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1  |   INTRODUCTION

The search for low‐cost, high‐performance catalysts for en-
ergy‐related processes continues to be a research hotspot 
recently as the world shifts from coal to natural gas energy 
feedstocks. Thus more and more emphasis has been placed 
on developing metal catalysts with very high and stable ac-
tivity and also on exploring materials and methods of replac-
ing precious metals that is, Pt, Pd, Ru with less costly metals 
while also compensating for lower catalytic activities.1‒6 
Compared with precious metals, nickel and other transition 
metals are relatively more abundant and following appropri-
ate activation can offer high catalytic activity.7‒12 Equally 
important is the development of high activity catalysts that 

maintain their activity with time especially at higher process-
ing temperatures.

In general, the high temperature stability of most 
metal catalysts is relatively low. It has long been recog-
nized that deactivation pathways often involved sintering 
(Ostwald ripening) of metal particles on support surfaces. 
Likewise, the role of support materials in stabilizing cat-
alysts is also well recognized and long studied. In par-
ticular, Al2O3 and SiO2 supported nickel‐based catalysts 
are widely used in industry. Such supported non‐precious 
metal catalysts offer the advantages of low cost, wide 
utility, ease of recovery combined with high activity, se-
lectivity and stability especially for reforming and hydro-
genation processes.13‒18
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Abstract
Phase‐pure [NiO]0.5[Al2O3]0.5 spinel nanoparticles (NPs) with limited aggrega-
tion were obtained via liquid‐feed flame spray pyrolysis (LF‐FSP) by combusting 
metalloorganic precursor solutions. Thereafter “chocolate chip‐like” Nix[NiO0.5‐x]
[Al2O3]0.5 nanoparticles consisting of primary [NiO0.5‐x][Al2O3]0.5 particles with 
average particle sizes of 40‐60 nm decorated with Ni metal particles (<10 nm in 
diameter) dispersed on the surface were synthesized by heat treating the spinel NPs 
at 800°C/7 h in flowing 5% H2:N2 100 mL/min in a fluidized bed reactor. The syn-
thesized materials were characterized using TEM, XRD, FTIR, and TGA/DTA. The 
Ni depleted areas consist primarily of γ‐Al2O3. The Ni content (800°C) was deter-
mined by TGA to be ≈11.3 wt.% based on TGA oxidation behavior. The successful 
synthesis of such nanocomposites with limited aggregation on a high temperature 
support provides a facile route to synthesize well‐defined NP catalysts. This work 
serves as a baseline study for an accompanying paper, wherein thin, flexible, dense 
films made from these same NPs are used as regenerable catalysts for carbon nano-
tube syntheses.
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Conventional preparative methods for these kinds of cat-
alysts typically employ various forms of solution impregna-
tion.19‒22 When the supported metal catalyst is prepared by 
impregnation, the precursor to the active metal component is 
affected by support surface tension, chemistries and solvation 
effects within the impregnation solution, ease of deposition 
defined by surface wetting as well as the dynamics of dry-
ing. Obviously, there are multiple variables controlling the 
interactions between the precursor metal salts and the sup-
port during and after impregnation that defines the extent 
of surface coverage, potential for precursor crystallization 
or aggregation during deposition and activation thereafter. 
Thus, optimizing activity and specific active surface area 
can sometimes be considered an art‐form rather than good 
science. In this paper, we describe a completely different ap-
proach that relies on synthesized high surface area NPs that 
can be carefully transformed to active catalytic systems with-
out first introducing an impregnation step. In this process, 
active catalyst nanoparticles are proposed to be generated by 
chemically modifying the supporting high surface area phase. 
Our approach begins with the synthesis of high surface area 
(60 m2/g) nickel‐containing spinel NPs, [NiO]0.5[Al2O3]0.5.

Spinel oxide crystal lattice ions often form with both 2+ 
and 3+ ions found interchangeably in both the tetrahedral and 
octahedral positions depending on the elements involved and 
leading to a wide variety of properties.23‒26 Theoretically, 
transition metal aluminum spinel oxides, especially nickel‐
containing, offer considerable potential and practical applica-
tions as catalysts for such reactions as hydrocarbon cracking, 
methane‐ and methanol‐steam reforming, and dehydrogena-
tion.27‒32 Alumina supported nickel catalysts are relatively 
inexpensive compared to other types of catalysts. Therefore, 
considerable effort has been devoted to exploring and opti-
mizing their properties.33‒36 Perhaps most important is the 
fact that it is relatively difficult to obtain high surface area 
spinel‐based active catalysts due to the fact that high tem-
perature processing is required simply to produce the spi-
nel structure. Such high temperature processing frequently 
equates to extensive loss of surface area.

