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chieving health gains from the United Nations Sustainable Development Goals
overage for water and sanitation will require interventions that can be widely

adopted and maintained. Effectiveness -- how an intervention performs based on actual use -- as

opposed t i will therefore be central to evaluations of new and existing interventions.
lncomplence -- when people do not always use the intervention and are therefore
exposed to ination -- is thought to be responsible for the lower-than-expected risk
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reductions observed from water, sanitation, and hygiene interventions based on their efficacy at

removing pathogens.

Methods: licitly incorporated decision-theory into a quantitative microbial risk
assessme odel. Specifically, we assume that the usability of household water

H I
treatmentﬁWT) devices (filters and chlorine) decrease as they become more efficacious due to

issues sule or flow rates. Simulations were run to examine the tradeoff between device
1t

efficacy an ity.

Results: mgtuations, HWT interventions that trade lower efficacy (i.e., remove less

pathogens) for higher compliance (i.e., better usability) contribute substantial reductions in

Ul

diarrheal isk compared to devices meeting current World Health Organization (WHO)

N

efficacy g i

Conclusions: a pmmendations that take into account both the behavioral and microbiological

d

proper ent devices are likely to be more effective at reducing the burden of

diarrhea than current standards that only consider efficacy.

%
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1.IN TION

th

Despite substantial global progress across water, sanitation, and hygiene (WASH) programs,

U

diarrheal diseasediemains the second leading cause of death among children under five (Fuller,

Goldsti am, & Eisenberg, 2016; World Health Organization, 2017). As of 2012, roughly

A

11% of the population remained without safe drinking water while roughly 36% of the
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population lacked access to improved sanitation, representing major challenges to the United

Nations Sustainable Development Goals target of complete global access to safe drinking water

and sanitafion (Fuller et al.,, 2016). Access to these resources is necessary to reduce morbidity
environmentally transmitted diarrheal disease. However, access alone may
not be SAffi@@AEWhile many promising interventions (e.g. household water treatment devices,
latrines, a&toves) have been developed, health gains in field trials have often

underperf@med gkpectations. For example, modern household water treatment devices are

C

capable of, g or inactivating nearly all pathogens in treated water. However, they have

S

not yielded corresponding reductions in observed infection risk (B. Arnold, Arana, Mausezahl,

3

Hubbard, & Col , 2009; Schmidt & Cairncross, 2009; Stauber et al., 2006; Waddington &

Snilstveit, »Similarly, a recent randomized trial of latrine construction and promotion

N

demonstr eased coverage, but no significant reduction in diarrheal disease (T. Clasen et

al, 2014; L G eil Jr., 2014; Schmidt, 2015). Incomplete compliance may be responsible for

d

some 0 ed inconsistency between treatment efficacy from small scale trials (B. F.

Arnold & Co $2007) and population health outcomes. We focus on household water

W

treatment (HWT) interventions to demonstrate the potential impact of compliance on

interventi@h effectiveness.

[

0 @ cation in addressing HWT compliance is that treatment efficacy may not

correlate to er appeal. Instead, higher treatment efficacies may compromise end-user

n

convenj ice reliability (Waddington & Snilstveit, 2009). For example, chlorine is

[

increasi able by taste as concentrations increase, and can render drinking water

unpalatable (Mint, Bartram, Lochery, & Wegelin, 2001; World Health Organization, 2011b).

Gl

Water filtratig ices can achieve similarly significant pathogen reductions without altering

taste, b ow rates and clogging can impede adoption and long-term effectiveness (T. F.

A
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Clasen, Brown, & Collin, 2006; Murphy, Sampson, McBean, & Farahbakhsh, 2009; van Halem,
van der Laan, Heijman, van Dijk, & Amy, 2009). Under these circumstances, the efficacy of a
HWT mm not capture its actual capacity to reduce the burden of disease, as a more
efficacious @ nt device may induce lower compliance and therefore be less effective than a
less effi@ di@WSIHW more appealing intervention. HWT efficacy is typically reported as logio-
removal v Vs) that quantify the amount of pathogen removed from treated water, i.e.,
the propofgion offpathogens remaining after treatment is 10-LRV, LRVs serve as a comparative
measure fmnent methods within a given class or between classes. The 2011 World
Health Organization (WHO) guidelines for water treatment recommend HWT efficacies of 4 LRV
for bacterig, 5 LR¥for viruses, and 4 LRV for protozoa in order to attain a "highly protective"
standard g scenarios where contextual information about exposure levels and the
populatio re not available (World Health Organization, 2011b). Notably, the WHO
guideline@perfect compliance with the treatment method. However, technological
adoptioms complete (Rogers, 2010). HWT uptake in particular is variable but rarely
wides;:rezer income regions (Rosa & Clasen, 2010; Shaheed et al., 2018). More recently,
the WHO International Scheme to Evaluate Household Water Treatment Technologies has

begun to itlude usability considerations, but remains primarily focused on the microbiological

performandT technologies (World Health Organization, 2016).

