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Linking Decision Theory and Quantitative Microbial Risk
Assessment: Tradeoffs Between Compliance and Efficacy for
Waterborne Disease Interventions

Michael A. L. Hayashi ,1,∗ Marisa C. Eisenberg ,1,2,3 and Joseph N. S. Eisenberg1

Achieving health gains from the U.N. Sustainable Development Goals of universal coverage
for water and sanitation will require interventions that can be widely adopted and main-
tained. Effectiveness—how an intervention performs based on actual use—as opposed to
efficacy will therefore be central to evaluations of new and existing interventions. Incomplete
compliance—when people do not always use the intervention and are therefore exposed to
contamination—is thought to be responsible for the lower-than-expected risk reductions ob-
served from water, sanitation, and hygiene interventions based on their efficacy at remov-
ing pathogens. We explicitly incorporated decision theory into a quantitative microbial risk
assessment model. Specifically, we assume that the usability of household water treatment
(HWT) devices (filters and chlorine) decreases as they become more efficacious due to issues
such as taste or flow rates. Simulations were run to examine the tradeoff between device ef-
ficacy and usability. For most situations, HWT interventions that trade lower efficacy (i.e.,
remove less pathogens) for higher compliance (i.e., better usability) contribute substantial
reductions in diarrheal disease risk compared to devices meeting current World Health Or-
ganization efficacy guidelines. Recommendations that take into account both the behavioral
and microbiological properties of treatment devices are likely to be more effective at reducing
the burden of diarrheal disease than current standards that only consider efficacy.

KEY WORDS: Compliance; decision theory; household water treatment; risk assessment; waterborne
pathogens

1. INTRODUCTION

Despite substantialglobal progress across water,
sanitation, and hygiene (WASH) programs, diar-
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rheal disease remains the second leading cause of
death among children below five (Fuller, Goldstick,
Bartram, & Eisenberg, 2016; World Health Orga-
nization, 2017). As of 2012, roughly 11% of the
population remained without safe drinking water
while roughly 36% of the population lacked access to
improved sanitation, representing major challenges
to the U.N. Sustainable Development Goals (SDGs)
target of complete global access to safe drinking
water and sanitation (Fuller et al., 2016). Access
to these resources is necessary to reduce morbidity
and mortality from environmentally transmitted
diarrheal disease. However, access alone may not be
sufficient. Although many promising interventions
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(e.g., household water treatment [HWT] devices,
latrines, and cook stoves) have been developed,
health gains in field trials have often underper-
formed expectations. For example, modern HWT
devices are capable of removing or inactivating
nearly all pathogens in treated water. However,
they have not yielded corresponding reductions in
observed infection risk (Arnold, Arana, Mäusezahl,
Hubbard, & Colford, 2009; Schmidt & Cairncross,
2009; Stauber et al., 2006; Waddington & Snilstveit,
2009). Similarly, a recent randomized trial of latrine
construction and promotion demonstrated increased
coverage, but no significant reduction in diarrheal
disease (Clasen et al., 2014; McNeil, 2014; Schmidt,
2015). Incomplete compliance may be responsible
for some of the observed inconsistency between
treatment efficacy from small-scale trials (Arnold
& Colford, 2007) and population health outcomes.
We focus on HWT interventions to demonstrate
the potential impact of compliance on intervention
effectiveness.

One complication in addressing HWT compli-
ance is that treatment efficacy may not correlate to
end-user appeal. Instead, higher treatment efficacies
may compromise end-user convenience or device
reliability (Waddington & Snilstveit, 2009). For
example, chlorine is increasingly detectable by taste
as concentrations increase, and can render drinking
water unpalatable (Mintz, Bartram, Lochery, &
Wegelin, 2001; World Health Organization, 2011b).
Water filtration devices can achieve similarly signif-
icant pathogen reductions without altering taste, but
slow flow rates and clogging can impede adoption
and long-term effectiveness (Clasen, Brown, &
Collin, 2006; Murphy, Sampson, McBean, & Farah-
bakhsh, 2009; van Halem, van der Laan, Heijman,
van Dijk, & Amy, 2009). Under these circumstances,
the efficacy of an HWT method does not capture its
actual capacity to reduce the burden of disease, as a
more efficacious treatment device may induce lower
compliance and therefore be less effective than a
less efficacious but more appealing intervention.
HWT efficacy is typically reported as log10-removal
values (LRVs) that quantify the amount of pathogen
removed from treated water, that is, the proportion
of pathogens remaining after treatment is 10−LRV.
LRVs serve as a comparative measure for treatment
methods within a given class or between classes. The
2011 World Health Organization (WHO) guidelines
for water treatment recommend HWT efficacies of
4 LRV for bacteria, 5 LRV for viruses, and 4 LRV

for protozoa to attain a “highly protective” standard
in generic scenarios where contextual information
about exposure levels and the population at risk are
not available (World Health Organization, 2011b).
Notably, the WHO guidelines assume perfect
compliance with the treatment method. However,
technological adoption is seldom complete (Rogers,
2010). HWT uptake in particular is variable but
rarely widespread in lower-income regions (Rosa &
Clasen, 2010; Shaheed et al., 2018). More recently,
the WHO international scheme to evaluate HWT
technologies has begun to include usability con-
siderations, but remains primarily focused on the
microbiological performance of HWT technologies
(World Health Organization, 2016).