In the current study, the inherent thermal stability pro-
vided by a spinel phase allows generation of high surface area 
nanoparticles that can be reductively modified by exposure to 
H2 to decorate the surface of the [NiO]0.5[Al2O3]0.5 NPs with 
well dispersed and uniform sized catalytically active nickel 
metal particles. In principle, this approach may allow one to 
reduce side reactions caused by sintering (Ostwald ripening) 
of the active nickel metal particles.

Nickel aluminate spinels have been prepared via many 
methods including solid‐state reaction, ultrasound irradia-
tion‐assisted precursor processing, sol‐gel processing, and 
ion exchange in zeolites.37‒42 However, it is very difficult 
to prepare single‐phase, nickel aluminate spinels with high 
surface areas and controlled stoichiometries. The as‐prepared 

nickel aluminate spinels still suffer from serious powder ag-
glomeration, uneven particle size distributions, and oversized 
particles, which affect seriously the application of nickel alu-
minate spinels in many fields. As a very effective method of 
generating a wide variety of single and mixed metal oxide 
NPs from metalloorganic precursors, liquid feed flame spray 
pyrolysis (LF‐FSP) has been employed by many groups.43‒54 
Our group typically uses 1‐10 wt. % ceramic yield ethanol 
solutions of metal carboxylates, alkoxides, beta‐diketonates, 
and/or related metalloorganic precursors to prepare a wide 
variety of single and mixed‐metal oxide NPs that provide 
novel catalyst.51‒53

As practiced, these precursor solutions are aerosolized 
with oxygen, combusted at flame temperatures of 800‐1200°C 
in a 1.5  m long quartz or stainless‐steel tube to produce a 
cloud of ions. This cloud of ions is quenched in a time frame 
of just a few 100 msec to temperatures of 300‐400°C. Thus, 
the solution and then the gas phase composition are usually 
retained in the resultant NPs.

The “as‐shot” NPs are typically agglomerated by not 
aggregated, making them easy to disperse. They normally 
exhibit average particle sizes (APSs) of 40‐100 nm equated 
with specific surface areas (SSAs) of 100‐20 m2/g. The NPs 
produced can be amorphous or offer simple crystal structures 
(easiest to form during quenching) this includes phases not 
normally observed in the phase diagrams of the components 
as kinetic products formed during the rapid quench. In some 
examples, core‐shell structures or even three‐phase NPs form 
(nanostructured NPs) if all the phases are immiscible.53

Early LF‐FSP studies sought to develop a picture of the 
breadth of scope of LF‐FSP for NP synthesis. We coinciden-
tally probed NP photophysical finding that rare earth doped 
δ‐Al2O3 NPs exhibit incoherent lasing for example.55,56 As 
briefly noted above we also were able to demonstrate novel 
catalytic properties for a series of core‐shell Ce1‐xZrxO2@δ‐
Al2O3. Recently we reported on the utility of selected cobalt 
spinel NPs for the synthesis of carbon nanotubes.57‒59 These 
results coupled with an interest in using nickel based thin 
films as catalysts allowed us to demonstrate the potential util-
ity of a thin, flexible ceramic nickel aluminate as a precursor 
to regenerable catalysts for carbon nanotube syntheses.60

Consequently, LF‐FSP makes it possible to synthesize a 
wide variety of mixed‐metal oxide NPs with high purity, lim-
ited aggregation, with well‐controlled stoichiometries, and 
phase compositions. LF‐FSP provides a feasible way to de-
velop novel nickel/nickel aluminate nanocomposites powders 
and thereafter catalysts, using nickel aluminate spinel NPs as 
the starting point. To our knowledge there are few related re-
ports that have explored this approach. Furthermore, the work 
reported here provides a novel structure using nickel alumi-
nate spinel NPs as the functional catalyst carrier for nickel 
metal, which can enhance the catalytic activity along with the 
high added value utilization of nickel aluminate spinel NPs. 
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Besides, nickel aluminate spinel NPs as a functional carrier 
can be regarded as a source of nickel metal, and the dispers-
ibility of active nickel metal can be improved significantly.