To the interactions between compliance and microbiological efficacy, we
develo e a quantitative microbial risk assessment (QMRA) model that includes
decisio intervention compliance. QMRA has proven to be a valuable tool to study the

health risks asso;ted with pathogen exposure from a variety of pathways as well as evaluating
the potential i t of interventions on these pathways. Recent QMRA research has begun to
addres act of compliance on the effectiveness of HWT interventions (Brown & Clasen,
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2012; Enger, Nelson, Clasen, Rose, & Eisenberg, 2012; Enger, Nelson, Rose, & Eisenberg, 2013).
In particular, these results suggest the existence of diminishing returns in risk reduction for
higher err, these studies did not directly address the causes of variable compliance,
or the imp w  of interactions between efficacy and compliance. By contrast, decision
theory Mo@@Siif@ividual choices based on preferences determined by costs and benefits.
Decision t idely used in economics and other social sciences, and applications to public
health hav@largely focused on cost analysis for institution-level interventions (Fischer et al.,

2013; B.]. w Pauker, 1984). In the context of HWT, it is likely that uptake and compliance
ined

are determ the degree to which an intervention matches individuals' preferences
regarding trade-Ss between treatment efficacy and usability. Thus overall compliance

depends bge distribution of user preferences and the specific intervention proposed. In
this study, ur model to investigate the tradeoff between efficacy and compliance on the

risk of diagrh ease. Our model also represents a novel method to integrate techniques

d

froms into exposure assessment.

2. METHODS

2.1. Quad @ ve Microbial Risk Assessment (QMRA) model

“& ;rovides a framework to evaluate the risk of infection based on environmental

and mi(,Hl characteristics. Conducting a QMRA involves the following stages:

1. Hamtification -- Characterize the microbiological and epidemiological properties

of ogen.
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2. Dose response -- Determine the relationship between a dose of pathogen and the

probability of infection.

E

ssessment -- Establish transmission pathways and the average rate of

pa stion.

I
4, Ris&terization -- Compute individual or population risks using exposure level and

doSe resp@nse.
Ri ndgement -- Determine strategies for reducing risk to tolerable levels.

Q C e implemented using either an analytical or (stochastic) simulation-based

approach Enfer etal,, 2012, 2013). Using an analytical approach, risk is directly calculated

using data exposure levels. For a stochastic QMRA simulation, risk is estimated from an

ensemble mtion runs. In a given simulation, exposure levels can vary, and infection is
a

determine mly according to the probability distribution specified by the dose-response
function. simulation approach in our analysis of the risk of waterborne infection. We
consid ogens: Cryptosporidium, enterotoxigenic E. coli (ETEC), and rotavirus

representing parasites, bacteria, and viruses respectively. These pathogens were selected due to

their impa eloping nations (Kotloff et al., 2013; Platts-Mills et al., 2015; World Health

Organizat). In particular, the Global Enteric Multicenter Study (GEMS) found that

Cryptospor, TEC, and rotavirus were responsible for the highest attributable fractions of
moder diarrhea in lower income countries, indicating that these pathogens are

both prev!ent and create a significant burden of disease (Kotloff et al., 2013).

-

<

This article is protected by copyright. All rights reserved.

5


https://paperpile.com/c/lKuMOi/SebFj+fvpzI
https://paperpile.com/c/lKuMOi/rHOIJ+UmDp+YGreW
https://paperpile.com/c/lKuMOi/rHOIJ+UmDp+YGreW
https://paperpile.com/c/lKuMOi/YGreW

2.1.1. Exposure assessment

orne disease, contaminated drinking water acts as one of the primary

{

transmissi ays, so exposure levels represent the quantity of viable pathogen ingested
daily base lity of available drinking water. An individual's daily volume of pathogen
I

ingested i

d; = {wv x 10~ with HWT compliance wv otherwise (D

USCI

where w i centration of pathogen per liter of untreated water, v is the volume of water

N

consumed per day, and X is the LRV of the specific HWT method implemented. An individual i

uses an HWT e (complies) with probability Pr(use);. The expected dose E[d,] across all

d

individ ulation can then be characterized as:

E[d;] = wv[(1 — E[Pr (use) ;]) + E[Pr (use) ;]107%] (2)

or M

where E[P is the average population compliance. On average, individuals are exposed to

N

fully co water when they do not use their treatment device (wv(1 — E[Pr (use) ;]))

t

3

or reduced'pathogen content when they do (wv(E[Pr (use) ;]10~%). Alternatively, average
compliance can bélinterpreted as the fraction of a given day's water that is effectively treated.