To address the interactions between compliance
and microbiological efficacy, we develop and analyze
a quantitative microbial risk assessment (QMRA)
model that includes decision-theoretic intervention
compliance. QMRA has proven to be a valuable tool
to study the health risks associated with pathogen ex-
posure from a variety of pathways as well as evalu-
ating the potential impact of interventions on these
pathways. Recent QMRA research has begun to ad-
dress the impact of compliance on the effective-
ness of HWT interventions (Brown & Clasen, 2012;
Enger, Nelson, Clasen, Rose, & Eisenberg, 2012;
Enger, Nelson, Rose, & Eisenberg, 2013). In particu-
lar, these results suggest the existence of diminishing
returns in risk reduction for higher LRV. However,
these studies did not directly address the causes of
variable compliance, or the implications of interac-
tions between efficacy and compliance. By contrast,
decision theory models individual choices based on
preferences determined by costs and benefits. Deci-
sion theory is widely used in economics and other so-
cial sciences, and applications to public health have
largely focused on cost analysis for institution-level
interventions (Fischer et al., 2013; McNeil & Pauker,
1984). In the context of HWT, it is likely that up-
take and compliance are determined by the degree
to which an intervention matches individuals’ pref-
erences regarding tradeoffs between treatment effi-
cacy and usability. Thus, overall compliance depends
both on the distribution of user preferences and the
specific proposed intervention. In this study, we use
our model to investigate the tradeoff between effi-
cacy and compliance on the risk of diarrheal disease.
Our model also represents a novel method to inte-
grate techniques from social science into exposure
assessment.
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2. METHODS

2.1. QMRA Model

QMRA provides a framework to evaluate the
risk of infection based on environmental and micro-
biological characteristics. Conducting a QMRA in-
volves the following stages:

(1) Hazard identification—Characterize the mi-
crobiological and epidemiological properties
of the pathogen.

(2) Dose response—Determine the relationship
between a dose of pathogen and the probabil-
ity of infection.

(3) Exposure assessment—Establish transmission
pathways and the average rate of pathogen
ingestion.

(4) Risk characterization—Compute individual or
population risks using exposure level and dose
response.

(5) Risk management—Determine strategies for
reducing risk to tolerable levels.

QMRA can be implemented using either an
analytical or (stochastic) simulation-based approach
(Enger et al., 2012, 2013). Using an analytical ap-
proach, risk is directly calculated using data for ex-
posure levels. For a stochastic QMRA simulation,
risk is estimated from an ensemble of simulation
runs. In a given simulation, exposure levels can vary,
and infection is determined randomly according to
the probability distribution specified by the dose–
response function. We use a simulation approach in
our analysis of the risk of waterborne infection. We
consider three pathogens: Cryptosporidium, entero-
toxigenic E. coli (ETEC), and rotavirus, representing
parasites, bacteria, and viruses, respectively. These
pathogens were selected due to their impact in devel-
oping nations (Kotloff et al., 2013; Platts-Mills et al.,
2015; World Health Organization, 2017). In particu-
lar, the Global Enteric Multicenter Study (GEMS)
found that Cryptosporidium, ETEC, and rotavirus
were responsible for the highest attributable frac-
tions of moderate to severe diarrhea in lower-income
countries, indicating that these pathogens are both
prevalent and create a significant burden of disease
(Kotloff et al., 2013).

2.1.1. Exposure Assessment

For waterborne disease, contaminated drink-
ing water acts as one of the primary transmission

pathways, so exposure levels represent the quantity
of viable pathogen ingested daily based on the qual-
ity of available drinking water. An individual’s daily
volume of pathogen ingested is:

di =
{

wv × 10−x̂ with HWT compliance
wv otherwise

}
(1)

where w is the concentration of pathogen per liter of
untreated water, v is the volume of water consumed
per day, and x̂ is the LRV of the specific imple-
mented HWT method. An individual i uses an HWT
device (complies) with probability Pr(use)i. The ex-
pected dose E[di] across all individuals in a popula-
tion can then be characterized as:

E[di ] = wv[(1 − E[Pr(use)i ]) + E[Pr(use)i ]10−x̂], (2)

where E[Pr(use)i] is the average population com-
pliance. On average, individuals are exposed to
fully contaminated water when they do not use
their treatment device (wv(1 − E[Pr(use)i ]))
or reduced pathogen content when they do
(wv(E[Pr(use)i ]10−x̂). Alternatively, average com-
pliance can be interpreted as the fraction of a given
day’s water that is effectively treated. These inter-
pretations yield identical analytical results but would
alter the disease outcomes in an explicit simulation.
This approach to exposure assessment is similar to
Enger et al. (2013); however, we choose to model
compliance based on an individual’s attitude toward
the specific implemented HWT by developing a
decision-theoretic model defined in Section 2.2.

