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Summary: In lifestyle intervention trials, where the goal is to change a participant’s weight or modify their eating

behavior, self-reported diet is a longitudinal outcome variable that is subject to measurement error. We propose a

statistical framework for correcting for measurement error in longitudinal self-reported dietary data by combining

intervention data with auxiliary data from an external biomarker validation study where both self-reported and

recovery biomarkers of dietary intake are available. In this setting, dietary intake measured without error in the

intervention trial is missing data and multiple imputation is used to fill in the missing measurements. Since most

validation studies are cross-sectional, they do not contain information on whether the nature of the measurement

error changes over time or differs between treatment and control groups. We use sensitivity analyses to address the

influence of these unverifiable assumptions involving the measurement error process and how they affect inferences

regarding the effect of treatment. We apply our methods to self-reported sodium intake from the PREMIER study,

a multi-component lifestyle intervention trial.
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Measurement error correction and sensitivity analysis 1

1. Introduction

Lifestyle intervention studies—which aim to change a participant’s weight or eating behavior—

often use self-reported measures of diet, but obtaining accurate measurement of diet and its

change over time is a major challenge due to measurement error. Measurement error in

intervention studies can result in biased estimates of the treatment effect as well as reduced

power to detect treatment effects (Forster et al. 1990). Little attention has been paid to

correcting for measurement error when an outcome is measured with error, partly due to

the fact that when outcomes measured with error are unbiased, parameters for means can

still be estimated without error, although with less power (Carroll et al. 2006). In this paper

we focus on intervention studies where longitudinal trends in an outcome are of interest.

In these settings—particularly in lifestyle interventions—outcomes measured with error are

not unbiased and the process that gives rise to measurement error may change—resulting in

more or less bias—as a function of time and as a result of the intervention.

Dietary intake in lifestyle interventions is often measured using a 24-hour dietary recall in

which the previous day’s intake is reported. Estimates from 24-hour recalls are subject to

measurement error, primarily due to memory limitations and poor quantification of portion

sizes, as well as the fact that the selected days of intake may not be representative of a

participant’s usual intake (Willet 2013, Chapter 4).

Longitudinal dietary intervention studies involve repeated dietary assessments over time

and produce measurement error issues in addition to those encountered in descriptive studies.

Participants may modify their reporting behavior to appear compliant with the dietary

recommendations of the intervention (Espeland et al. 2001), or they may attempt to reduce

reporting time and reporting difficulty by omitting items or by erroneously reporting foods

that are easier to measure or describe (Buzzard et al. 1996). Alternatively, their accuracy
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may improve due to training in portion size assessment and a more general awareness of

their dietary intake (Natarajan et al. 2010, Espeland et al. 2001).

Dietary validation studies measure—on the same set of participants—both self-reported

diet as well as unbiased estimates of dietary intake using urinary biomarkers, which require a

participant to collect their urine for 24 hours. Currently, urinary biomarkers exist for protein,

potassium, and sodium intake.

With a validation study, one can model the relationship between the self-reported variable

measured with error and true intake. Then, true intake in the intervention study can be

imputed so that dietary intake estimands of interest can be based on measurement error-

corrected values. This approach of using external validation samples and treating variables

measured without error as missing data has been used in a number of applications, see for

example, Shardell et al. (2010), Schenker et al. (2010) and Guo et al. (2012).

In this paper, we extend missing data approaches for measurement error correction to in-

tervention studies with longitudinal outcomes. External dietary validation studies are almost

always cross-sectional, meaning that information on changes in measurement error over time

and in response to treatment is not available. As a result, identification of parameters in our

measurement error correction model requires parameter restrictions based on unverifiable

assumptions regarding the measurement error process and its change over time and in

response to treatment. We describe the use of sensitivity analyses to address the influence

of these unverifiable assumptions on inferences.

2. Scientific background and data sources

The PREMIER Study (Appel et al. 2003), a randomized trial designed to determine the

effects of lifestyle interventions on blood pressure among free-living individuals, enrolled 810

adults with above-optimal blood pressure who were not taking antihypertensive medications.

Participants were randomly assigned to one of three intervention groups: Established, Estab-
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lished Plus DASH, and an Advice-Only comparison group. Participants in the Established

group received instruction and counseling over 6 months to modify their diet—including

calorie and sodium consumption—and increase their physical activity. Those in the Estab-

lished Plus DASH group had the same intervention as the Established group, and were also

taught to follow a diet rich in fruits, vegetables, and low fat dairy products. Participants

in both active intervention conditions received 18 face-to-face intervention contacts during

the initial 6 months of the study and were counseled to reduce sodium intake to less than

2300 mg/day. Participants in the Advice-Only condition received lifestyle advice during two

30-minute individual sessions, one at baseline and one at 6-months.