These inte ons yield identical analytical results, but would alter the disease outcomes in

A

an explicit jon. This approach to exposure assessment is similar to (Enger et al., 2013),

This article is protected by copyright. All rights reserved.

6


https://paperpile.com/c/lKuMOi/fvpzI

however, we choose to model compliance based on an individual's attitude toward the specific

implemented HWT, by developing a decision-theoretic model defined in Section 2.2.

pt

2.1.2. Dgsegkespaise

Thegropability of infection per organism depends on interactions between the
pathogen ost immune system. Empirically, infection events can be modeled using a

dose-resp@nsgituriction fit to experimental data. We use an exponential or approximate beta-

S

Poisson d nse function to compute the daily probability of infection for a given

U

quantity o en. Specifically, we use an exponential dose-response function for the

probabilitof infection by Cryptosporidium and a beta-Poisson function for E. coli and rotavirus

f

(Table 1). hese functions assume that a single pathogenic organism has a non-zero

probabilitygef ng an infection, essentially treating infection as the outcome of Bernoulli

d

trials. onential dose-response function is

M

Pr (infection) ; = 1 — e~k 3)

or

with rate garameter k. Mechanistically, this function implies that the dose is Poisson distributed

N

t

and that each unitof pathogen has an identical probability of surviving to reach the target site

(k1) and o an infection.

u

An exact beta-Poisson function can be computationally unstable due to its use of the

conflu geometric function. As a result, the approximate form is often used instead.

A
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-

Pr (infection) ; = 1 — (1 + ﬁ) (4)

B

__Nso (5)
F=oa

ript

where a c@ntrolsthe slope and N5 is the dose required to infect 50% of a population. This

C

approximatjonds,appropriate when @ «  and > 1 which are satisfied by our parameter

S

values for lighd rotavirus (Table 1). The mechanistic interpretation of the beta-Poisson

model is similar t@ that of the exponential model, however in this case the probability that a

Ul

pathogen suryives to infect (i.e., infectivity) is assumed to be given by a beta distribution. The

1

choice of onse function is typically made based on both biological and statistical

considera e use the exponential dose-response function for Cryptosporidium (Messner,

4

Chappell, & Okhuysen, 2001). while the beta-Poisson dose-response function is used to

characterize E®™li (DuPont et al., 1971) and rotavirus (Ward et al., 1986).

\Y

[

2.2.De heoretic compliance

O

T odate variable individual compliance in a QMRA framework, we construct

the followllaig decision-theoretic model that determines the distribution of individual

q

compli n attitudes toward recommended HWT levels. Given the limited data on the

{

functional hip between attitude and HWT levels we use functions that are heuristically

U

derived.

A
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Suppose we have individuals i € N who each select a probability of compliance Pr(use);
with a treatment device chosen from the intervention space X € R.,. This space represents the
range OMM%HWT levels quantified by their LRV. We assume that an individual's attitude
toward H w erties map to the LRV of any given treatment method (since both the
advantagesaA@@Fawbacks of a given method are correlated with the LRV). That is, each
individualh)st preferred LRV denoted x; € X. We will refer to the distribution of these
points as @ence distribution. The shape of the preference distribution characterizes a
populatiormﬂtion toward potential HWT interventions; i.e., a population with many
individuals who prefer low LRV will be more resistant to high efficacy devices than a population
with higher ave;Se LRV preferences. For our analysis we assume that preferences are
distribute ng to a truncated normal distribution with mean u and variance a2, bounded

by [0,6] (the Tange from no intervention to the highest current recommendation). We use X to

refer to a iyp ical intervention that has been provided to the population in question. Based
on this ptimal intervention is a function a device’s microbiological efficacy (LRV) and
the aggre dividual preferences for efficacy. By contrast, most current HWT evaluations

are based on a device’s microbiological characteristics.

Bahlis framework we define the following decision problem: Given their

preferred Viduals choose the degree to which they comply with the specific HWT

interventio ided. As noted above, this choice is over the probability of compliance as
oppose iaary choice of compliance on a specific day. This is because we assume that
conditio ng compliance do not change enough between days to alter an individual's

choice. Instead, imividuals choose Pr(use); when the intervention is implemented and draw

U

their daily co nce accordingly, analogous to a mixed strategy in game theory. To represent

this pro construct a utility function, u;, which represents an individual's preferences

This article is protected by copyright. All rights reserved.
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regarding compliance with the intervention X. In particular, we use the following negative

quadratic form:

ui(x;, %) = —(1 —=Pr (use) ; — f(£))?

ript

where f(X); 1] represents the “distance” between intervention X and individual i’s most
preferred vefition x; (we refer to f(X); as the distance function). Note that a larger distance
indicates a less ealing intervention. Qualitatively, Equation 6 reflects that individuals prefer

to comply with devices that are more appealing to them (E.g. u; = 0 if Pr(use); = 1 and

ul

f(x);=0 nversely, individuals prefer to not comply with devices that are not appealing.