2.1.2. Dose Response

The probability of infection per organism de-
pends on interactions between the pathogen and the
host immune system. Empirically, infection events
can be modeled using a dose–response function fit to
experimental data. We use an exponential or approx-
imate beta-Poisson dose–response function to com-
pute the daily probability of infection for a given
quantity of pathogen. Specifically, we use an expo-
nential dose–response function for the probability
of infection by Cryptosporidium and a beta-Poisson
function for E. coli and rotavirus (Table I). Both of
these functions assume that a single pathogenic or-
ganism has a nonzero probability of causing an in-
fection, essentially treating infection as the outcome
of Bernoulli trials. The exponential dose–response
function is:

Pr(infection)i = 1 − e−kdi (3)
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Table I. Dose–Response Functions and Recovery Time Distributions for Each Pathogen

Pathogen Dose–Response Dose–Response Parameters Recovery Distribution Recovery Parameters

Cryptosporidium Exponential
(Messner et al., 2001) k = 5.72 × 10−2 Gamma Shape = 4, scale = 2.5

E. coli(ETEC) Beta-Poisson
(DuPont et al., 1971) α = 0.155, N50 = 2 × 106 Gamma Shape = 1.775, scale = 1.69

Rotavirus Beta-Poisson
(Ward et al., 1986) α = 0.253, N50 = 6.17 Gamma Shape = 1, scale = 5.2

Note: The average time to recovery for a gamma distribution is the product of the shape and scale parameters. For an exponential distribu-
tion, the average time is equal to the scale parameter.

with rate parameter k. Mechanistically, this function
implies that the dose is Poisson distributed and that
each unit of pathogen has an identical probability of
surviving to reach the target site (k−1) and of causing
an infection.

An exact beta-Poisson function can be computa-
tionally unstable due to its use of the confluent hy-
pergeometric function. As a result, the approximate
form is often used instead:

Pr(infection)i = 1 −
(

1 + di

β

)−α

, (4)

β = N50

21/α − 1
, (5)

where α controls the slope and N50 is the dose re-
quired to infect 50% of a population. This approxi-
mation is appropriate when α � β and β � 1, which
are satisfied by our parameter values for E. coli and
rotavirus (Table I). The mechanistic interpretation of
the beta-Poisson model is similar to that of the ex-
ponential model; however, in this case the probabil-
ity that a pathogen survives to infect (i.e., infectiv-
ity) is assumed to be given by a beta distribution.
The choice of dose–response function is typically
made based on both biological and statistical con-
siderations. We use the exponential dose–response
function for Cryptosporidium (Messner, Chappell, &
Okhuysen, 2001), whereas the beta-Poisson dose–
response function is used to characterize E. coli
(DuPont et al., 1971) and rotavirus (Ward et al.,
1986).

2.2. Decision-Theoretic Compliance

To accommodate variable individual compliance
in a QMRA framework, we construct the following
decision-theoretic model that determines the distri-
bution of individual compliance based on attitudes
toward recommended HWT levels. Given the limited

data on the functional relationship between attitude
and HWT levels, we use functions that are heuristi-
cally derived.

Suppose we have individuals i ∈ N who each
select a probability of compliance Pr(use)i with a
treatment device chosen from the intervention space
X ⊆ R>0. This space represents the range of possi-
ble HWT levels quantified by their LRV. We assume
that an individual’s attitude toward HWT proper-
ties map to the LRV of any given treatment method
(since both the advantages and drawbacks of a given
method are correlated with the LRV). That is, each
individual has a most preferred LRV denoted as
xi ∈ X. We will refer to the distribution of these
points as the preference distribution. The shape of
the preference distribution characterizes a popula-
tion’s disposition toward potential HWT interven-
tions; that is, a population with many individuals
who prefer low LRV will be more resistant to high-
efficacy devices than a population with higher aver-
age LRV preferences. For our analysis, we assume
that preferences are distributed according to a trun-
cated normal distribution with mean μ and variance
σ 2, bounded by [0, 6] (the range from no interven-
tion to the highest current recommendation). We use
x̂ to refer to a hypothetical intervention that has been
provided to the population in question. Based on this
model, an optimal intervention is a function of a de-
vice’s microbiological efficacy (LRV) and the aggre-
gate of individual preferences for efficacy. By con-
trast, most current HWT evaluations are based on a
device’s microbiological characteristics.

Based on this framework, we define the follow-
ing decision problem: Given their preferred LRV,
individuals choose the degree to which they com-
ply with the specific HWT intervention provided. As
noted above, this choice is over the probability of
compliance as opposed to the binary choice of com-
pliance on a specific day. This is because we assume
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that conditions informing compliance do not change
enough between days to alter an individual’s choice.
Instead, individuals choose Pr(use)i when the inter-
vention is implemented and draw their daily compli-
ance accordingly, analogous to a mixed strategy in
game theory. To represent this problem, we construct
a utility function, ui, which represents an individual’s
preferences regarding compliance with the interven-
tion x̂. In particular, we use the following negative
quadratic form:

ui (xi , x̂) = −(1 − Pr(use)i − f (x̂)i )
2
, (6)

where f (x̂)i ∈ [0, 1] represents the “distance”
between intervention x̂ and individual i’s most
preferred intervention xi (we refer to f (x̂)i as
the distance function). Note that a larger distance
indicates a less appealing intervention. Qualitatively,
Equation (6) reflects that individuals prefer to
comply with devices that are more appealing to
them (e.g., ui = 0 if Pr(use)i = 1 and f (x̂)i = 0).
Conversely, individuals prefer to not comply with
devices that are not appealing. Equation (6) is meant
to be a phenomenological representation of user
preferences for devices to demonstrate our method.
Additionally, a negative quadratic utility function is
analytically appealing, as it is guaranteed to have a
unique maximum. However, other functional forms
could be chosen based on additional information
regarding intervention end-user behavior.

