100-1300, 1460-1750 

CE, and after 1800s (>1‰ decline), suggesting the presence of more oxygenated waters 

or increasing δ15N-depleted N inputs (Fig. 3b). The post-1800s decreasing δ15Nsed trend 

has also been observed in the Santa Monica Basin and in the ETNP, where it has been 

associated with decreasing trade wind strength, reduced equatorial upwelling, and ETNP 

OMZ contraction (Davis et al., 2019; Deutsch et al., 2014). The stability of the δ15Nsed 

record suggests that denitrification appears insensitive to SST change during the warm 

(MCA) and cold periods (Dark Age Cold Period (DACP) or LIA) in the late Holocene 

(Fig. 3; PAGES 2k Consortium (2013)). This may be related to limited Northern 
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Hemisphere mean SST variability (typically < 1 °C for LIA, Moberg et al. (2005)), 

resulting in a gas solubility change (~ 5 μmol/kg given 1 °C SST change at 16 °C) that 

was insufficient to impact O2 concentrations and thus denitrification.  

Low δ15Nsed intervals (~1100-1300 CE, 1460-1750 CE) are usually coincident 

with high values of the first principle component of the scanning XRF elements (PC1; 

Fig. 3, r = -0.1617, p < 0.001), which have been associated with greater Southern 

California rainfall (Hendy et al., 2015; Heusser et al., 2015). This anti-correlation may be 

related to changes in N source between wet and dry climates as enhanced clay-bound N 

delivery adds δ15N-depleted ammonium (~2-4‰; Schubert and Calvert (2001); Sigman et 

al. (2009b)) that may substitute for K+ in illite clay structures (Kienast et al., 2005; 

Müller, 1977; Schubert and Calvert, 2001). Yet the TOC-TN plot (Fig. 5) shows a 

negative intercept, indicating that the contribution from terrestrial clay-bound N is 

negligible.  

More likely, the relationship between rainfall (PC1) and δ15Nsed is indirect via the 

North Pacific High (NPH), and related to export productivity. The positive correlation 

between bulk sedimentary TOC (export productivity proxy) and δ15Nsed (r = 0.0760, 

p<0.05) indicates a general productivity control on water-column denitrification, with 

enhanced OC export increasing O2 demand and thus denitrification. The negative 

correlation between TOC and PC1 (r = -0.4004, p<0.001) further suggests an inverse 

relationship between export productivity and local precipitation that is controlled by the 

NPH. A stronger and/or more persistent NPH enhances alongshore northerly winds, 

which induce stronger coastal upwelling and the upward advection of δ15N-rich 

subsurface waters to support higher export productivity (higher TOC, Fig. 3). 

Simultaneously, this persistent high-pressure over western North America reduces 

rainfall in Southern California and lowers PC1, leading to a negative correlation between 

PC1 and TOC (Hendy et al., 2015; Heusser et al., 2015). Despite the overall local 

productivity control on δ15Nsed via the NPH, TOC, δ15Nsed and PC1 still show 
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discrepancies (notably in 750-1250 and 1700-1900 CE), indicating that remote 

processes/teleconnections must have also played a role. 

 

5.3 Teleconnections to tropical and high-latitude forcing 

Inconsistencies between δ15Nsed and local NPH control on export productivity 

(TOC) and precipitation (PC1) require an alternative explanation involving remotely 

advected δ15N signals via ocean currents. Currents transport nitrate with unique δ15N 

signatures from remote water sources. The nitrate is subsequently incorporated into 

sinking particulate N and preserved in sediments (Fig. 2), and thus δ15Nsed can be used as 

a water mass tracer to track N contribution changes from different sources. In Southern 

California, water mass properties are primarily controlled by two competing water mass 

influences: high-δ15N, warm, saline (spicy) waters from the East Tropical North Pacific 

(ETNP) OMZ transported by the California Undercurrent (CUC), as well as nutrient-rich, 

cold, and fresh subarctic waters advected by the California Current (CC) (Kienast et al., 

2002; Liu and Kaplan, 1989) (Fig. 2). To investigate impacts of remote water mass 

advection, the Mt. Logan in Yukon Territory (a high-latitude site) and the Pescadero 

Slope in the Gulf of California (a tropical site) are used as potential regions 

communicating with the Southern California OMZ (Fig. 1). The 1200-year δ15Nsed record 

from the Pescadero Slope serves as an end member for ETNP δ15N-rich spicy water, as 

the site is located at the northern edge of the ETNP OMZ and records water-column 

denitrification in the ETNP (Tems et al., 2016). The competing subpolar end member is 

represented by the 1200-year North Pacific Index (NPI) reconstruction from the Mt. 