]

Equation t to be a phenomenological representation of user preferences for devices in

d

order to demoriStrate our method. Additionally, a negative quadratic utility function is

analytica ling, as it is guaranteed to have a unique maximum. However, other functional

i

forms sen based on additional information regarding intervention end user

behavior.

[

Th of the distance function may depend on prior knowledge of how individuals
compare rnatives. We use two different functions to characterize different potential

situations8The first function is the squared Euclidean distance

h

(x;—%)?

f(J’C\)l = ((X) —(x0) )2:

Aut

This article is protected by copyright. All rights reserved.
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where min(X) and max(X) are the lowest and highest feasible LRVs, respectively. This distance
function implies that individuals dislike treatments that are either more or less efficient than
their idmce. Chemical treatment such as chlorination may be an example of an
interventié @ hich individuals apply a symmetrical distance function. This may be because
an indiVild ¥&@SWA8 refers some level of chlorination would be unwilling to treat their water at
levels that not perceive as effective (lower LRV than preferred), and may not want to
treat at high concéntrations due to taste issues (B. F. Arnold & Colford, 2007; World Health

Organizatigh, a).

SCr

=

anu

ly, we can use an asymmetrical piecewise distance function

A~ (xi—f)z . A .
X); ={———== if X = x; 0 otherwise.
f(®); {((X) "7 f i (8)
Unlike :orination, this variant implies that individuals dislike LRVs greater than their ideal

point, but view lower LRVs as equally favorable. This asymmetry may be appropriate for
filtration where individuals may not distinguish between a lower LRV device and the

recommeril datment level, especially if changes in the aesthetic qualities of the filtered

or

drinking w ot vary between devices. They may begin to become non-compliant,

N

howev ich LRV filter due to slow water flow or increased breakage rate. If X is

[

normali 0,1] interval, the above equations simplify to

f(X);=(x; — 9?)2 9)

AU
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and

Q f®) ={(x; —2)?%if £ = x; 0 otherwise . (10)

N
tha

NQe steepness of our distance functions determines the degree to which
individuals dislike less favorable interventions. While not explicitly included in the above
equations,Wd be tuned as an additional parameter by scaling the quadratic term in either

distance function§if appropriate data is available.

De eory requires that individuals will choose actions that maximize their

utility.(Ta ) 3) The inner term of Equation 6 implies that when the provided intervention

is not app@ility is maximized by adopting a low probability of compliance. By contrast,

when a on is appealing, utility is maximized by adopting a high probability of

compliance. maximizing Equation 6 with respect to Pr(use); results in the following

probability o

O Pr (use) ; = 1 = f(%); (11)

To accounl*or the fact that an individual will never comply perfectly even with their most

compliance:

preferred HWT i;rvention, Equation 11 can be modified using a scaling factor as follows:

<
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Pr (use) ; = Cmax(1— f (X)) (12)

T

where cnq aximum possible compliance. The inclusion of cnqx does not impact our

P

estimatgs gfoptimal interventions but does have an impact on our risk estimates. In particular
we would hlower Cmax to attenuate the risk reduction for any intervention. This is

because rigk resp@nds monotonically to compliance for a given intervention level, so lowering

the maximmpliance probability acts as an offset.

2.2.1. Applyin: the decision theoretic model to household water filtration

¢

Household water filters include a range of specific technologies including biosand
(Elliott, Stmksal, DiGiano, & Sobsey, 2008), and ceramic (Oyanedel-Craver & Smith,
2008) er types vary with respect to their filtration efficacy for viral, bacterial, and
protozEs as well as properties such as flow rate, capacity, and durability. While
individuals facing endemic diarrheal disease are likely to value improved pathogen removal, the
usability og filter may significantly influence whether an individual is willing to treat their
drinking w, ilters that are more efficient may have reduced usability as smaller pores
decrease t rate and are more likely to clog. As a result, attitudes toward filters may
becom@ble as efficacy increases, especially once the usability of a filter becomes

unacceWever, filters below that acceptability threshold may be equally acceptable,

given that Sals may not explicitly evaluate the LRV so long as a filter reduces apparent

<
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We illustrate our decision-theoretic approach using this context. To this end, suppose
we have a population in which preferences regarding filter efficacy (x;) are normally distributed
with a WRV (Figure 1a), and that we wish to determine the distribution of compliance
ifa4 LRV m is provided. For this example, we assume that filters may have a minimum
LRV of Glaff@@a@kimum LRV of 6. Individuals select their compliance level with the 4 LRV
device (Pr "' Pased on Equation 12 using the asymmetric distance function, where £ = 4 LRV,
and cmax= 1 All el§e equal, this function implies that individuals dislike filters more efficient

than their int but are ambivalent about filters as efficient or less. As a result, we are able

SCI

to determine the distribution of compliance with the provided filter (Figure 1b). In this case,

3

our model an average compliance of approximately 85%.

