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Appendices

A Extended methods

Maximum utility compliance Here we prove that an individual’s compliance probability is given by

Equation 10. We seek to maximize Equation 6 with respect to Pri(use). The utility function is negative

quadratic in this argument, so we need only solve the first order condition

u′i = 2(1− Pri(use)−∆x)

0 = 2(1− Pri(use)∗ −∆x)

Pri(use)
∗ = 1−∆x

(1)

as desired.

Optimal interventions The optimal intervention for a given preference distribution is

x̂∗ = argminx̂E[di] (2)

where

E[d] = wv[(1− E[Pr(use)]) + E[Pr(use)]10−x̂] (3)

From Equation 10, the compliance probability is a function of individual preferences xi, which are

normally distributed. As a result, we can compute the expected value of Pr(use) (referred to here as

p(xi) for simplicity) using the following

E[p(X)] =

∫ ∞
−∞

p(x)f(x|µ, σ)dx (4)

where f(x|µ, σ) is the probability density function of the preference distribution. While an analytical

solution to the minimization problem is not straightforward, numerical optimization and integration

perform well. Specifically, we use Brent’s algorithm for our numerical solutions. This procedure allows

our optimal interventions to take the shape of the preference distribution into account.
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For our local sensitivity analysis, we compute the partial derivative of x̂∗ with respect to the variance

σ2 for each average preference tested. We used a baseline variance of 3.6 for our results in Section 3.

B Game theoretic representation of optimal interventions

The process of selecting an optimal intervention can be framed as an extensive form game between a

policymaker and the N individuals in a population. This game has the following structure:

1. A policymaker selects an intervention x̂.

2. Next, all individuals independently determine their compliance level Pri(use) given their LRV

preference xi.

Individual payoffs for compliance are given as in Equation 6 while the payoff for the policymaker is

inversely proportional to the population risk of infection. We use backward induction (Fudenberg and

Tirole, 1991; Tadelis, 2013) to solve for the subgame perfect Nash equilibrium of this game. To do so,

we determine the optimal decision for each player beginning with the last decision node and proceeding

backward to the first decision node. For individuals, the maximum utility compliance level is shown in

Equation 10. Next, we determine policymaker’s optimal decision, i.e., the intervention that minimizes

the risk of infection given that individuals will play their optimal compliance strategy. The policymaker’s

decision is then given by Equation 12.

C Additional figures
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(a) (b)

Figure S1: The simulated endemic E. coli prevalence when the optimal intervention from Figure 3 is
implemented (S1a) and the risk ratio comparing the optimal intervention vs. the current 4 LRV guideline
for E. coli across a range of LRV preferences (S1b). Results are shown for both an asymmetric and
symmetric appeal function. Endemic prevalence was calculated for a simulated population of 10,000
after one year.

(a) (b)

Figure S2: The simulated endemic rotavirus prevalence when the optimal intervention from Figure 3 is
implemented (S2a) and the risk ratio comparing the optimal intervention vs. the current 5 LRV guideline
for rotavirus across a range of LRV preferences (S2b). Results are shown for both an asymmetric and
symmetric appeal function. Endemic prevalence was calculated for a simulated population of 10,000
after one year.
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