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Heritable variation in gene expression is common within species. Much of this variation is due to genetic differences outside of

the gene with altered expression and is trans-acting. This trans-regulatory variation is often polygenic, with individual variants

typically having small effects, making the genetic architecture and evolution of trans-regulatory variation challenging to study.

Consequently, key questions about trans-regulatory variation remain, including the variability of trans-regulatory variation within

a species, how selection affects trans-regulatory variation, and how trans-regulatory variants are distributed throughout the

genome and within a species. To address these questions, we isolated and measured trans-regulatory differences affecting TDH3

promoter activity among 56 strains of Saccharomyces cerevisiae, finding that trans-regulatory backgrounds varied approximately

twofold in their effects on TDH3 promoter activity. Comparing this variation to neutral models of trans-regulatory evolution based

on empirical measures of mutational effects revealed that despite this variability in the effects of trans-regulatory backgrounds,

stabilizing selection has constrained trans-regulatory differences within this species. Using a powerful quantitative trait locus

mapping method, we identified �100 trans-acting expression quantitative trait locus in each of three crosses to a common reference

strain, indicating that regulatory variation is more polygenic than previous studies have suggested. Loci altering expression were

located throughout the genome, and many loci were strain specific. This distribution and prevalence of alleles is consistent

with recent theories about the genetic architecture of complex traits. In all mapping experiments, the nonreference strain alleles

increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection maintained many

trans-acting variants with opposing effects. This variation may provide the raw material for compensatory evolution and larger

scale regulatory rewiring observed in developmental systems drift among species.
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Impact Summary
Gene expression varies among individuals in a popu-

lation due to genetic differences in regulatory compo-

nents. To determine how this variation is distributed

within genomes and species, we used a powerful ge-

netic mapping approach to examine multiple strains of

Saccharomyces cerevisiae. Despite evidence of stabiliz-

ing selection maintaining gene expression levels among

strains, we find hundreds of loci that affect expression

of a single gene. These loci vary among strains and

include similar frequencies of alleles that increase and

decrease expression. As a result, each strain contains a

unique set of compensatory alleles that lead to similar

levels of gene expression among strains. This regulatory

variation might form the basis for large scale regulatory

rewiring observed among distantly related species.
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Heritable variation in gene expression results from ge-

netic variation affecting cis-regulatory elements (e.g., promot-

ers and enhancers) and trans-acting factors (e.g., proteins and

RNAs). These trans-regulatory changes are located throughout

the genome and are the major source of regulatory variation within

species (Wittkopp et al. 2004; Wang et al. 2007; Sung et al.

2009; Zhang and Borevitz 2009; Emerson et al. 2010; Bell

et al. 2013; Schaefke et al. 2013; Suvorov et al. 2013; Coolon

et al. 2014; Chen et al. 2015). The number, identity, and effects of

individual loci contributing to variation in gene expression have

been determined in a variety of species using expression quan-

titative trait locus (eQTL) mapping (Gilad et al. 2008; Hansen

et al. 2008; Majewski and Pastinen 2011; Cubillos et al. 2012;

Nica and Dermitzakis 2013; Westra and Franke 2014; Albert and

Kruglyak 2015; Pai et al. 2015), with the most extensive dissec-

tion of eQTL coming from studies of two strains of the baker’s

yeast Saccharomyces cerevisiae (Brem et al. 2002, 2005; Schadt

et al. 2003; Yvert et al. 2003; Brem and Kruglyak 2005; Ronald

et al. 2005; Smith and Kruglyak 2008; Albert et al. 2014, 2018;

Parts et al. 2014). These studies have found that (1) expression

differences are typically associated with �10 or fewer eQTL, (2)

most eQTL have individually small effects on expression, and (3)

most eQTL do not overlap the gene whose expression they affect

and thus likely contribute to trans-regulatory differences.

Traditional eQTL mapping approaches require genotype and

expression data for many individuals to detect significant effects.