The shape of the distance function may de-
pend on prior knowledge of how individuals compare
HWT alternatives. We use two different functions to
characterize different potential situations. The first
function is the squared Euclidean distance:

f (x̂)i = (xi − x̂)2

(max(X) − min(X))2 , (7)

where min(X) and max(X) are the lowest and high-
est feasible LRVs, respectively. This distance func-
tion implies that individuals dislike treatments that
are either more or less efficient than their ideal pref-
erence. Chemical treatment such as chlorination may
be an example of an intervention for which individ-
uals apply a symmetrical distance function. This may
be because an individual who prefers some level of
chlorination would be unwilling to treat his or her
water at levels that the individual does not perceive
as effective (lower LRV than preferred), and may not
want to treat at high concentrations due to taste is-
sues (Arnold & Colford, 2007; World Health Orga-
nization, 2011a).

Alternatively, we can use an asymmetrical piece-
wise distance function:

f (x̂)i =
{

(xi −x̂)2

(max(X)−min(X))2 if x̂ ≥ xi

0 otherwise

}
(8)

Unlike for chlorination, this variant implies that
individuals dislike LRVs greater than their ideal
point, but view lower LRVs as equally favorable.
This asymmetry may be appropriate for filtration
methods, where individuals may not distinguish be-
tween a lower LRV device and the recommended
treatment level, especially if changes in the aesthetic
qualities of the filtered drinking water do not vary
between devices. They may begin to become non-
compliant, however, with a high LRV filter due to
slow water flow or increased breakage rate. If X is
normalized to the [0, 1] interval, the above equations
simplify to:

f (x̂)i = (xi − x̂)2 (9)

and

f (x̂)i =
{

(xi − x̂)2 if x̂ ≥ xi

0 otherwise

}
(10)

Note that the steepness of our distance functions
determines the degree to which individuals dislike
less favorable interventions. Although not explicitly
included in the above equations, this could be tuned
as an additional parameter by scaling the quadratic
term in either distance function if appropriate data
are available.

Decision theory requires that individuals will
choose actions that maximize their utility (Tadelis,
2013). The inner term of Equation (6) implies that
when the provided intervention is not appealing, util-
ity is maximized by adopting a low probability of
compliance. By contrast, when an intervention is ap-
pealing, utility is maximized by adopting a high prob-
ability of compliance. Thus, maximizing Equation (6)
with respect to Pr(use)i results in the following prob-
ability of compliance:

Pr (use)i = 1 − f (x̂)i . (11)

To account for the fact that an individual
will never comply perfectly even with the most
preferred HWT intervention, Equation (11) can be
modified using a scaling factor as follows:

Pr (use)i = cmax (1 − f (x̂)i ), (12)

where cmax is the maximum possible compliance. The
inclusion of cmax does not impact our estimates of op-
timal interventions but does have an impact on our
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risk estimates. In particular, we would expect a lower
cmax to attenuate the risk reduction for any interven-
tion. This is because risk responds monotonically to
compliance for a given intervention level, so lower-
ing the maximum compliance probability acts as an
offset.

2.2.1. Applying the Decision-Theoretic Model to
Household Water Filtration

Household water filters include a range of
specific technologies, including biosand (Elliott,
Stauber, Koksal, DiGiano, & Sobsey, 2008) and ce-
ramic (Oyanedel-Craver & Smith, 2008) devices. Fil-
ter types vary with respect to their filtration efficacy
for viral, bacterial, and protozoan parasites as well
as properties such as flow rate, capacity, and dura-
bility. Although individuals facing endemic diarrheal
disease are likely to value improved pathogen re-
moval, the usability of a filter may significantly in-
fluence whether an individual is willing to treat his
or her drinking water. Filters that are more efficient
may have reduced usability as smaller pores decrease
the flow rate and are more likely to clog. As a result,
attitudes toward filters may become less favorable as
efficacy increases, especially once the usability of a
filter becomes unacceptable. However, filters below
that acceptability threshold may be equally accept-
able, given that individuals may not explicitly evalu-
ate the LRV so long as a filter reduces apparent risk.

We illustrate our decision-theoretic approach us-
ing this context. To this end, suppose we have a pop-
ulation in which preferences regarding filter efficacy
(xi) are normally distributed with a mean of 2 LRV
(Fig. 1(a)), and that we wish to determine the dis-
tribution of compliance if a 4 LRV filter (x̂) is pro-
vided. For this example, we assume that filters may
have a minimum LRV of 0 and a maximum LRV of
6. Individuals select their compliance level with the
4 LRV device (Pr(use)i) based on Equation (12) us-
ing the asymmetric distance function, where x̂ = 4
LRV, and cmax = 1. All else equal, this function im-
plies that individuals dislike filters more efficient than
their ideal point but are ambivalent about filters as
efficient or less. As a result, we are able to determine
the distribution of compliance with the provided fil-
ter (Fig. 1(b)). In this case, our model predicts an av-
erage compliance of approximately 85%.