Logan ice core (Osterberg et al., 2014). Sodium ion concentrations in the Mt. Logan ice 

core are interpreted as an indicator of the North Pacific sea level pressure and winter 

Aleutian Low (AL) intensity (Osterberg et al., 2014). Thus, we use the ice core record to 

link the atmospheric forcing (AL intensity) with the oceanic responses (Ekman pumping 

and North Pacific Current variability) (Ishi and Hanawa, 2005) that result in subarctic 
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water transport into the CCS. Here the focus is on decadal to centennial timescales, as the 

data resolution (~2-3 years for δ15N) is insufficient to resolve interannual variability.  

 

5.3.1 Equatorial water influences and atmospheric forcing 

Spicy and high-δ15N waters from ETNP could be advected to Southern California 

via CUC to elevate δ15Nsed in SBB. A positive correlation between δ15N from a SBB box 

core (SPR0901-04BC, 34º 16.895’ N, 120º 02.489’ W, 588 m water depth) and measured 

salinity at the core of CUC (σθ = 26.4-26.5, Gay and Chereskin (2009)) from the 

CalCOFI station 81.8 46.9 (center of SBB, 34°16´29.64"N, 120°1´30"W) during the last 

50 years supports this assertion (Fig. 6).  

Water-column denitrification (δ15N) in ETNP has been associated with tropical 

climate through Trade Wind strength (Deutsch et al., 2014). Weak easterly Trade Winds 

reduce upwelling and lower export productivity, leading to ETNP OMZ contraction that 

subsequently reduces δ15N. The strength of Trade Winds is related to ITCZ migration in 

response to inter-hemispheric temperature differences. A southward shift of the ITCZ 

with extratropical cooling in the Northern Hemisphere (NH) relative to the Southern 

Hemisphere (SH) is usually accompanied by intensified northeast Trades in the NH and 

weakened southeast Trades in the SH (Broccoli et al., 2006; Chiang and Bitz, 2005; Haug 

et al., 2001; Jacobel et al., 2016; McGee et al., 2018; Meehl et al., 2008; Schneider et al., 

2014). Because the ITCZ primarily resides in the NH (Philander et al., 1996; Xie, 1994), 

a southward ITCZ shift weakens the easterly Trades at the equator, deepening the 

thermocline and reducing upwelling in the Eastern Equatorial Pacific (Costa et al., 2017; 

Koutavas and Lynch-Stieglitz, 2004).  

The linkage between ITCZ migration and ETNP δ15N is further demonstrated by 

the relationship between Pescadero Slope δ15Nsed values and a δ18O speleothem record 

(YOK-I) from Belize that is sited on the northern edge of the ITCZ (Kennett et al., 2012). 

From 1850 to 2004, YOK-I δ18O values significantly correlate with Pescadero δ15N 
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values (Fig. 7, r = -0.5494, p < 0.001). The observed southward displacement of ITCZ 

since ~1850 (Hwang et al., 2013; Ridley et al., 2015; Rotstayn and Lohmann, 2002) 

could have slackened east Trades and weakened upwelling at the equator, reducing 

export productivity and decreasing Pescadero δ15Nsed (a record that represents ETNP 

δ15N). Cross-wavelet coherence between the two records further indicates significant 

anti-phase coherence on decadal (~1100-1300 CE) to centennial timescales (Fig. 8e), 

supporting a persistent linkage between ETNP δ15N and the ITCZ over the past 1200 

years (Fig. 8). 