Consequently, studies mapping the genetic basis of regulatory

differences have largely been limited to two strains within any

given species. In cases where the extent and variability of regu-

latory variation have been studied within a species, experiments

have focused on cis-regulatory variation for technical reasons

(de Meaux 2005; Gruber and Long 2009; Kang et al. 2016;

Moyerbrailean et al. 2016; Salinas et al. 2016; Kita et al. 2017). As

a result, key questions about the extent, variability, and genetic

basis of trans-regulatory variation segregating within a species

remain unanswered. For example, do multiple trans-regulatory

variants affecting a gene’s expression often segregate at the same

locus within a species? How different are the suites of trans-

acting eQTL affecting a gene’s expression among individuals

or strains? Are the effects of trans-regulatory variants at differ-

ent loci often in the same direction, or do they typically have

opposing effects, canceling one another out? Addressing these

questions requires identifying trans-acting eQTL and their effects

on expression among multiple individuals or strains of the same

species. Although genome-wide association studies use popula-

tion level variation to identify eQTL, they do not meet this need

because they can only detect eQTL alleles that are shared by many

individuals.

In addition to these questions about the variability in genetic

architecture of trans-regulatory variation, questions also remain

about the impact of selection on this variation. Prior work has

shown that gene expression levels are broadly constrained by sta-

bilizing selection (Denver et al. 2005; Gilad et al. 2006) and vari-

ation in cis-regulatory eQTL appears to be limited by purifying

selection (Josephs et al. 2015; Kita et al. 2017). But the impact of

natural selection on the number, identity, or genomic distribution

of trans-acting eQTL is less clear, and there are reasons to suspect

that it might be different than for cis-acting eQTL. For example,

prior work suggests that trans-regulatory mutations arise more

frequently than cis-regulatory mutations, but tend to have smaller

effects on the focal gene’s expression (Metzger et al. 2016). In ad-

dition, trans-regulatory mutations are more likely to be recessive

and have greater pleiotropic effects than cis-regulatory mutations

(Stern 2000; Landry et al. 2007; Fay and Wittkopp 2008; Lemos

et al. 2008; Gruber et al. 2012). Any or all of these factors might

cause selection for the level of gene expression to have different

impacts on cis- and trans-regulatory variation.

Here, we examine trans-regulatory variation segregating

among genetically distinct strains of S. cerevisiae. We focus on

the extent and variability of, evolutionary forces acting on, and

genetic basis for, trans-regulatory variation affecting expression

of the TDH3 gene, which encodes a glyceraldehyde-3-phosphate

dehydrogenase. This gene was chosen because prior work has

estimated the effects of new trans-regulatory mutations on its ex-

pression (Gruber et al. 2012; Metzger et al. 2016) as well as the

fitness consequences of changing its expression (Duveau et al.

2017, 2018), allowing us to compare the trans-regulatory varia-

tion segregating in S. cerevisiae to empirically informed models

of neutral evolution. We find that although differences in trans-

regulation affecting TDH3 promoter activity are common among

strains, they generate less variation in TDH3 promoter activity

than predicted by neutral models, suggesting that stabilizing se-

lection has acted on trans-regulatory variation affecting TDH3

promoter activity in the wild. We then use a powerful genetic map-

ping approach to determine differences in the genetic architecture

of this trans-regulatory variation by identifying eQTL between

each of three strains of S. cerevisiae and a common reference

strain. In each of these three eQTL mapping experiments, we find

an order of magnitude more eQTL affecting activity of the TDH3

promoter in trans than previously known. These loci are often

different among strains, have opposing effects on expression, and

are spread throughout the genome, indicating diverse sources of

trans-regulatory variation segregating within S. cerevisiae. These

results agree with theoretical predictions that stabilizing selec-

tion can maintain genetic variation for polygenic traits (Lande

1976; Dover and Flavell 1984; Turelli 1984; Barton 1986, 1989).

They also suggest that natural populations harbor greater regu-

latory variation than suggested by differences between a single

pair of strains and that this variation can impact the evolution of

regulatory systems.
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Figure 1. Extensive trans-regulatory variation affecting TDH3 expression is segregating among S. cerevisiae strains. (A) Variation in

TDH3 trans-regulatory backgrounds among yeast strains was measured using a reporter gene containing the TDH3 promoter from the

BY strain and a yellow fluorescent protein (YFP). This reporter was integrated into the genome of 56 diverse S. cerevisiae strains. Twelve

replicate populations were grown in YPD and analyzed by flow cytometry for YFP expression. (B) Variation among replicates relative to

the BY reference strain was used to calculate the average effect of each strain’s trans-regulatory background on TDH3 promoter activity.