Self-reported dietary intake in PREMIER—including sodium intake, our outcome of interest—

was measured using two unannounced, non-consecutive, 24-hour recalls conducted by tele-

phone on one weekday and one weekend day at baseline and at 6- and 18-months. We

combine the Established and the Established Plus DASH groups into a single treatment

condition since changes in sodium intake were similar in the two groups (Appel et al. 2003).

We compare this single treatment condition to the Advice-Only condition.

PREMIER was the rare lifestyle intervention that collected 24-hour urine samples on all

participants at each time point. We will revisit these biomarker data in Section 7 when

we compare the results of our measurement error correction methods to an analysis that

uses PREMIER 24-hour urinary sodium. For now, we will ignore the PREMIER 24-hour

urine samples and treat the PREMIER study as a “typical” lifestyle intervention where only

self-reported dietary data are collected.

To correct for measurement error in PREMIER self-reported sodium intake, we use data

from the Observing Protein and Energy Nutrition (OPEN) validation study (Subar et al.

2003). OPEN participants were 484 men and women aged 40-69 years. In addition to two 24-

hour recalls, participants were assessed for sodium, potassium, and nitrogen intake via two 24-

This article is protected by copyright. All rights reserved
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hour urine collections. As only 86% of sodium intake appears in urine, urinary sodium values

were divided by 0.86 to convert them to dietary sodium values (Willet 2013, Chapter 8).

Table 1 presents demographic characteristics and sodium intake in PREMIER at baseline

and in OPEN. Participant ages in the two studies are similar, although PREMIER partici-

pants have higher BMI, slightly lower self-reported sodium intake, and a smaller percentage

of men. A small proportion of outliers were removed from both samples using criteria detailed

in Web Appendix A.

[Table 1 about here.]

We estimate the treatment effect in PREMIER by comparing the change in (log-transformed)

sodium intake from baseline to the end of the intervention phase (6-months) between the

Treatment and Advice-Only conditions. Let Zj be the true value of the outcome we wish to

measure at time j, j = 0, . . . ,m where baseline is j = 0. Let Yj be Zj measured with error

and D an indicator as to whether a participant has been randomized to the intervention

group (D = 1) or the control group (D = 0). The treatment effect is,

ψ = {E(Z1|D = 1)− E(Z0|D = 1)} − {E(Z1|D = 0)− E(Z0|D = 0)}. (1)

When ψ < 0, reduction in mean log sodium intake is greater in the treatment group than

the control group (or less commonly, increase in intake is less in the treatment group than

the control group). Significance of the treatment effect is based on a two-sample t-test of the

difference in change scores between treatment and control groups. We report the effect size:

the estimate of the treatment effect in (1) divided by the pooled standard deviation of the

change scores.

An analysis of the self-reported PREMIER data produced a significant treatment effect

where the effect size at 6-months was -0.49 (p<.0001). Our goal is to estimate the treatment

effect in (1) using measurement error corrected sodium intake.

This article is protected by copyright. All rights reserved
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3. Definitions

We define how measurement error correction models can change over time and with respect

to treatment. Our measurement error correction models condition on the variable measured

with error so we refer to them as calibration models to highlight connections with regression

calibration (Carroll et al. 2006) in which a similar approach is used. Let X represent

background covariates measured at baseline.

Definition 1: The calibration model is treatment invariant if f(Zj | Yj,X, D = 1) =

f(Zj | Yj,X, D = 0), for j > 0. That is, the parameters of the calibration model do

not change in response to treatment and are the same in both treatment and control

groups. We assume calibration model invariance with respect to treatment holds at

baseline (j = 0) because treatment has not started yet.

Definition 2: The calibration model is time invariant if

f(Zj |Yj,X, D = d) = f(Zk |Yk,X, D = d), for all j 6= k, where j and k are two different

time points. Here, within a treatment condition, the parameters of the calibration model

will be the same across all time points.

Definition 3: The calibration model is treatment and time invariant if

f(Zj | Yj,X, D = 1) = f(Zk | Yk,X, D = 0), for all j, k.

Definition 4: If the parameters of the calibration model in the intervention data at time

j for treatment group d are the same as the parameters of the calibration model using

external validation data, then the parameters from the calibration model using external

validation data are transportable to the calibration model for that treatment-by-time

combination. Let S denote whether a participant is in the lifestyle intervention (S = `)

or validation study (S = v). Under calibration model transportability, the following

holds: f(Zj | Yj,X, D = d, S = `) = f(Z0 | Y0,X, S = v).

Our definition of calibration model transportability assumes the external validation study

This article is protected by copyright. All rights reserved
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is cross-sectional (corresponding to the baseline time point in the intervention study) and ob-

servational (no treatment conditions) and that transportability can apply at some treatment-

by-time combinations but not others. When the calibration model is treatment and time

invariant, transportability at any treatment-by-time combination implies transportability at

all treatment-by-time combinations. In Web Appendix B, we show that our definition of

calibration model transportability implies that selection into the trial or validation study

does not depend on unobserved Z after conditioning on observed characteristics Y and X,

which is a plausible selection mechanism our setting where study inclusion criteria are based

on observed characteristics.