2.3.0p g HWT interventions

an

e assume perfect compliance, we can always compute the treatment level
effica to obtain a given risk threshold. With incomplete compliance, however, it is
g p p

possible that no feasible treatment level will reduce risk below current acceptable disease

I

burden st i.e., increasing non-compliance decreases the effectiveness of an

interventi we account for incomplete compliance, therefore, it is important to

&

consider t al treatment level that will reduce infections the most relative to baseline

N

conditi e interventions from this perspective must take into account both the

{

microbi aracteristics of the device and behavioral features of potential users. We

define an optimalfintervention as the LRV that most reduces risk subject to a tradeoff between

U

compliance a ice efficacy. Formally, this problem can be stated as follows:

A
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X" = argmingPr(infection|X, 9), (13)

Where arns that we search for the intervention X" that minimizes the average

probabjlityofinfection -- a function of the intervention level X and other parameters 8 (i.e. the
dose resthion). This procedure is equivalent to solving a game-theoretic model in
which a p@er first selects an intervention and individuals then choose their compliance
probabiliti endix B). Conveniently, when the dose response function is monotonic, the
optimal inmn can be found by minimizing the function representing the expected dose

(Equation 2). NoSbly, this means that the solution does not depend on pathogen or exposure

characteritond the effect of treatment. We illustrate this framework by computing

numerical joms to Equation 13 assuming normally distributed preferences. Appendix A
describes medure in detail.
2.4. imulation framework

WWe a population of size N for T days. Each day healthy individuals may become

heir exposure level and probability of infection. Sick individuals recover

based on ti drawn from a gamma distribution. Table 1 describes the specific dose-response

and recov& models used for each pathogen.(Enger et al,, 2013) Gamma distributions
charactwpected time to recovery for diseases with multiple infectious stages assuming
a Poisson procesSh When represented by an integer, the shape parameter denotes the number
of stages. In the case where the shape parameter is one, the gamma distribution is equivalent to
an exp distribution. For Cryptosporidium and E. coli, gamma distribution parameters

were drawn from existing literature on the infectious period of each disease (Eisenberg, Seto,
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Colford, Olivieri, & Spear, 1998; Estrada-Garcia et al.,, 2009). Because less data is available for
rotavirus we chose a gamma distribution with an average waiting time equal to the median
recoverMZ days (Gurwith, Wenman, Hinde, Feltham, & Greenberg, 1981) and a shape
paramete @ e implemented our models and analyses in Python 2.7 using Numpy, Scipy,

and Ma#p| 6B EEnter, 2007; Jones E, Oliphant T, Peterson P, Others, 2001).

Cr

3. RESlm

3.1. The effedt of imperfect compliance

b

We simuldfe the disease burden of our three reference pathogens. For each pathogen type, we

f

simulated astic QMRA model for 1 year and computed the average yearly disease
burden.

Our simulati e largely consistent with the scenarios defined in the original WHO guideline
analysi ple, we assumed perfect compliance, water treatment interventions meeting
the 2011 \iHO Guidelines (4 LRV for bacteria/protozoa and 5 LRV for viruses), and a target

disease burden of 10-¢ DALY /year. Similarly, our assumptions about pathogen contamination

levels, wamption, and individual burden of disease are drawn from the methods used
" GE

Wch differed in three ways. First, the original WHO analysis used

Campylob ni, Cryptosporidium, and rotavirus as reference pathogens. As noted above,
we used d the GEMS (published after the Guidelines) to select reference pathogens
resulti choice of ETEC over Campylobacter. Second, our model used dose-response

functions and expeécted recovery times specified in Table 1 for each reference pathogen. These
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functions have been derived from previous experimental studies. The original WHO analysis
assumed linear dose-response relationships, which is likely to match our simulations for lower
doses (Mleir, Eisenberg, Meza, & Eisenberg, 2017). Third, for rotavirus, the original
WHO anal¥g eSented results corresponding to the disease burden in high income countries
(low inEonie¥diS@a8 e burden was presented in a supplement) while we used a burden of disease
correspon w-income countries, which reflects higher mortality in countries that will
receive th@lgreatg§t potential benefit from the SDGs and which have lower rotavirus vaccination

coverage. wWHO analysis, E. coli and Cryptosporidium DALYs were only derived for

developed countries.