Darker colors reflect higher TDH3 reporter activity. Strain names in blue are used in subsequent mapping experiments. (C) Frequency

of trans-regulatory effects relative to reference strain. (D) Phylogenetic relationships among strains as estimated from genome-wide

polymorphism data (MacLean et al. 2017). Color of branches corresponds to estimated trans-regulatory effect from ancestral character

estimation.

Results and Discussion
To isolate the effects of trans-regulatory variants segregating

among S. cerevisiae strains on TDH3 promoter activity, we in-

serted a yellow fluorescent protein (YFP) coding sequence under

control of the 678bp TDH3 promoter allele from the BY lab strain

into 56 distinct S. cerevisiae strains (Fig. 1A). These strains (1)

were isolated from a range of environments, (2) differ at more than

100,000 SNPs and small indels, many larger copy number vari-

ants chromosomal rearrangements, and (3) encompass much of

the genetic and phenotypic diversity observed within the species

(MacLean et al. 2017; Peter et al. 2018). For each strain, we mea-

sured YFP fluorescence in 12 biological replicate populations

grown in rich media and used the measured YFP fluorescence

to estimate changes in TDH3 mRNA levels due to differences in

trans-regulation among strains (Duveau et al. 2018). We observed

that trans-regulatory variation caused differences in expression

that ranged from 71% to 147% of the reference strain (Fig. 1B

and 1C). This variability in trans-regulation was nearly double the

variability of cis-regulation described in a previous study among a

similar set of strains (Fig. S1A; Metzger et al. 2015). We detected

significant phylogenetic structure for trans-regulatory differences

among strains, with more closely related strains having on average

more similar TDH3 promoter activity than more distantly related

strains (λ = 0.59, P = 0.013; K = 0.49, P = 0.012; Fig. 1D).

In the absence of natural selection, the effects on expression

of naturally occurring regulatory variation should be similar to

the effects on expression of new mutations. Differences between

the effects of naturally occurring variation and new mutations thus

provide evidence of natural selection (Metzger et al. 2015). To de-

termine whether natural selection has impacted trans-regulatory

4 5 0 EVOLUTION LETTERS OCTOBER 2019
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A B C D

Figure 2. Natural selection has constrained TDH3 trans-regulatory variation. (A) Effects of trans-regulatory mutations on TDH3 promoter

activity. Mutants were collected and analyzed in prior work (Metzger et al. 2016). (B) Simulated neutral trajectories for TDH3 promoter

activity based on empirically measured effects of new mutations. Lighter colors reflect more extreme values after 30,000 mutations.

(C) Comparison of observed differences in TDH3 promoter activity among S. cerevisiae strains with neutral expectation. The blue

background represents the 95th, 90th, 80th, 70th, and 60th percentiles, from light to dark, for the simulated neutral trajectories. Green

dots are differences in TDH3 promoter activity and estimated number of mutations based on the S. cerevisiae phylogeny. Dashed line

indicates the point where the observed data depart significantly from expectation. (D) Same as (C), but using genetic distance instead of

phylogenetic distance among strains. The green areas represent the 95th, 90th, 80th, 70th, and 60th percentiles, from light to dark, for

the observed differences from sampling pairs of strains.

variation affecting TDH3 promoter activity, we constructed mod-

els of neutral evolution using the effects of new mutations defined

in prior work (Metzger et al. 2016). These mutations were gener-

ated with the mutagen EMS (Metzger et al. 2016), which mimics

the most common type of point mutation in yeast (Zhu et al. 2014)

and the most common type of polymorphism found among natural

yeast strains (G→A and C→T; MacLean et al. 2017). We simu-

lated the neutral evolution of trans-regulatory variation affecting

TDH3 promoter activity by sampling these trans-regulatory mu-

tational effects on TDH3 promoter activity (Fig. 2A) and tracking

how expression changed with the addition of each new muta-

tion, assuming additivity (Fig. 2B). We repeated this sampling

process 10,000 times and used the observed distributions of ex-

pression levels after the addition of each new mutation to define

the probability with which we expect to see a given expression

level evolve neutrally from the common ancestor after a partic-

ular number of genetic changes. Epistasis was ignored in this

simulation because its prevalence and effects are unknown for

these mutations; it could either increase or decrease the range of

expression differences arising from mutation alone. (For a more

complete discussion of modeling assumptions and rationale, see

the Supporting Information Methods section).