2  |   EXPERIMENTAL

2.1  |  Sample preparation
Precursors. Alumatrane Al(OCH2CH2)3N, was prepared as 
described elsewhere.52 Nickel acetate, Ni(O2CCH3)2 was 
purchased from Sigma Aldrich (Milwaukee, WI) and used as 
received. Anhydrous ethanol fuel and solvent was purchased 
from Decon Labs (King of Prussia, PA).

Nanopowder synthesis. [NiO]0.5[Al2O3]0.5 NPs were syn-
thesized by LF‐FSP as reported previously.53 Alumatrane and 
nickel acetate were dissolved in EtOH at the selected molar 
ratio to give a solution with an approximate ceramic yield of 
3 wt. %. This precursor solution was aerosolized with oxygen 
and combusted in a chamber with methane/oxygen torches 
and shield O2.

53 The NPs were collected downstream in elec-
trostatic precipitators (ESP) operated at a 10 kV direct cur-
rent potential.

Fluidized bed reactor (FBR): As‐prepared 
[NiO]0.5[Al2O3]0.5 NPs were placed in a quartz tube reactor 
and heated at selected temperatures of 500° to 900°C at 10°C/
min/7 h in 100 mL/min 5/95 H2:N2 flow Figure 1.

2.2  |  Materials characterization
X‐ray diffraction (XRD) analyses were performed on a 
Rigaku Rotating Anode Goniometer (Rigaku Denki., LTD., 
Tokyo, Japan) with Cu Kα radiation of 1.54 Å, a tube voltage 

of 40 kV, and a tube current of 100 mA. Samples were placed 
in amorphous silica sample holders, and then scanned at a 
rate of 2°/min from 10° to 70° 2θ in 0.02° increments. The 
obtained XRD patterns were analyzed by means of Jade 2010 
software (Version 1.1.5 from Mater. Data, Inc.). Peak posi-
tions and relative intensities were identified in comparison 
with the reference powder diffraction data (JCPDS) files.

TEM studies of sample microstructures were run on a 
JEOL 3100R05 Double Cs Corrected TEM/STEM operated 
at an acceleration voltage of 300 kV with the Gatan Ultrascan 
1000 CCD TV camera for high resolution imaging, and a 
JEOL 2100F Probe‐corrected Electron Microscope at an ac-
celeration voltage of 200 kV with an EDAX 60 mm2 SDD de-
tector (active area = 60 mm2) capable of detecting elements 
with Z > 5.

Thermal gravimetric analysis (TGA) and differential 
thermal analysis (DTA) were performed on an SDT Q600 si-
multaneous TGA‐DTA instrument. About 20 mg of powder 
samples were pressed to a small pellet and loaded in an alu-
mina pan, using an empty pan as reference. Then the samples 
were heated from room temperature to 1000°C at 10°C min−1 
in 60 mL/min of flowing air.

Fourier transform infrared spectra (FTIR) were obtained 
on a NICOLET 6700 using KBr discs to monitor changes in 
atomic bonding during chemical modification. Optical grade 
KBr, 400  mg (International Crystal Laboratories, Garfield, 
NJ), was ground using an alumina mortar and pestle, and 
5 mg of sample was added and ground together. The ground 
samples were loaded in the FTIR sample holder, and loaded 
into the instrument. Then the sample chamber was purged 
with N2 (10‐15 minutes) to remove atmospheric CO2. Each 
spectrum is continuous in the range 4000‐400 cm−1 with a 
scan resolution of 4 cm−1 with an average of 130 scans, using 
OMNIC software package.

3  |   RESULTS AND DISCUSSION

The overall objective of the work reported here is to demon-
strate that careful treatment of single phase but mixed‐metal 
nanoparticles with a reducing agent can selectively reduce 
one component of the single phase to generate phase separa-
tion while still maintaining the nanoscale properties of the 
individual nanopowders. Such a process was envisioned to 
produce “chocolate chip” like nanocomposites with the cata-
lytically active species decorating the partially reduced sub-
strate, as suggested in Figure 2.