Wi ct compliance, our simulations for E. coli and Cryptosporidium correspond to
the WHO 4alytical results for bacteria and protozoa (Table 2), indicating that in the ideal case,

4 LRV tream:)uld reduce the burden of disease below the target threshold. Due to

rotavirus’ rden of disease in low income countries, the 5 LRV treatment did not reduce
the ove inulated disease burden below the threshold level. Next, we relax the assumption
of perf liance for Cryptosporidium (similar results for E. coli and rotavirus can be found

in the supplementary material). At all contamination levels, greater than 99% compliance is
necessaryh the WHO target (Figure 2). This finding is a consequence of two factors. The
2011 guid @ ere determined by solving for the lowest efficacy that resulted in a tolerable
disease bur we would not expect a less efficacious intervention to meet the threshold.
Additioﬁduals face substantially higher disease risks whenever they do not use their
treatmewausing disease burden to be very sensitive to compliance. While the largest

changes occur befiveen compliance levels of 80-100%, substantial health gains are predicted for

more modest i ovements in compliance. For example, at 1 oocyst/L, if compliance increases
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from 20% to 60%, the disease burden decreases from 0.134 DALY /year to 0.0827 DALY /year, a

38% reduction.

No&arget threshold of 10-¢ DALY /year implies extremely low endemic

prevalenc nalytical QMRA. This is impossible to verify in practice due to the large
I

populatiofisize required to detect any cases once the risk of infection is sufficiently low. Our

{

[

stochastic moddigesults in this phenomenon -- many simulations with near-perfect compliance

C

had zero ca s a result, although the disease burden for incomplete compliance is higher

than the 106 /year threshold, contamination levels of 0.01 and 0.001 oocysts/L cause a

S

very small number of cases on average.

U

3.2. Opti terventions

al

3.2.1.

a hypothetical water filter trial to demonstrate our optimal intervention

M

framework when data on intervention compliance is available. For simplicity, we assume that

the varian

by solving @ 12:

1

pliance is not available. First, we calculate the average LRV preference E[x;]

uth

. R E[Pr (use) ;] (14)
E[Pr (use) ;] = cpax (1 — f(R)DE[x;] = X — \](X) 21— —l)
max
where Qnaximum compliance. We use the negative square root since our model for

filters assumes an asymmetric distance function, which implies that incomplete compliance is
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generally a product of an intervention that is more efficacious than the average user preference.
For our scenario, we assume that the maximum compliance level, cnax = 0.9, the highest possible
treatmeMmax(X) = 6 LRV, the lowest possible treatment efficacy min(X) = 0 LRV. We
also assu @ hen given a 6 LRV filter participants do not use their device 20% of the time
on aver@gdPaRd@RERe average observed compliance level E[Pr(use);] = 0.8. Plugging these values
into Equa sults in an average preference Efx;/ = 4 LRV. We then solve Equation 13
numericallg to obfain the optimal intervention X" = 4 LRV, the same value as the average user

preferenc ore, by knowing the maximum compliance level and percent compliance for

SCT

a given device, we can obtain a recommendation that suggests a 4 LRV device would be more

effective than t;;'xitial 6 LRV device implemented. With more information, such as a variance

estimate gpliance distribution we could obtain a more precise estimate. While this

example i

multiple q related to HWT compliance and intervention effectiveness.

rtificial, it is intended to demonstrate that our approach can flexibly address

3.2.2. T based on user preferences

Whnsider a more general case where compliance is not known but end user

preference ling device efficacy could be estimated (e.g. stated preference surveys). In

these analyseS, We examine the optimal interventions for a range of possible preference

distributi&. Simulating a filter intervention, we assume that individuals have an asymmetrical
distancw.e., users accept LRVs lower than their preference but are less likely to use
filters that have Migher LRV than their preference (Equation 8). Based on these assumptions
optimal LRVs fordilters tend to be higher than the average user preference y when the average
is low {be lower than the average preference when the average preference is high
(Figure 3). The transition point occurs at approximately 2 LRV. This can be seen by comparing
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the solution line with the dashed line indicating an intervention set at the mean of the

preference distribution (Figure 3).

Fo ination intervention we assume that the distance function is symmetrical --
individual ely to treat their water if the treatment LRV is either higher or lower than
H I

their prefeffence. Like filtration, the optimal LRV for chlorination is higher than the average

preference@w average preference is below 2. However, between 2 and 5 LRV optimal
0 S

chlorinati the average preference. Above an average preference of 5 LRV the optimal

value is slightly below the average user preference.

The symmnietrical distance function results in higher optimal LRV interventions than the

asymmetri ure for distributions with an average preference above 2 LRV. This is
because WCymmetrical function compliance with lower LRV devices is generally high.
This is notftr a symmetrical distance function. Consequently, overall compliance with any
interventi these conditions is higher than in the case where individuals also dislike less
efficient treat S.