2.3. Optimizing HWT Interventions

When we assume perfect compliance, we can
always compute the treatment level (efficacy)

necessary to obtain a given risk threshold. With
incomplete compliance, however, it is possible that
no feasible treatment level will reduce risk below
current acceptable disease burden standards; that
is, increasing noncompliance decreases the effec-
tiveness of an intervention. When we account for
incomplete compliance, therefore, it is important to
consider the optimal treatment level that will reduce
infections the most relative to baseline conditions.
Effective interventions from this perspective must
take into account both the microbiological char-
acteristics of the device and behavioral features of
potential users. We define an optimal intervention as
the LRV that most reduces risk subject to a tradeoff
between compliance and device efficacy. Formally,
this problem can be stated as follows:

x̂∗ = argminx̂Pr(infection | x̂, θ), (13)

where argminx̂ means that we search for the interven-
tion argminx̂∗that minimizes the average probability
of infection—a function of the intervention level x̂
and other parameters θ (i.e., the dose–response func-
tion). This procedure is equivalent to solving a game-
theoretic model in which a policymaker first selects
an intervention and individuals then choose their
compliance probabilities (Appendix B in the Sup-
porting Information). Conveniently, when the dose–
response function is monotonic, the optimal inter-
vention can be found by minimizing the function
representing the expected dose (Equation (2)). No-
tably, this means that the solution does not depend
on pathogen or exposure characteristics beyond the
effect of treatment. We illustrate this framework by
computing numerical solutions to Equation (13) as-
suming normally distributed preferences. Appendix
A in the Supporting Information describes our pro-
cedure in detail.

2.4. Risk Simulation Framework

We simulate a population of size N for T days.
Each day, healthy individuals may become infected
based on their exposure level and probability of
infection. Sick individuals recover based on times
drawn from a gamma distribution. Table I describes
the specific dose–response and recovery models used
for each pathogen (Enger et al., 2013). Gamma dis-
tributions characterize the expected time to recovery
for diseases with multiple infectious stages assuming
a Poisson process. When represented by an integer,
the shape parameter denotes the number of stages. In
the case where the shape parameter is 1, the gamma
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Fig. 1. An example of our decision-theoretic framework. (a) The frequency distribution of preferences for interventions (xi) represented
by their LRV in a simulated example population. In this example, the minimum LRV is 0, the maximum LRV is 6, and a 4 LRV treatment
device has been provided (x̂). (b) The frequency distribution of compliance among the simulated population (Pr(use)i) determined by
solving Equation (11) using an asymmetrical distance function with x̂ = 4.

distribution is equivalent to an exponential distri-
bution. For Cryptosporidium and E. coli, gamma
distribution parameters were drawn from existing
literature on the infectious period of each disease
(Eisenberg, Seto, Colford, Olivieri, & Spear, 1998;
Estrada-Garcia et al., 2009). As few data are avail-
able for rotavirus, we chose a gamma distribution
with an average waiting time equal to the median
recovery time of 5.2 days (Gurwith, Wenman,
Hinde, Feltham, & Greenberg, 1981) and a shape
parameter of 1. We implemented our models and
analyses in Python 2.7 using Numpy, Scipy, and Mat-
plotlib (Hunter, 2007; Jones, Oliphant, & Peterson,
2001).

3. RESULTS

3.1. The Effect of Imperfect Compliance

We simulate the disease burden of our three ref-
erence pathogens. For each pathogen type, we simu-
lated our stochastic QMRA model for one year and
computed the average yearly disease burden in dis-
ability adjusted life-years (DALY).

Our simulations are largely consistent with the
scenarios defined in the original WHO guideline
analysis. For example, we assumed perfect compli-
ance, water treatment interventions meeting the 2011
WHO Guidelines (4 LRV for bacteria/protozoa and
5 LRV for viruses), and a target disease burden of
10−6 DALY/year. Similarly, our assumptions about

pathogen contamination levels, water consumption,
and individual burden of disease are drawn from the
methods used in the Guidelines.

Our approach differed in three ways. First,
the original WHO analysis used Campylobacter Je-
juni, Cryptosporidium, and rotavirus as reference
pathogens. As noted above, we used data from
the GEMS (published after the Guidelines) to se-
lect reference pathogens resulting in our choice
of ETEC over Campylobacter. Second, our model
used dose–response functions and expected recov-
ery times specified in Table I for each refer-
ence pathogen. These functions have been derived
from previous experimental studies. The original
WHO analysis assumed linear dose–response rela-
tionships, which is likely to match our simulations
for lower doses (Brouwer, Weir, Eisenberg, Meza, &
Eisenberg, 2017). Third, for rotavirus, the original
WHO analysis presented results corresponding to
the disease burden in high-income countries (low-
income disease burden was presented in a supple-
ment) while we used a burden of disease correspond-
ing to low-income countries, which reflects higher
mortality in countries that will receive the greatest
potential benefit from the SDGs and that have lower
rotavirus vaccination coverage. Like the WHO anal-
ysis, E. coli and Cryptosporidium DALYs were only
derived for developed countries.