4. Methods

The top half of Table 2 represents data from PREMIER where the outcomes Y0 and Y1

represent self-reported sodium intake via 24-hour recall measured at baseline and 6-months,

respectively.

[Table 2 about here.]

The bottom half of Table 2 represents data from OPEN which contains Y0, self-reported

sodium, but also contains the variables W01 and W02 which are the two replicate urinary

sodium samples taken at baseline in OPEN. The shaded cells in Table 2 represent values

that are observed, the white cells are values that are missing. Urinary sodium is an unbiased

measure of true sodium intake but is also subject to error. In Section 4.1 we describe use of

W01 and W02 in OPEN to correct for measurement error in urinary sodium intake in order

to obtain true sodium intake at baseline Z0. The column labeled X in Table 2 represents

background covariates available on all participants in both studies. Here we condition on sex

and (log) BMI in all our models as there is some evidence that these variables are associated

with measurement error (Willet 2013, Chapter 4).

This article is protected by copyright. All rights reserved
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Since OPEN—like most external validation studies—is cross-sectional, we assume that its

data correspond to baseline values Y0 and Z0 and that all OPEN participants belong to the

control condition. Values of Z1 in Table 2 are completely unobserved for all participants,

both those in the intervention study and those in the validation study. We thus have no

information on the relationship between Y1 and Z1.

The joint distribution of Y and Z, conditional on X and D in PREMIER, can be written

as f(Z1, Z0, Y1, Y0 |X, D, θ), where θ is a finite-dimensional parameter vector. While the focus

of our inference is on Z, it is necessary to also model Y due to missing values in Y which we

assume are ignorable.

The joint distribution can be further decomposed into observed and missing components.

Suppressing D and the parameters θ we have:

f(Z1, Y1, Z0, Y0 |X) = f(Z1 | Y1, Z0, Y0,X)f(Z0 | Y1, Y0,X)f(Y1, Y0 |X). (2)

We assume multivariate normality on a log sodium scale. Most of the parameters in (2) are

not identified due to the fact that Z1 is completely unobserved. To help identify the condi-

tional distributions in (2), we make the first-order Markov assumption that f(Z1|Y1, Z0, Y0,X) =

f(Z1 | Y1, Z0,X) such that the conditional distribution of Z at time 1 (6-months) de-

pends only on its version measured with error and its previous (baseline) measurement.

For f(Z0 | Y1, Y0,X) we make the similar assumption that f(Z0 | Y1, Y0,X) = f(Z0 | Y0,X).

These conditional independence assumptions cannot be checked in our data. Equation (2)

reduces to:

f(Z1, Z0, Y1, Y0 |X) = f(Z1 | Y1, Z0,X)f(Z0 | Y0,X)f(Y1, Y0 |X), (3)

where, under our multivariate normality assumption, the conditional distributions in (3) are

a sequence of linear regression models. Only the parameters associated with f(Y1, Y0 |X) on

the right-hand-side of (3) are identified. The parameters from the conditional distributions

of Z1 and Z0 are not identified.

This article is protected by copyright. All rights reserved
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In the following subsections, we describe our strategies for identification of the unidentified

parameters in f(Z1 | Y1, Z0,X) and f(Z0 | Y0,X) on the right-hand side of (3).

4.1 Identification of f(Z0 | Y0,X)

Identification of the conditional distribution of Z given Y and X at baseline in PREMIER

is based on the transportability assumption that f(Z0 | Y0,X, S = `) = f(Z0 | Y0,X, S = v).

However, urinary sodium, while considered unbiased, is subject to classical measurement

error (Prentice et al. 2002). Therefore, to estimate f(Z0|Y0,X, S = v) in OPEN, we must first

correct for measurement error in urinary sodium intake in order to estimate the distribution

of “true” sodium intake conditional on self-reported sodium intake. We do this using the

replicate measures of urinary sodium in OPEN to partition the conditional variance of urinary

sodium into its between-subject and within-subject components. The within-subject variance

is considered measurement error and is removed (Willet 2013, chap. 12), resulting in error-

corrected urinary sodium intake.

Let W0r, r = 1, 2 represent the two replicate values of urinary sodium that were obtained

from OPEN participants around the time of the 24-hour recall (Y0). We assume W0r = Z0+er

where the er are independent with mean 0 and common variance and independent of X and

Y0. Then E(W0r | Y0,X) = E(Z0 | Y0,X) and Cov(W01,W02 | Y0,X) = V ar(Z0 | Y0,X). We

fit the following random-intercept regression model for OPEN participant i.