3.2.3. Risl&on

As age LRV preference increases, the optimal intervention becomes more
effective a!decreasing prevalence for both chlorination and filtration (Figure 4a). This
relatioWes more dramatic for average preferences between 1 and 2 LRV. Beyond this
point, the ess of chlorination plateaus while optimal filtration continues to reduce risk

for popula ith greater average preference. In both cases, optimal interventions are
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LRV (Figure 3). For filtration, the exception occurs closer to 5.5 LRV at which point the optimal
intervention is 4 LRV (Figure 3). Simulations for E. coli and rotavirus can be found in the
suppleme*ar material (Figures S1, S2). While specific values differ, the qualitative features of

the absolu @ lative risk curves do not vary substantially by pathogen.
|
4, DIS(QS.S))N

CuwlT guidelines have been developed using QMRA assuming perfect compliance

and focus on micRgbiological performance (World Health Organization, 2011a). As a result,
recommendei :r:itment devices favor high LRV capabilities. However, these recommendations

become p ic if compliance is inversely related to efficacy. In fact, uptake of HWT in

developinmes has been documented to vary from 13-67% (Rosa & Clasen, 2010). Itis
important, therefore, to characterize the causes and impact of non-compliance with HWT.
Recent Q ses have found evidence for diminishing returns in risk reduction for
increas der imperfect compliance (Brown & Clasen, 2012; Enger et al,, 2013; Rosa &

Clasen, 2010). Our simulation results broadly support these findings. Notably, we find that

improving ance from low to moderate levels can provide significant health gains (Figure

2). Conve en a small level of non-compliance with a high LRV treatment method can still
resultina nt loss in health gains when drinking water is sufficiently contaminated
(Figure"29s gests that once the microbiological efficacy of a device is “good enough”,

focusing ol improving compliance may be at least as important as increasing a device’s LRV.

Ac range of scenarios we tested, the optimal LRV from the perspective of
minimigi ase burden was almost always lower than the current WHO standards that

assume perfect cOmpliance (Figure 3). In addition, we found that the risk-reductions generated
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by interventions chosen by our model framework as opposed to high efficacy interventions
were considerable for all three pathogens (protective-ratio comparing the optimal intervention
with thelpmted device: 0.1 - 1). Assuming that achieving perfect compliance is unrealistic,
our simuld w ther suggest that reaching the tolerable disease burden threshold of 10-6
DALY /y@alisifPEactical. However, balancing compliance and efficacy provides the maximum
possible rihtions. These findings indicate that multiple WASH interventions, or coupled
technologi@al-beh@vioral interventions may be needed in order to achieve desired reductions in

diarrheal diSe

SC

Oul ng framework further extends the scope of QMRA for environmental

U

epidemiol ntegrating decision theory into exposure assessment to explicitly represent

the responge of potential HWT users to a given intervention. Characterizing individual level

[

incentives idl, as in many cases HWT appears to be subject to a trade-off between

d

usability a cy. Specifically, studies of filter adoption have suggested that usability may
decline ction of LRV. Biosand and clay pot filters have LRV approaching 5 for bacteria,

but are to breakage and clogging (Fiore, Minnings, & Fiore, 2010; Gupta, Islam, Johnston,

i

Ram, & Luby, 2008; van Halem et al., 2009). By contrast cloth filters have been successfully

[

adopted fi prevention in spite of a much lower (2 LRV) efficacy (Colwell et al., 2003;

Hugq etal,, emical treatment involves a similar trade-off as the taste and odor of

treated wat me less palatable as the concentration of disinfectant increases (Mintz et al.,

h

2001; Organization, 2011b). Our decision-theoretic model captures these

[

scenari ing that usability and therefore individual preference is a function of device

efficacy measuredin LRV. This approach is designed to accommodate a wide range of incentive

U

structures. O ice of an asymmetrical or symmetrical distance function to represent

filtratio rination respectively is based on a mechanistic hypothesis of the perceived

A
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trade-off between efficacy and usability. Specific characteristics of the function; e.g., rate of
drop-off and value where drop-off begins will vary by type of intervention and the specific
technolog’. gotﬂ consultation with experts and behavioral data will help to identify these

functional

H I
Willlingness to adopt more efficacious (but potentially less usable) HWT methods is

likely to VaQantially by region. Ideally, HWT recommendations should be informed by

data regar target group’s preferences and attitudes regarding treatment. Such attitudes

are compl@x, deteBmined by a wide range of elements including private costs, social contexts,

$

and politi . Our decision-theory model is designed to accommodate behavioral data at

U

multiple 1 resolution. In particular, when data on compliance are unavailable or

unreliableffattitude surveys and similar techniques can be used to assess the distribution of

A

preferenc imform the selection or construction of a utility function (Albert, Luoto, &
Levine, Zomad & Tapsuwan, 2011; Poulos et al., 2012). Alternatively, as demonstrated
by our 1d water treatment case study, data on compliance with existing interventions
can be o infer more effective treatment levels should they be feasible.