The SBB and Pescadero δ15Nsed records are usually in-phase on decadal to 

centennial timescales during the MCA (e.g., 980-1120 CE, Fig. 8b and c). Thus the ITCZ 

position increased Southern California (SBB) δ15N through the advection of denitrified 

ETNP waters in the region via the CUC during the warm Northern Hemisphere climate 

interval.  However, this relationship collapses between ~1320-1450 and 1670-1880 CE 

(Fig. 8). The anti-phase correlation in 1320-1450 CE could be attributed to 14C dating 

uncertainties producing a 20-30 year offset between the two records. Yet the out-of-phase 

pattern during 1670-1840 CE (1720-1840 CE in particular) cannot be explained by age 

model offsets given its duration of centuries. Coincident with NH cooling during the 

Maunder (1645-1715 CE) and Dalton (1790-1820 CE) solar minimum, the 1670-1840 CE 

interval stands out as a period of equatorward ITCZ migration (YOK-I δ18O; Kennett et 

al. (2012)) where the weakened ETNP OMZ resulted in low Pescadero δ15Nsed values 

(Tems et al., 2016)  (Fig. 8c and d), while SBB δ15Nsed values increased (Fig. 8b). As 

Pescadero δ15Nsed values are always higher than those in SBB, this out-of-phase pattern 

reduces the δ15N difference between the two sites. One explanation could be enhanced 

poleward transport of ETNP waters to Southern California. However, an equatorward 

ITCZ displacement would have led to similar equatorward migration of the NPH and AL 

(Christoforou and Hameed, 1997; Lechleitner et al., 2017), suppressing coastal upwelling 

in Southern California while enhancing upwelling in the Gulf of California (Barron and 
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Bukry, 2007; Pérez-Cruz, 2017). Reduced the sea surface height at the southern boundary 

of CCS would decrease poleward CUC flow, producing a δ15N result opposite to the one 

observed (Connolly et al., 2014; Taylor et al., 2015b). Another possibility is that during 

this interval of weak Southern California (SBB) and ETNP (Pescadero Slope) water mass 

communication, subarctic water influences became more prominent to produce the 

discrepancy between 1670 and 1840 CE. 

 

5.3.2 Subarctic water transport and atmospheric forcing 

Nutrient-rich subarctic water transported via CC is associated with the latitudinal 

position and intensity of the North Pacific Current (NPC) (Cummins and Freeland, 2007; 

Di Lorenzo et al., 2008; Freeland and Cummins, 2005; Sydeman et al., 2011). The CC 

intensifies following increased NPC transport (Cummins and Freeland, 2007; Douglass et 

al., 2006). Serving as the boundary between the Gulf of Alaska and northeast Pacific 

subtropical gyre, the strength of NPC is closely linked with in-phase variations of Ekman 

pumping in both gyres, and directly responds to atmospheric forcing (Cummins and 

Freeland, 2007).  This co-variability of subpolar and subtropical gyres is similar to the 

North Pacific Gyre Oscillation (NPGO) proposed by Di Lorenzo et al. (2008), which has 

been used to explain nutrient variability in CCS. As no NPGO reconstruction is available 

for the last two millennia, the Mt. Logan ice core North Pacific Index (NPI) 

reconstruction is used instead as an indicator of winter AL intensity and thus is associated 

with Ekman pumping in the Gulf of Alaska (GoA) (Osterberg et al., 2014).  

When the connection between Southern California (SBB) and ETNP (Pescadero 

Slope) was weak between 1670-1840 CE, an intensified winter AL suggested by the ice 

core record (Fig. 8a) (Osterberg et al., 2014) could have resulted in anomalous cyclonic 

wind stress curl and stronger Ekman upwelling in GoA. Stronger wind stress curl would 

in turn lead to intensified southward transport of subarctic water into the NPC and 

subsequently the CCS (Freeland, 2003; Murphree et al., 2003). A similar anomalous 
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southward intrusion of subarctic waters to CCS was observed in the 2002 summer, when 

the subarctic anomaly extended more than 1500 km along the US west coast, to at least 

33°N (Bograd and Lynn, 2003; Huyer, 2003; Strub and James, 2003). Due to incomplete 

nitrate utilization in the subarctic ocean, nitrate δ15N in the GoA photic zone is also 

elevated (up to 11‰ at the surface, Casciotti et al. (2002)). Increasing advection of 

nutrient-rich and high δ15N subarctic water would then serve as another source of high-

δ15N nitrate for surface SBB waters. The observed correspondence between intensified 

AL and increased SBB δ15Nsed thus indicates a stronger connection with the subarctic 

waters when the tropical influences weakened during the Little Ice Age (1670-1840 CE, 

Fig. 8).  