We compared our neutral projections to the observed differ-

ences in TDH3 promoter activity among strains, using the genetic

relationships among strains to infer how TDH3 promoter activ-

ity changed along each branch of the phylogeny (Fig. 2C). We

found that there was significantly less trans-regulatory variabil-

ity among strains than predicted to arise from mutation alone,

suggesting that natural selection has constrained TDH3 promoter

activity (P < 0.0001; Fig. S1B and S1C). Indel mutations were

not included in our distribution of mutational effects but are likely

contributing to expression differences among strains; however,

these mutations are expected to cause even larger deviations in

gene expression than point mutations, further increasing the vari-

ation in gene expression expected under neutrality and making

our conclusion conservative. To determine whether our inference

of stabilizing selection was robust to uncertainty in the inferred

phylogenetic relationships among strains and the inferences of

changes in TDH3 promoter activity on the phylogeny, we re-

peated this analysis using the total genetic distance between pairs

of strains instead of the phylogenetic relationships among strains.

We again found less trans-regulatory variability in TDH3 pro-

moter activity among strains than predicted by the neutral model,

further supporting the hypothesis that trans-regulatory variation

affecting TDH3 promoter activity has evolved under stabilizing

selection (Fig. 2D; Fig. S1D).

We also tested for evidence of natural selection acting on

TDH3 trans-regulatory variation using a more traditional ap-

proach that does not rely on empirical estimates of the effects of

new trans-regulatory mutations. Specifically, we fit the PTDH3-

YFP reporter activity and phylogenetic relationships among

strains to two models of quantitative trait evolution: a Brown-

ian motion model of neutral quantitative trait evolution and an

Ornstein–Ulenbeck model that incorporates stabilizing selection

(Bedford and Hartl 2009). We found that the Ornstein–Ulenbeck

model fit the data significantly better than the neutral Brownian

motion model (P = 0.00007, chi-square test; Fig. S1E and S1F),

again suggesting that trans-regulatory variation affecting TDH3

promoter activity in S. cerevisiae has been shaped by stabilizing

selection. The magnitude of effects of trans-regulatory variation

on TDH3 promoter activity is expected to decrease fitness by less

than 0.1% for 80% of strains based on prior work describing the

EVOLUTION LETTERS OCTOBER 2019 4 5 1
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relationship between TDH3 expression level and fitness in rich

media (Duveau et al. 2018), with the largest deviation in TDH3

promoter activity (71% of wild type) expected to decrease fit-

ness by 0.5% (Fig. S1G). Given the large effective population

size of S. cerevisiae, we conclude that weak stabilizing selection

has constrained the trans-regulatory evolution of TDH3, although

we cannot rule out that selection acting on pleiotropic effects

of these regulatory variants might also have contributed to this

signal.

In the presence of stabilizing selection, gene expression can

be kept similar among strains by purging mutations that alter ex-

pression or by maintaining sets of variants with off-setting, or

compensatory, effects on expression in the population. To deter-

mine which of these mechanisms is more likely to have minimized

differences among strains in the trans-regulatory effects on TDH3

promoter activity, we used eQTL mapping to examine the genetic

architecture of trans-regulatory variation affecting TDH3 pro-

moter activity in three strains (M22, YPS1000, and SK1) relative

to a common reference strain (BY). These strains differ in the

effects of their trans-regulatory background on TDH3 promoter

activity (from 101% to 147%) as well as their phylogenetic re-

latedness (Fig. S2A), making them ideal for determining how the

genetic architecture of TDH3 trans-regulation varies within the

species (Fig. S2A). For each focal strain, we used extreme QTL

mapping with three rounds of crossing followed by three rounds

of selection on PTDH3-YFP expression using fluorescence-assisted

cell sorting (FACS; Fig. 3A; Ehrenreich et al. 2010, 2012; Kofler

et al. 2011; Parts et al. 2011; Cubillos et al. 2013; Albert et al.