W0ir = β
(v)
0,Z0·Y0X + β

(v)
1,Z0·Y0XY0i + β

(v)
2,Z0·Y0XXi + b0i + εir (4)

where b0i ∼ N(0, σ
2(v)
Z0·Y0X) and εir ∼ N(0, σ2

w).

The distribution f(Z0 | Y0,X) in OPEN is

Z0 | Y0,X, S = v ∼ N(β
(v)
0,Z0·Y0X + β

(v)
1,Z0·Y0XY0 + β

(v)
2,Z0·Y0XX, σ

2(v)
Z0·Y0X) (5)

where the parameters in (5) are obtained from fitting model (4).

The distribution of f(Z0 |Y0,X, S = `) in the intervention study is specified as the following

This article is protected by copyright. All rights reserved
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linear regression model:

Z0 | Y0,X, S = ` ∼ N(β
(`)
0,Z0·Y0X + β

(`)
1,Z0·Y0XY0 + β

(`)
2,Z0·Y0XX, σ

2(`)
Z0·Y0X). (6)

To identify the parameters in (6), we make the transportability assumption that the

parameters in (6) are equal to those in (5). That is,

β
(`)
0,Z0·Y0X = β

(v)
0,Z0·Y0X; β

(`)
1,Z0·Y0X = β

(v)
1,Z0·Y0X; β

(`)
2,Z0·Y0X = β

(v)
2,Z0·Y0X; σ

2(`)
Z0·Y0X = σ

2(v)
Z0·Y0X. (7)

In Section 4.2 we use the parameters in (7) to help identify the conditional distribution of

Z1 in (3). For the rest of this manuscript we omit the superscript ` on all parameters and

assume they are associated with PREMIER.

4.2 Identification of f(Z1 | Y1, Z0,X)

Identification of the parameters in f(Z1 | Y1, Z0,X) is problematic because Z1 is completely

unobserved in both PREMIER and OPEN. Thus, we need to make several assumptions

regarding the joint relationship of Z1, Y1, and Z0 conditional on X. The first assump-

tion is that the calibration model is time and treatment invariant (Definition 3), that is,

f(Z1 |Y1,X, S = `) = f(Z0 |Y0,X, S = `). This assumption results in the following parameter

restrictions:

β0,Z1·Y1X = β0,Z0·Y0X; β1,Z1·Y1X = β1,Z0·Y0X; β2,Z1·Y1X = β2,Z0·Y0X; σ2
Z1·Y1X = σ2

Z0·Y0X. (8)

For f(Z1 | Y1, Z0,X); there are two sets of unidentified parameters: the partial correlation

between Y1 and Z0 given X and the partial correlation between Z1 and Z0 given Y1 and X.

Both of these parameters are unrestricted and independently range from -1 to 1 (Daniels and

Pourahmadi 2009). To identify these parameters we make assumptions which we incorporate

into our model using informative prior distributions. First, we assume 0 < corr(Y1, Z0 |X) <

corr(Y0, Z0 |X) such that the partial correlation between self-reported sodium at time 1 and

true sodium intake at baseline is positive and less than the partial correlation of these two

variables at baseline. The correlation of Y0 and Z0 given X is given in Web Appendix C. Based

This article is protected by copyright. All rights reserved
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on this assumption, a non-degenerate prior distribution for corr(Y1, Z0|X) is corr(Y1, Z0|X) ∼

Uniform{0, corr(Y0, Z0 |X)}.

The second unidentified parameter in f(Z1 | Y1, Z0,X) is the partial correlation of Z1

and Z0 given Y1 and X. Positing this quantity directly is difficult, so we instead posit the

partial correlation of Z1 and Z0 given X while taking into account that this correlation

is bounded by ρZ1Y1·XρZ0Y1·X ±
√

(1− ρ2Z1Y1·X)(1− ρ2Z0Y1·X). We assume corr(Z1, Z0 | X) =

corr(Y1, Y0 |X) + ∆Zρ such that the partial correlation between two adjacent measurement

error corrected variables is centered around the partial correlation between two adjacent

self-reported measurements. The parameter ∆Zρ can be viewed as an error term and has the

prior distribution ∆Zρ ∼ Uniform(−δ, δ).

Combining our assumption regarding the partial correlation of Z1 and Z0 with its boundary

constraints gives the following prior for corr(Z1, Z0 |X):

ρZ1Z0·X ∼Uniform

{
max

(
ρY1Y0·X − δ, ρZ1Y1·XρZ0Y1·X −

√
(1− ρ2Z1Y1·X)(1− ρ2Z0Y1·X), 0

)
,

min
(
ρY1Y0·X + δ, ρZ1Y1·XρZ0Y1·X +

√
(1− ρ2Z1Y1·X)(1− ρ2Z0Y1·X), 1

)}
. (9)

and the partial correlation of Z1 and Z0 conditional on Y1 and X is

ρZ1Z0·Y1X =
ρZ1Z0·X − ρZ1Y1·XρZ0Y1·X√
1− ρZ1Y1·X

√
1− ρZ1Y1·X

.