With perfect compliance, our simulations for
E. coli and Cryptosporidium correspond to the
WHO analytical results for bacteria and protozoa
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Table II. Simulated Disease Burden Estimates for Three Waterborne Enteric Pathogens at 6 LRV with Complete Compliance

E. coli (ETEC) Rotavirus
a

Cryptosporidium

Organisms/L 1 × 103 1 0.1
Daily water consumption (L) 1 1 1
Treatment efficacy (LRV) 4 5 4
DALY/person 5.47 × 10−2 0.482 1.47 × 10−3

Prevalence/year 2.92 × 10−4 1.36 × 10−2 2.26 × 10−3

Disease burden (DALY/person-year) 1.59 × 10−5 6.54 × 10−3 3.32 × 10−6

Tolerable threshold (DALY/person-year) 1 × 10−6 1 × 10−6 1 × 10−6

aRotavirus assumes 6% population at risk in a low-income country.

(Table II), indicating that in the ideal case, 4 LRV
treatment would reduce the burden of disease below
the target threshold. Due to rotavirus’ higher bur-
den of disease in low-income countries, the 5 LRV
treatment did not reduce the overall simulated dis-
ease burden below the threshold level. Next, we re-
lax the assumption of perfect compliance for Cryp-
tosporidium (similar results for E. coli and rotavirus
can be found in the Supporting Information). At all
contamination levels, greater than 99% compliance
is necessary to reach the WHO target (Fig. 2). This
finding is a consequence of two factors. The 2011
Guidelines were determined by solving for the lowest
efficacy that resulted in a tolerable disease burden,
so we would not expect a less efficacious interven-
tion to meet the threshold. Additionally, individuals
face substantially higher disease risks whenever they
do not use their treatment device, causing disease
burden to be very sensitive to compliance. Although
the largest changes occur between compliance lev-
els of 80–100%, substantial health gains are pre-
dicted for more modest improvements in compliance.
For example, at 1 oocyst/L, if compliance increases
from 20% to 60%, the disease burden decreases
from 0.134 DALY/year to 0.0827 DALY/year, a 38%
reduction.

Note that the target threshold of 10−6

DALY/year implies extremely low endemic preva-
lence based on analytical QMRA. This is impossible
to verify in practice due to the large population size
required to detect any cases once the risk of infection
is sufficiently low. Our stochastic model results in this
phenomenon—many simulations with near-perfect
compliance had zero cases. As a result, although the
disease burden for incomplete compliance is higher
than the 10−6 DALY/year threshold, contamination
levels of 0.01 and 0.001 oocysts/L cause a very small
absolute number of cases on average.

Fig. 2. Simulated disease burden estimates for Cryptosporidium
given expected doses calculated using Equation (2) for v = 1
L/day, varying contamination concentrations (w), and varying
compliance with a 4 LRV device (Pr(use)i). A population of
5,000 was simulated until equilibrium using the exponential dose–
response function (Equation (3)) and gamma-distributed recovery
times (Table I).

3.2. Optimal Interventions

3.2.1. Case Study

We use a hypothetical water filter trial to demon-
strate our optimal intervention framework when
data on intervention compliance are available. For
simplicity, we assume that the variance of compli-
ance is not available. First, we calculate the average
LRV preference E[xi] by solving Equation (12):

E [Pr (use)i ] = cmax (1 − f (x̂)i ) E [xi ]

= x̂ −
√

(X)2
(

1 − E [Pr (use)i ]
cmax

)
, (14)

where cmax is the maximum compliance. We use
the negative square root since our model for filters
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Fig. 3. Numerical solutions to Equation (13), that is, optimal in-
terventions given average population preferences μ assuming nor-
mally distributed preferences with variance σ 2 = 3.6. Solutions
are shown using a symmetrical (blue) and asymmetrical (red) dis-
tance function. The dashed line indicates whether the optimal in-
tervention for a given μ is higher or lower than that value.

assumes an asymmetric distance function, which
implies that incomplete compliance is generally a
product of an intervention that is more efficacious
than the average user preference. For our scenario,
we assume that the maximum compliance level is
cmax = 0.9, the highest possible treatment efficacy is
max(X) = 6 LRV, and the lowest possible treatment
efficacy is min(X) = 0 LRV. We also assume that
when given a 6 LRV filter, participants do not use
their device 20% of the time on average, and the
average observed compliance level E[Pr(use)i] = 0.8.
Plugging these values into Equation (14) results in
an average preference E[xi] = 4 LRV. We then solve
Equation (13) numerically to obtain the optimal
intervention x̂* = 4 LRV, the same value as the
average user preference. Therefore, by knowing
the maximum compliance level and percentage
compliance for a given device, we can obtain a rec-
ommendation that suggests a 4 LRV device would be
more effective than the initial implemented 6 LRV
device. With more information, such as a variance
estimate of the compliance distribution, we could
obtain a more precise estimate. Although this exam-
ple is highly artificial, it is intended to demonstrate
that our approach can flexibly address multiple ques-
tions related to HWT compliance and intervention
effectiveness.