We recently demonstrated this same approach wherein 
treatment of nearly single phase (TiO2)0.43(Al2O3)0.57 nano-
powders with NH3 reduces the TiOx component likely by the 
same pathway as suggested in Figure 2 but with segregation 
to form more stable TiN@Al2O3 core shell nanocompos-
ites.59 We also suspect that a similar process occurs in the 

F I G U R E  1   Schematic of FBR used to reduce NPs in H2/N2 flow 
at selected temperatures
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transformation of [CoO]0.x[Al2O3]1‐x where x = 0.25 or 0.50 
to active catalyst species in the gas phase synthesis of carbon 
nanotubes (CNTs) from such nanopowders under reducing 
conditions.58

In the current studies, we attempt to carefully define the 
phase separation process for the title materials to establish 
the basis for creating Ni nanoparticle catalysts for CNT syn-
theses where the spinel nanopowders are first processed into 
dense flexible films. The studies reported here provide an 
understanding of the processes that lead to catalyst particle 
formation in a recently published work.60

3.1  |  Effect of reduction process 
on the crystal structure of as prepared 
nanocomposites
Figure 2 provides XRDs of as‐prepared [NiO]0.5[Al2O3]0.5 
NPs (control) and derived nanocomposites reduced for 

7 hours at different temperatures in flowing (100 mL/min) 
5/95 H2:N2 in the course of optimizing the reduction process.

Figure 3 shows XRDs from both the as‐produced 
[NiO]0.5[Al2O3]0.5NPs (control) and reduced samples. The 
[NiO]0.5[Al2O3]0.5 spinel phase is the only phase present at re-
duction temperatures below 700°C. Above 700°C, diffraction 
peaks for cubic nickel (marked as c) appear with very weak 
intensities. At temperature 800°C, several obvious peaks for 
metallic nickel can be observed. Coincidentally, both nickel 
spinel (marked as a) and Al2O3 (marked as b) diffraction 
peaks are observed. In contrast, at 900°C the XRD pattern 
shows primarily metallic Ni and γ‐Al2O3. Based on this set 
of studies, 800°C was selected as the optimal temperature for 
producing high surface area, Ni on Al2O3 NPs to optimize 
chocolate chip‐like nanocomposite processing.

3.2  |  Fourier transform infrared 
spectroscopy
To further confirm the formation of Al2O3 in the above nano-
composites, the chemical characteristics of the different na-
nocomposite samples were monitored by Fourier transform 
infrared spectroscopy (FT‐IR) as shown in Figure 4.

Figure 4 shows that a small new peak appearing around 
825  cm−1 at a reduction temperature of ≥750°C, becomes 
more obvious at 800°C. New peaks appearing near 600 
and 800  cm−1 correspond to octahedrally and tetrahedrally 

F I G U R E  2   Selective reduction of NiO species within a single 
phase stable spinel, [NiO]0.5[Al2O3]0.5 nanoparticle to produce a 
chocolate chip like Ni decorated [Ni]x[NiO]0.5‐x[Al2O3]0.5 nanoparticle

F I G U R E  3   XRD patterns of as‐prepared [NiO]0.5[Al2O3]0.5 
NPs and nanocomposites derived there from by reduction at different 
temperatures for 7 h in flowing (100 mL/min) 5/95 H2:N2

F I G U R E  4   FTIR spectra from the five samples chosen from as‐
prepared nanocomposites by reducing LF‐FSP [NiO]0.5[Al2O3]0.5NPs 
at different temperatures for 7 h in flowing (100 mL/min) 5/95 H2:N2
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coordinated νAl‐O coincident with nickel generation,45,61,62 
as expected from the XRD results. The new peaks become 
more obvious as temperatures increase to 900°C as metallic 
Ni is produced, which must coincidentally generate Al2O3.

3.3  |  TGA and DTA
To obtain Ni metal contents in the above nanocomposites, 
TGA analyses were run of the as‐produced powders and of 

the 800°C reduced powders per Figure 5A,B. In Figure 5A, 
there is no obvious mass gain whereas in Figure 5B, an obvi-
ous mass gain appears between 200o and 400°C. The mass 
gain is directly proportional to the formation of NiO from 
Ni, and the Ni metal contents can be estimated to be about 
11 wt %.