After obtaining corr(Y1, Z0 |X) and corr(Z1, Z0 | Y1,X), we obtain f(Z1 | Y1, Z0,X) using

f(Z1 | Y1, Z0,X) =
f(Z1, Z0 | Y1,X)

f(Z0 | Y1,X)
.

Parameter estimators for the regression of Z0 on Y1 and X are given in Web Appendix C.

The regression of Z1 on Y1, Z0, and X can be written as

Z1 ∼ N(β0,Z1·Y1Z0X + β1,Z1·Y1Z0XY1 + β2,Z1·Y1Z0XZ0 + β3,Z1·Y1Z0XX, σ2
Z1·Y1Z0X

). (10)

Estimators for the parameters of this regression are also given in Web Appendix C.

This article is protected by copyright. All rights reserved
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4.3 Estimation

Parameter draws from the posterior distribution of f(Y1, Y0 |X)—as well as imputations of

missing values of Y1 and Y0 were obtained using Markov Chain Monte Carlo (MCMC) via

a Bayesian multivariate normal model implemented in the R package norm2 (Schafer 2016).

We used an improper Jeffreys’ prior for the covariance matrix and the mean parameters.

Estimation of the model parameters in (4) also used MCMC based on the Bayesian linear

mixed-effects approach implemented in the R package pan (Zhao and Schafer 2016). We used

an improper uniform density for the regression coefficients β
(v)
0,Z0·Y0X, β

(v)
1,Z0·Y0X and β

(v)
2,Z0·Y0X

and gamma priors with shape and scale parameters equal to 0.5 for the random effects and

error precision parameters.

In both models, after a 10,000 iteration burn-in period, we performed an additional 50,000

iterations and obtained 100 imputations for each missing value of Y1 and Y0 and 100 param-

eter values by selecting every 500th iteration. We assessed convergence of our Markov chains

by visual inspection of trace plots and autocorrelation plots.

5. Sensitivity Analyses

We investigate how sensitive the effects of the PREMIER intervention are to changes in

measurement error over time and between treatment conditions. A longitudinal study may 1)

result in more accurate/precise reports of diet due to improved self-monitoring; 2) encourage

participants to misreport their diet in order to appear compliant with the intervention;

and/or 3) result in no change in the measurement error seen at baseline.

Sensitivity analyses are anchored at calibration model invariance with respect to treatment

and time (Definition 3 in Section 3) which is represented by the parameter constraints

in (8). Our sensitivity analyses are based on exploring departures from these constraints and

their results on our inferences. For interpretability, we consider sensitivity to the assumption

This article is protected by copyright. All rights reserved
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that the intercept of the regression of Z on Y and X at baseline is the same at follow-up

(β0,Z1·Y1X = β0,Z0·Y0X). We also consider sensitivity to the assumption that the slope between

Z and Y is the same at baseline as at follow-up (β1,Z1·Y1X = β1,Z0·Y0X).

5.1 Intercept sensitivity parameter

Departures from calibration model invariance with respect to treatment and time in terms

of the intercept parameters in (8) are based on the following reparameterization: β
(d)
0,Z1·Y1X =

β0,Z0·Y0X + ∆
(d)
β0

; where the sensitivity parameter ∆
(d)
β0

measures the additional under or over

reporting at month 6 (t = 1) as compared to baseline for a given level of self-report. The

superscripts correspond to the treatment group (d=1) or control group (d=0).

We scale ∆β0 in terms of a percent increase or decrease in the residual standard deviation

σZ0·Y0X in (7). For example, when ∆β0 = 1.2× σZ0·Y0X, the intercept of the regression of Z1

on Y1 and X is 20% of a residual standard deviation greater than the intercept of Z0 on Y0

and X. This sensitivity parameter can be both greater and less than 1 so that the amount

of underreporting can both increase or decrease.

5.2 Slope sensitivity parameter

In PREMIER, participants in both the Established and the Established Plus DASH con-

ditions were counseled to reduce sodium intake to less than 2300 mg/day. We center the

regression line at baseline around this intervention target value of sodium intake and then

multiply the baseline slope by the sensitivity parameter ∆d
β1

so that we have the following

reparameterizations:

β
(d)
0,Z1·Y1X = β0,Z0·Y0X + (1−∆

(d)
β1

)× β1,Z0·Y0X × log(2300)

β
(d)
1,Z1·Y1X = ∆

(d)
β1
× β1,Z0·Y0X.