3.2.2. Selecting HWT Based on User Preferences

We now consider a more general case where
compliance is not known but end-user preferences

regarding device efficacy could be estimated (e.g.,
stated preference surveys). In these analyses, we ex-
amine the optimal interventions for a range of pos-
sible preference distributions. Simulating a filter in-
tervention, we assume that individuals have an asym-
metrical distance function, that is, users accept LRVs
lower than their preference but are less likely to use
filters that have higher LRV than their preference
(Equation (8)). Based on these assumptions, optimal
LRVs for filters tend to be higher than the average
user preference μ when the average is low and tend
to be lower than the average preference when the av-
erage preference is high (Fig. 3). The transition point
occurs at approximately 2 LRV. This can be seen by
comparing the solution line with the dashed line in-
dicating an intervention set at the mean of the pref-
erence distribution (Fig. 3).

For a chlorination intervention, we assume that
the distance function is symmetrical—individuals are
less likely to treat their water if the treatment LRV
is either higher or lower than their preference. Like
filtration, the optimal LRV for chlorination is higher
than the average preference when the average pref-
erence is below 2. However, between 2 and 5, LRV
optimal chlorination tracks the average preference.
Above an average preference of 5 LRV, the optimal
value is slightly below the average user preference.

The symmetrical distance function results in
higher optimal LRV interventions than the asym-
metrical measure for distributions with an average
preference above 2 LRV. This is because with
the asymmetrical function, compliance with lower
LRV devices is generally high. This is not true for
a symmetrical distance function. Consequently,
overall compliance with any intervention under
these conditions is higher than in the case where
individuals also dislike less efficient treatments.

3.2.3. Risk Reduction

As the average LRV preference increases, the
optimal intervention becomes more effective at de-
creasing prevalence for both chlorination and fil-
tration (Fig. 4(a)). This relationship becomes more
dramatic for average preferences between 1 and 2
LRV. Beyond this point, the effectiveness of chlori-
nation plateaus while optimal filtration continues to
reduce risk for populations with greater average pref-
erence. In both cases, optimal interventions are gen-
erally more effective than the implemented 4 LRV
device (Fig. 4(b)). For chlorination, the only excep-
tion is if the average preference is at 4 LRV; then the
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Fig. 4. (a) The simulated endemic Cryptosporidium prevalence when the optimal intervention from Fig. 3 is implemented. (b) The risk ratio
comparing the optimal intervention versus the current 4 LRV guideline for Cryptosporidium across a range of LRV preferences. Results
are shown for both an asymmetric and symmetric distance function. Endemic prevalence was calculated for a simulated population of
10,000 after one year using a contamination concentration w = 1 oocyst/L, volume v = 2 L/day, and dose–response and recovery parameters
given in Table I.

optimal intervention is also at 4 LRV (Fig. 3). For
filtration, the exception occurs closer to 5.5 LRV,
at which point the optimal intervention is 4 LRV
(Fig. 3). Simulations for E. coli and rotavirus can be
found in the Supporting Information (Figs. S1 and
S2). Although specific values differ, the qualitative
features of the absolute and relative risk curves do
not vary substantially by pathogen.

4. DISCUSSION

Current HWT guidelines have been developed
using QMRA assuming perfect compliance and focus
on microbiological performance (World Health Or-
ganization, 2011a). As a result, recommended treat-
ment devices favor high LRV capabilities. However,
these recommendations become problematic if com-
pliance is inversely related to efficacy. In fact, up-
take of HWT in developing countries has been doc-
umented to vary from 13% to 67% (Rosa & Clasen,
2010). It is important, therefore, to characterize the
causes and impact of noncompliance with HWT. Re-
cent QMRA analyses have found evidence for di-
minishing returns in risk reduction for increasing
LRVs under imperfect compliance (Brown & Clasen,
2012; Enger et al., 2013; Rosa & Clasen, 2010). Our
simulation results broadly support these findings. No-
tably, we find that improving compliance from low to
moderate levels can provide significant health gains
(Fig. 2). Conversely, even a small level of noncompli-
ance with a high LRV treatment method can still re-

sult in a significant loss in health gains when drinking
water is sufficiently contaminated (Fig. 2). This sug-
gests that once the microbiological efficacy of a de-
vice is “good enough,” focusing on improving com-
pliance may be at least as important as increasing a
device’s LRV.

Across the range of scenarios we tested, the
optimal LRV from the perspective of minimizing
disease burden was almost always lower than the
current WHO standards that assume perfect com-
pliance (Fig. 3). In addition, we found that the risk
reductions generated by interventions chosen by our
model framework as opposed to high-efficacy inter-
ventions were considerable for all three pathogens
(protective ratio comparing the optimal intervention
with the implemented device: 0.1–1). Assuming that
achieving perfect compliance is unrealistic, our sim-
ulations further suggest that reaching the tolerable
disease burden threshold of 10−6 DALY/year is
impractical. However, balancing compliance and
efficacy provides the maximum possible risk reduc-
tions. These findings indicate that multiple WASH
interventions, or coupled technological–behavioral
interventions, may be needed to achieve desired
reductions in diarrheal disease.