3.4  |  Microstructures of nanocomposites
Figures 6 and 7 provide STEM bright‐field (BF) and annu-
lar dark‐field images and element mapping results. Figure 6 
shows typical particle distributions and morphologies char-
acteristic of 800°C reduced NPs. All NPs exhibit similar 
spherical and homogeneous morphologies, mostly smaller 
than 60 nm. The many dark, small spots evenly distributed 
on the surface of the NPs likely correspond to Ni metal parti-
cles. In Figure 7, element maps of O, Al and Ni are displayed 
in red, yellow and blue, respectively. As is evident both O 
and Al are uniformly distributed. More Ni can be observed 
coincident with the small dark spots distributed on the NP 
surfaces as anticipated.

Figure 8 HRTEM provides two more complete assess-
ments of the [Ni]x[NiO]0.5‐x[Al2O3]0.5 nanocomposite mor-
phology, confirming their chocolate chip‐like microstructure. 
Besides, Figure 8 shows two representative nickel metal par-
ticles <10 nm in diameter, dispersed evenly on the surface of 
[NiO]0.5‐x[Al2O3]0.5 spinel NPs, confirming the formation of 
a chocolate chip‐like nanocomposite. The same HRTEM im-
ages show Al2O3 formed at the edge of nickel particle, con-
sistent with the XRD and FTIR results.

4  |   CONCLUSIONS

In this work, we describe a method of transforming a single 
phase nanopowder into a nanocomposite nanopowder without 
loss of nanoscale properties. This work sets the tone for the 
development of a series of catalysts with high surface area and 
presumably high activity on high surface area substrates very 

F I G U R E  5   TGA/DTA of (A) as‐produced [NiO]0.5[Al2O3]0.5 
NPs and (B) after reduction at 800°C/7 h

F I G U R E  6   STEM BF image of 
nanocomposite NPs from [NiO]0.5[Al2O3]0.5 
NPs before (A) and after (B) reduction at 
800°C
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difficult to generate via any other process we are aware. This 
work also provides the baseline science elucidating the reduc-
tion process that occurs in thin films of similar materials used as 
regenerable nanocomposite catalysts for carbon nanotube syn-
theses.60 In this process, careful reduction of the nickel com-
ponent in [NiO]0.5[Al2O3]0.5 spinel nanopowders in flowing 
5/95 H2:N2 leads to local reduction of some portion of the NiO 
likely near the surface of the original nanopowders to produce 
a spinel nanopowder decorated with Ni metal nanoparticles. 
The process can be considered as an approach to make a wide 
variety of catalytic “chocolate chip‐like” nanocomposites.

The Ni metal particle sizes appear to be typically 
smaller than 10 nm and evenly distributed on the surface of 
[NiO]0.5[Al2O3]0.5 spinel nanopowders. Coincidentally, γ‐
Al2O3 forms at the edge of nickel particles. The limited aggre-
gation with good stoichiometric control offers the potential to 
develop a number of such nanocomposite materials for cata-
lytic applications for example. Finally, these results serve as 
baseline data for the catalytic reduction of [NiO]0.5[Al2O3]0.5 
derived thin films that can be used to catalytically generate 
carbon nanotubes and whose catalytic reactivity can be re-
generated.60 Indeed we suspect it also occurs in the gas phase 

F I G U R E  7   Element mapping of 
800°C reduced [Ni]x[NiO]0.5‐x[Al2O3]0.5 
nanocomposite: (A) annular dark-field 
image with an region for element mapping 
outlined; (B) color mixed element maps 
with Ni, O and Al showing blue, red and 
yellow, respectively; (C), (D) and (E) are O, 
Al and Ni maps [Color figure can be viewed 
at wileyonlinelibrary.com]

(A) (B)

(C)

(E)Ni

(D)

F I G U R E  8   HRTEM images taken 
from two typical particles of as‐prepared 
nanocomposites derived from the LF‐FSP 
[Ni]x[NiO]0.5‐x[Al2O3]0.5 NPs reduced at 
800°C/7 h in 100 mL/min 5/95 H2:N2

www.wileyonlinelibrary.com
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process wherein [CoO]x[Al2O3]1.x nanoparticles are reduced 
in flowing hydrogen and thereafter used to catalyze formation 
of carbon nanotubes as demonstrated in Figure 4 of Ref. 58.
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