 

5. Conclusions 

Marine dissolved oxygen concentrations play an important role in biogeochemical 

cycles and can be impacted by climate changes. The high-resolution 2000-year 

sedimentary δ15N (δ15Nsed) record from Santa Barbara Basin (SBB) reveals natural 

variability of Southern California water column oxygenation and highlights competition 

between tropical and subarctic water masses as surface ocean currents respond to climate 

forcing. Proxies for siliceous plankton bloom events (diatom and silicoflagellate 

populations, and scanning XRF Si/Ti) and export productivity (TOC) suggests that 

coastal upwelling and export productivity are not always in phase. This incoherence 

indicates a potential role for wind-curl upwelling in driving SBB primary productivity, 

especially during intervals of weak coastal upwelling. The correspondence of δ15Nsed to 

export productivity (TOC) and local precipitation (PC1) indicates that an intensified 

and/or persistent North Pacific High (NPH) pressure cell was associated with enhanced 

export productivity during drought intervals.  

Comparison with the Pescadero slope δ15Nsed record in the Gulf of California 

(Tems et al., 2016) supports subsurface tropical water influences on the surface waters of 
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the Southern California Bight. The Pescadero δ15Nsed record suggests that Eastern 

Tropical North Pacific (ETNP) denitrification was associated with Intertropical 

Convergence Zone migration on multidecadal to centennial timescales and supports the 

stronger tropical water transport into Southern California during the Medieval Climate 

Anomaly. An out-of-phase relationship between the Pescadero and SBB δ15Nsed records 

during the Little Ice Age (1670-1840 CE) occurred during an interval of anomalous 

intensified Aleutian Low activity (Osterberg et al., 2014). During this interval we suggest 

that an intensified North Pacific Current advected more subarctic water into the 

California Current System. Enhanced advection of nutrient-rich subarctic waters might 

have introduced high-δ15N nitrate to SBB, resulting in elevated SBB δ15Nsed values while 

δ15Nsed decreased at the Pescadero site.  

The observed natural variability of water-column denitrification is associated with 

both local (export productivity shifts controlled by NPH) and remote water mass 

influences related to large-scale atmospheric forcing, and thus addresses regional 

teleconnections within the California Current System. A warming climate might lead to a 

strong, MCA-like connection between the Southern California margin and ETNP, with 

weaker influences from subpolar regions. Such natural oscillations would continue to be 

embedded in future climate change with anthropogenic forcing, which will further 

complicate predictions of future ocean deoxygenation. 
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Figure 1. Core locations. a. Yellow circle: Core SPR0901-03KC (34° 16.99’ N, 120° 

2.408’ W; 586 m depth) from the Santa Barbara Basin (SBB); red circle: Pescadero Slope 

core location from Tems et al. (2016). Red star: ice core location from Mt. Logan 

(Osterberg et al., 2014); red triangle: the YOK-I speleothem record from Belize (Kennett 
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et al., 2012). Summer and winter ITCZ positions are indicated in white belts bound by 

solid and dashed lines, respectively. Ocean currents are shown in white arrows. KaC: 

Kamchatka Current; Oyashio C: Oyashio Current; KuC: Kuroshio Current; CC: 

California Current; CUC: California Undercurrent; GoA: Gulf of Alaska; AC: Alaska 

Current; AS: Alaska Stream. b. Southern California Bight map corresponding to the black 

rectangle in a. The cores SPR0901-03KC and SPR0901-04BC (34°16.895’ N, 120°2.489’ 

W, 588 m water depth) are shown in the yellow circles. The CalCOFI Station 81.8 46.9 is 

represented by the purple circle, and the circulation pattern is modified from Hickey 

(1992). The base maps are generated from the Ocean data View in (a) and the 

GeoMapApp (http://www.geomapapp.org, Ryan et al. (2009)), respectively.   

This article is protected by copyright. All rights reserved.