2014; Duveau et al. 2014; Schlötterer et al. 2014).

In all three crosses, we identified �100 eQTL at a false

discovery rate of 10% (n = 113 for M22 vs. BY; n = 101 for

YPS1000 vs. BY; n = 99 for SK1 vs. BY; Fig. 3B). This is ap-

proximately 10-fold greater than the number of eQTL identified

for most genes in a prior eQTL mapping study (Albert et al.

2018) between BY and another strain of S. cerevisiae, RM11,

that is closely related to M22 (Fig. S2A), indicating considerable

power to detect individual eQTL. The non-BY alleles were evenly

split between those that increased and decreased expression for

all three mapping experiments (55 of 113 M22 alleles increase

expression, 53 of 101 YPS1000 alleles increase expression, and

51 of 99 SK1 alleles increase expression, P > 0.6 for all, binomial

test; Fig. 3D). This similarity in the frequency of eQTL increas-

ing and decreasing expression could result from neutral evolution

(assuming mutations increasing and decreasing TDH3 expression

arise with similar frequency) or stabilizing selection; however,

the evidence of stabilizing selection described above suggests

that similar trans-regulatory effects on TDH3 promoter activity

are observed among strains of S. cerevisiae because compen-

satory alleles are maintained in the population. Consistent with

this conclusion, we found that repeating these eQTL mapping

experiments with crossing limited to a single round resulted in

considerably fewer eQTL identified, regardless of the number of

rounds of selection (black points in Fig. 3C; Fig. S3). By contrast,

reducing the rounds of selection resulted in decreased statistical

significance for many eQTL, but did not change the location or

direction of effects for most eQTL inferred (red points in Fig. 3C;

Fig. S3). These observations, which were robust to changing the

statistical threshold used to call eQTLs (Tables S5 and S6), sug-

gest that although additional rounds of selection allowed eQTL

with smaller effects to be identified, the high number of eQTL

detected results primarily from increased recombination during

multiple rounds of meiosis breaking apart physically close eQTL

with opposite effects on expression.

To determine the similarity in loci harboring trans-regulatory

variation affecting TDH3 promoter activity among strains, we

compared the genomic locations of eQTL identified in each pair

of strains. If trans-regulatory variation is caused by the same

loci in all strains, the �100 eQTLs identified in each comparison

should map to similar genomic regions. However, if the sources

of trans-regulatory variation affecting TDH3 promoter activity

segregating in S. cerevisiae are more diverse, eQTL identified in

each comparison should map to different genomic regions. We

found that the 313 eQTLs identified mapped to 180 nonoverlap-

ping regions of the genome, with 27% (49 of 180) of these regions

containing eQTL in only two of the comparisons and 22% (40 of

180) of these regions containing eQTL in all three comparisons

(Fig. 3E). Such shared eQTL regions may contain genes that con-

tribute to variation in trans-regulation of TDH3 promoter activity

in multiple strains; however, the 49% of loci overlapping in at

least two strains is not greater than expected by chance given the

number and width of eQTL observed (P = 0.08, permutation test,

95% CI: 41–50%). Furthermore, in these shared genomic regions,

only 18% of non-BY eQTL alleles had the same direction of ef-

fect on TDH3 promoter activity in two comparisons (26 of 119 for

increases and 18 of 120 for decreases), and only 6% of non-BY

eQTL alleles had the same direction of effect in all three compar-

isons (seven of 119 for increases and eight of 120 for decreases;

P > 0.53, permutation test; Fig. 3F–G). These results were robust

to the FDR used for identifying peaks (Tables S7 and S8). This

lack of consistency in the direction of eQTL effects suggests that

even if the same underlying loci contribute to trans-regulatory

variation in multiple strains, the exact polymorphisms and their

effects on TDH3 promoter activity are likely to differ among

strains.