The idea here is that whether or not a participant has met the target influences their reporting

behavior. When ∆
(d)
β1

> 1, participants who fail to meet (i.e. exceed) the target value self-
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report less—for a given level of true intake—than they did at baseline. And participants who

did achieve the target value self-report more—for a given level of true intake—than they did

at baseline. The degree of deviation from baseline is based on how far the participant deviates

from the target value. When the mean of Y1 is greater than the target value, values of ∆
(d)
β1
> 1

have the effect of increasing the mean of Z1 and values of ∆
(d)
β1

< 1 decrease the mean of

Z1 as compared to a time-invariant calibration model (∆
(d)
β1

= 1). See Web Appendix D for

details.

6. Application to the PREMIER study

6.1 Imputation and analyses

We used the nested imputation approach and associated combining rules of Reiter (2008)

for settings where data are used for imputation but not analysis. Specifically, we obtain 100

parameter draws and generate 20 imputations for each parameter draw resulting in 2000

imputations for each value of Z.

Using imputed values of sodium intake measured without error drawn from Models (6)

and (10) where X represents log BMI and sex, we estimated the difference in reduction

of sodium intake between treatment conditions as in (1). We report the effect size of the

intervention (the treatment difference scaled by its pooled standard deviation) and the p-

value from a two-sample t-test. For each treatment group, we have an intercept sensitivity

parameter (∆
(1)
β0
,∆

(0)
β0

) and a slope sensitivity parameter (∆
(1)
β1
,∆

(0)
β1

). We examine the effect

of the PREMIER intervention across a range of values for these parameters. We scale ∆
(1)
β0

and ∆
(0)
β0

as a percent of the residual standard deviation parameter σZ0·Y0 in (7) and allow

both ∆
(1)
β0

and ∆
(0)
β0

to range in 10% increments from -50% to 50% of the residual standard

deviation. Both slope sensitivity parameters ∆
(1)
β1

and ∆
(0)
β1

range from 1/3 to 3. Finally, we

set the δ parameter in (9) equal to 0.2 throughout all our analyses so that corr(Z1, Z0 |X)
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ranges uniformly between corr(Y1, Y0 |X)±0.2 (subject to the positive definiteness restriction

in (9)).

6.2 Results

Figures 1(a) and 1(b) are contour plots of the results of our sensitivity analyses of the effect of

the PREMIER intervention at month 6 based on varying the intercept sensitivity parameters

described in Section 5.1. Slope sensitivity parameters in Figures 1(a) and 1(b) are fixed across

all scenarios and equal to 1. The x-axis displays values for the residual standard deviation

multiplier of ∆
(1)
β0

, the sensitivity parameter for the treatment group intercept term. The

y-axis displays values for the multiplier of ∆
(0)
β0

, the sensitivity parameter for the control

group intercept term. The solid dot represents calibration model invariance with respect to

treatment and time (∆
(1)
β0

= ∆
(0)
β0

= 0). Departures from time invariance occur when ∆
(d)
β0
6= 0.

The top panel (Figure 1(a)) displays effect sizes and the bottom panel (Figure 1(b)) their

associated p-values.

[Figure 1 about here.]

Under calibration model invariance with respect to treatment and time, the effect size (ES)

is -0.11, a small effect favoring the treatment condition (p=.004). This effect size remains

constant under calibration model invariance with respect to treatment (i.e. ∆
(1)
β = ∆

(0)
β ).

Further, as illustrated by the diagonal bands in Figure 1(a), effect sizes are constant across

values of ∆
(1)
β0
− ∆

(0)
β0
. It is the difference in ∆

(1)
β and ∆

(0)
β that drives the treatment effect,

not the individual values themselves (see Web Appendix D for details). However, inferences

are very sensitive to departures from calibration model invariance with respect to treatment.

The top left quadrant of Figures 1(a) and 1(b) is the scenario where participants in the

treatment condition under-report less at follow-up than they did at baseline while those in

the control condition under-report more at follow-up. Here, effect sizes are very large (ES=-

1.0), and significant (p<.001). The opposite scenario—treatment participants under-report
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more, control participants under-report less—is displayed in the bottom right portion of

Figures 1(a) and 1(b). Here, the intervention now favors the control group. More modest

assumptions are reflected in between these two extremes.

[Figure 2 about here.]

Figures 2(a) and 2(b) are contour plots of effect sizes and p-values based on varying the

slope sensitivity parameters described in Section 5.2. Intercept sensitivity parameters in

Figures 2(a) and 2(b) are fixed across all scenarios and equal to 0. The x-axis displays values

for ∆
(1)
β1

, the sensitivity parameter for the treatment group intercept term. The y-axis displays

values for ∆
(0)
β1

, the sensitivity parameter for the control group intercept term. The solid dot

represents calibration model invariance with respect to treatment and time (∆
(1)
β1

= ∆
(0)
β1

= 1).