 

Figure 2. The nitrogen cycle in Southern California. Nitrogen inputs include dissolved 

N2 via N fixation, atmospheric precipitation, terrestrial input, and remotely advected 

water masses (subpolar nutrient-rich waters and Eastern Tropical North Pacific [ETNP] 

dentrified waters shown in blue dashed arrows). Nitrogen outputs include water column 
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and sedimentary denitrification. Internal cycling (e.g., remineralization, assimilation) is 

denoted with white dashed arrows. Kinetic fractionation effects (ε) and isotopic values 

for major N sources and transformation pathways are labeled. 

 
Figure 3. Local influences on δ15Nsed in the Santa Barbara Basin. (a) The first principal 

component (PC1) of the scanning XRF elemental data for SPR0901-03KC (black line) 

used as a proxy for siliciclastic sediment derived from river runoff (Heusser et al., 2015). 

Higher PC1 indicates wetter conditions while low PC1 indicates drought; (b-c) δ15Nsed 

(‰) (blue line) and TOC (wt. %) (red line) records from SPR0901-03KC, respectively. 

Blue bars indicate cool intervals: Dark Age Cold Period (DACP) and Little Ice Age 

(LIA). Red bars indicate warm intervals: Medieval Climate Anomaly (MCA). All 

instantaneous depositional events (flood and turbidite layers) have been removed. 
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Figure 4. Productivity proxies. (a) Scanning XRF Br/Cl (proxy for organic carbon, thin 

purple line). Thick purple line represents the 101-point running mean; (b) TOC (wt. %) 

(thin red line) with 11-point running mean (thick red line); (c) scanning XRF of Ca/Ti 

(thin brown line) with the 101-point running mean (thick brown line); (d) upwelling 

diatoms and silicoflagellates from Barron et al. (2015); The teal and blue line represent 

the relative abundance of Distephanus speculum and Rhizosolenia spp., respectively; (e) 

proxy for biogenic silica, Si/Ti, from scanning XRF (thin green line) with the 101-point 

running mean (thick green line). Blue shaded rectangles indicate intervals of low coastal 

upwelling indicated from upwelling diatom and silicoflagellate abundance in (d). 
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Figure 5. Cross plot of TOC (wt. %) and TN (wt. %) from SPR0901-03KC. Black line 

represents linear relationship from the least-square regression. 

 
Figure 6. Cross plot of δ15Nsed of the SBB core SPR0901-04BC (34° 16.895' N, 120° 

02.489’ W, 588 m water depth) and mean annual salinity of σθ = 26.4-26.5 from the 

CalCOFI Station 81.8 46.9 (34° 16’29.64" N, 120° 1’30" W). The black dashed line 

shows the least-square regression. 

 
Figure 7. Comparison of δ15Nsed of the Pescadero Basin (red line) with δ18O of the Yok 

Balum Cave (YOK-I, black line, Kennett et al. (2012)) showing a statistically negative 

correlation (r=-0.5494, p<0.001).   
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Figure 8. δ15N regional comparison with North Pacific teleconnections. (a) Mt. Logan 

North Pacific Index proxy record (purple line, Osterberg et al. (2014)). Lower values 

indicate stronger winter Aleutian Low; (b) δ15Nsed from SBB core SPR0901-03KC with 

the thick purple line showing the 11-point running mean to highlight multidecadal 

variability; (c) δ15Nsed of the Pescadero Basin (Tems et al., 2016) with the thick red line 

denoting 11-point running mean; (d) YOK-I speleothem δ18O as a proxy for ITCZ 

migration (Kennett et al., 2012). The 41-point running mean is shown in the black solid 

line. (e) Cross-wavelet coherence between δ18O in (d) and Pescadero δ15Nsed in (c). 

Arrows show phase differences between the two records when the magnitude-squared 

This article is protected by copyright. All rights reserved.



coherence is above 0.5 (>95% significance). Arrows pointing left indicate anti-phase 

correlations at that frequency. The Medieval Climate Anomaly (MCA) and the Little Ice 

Age (LIA) are shown in orange and blue shaded bars, respectively. Grand solar minima 

are indicated with gray bars. Rectangles shaded in gray show time intervals where SBB 

and Pescadero δ15Nsed records are not correlated. 
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