Oui QMRA model relies on a simplified representation of enteric pathogen transmission.

§

Like other approaches, we assume that infected individuals do not shed pathogen back

into drink

O

sources, and that contaminated drinking water is the primary transmission

pathway to focus on the implications of intervention and preference-dependent

N

compliance we omitted temporal variation in pathogen exposure due to seasonal or other

t

periodic f: ture work may address these factors by implementing a compartmental

U

transmissi 1 with environmental transmission similar to the EITS or SIWR models (Li,

Eisenber nall, & Koopman, 2009; Tien & Earn, 2010).

A
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5. CONCLUSIONS

Mealth gains from environmental interventions requires an understanding of

the role of{h éhaviors in transmission systems. Our framework represents a straightforward

P

extensign tes@MikA that addresses end user compliance behavior as well as environmental and
microbiol tors. This systems approach can be applied to evaluate new and existing
HWT inte@. In particular, our analyses suggest that it may be advisable to focus on cost-
efficient angireg@dily usable treatment options. Addressing the usability efficacy trade-off is
likely to bMto the successful deployment of HWT in areas still lacking access to safe
drinking water. Applications of our framework are not limited to decentralized HWT contexts.

Indeed, ev:lized water treatment can fail to attain complete coverage due to

infrastruc ations such as reliability and re-contamination.
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TABLES

ard et al. 1986)

@ =0253,Ns, = 617

Dose-Response Recovery Recovery
Dose-Response
Parameters Distribution Parameters
Exponential
(Messner et al. k=572 %102 Gamma shape = 4, scale
- =25
2001)
Beta-Poisson
_ _ shape
(DuPont et al. a = 0.155 N5, —X2106 Gamma = 1.775, scale
1971) =1.69
Rotavirus Beta-Poisson
Gamma shape = 1, scale

=52

Table 1: Dose-

average ti

i

param

ponse functions and recovery time distributions for each pathogen. The
covery for a gamma distribution is the product of the shape and scale

exponential distribution the average time is equal to the scale parameter.

-
—O E. coli (ETEC) Rotavirus* Cryptosporidium
W 1x10° 1 0.1
Daily WHption (L) 1 1 1
Treatment efficacy (LRV) 4 5 4
DALY/ 547x 1072 0482 147% 1073
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Prevalence/year 2.92x107* 1.36 x 1072 226% 1073

Disease biden (BALY/person-year) 1.59%x10° 6.54%x 1073 332x10°°
Tolerable @ d (DALY /person- 1x10°° 1x10°° 1x107°

year) m m——

Table 2: Sde disease burden estimates for three waterborne enteric pathogens at 6 LRV

with comp pliance. *Rotavirus assumes 6% population at risk in a low income country.
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Figureﬂe of our decision-theoretic framework. 1a: The frequency distribution of
prefer rventions (x;) represented by their LRV in a simulated example population.

In this exatple tde minimum LRV is 0, the maximum LRV is 6, and a 4 LRV treatment device has

o

Frequency
o

Frequency
()]
=)
o

o o

FD

been provided (XJ§ 1b: The frequency distribution of compliance among the simulated

population );) determined by solving Equation 11 using an asymmetrical distance
function = 4.
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Figure 2. Sim disease burden estimates for Cryptosporidium given expected doses
calcula uation 2 for v = 1L/day, varying contamination concentrations (w), and
varying cogpliance with a 4 LRV device (Pr(use);). A population of 5000 was simulated until

equilibrium using the exponential dose-response function (Equation 3) and gamma-distributed
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Figure 3 1cal solutions to Equation 13, i.e. optimal interventions given average

v

population preferences p assuming normally distributed preferences with variance ¢? = 3.6.

1

Solutions n using a symmetrical (blue) and asymmetrical (red) distance function. The

dashed li es whether the optimal intervention for a given p is higher or lower than that

€

value.
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Figure 4. 4 mulated endemic Cryptosporidium prevalence when the optimal intervention
from Fi is implemented. 4b: The risk ratio comparing the optimal intervention vs. the

curren guideline for Cryptosporidium across a range of LRV preferences (4b). Results are
shown for both an asymmetric and symmetric distance function. Endemic prevalence was

calculatedhulated population of 10,000 after one year using a contamination

concentra oocyst/L, volume v = 2L/day, and dose response and recovery parameters
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