Departures from time invariance occur when ∆
(d)
β1
6= 1. As mentioned in Section 5.2, when

the mean of Y1 is greater than the target value (as is true in the control condition), values

of ∆
(d)
β1
> 1 have the effect of increasing the mean of Z1 and values of ∆

(d)
β1
< 1 decrease the

mean of Z1. In the treatment condition, where the 6-month sodium value is less than the

target value, values of ∆
(d)
β1

have the opposite effect. As a result, effect sizes in Figure 2(a)

are largest and smallest in the upper right and lower left quadrants, respectively (see Web

Appendix D for details). In general, the slope sensitivity parameters have less of an impact

on the treatment effect as compared to the intercept sensitivity parameters. The p-values of

the treatment effects displayed in Figure 2(b) are significant across all values of the slope

sensitivity parameters. Tabulations of point estimates, treatment differences, 95% confidence

intervals, as well as effect sizes and p-values from the sensitivity analyses in Figures 1 and 2

are reported in Web Appendix E.
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7. Evaluation using internal biomarker data

A unique aspect to the PREMIER study was that 24-hour urine samples were obtained on

all participants both at baseline and at follow-up. Figure 3 displays a forest plot of effect

sizes and their associated 95% confidence intervals for observed 24-hour urinary sodium (top

row), self-reported sodium, and a range of measurement error-corrected analyses based on

different sensitivity parameters. Analyses have been sorted based on how far they deviate

from the 24-hour urine results (vertical dotted line).

[Figure 3 about here.]

Measurement error corrections that are based on calibration model invariance with respect to

treatment and time (or mild departures from it) provide results similar to the 24-hour urine

analysis. Sensitivity analyses that assume treatment group participants under-report less at

follow-up as compared to baseline provide results in line with self-reported sodium values.

Note that measurement error corrected analyses are more precise than those analyses based

on observed urinary sodium values due to the fact that the measurement error corrected

analyses are based on “true” sodium intake after removing within-subject variability as

described in Section 4.1.

8. Discussion

After correcting for measurement error, effect sizes in PREMIER were smaller than effect

sizes based on using self-reported sodium but still significant. Treatment effects were sensitive

to modest assumptions regarding shifts in the intercept of the calibration model. An assump-

tion that treatment participants underreported 20% more of a standard deviation at follow-

up as compared to baseline—and control participants had no change in underreporting—

resulted in an effect size close to 0 that was no longer significant. This sensitivity is partly

due to the fact that the measurement error corrected effect size (under calibration model
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invariance with respect to treatment and time) was small initially. Thus modest assumptions

that result in a shrinking of this already small treatment effect can result in a non-significant

finding. In other applications with larger effect sizes, the treatment effect may be more robust

to these assumptions.

Our sensitivity analyses also included more extreme assumptions which resulted in infer-

ences favoring the control group. As in any sensitivity analysis, the analyst must consider

which assumptions are plausible based on evidence from previous studies and which are not.

For example, in some settings one might consider it unrealistic that control participants

would under-report more at follow-up than at baseline. This assumption would restrict

the sensitivity analyses to the bottom halves of the plots in Figures 1(a) and 1(b), thus

narrowing the range of inferences. Alternatively, the analyst could draw treatment and

control sensitivity parameters from a joint prior where the two sensitivity parameters are

correlated (Linero and Daniels 2015).

We only dealt with two time points and as the number of time points increases, so does

the number of unidentified parameters. This is a also a concern in longitudinal studies with

nonignorable drop-out (Daniels and Hogan 2008) and an area of future work is to build

on approaches from the longitudinal missing data literature for reducing the dimension of

nonidentifed parameters and adapt them to measurement error correction.

The fact that our measurement-error corrected inferences were similar to inferences that

used urinary sodium values in PREMIER suggests that our methods are appropriately reduc-

ing measurement error. However, a more thorough evaluation is necessary to further validate

our approach. In Web Appendix F we give the results of a simulation study that examines

the performance of our method under a range of invariant and varying calibration model

scenarios using both fixed values (point-mass priors) and proper priors for the sensitivity

parameters in order to propagate the uncertainty of the sensitivity parameters. We obtained
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low bias and good coverage when the calibration model was correctly specified and the use of

non-degenerate priors improved coverage when the true calibration model was misspecified.

Throughout the paper we assumed transportability of the calibration model. This is a

critical assumption and analysts should think carefully before transporting the results from

an external validation study. Our model conditions on baseline demographics which may

make the transportability assumption more feasible but the transportability assumption

deserves a sensitivity analysis of its own and the methods described in Section 5 could be

used to assess the sensitivity of inferences to violations of the transportability assumption.