Our modeling framework further extends the
scope of QMRA for environmental epidemiology by
integrating decision theory into exposure assessment
to explicitly represent the response of potential
HWT users to a given intervention. Characterizing
individual-level incentives is crucial, as in many
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cases HWT appears to be subject to a tradeoff
between usability and efficacy. Specifically, studies
of filter adoption have suggested that usability may
decline as a function of LRV. Biosand and clay pot
filters have LRV approaching 5 for bacteria, but are
prone to breakage and clogging (Fiore, Minnings, &
Fiore, 2010; Gupta, Islam, Johnston, Ram, & Luby,
2008; van Halem et al., 2009). By contrast, cloth
filters have been successfully adopted for cholera
prevention in spite of a much lower (2 LRV) efficacy
(Colwell et al., 2003; Huq et al., 2010). Chemical
treatment involves a similar tradeoff as the taste
and odor of treated water become less palatable as
the concentration of disinfectant increases (Mintz
et al., 2001; World Health Organization, 2011b). Our
decision-theoretic model captures these scenarios
by assuming that usability and therefore individual
preference is a function of device efficacy measured
in LRV. This approach is designed to accommodate
a wide range of incentive structures. Our choice of
an asymmetrical or symmetrical distance function to
represent filtration or chlorination, respectively, is
based on a mechanistic hypothesis of the perceived
tradeoff between efficacy and usability. Specific
characteristics of the function, for example, rate of
drop-off and value where drop-off begins, will vary
by type of intervention and the specific technology.
Both consultation with experts and behavioral data
will help to identify these functional forms.

Willingness to adopt more efficacious (but po-
tentially less usable) HWT methods is likely to vary
substantially by region. Ideally, HWT recommenda-
tions should be informed by data regarding the tar-
get group’s preferences and attitudes regarding treat-
ment. Such attitudes are complex, determined by a
wide range of elements including private costs, social
contexts, and political forces. Our decision theory
model is designed to accommodate behavioral data
at multiple levels of resolution. In particular, when
data on compliance are unavailable or unreliable, at-
titude surveys and similar techniques can be used to
assess the distribution of preferences and inform the
selection or construction of a utility function (Albert,
Luoto, & Levine, 2010; Mankad & Tapsuwan, 2011;
Poulos et al., 2012). Alternatively, as demonstrated
by our HWT case study, data on compliance with
existing interventions can be used to infer more ef-
fective treatment levels should they be feasible.

Our QMRA model relies on a simplified rep-
resentation of enteric pathogen transmission. Like
other QMRA approaches, we assume that infected
individuals do not shed pathogen back into drink-

ing water sources, and that contaminated drinking
water is the primary transmission pathway. To focus
on the implications of intervention and preference-
dependent compliance, we omitted temporal varia-
tion in pathogen exposure due to seasonal or other
periodic factors. Future work may address these fac-
tors by implementing a compartmental transmission
model with environmental transmission similar to the
EITS or SIWR models (Li, Eisenberg, Spicknall, &
Koopman, 2009; Tien & Earn, 2010).

5. CONCLUSIONS

Realizing health gains from environmental
interventions requires an understanding of the role
of host behaviors in transmission systems. Our
framework represents a straightforward extension
to QMRA that addresses end-user compliance
behavior as well as environmental and microbiolog-
ical factors. This systems approach can be applied
to evaluate new and existing HWT interventions.
In particular, our analyses suggest that it may be
advisable to focus on cost-efficient and readily usable
treatment options. Addressing the usability efficacy
tradeoff is likely to be crucial to the successful de-
ployment of HWT in areas still lacking access to safe
drinking water. Applications of our framework are
not limited to decentralized HWT contexts. Indeed,
even centralized water treatment can fail to attain
complete coverage due to infrastructure limitations
such as reliability and recontamination.
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SUPPORTING INFORMATION

Additional supporting information may be found on-
line in the Supporting Information section at the end
of the article.

APPENDIX A: EXTENDED METHODS
APPENDIX B: GAME-THEORETIC REPRE-
SENTATION OF OPTIMAL INTERVENTIONS
APPENDIX C: ADDITIONAL FIGURES
Fig. S1. The simulated endemic E. coli prevalence
when the optimal intervention from Fig. 3 is imple-
mented (S1a) and the risk ratio comparing the opti-
mal intervention versus the current 4 LRV guideline
for E. coli across a range of LRV preferences (S1b).
Results are shown for both an asymmetric and sym-
metric appeal function. Endemic prevalence was cal-
culated for a simulated population of 10,000 after one
year.
Fig. S2. The simulated endemic rotavirus prevalence
when the optimal intervention from Fig. 3 is imple-
mented (S2a) and the risk ratio comparing the op-
timal intervention versus the current 5 LRV guide-
line for rotavirus across a range of LRV preferences
(S2b). Results are shown for both an asymmetric and
symmetric appeal function. Endemic prevalence was
calculated for a simulated population of 10,000 after
one year.