We take a missing data approach to measurement error correction where the unknown true

quantities are treated as unobserved. To do this, we model the joint distribution of Y and Z

in the trial as f(Z, Y ) = f(Z | Y )f(Y ). Here, the identified and unidentified parameters of

the joint distribution are transparent and easy to posit. Many measurement error methods

begin by specifying the measurement error model as f(Y |Z). Modeling the joint distribution

as f(Z, Y ) = f(Y | Z)f(Z) is more difficult because the unidentified parameters of these

distributions are both unidentified and restricted by the observed marginal distribution of

Y . In addition, the validation study provides us with no information regarding the marginal

distribution of Z in the trial.

A limitation of our work is that recovery biomarkers do not exist for many relevant

outcomes in dietary intervention studies. Work is ongoing to widen the class of unbiased

biomarkers (Hedrick et al. 2012). Further, we are interested in extending our current work

using concentration biomarkers which are biomarkers that are correlated with dietary in-

take (many of which are targets of interventions) but, unlike recovery biomarkers, are not

unbiased. Here, feeding studies that measure both true intake and concentration biomarkers

could be used as external validation studies for measurement error correction.

We made other assumptions regarding conditional independence and associations between
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unobserved variables that were not subject to sensitivity analysis. In order to make the

results from our sensitivity analyses manageable and interpretable, it was necessary to focus

on those assumptions in our analyses which we felt were the least plausible and at the same

time would have the most influence on our inferences. This is true of any sensitivity analysis

and an advantage of the Bayesian approach investigated here is that sensitivity analyses for

other parameters can easily be incorporated into our imputation models through the use of

informative priors.
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Figure 1: Contour plot for (a) effect sizes at 6-months and (b) their associated p-values from
an analysis of the PREMIER data across a range of sensitivity parameters for the intercept
of the measurement error model at follow-up as compared to baseline. The x-axis displays
values for the sensitivity parameter for the treatment group, the y-axis displays values for
the sensitivity parameter for the control group. The point plotted at (0, 0) corresponds to
an assumption of calibration model invariance with respect to treatment and time. A color
version of this Figure can be found in the electronic version of this article.
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Figure 2: Contour plot for (a) effect sizes at 6-months and (b) their associated p-values
from an analysis of the PREMIER data across a range of sensitivity parameters for the slope
of the measurement error model at follow-up as compared to baseline. The x-axis displays
values for the sensitivity parameter for the treatment group, the y-axis displays values for
the sensitivity parameter for the control group. The point plotted at (1, 1) corresponds to
an assumption of calibration model invariance with respect to treatment and time. A color
version of this Figure can be found in the electronic version of this article.
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Figure 3: Forest plot of effect sizes and their associated 95% confidence intervals for observed
24-hour urinary sodium (top row), self-reported sodium, and a range of measurement error-
corrected analyses based on different sensitivity parameters. The terms “Greater” and “Less”
refer to whether—for a given value of self-report—true intake at follow-up is greater or less
than true intake at baseline, respectively. Analyses have been sorted based on how far they
deviate from the 24-hour urine results (vertical dotted line). Measurement error corrections
that are based on calibration model invariance with respect to treatment and time (or mild
departures from it) provide results similar to the 24-hour urine analysis. Sensitivity analyses
that assume treatment group participants under-report less at follow-up as compared to
baseline provide results in line with self-reported sodium values. Note that measurement
error corrected analyses are more precise than analyses based on observed values due to the
fact that the measurement error corrected analyses are based on “true” sodium intake after
removing within-subject variability.
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Table 1: Demographic characteristics and baseline sodium intake in PREMIER and OPEN
by gender. Values are mean (SD) unless otherwise noted. Three PREMIER participants
were missing self-reported sodium intake at all three time points and were not included
in our analysis. Ten PREMIER and 25 OPEN participants were excluded due to extreme
self-reported total energy intake values.

PREMIER OPEN
Variable (n=797) (n=459)
Male, n (%) 303 (38) 244 (53)
Age 50.0 (8.9) 53.7 (8.3)
BMI 33.0 (5.7) 27.7 (5.1)
(Log) Self-reported sodium 8.0 (0.41) 8.2 (0.43)
(Log) Urinary sodium 8.4 (0.44) 8.4 (0.45)
Note. PREMIER age values are from (Svetkey et al. 2003) and include the entire sample
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Table 2: Patterns of missing data in the PREMIER and OPEN studies. The variables Y0
and Y1 represent self-reported sodium intake via 24-hour recall measured at baseline, and 6-
months, respectively. The variables Z0 and Z1 are versions of Y measured without error. The
variables W01 and W02 are replicate urinary sodium values taken at baseline in OPEN and are
considered unbiased measures of Z0. The variables X and D represents background covariates
and treatment condition, respectively. OPEN participants are assumed to all belong to the
control condition. Grey cells indicate observed values, white cells indicate missing values.
Note that all values are missing for Z0 and Z1 in both studies.

Data
Source Y0 W01 W02 Z0 Y1 Z1 X D

PREMIER
Intervention

Study

OPEN
External

Validation
Study
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