To determine whether differences in the eQTL inferred

among strains were more likely to be due to biological differ-

ences or poor reproducibility among independent experiments,

we repeated the mapping experiment between M22 and BY and

compared the eQTL identified in the two replicate mapping exper-

iments (Table S9). Of the 74 eQTL found in the second M22/BY

4 5 2 EVOLUTION LETTERS OCTOBER 2019
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Figure 3. Compensatory alleles underlie the maintenance of TDH3 trans-regulatory effects. (A) The genomic basis of TDH3 trans-

regulatory variation was mapped using an xQTL approach. Left: Three rounds of mating and sporulation were used to increase mapping

resolution. Middle: Three rounds of FACS based selection were used to enrich for alleles increasing and decreasing TDH3 trans-regulatory

activity. In each round, the top or bottom 5% of the population was collected. Right: Comparisons of allele frequency from Illumina

sequencing of FACS-based pools was used to identify eQTL. Each block (dashed lines) represents a different genomic region. Colored

lines represent allele frequencies. Black: Reference strain. Blue: Testing strain. For each block, the top bars are after selection for high YFP

fluorescence, while the bottom bars are after selection for low YFP fluorescence. eQTLs are identified when allele frequencies among

the high and low selected pools differ significantly. (B) G’ statistic for evidence of eQTL in each comparison. Effects are relative to the

non-BY reference allele. Dashed gray lines indicate chromosome boundaries. Dashed red lines gives threshold for statistical significance.

Called eQTLs with 95% confidence intervals on the location are highlighted for each strain. Brown: M22 × BY. Blue: YPS1000 × BY. Green:

SK1 × BY. (C) Relationship between G’ statistic for different mapping procedures. X-axis—G’ statistic for high recombination and strong

selection (three rounds of crossing and three rounds of selection). Y-axis—(Black) G’ statistic for low recombination and strong selection

(one round of crossing and three rounds of selection). (Red) G’ statistic for high recombination and weak selection (three rounds of

crossing and one round of selection). Each point is for an eQTL identified with high recombination and strong selection (three rounds of

crossing and three rounds of selection) from the M22 × BY cross. Solid lines show fits from a linear model for high recombination and

low selection (red) or low recombination and high selection (black). (D) Number of non-BY eQTL increasing or decreasing TDH3 promoter

activity for each cross. (E) eQTL shared among the three crosses irrespective of direction of effect. Areas are proportional to the number

of eQTL shared. Brown: eQTL identified only in the M22 × BY cross. Blue: eQTL identified only in the YPS1000 × BY cross. Green: eQTL

identified only in the SK1 × BY cross. Black: eQTL identified in all three crosses. (F) Same as (E), but for non-BY eQTL that increase TDH3

promoter activity. (G) Same as (E), but for non-BY eQTL that decrease TDH3 promoter activity.
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eQTL mapping experiment, 73% (54 eQTL) overlapped with

eQTL from the initial M22/BY mapping experiment, which is

significantly more than expected by chance (95% CI: 27–40%,

P < 0.001, permutation test; Fig. S2C and S2D). This degree of

overlap between the two M22/BY mapping experiments is also

significantly greater than the degree of overlap between the sec-

ond M22/BY experiment and the YPS1000/BY experiment (54%,

40 of 74 eQTL, P = 0.03, Fisher’s exact test) but not the SK1/BY

experiment (58%, 43 of 74 eQTL, P = 0.08, Fisher’s exact test).

Using a more stringent false discovery rate of 3% to identify eQTL

reduced the number of eQTL called in the second M22/BY eQTL

mapping experiment to 48, but there was still more overlap be-

tween the two M22/BY experiments than expected by chance (36

overlapping eQTL, 75%, 95% CI: 26–42%, P < 0.001, permuta-

tion test; Table S10). Overlap between the two M22xBY crosses

was similar to the overlap between the second M22xBY eQTL

mapping experiment and either of the other two crosses, how-

ever, suggesting that reducing the false discovery rate enriched

for eQTL shared among all strains (Table S10). eQTLs identified

between M22 and BY were also compared to eQTL identified pre-

viously between strains RM11 and BY. Consistent with the close

phylogenetic relationship between M22 and RM11 (Fig. S2A),

the 113 eQTL identified in the initial mapping between M22 and

BY strains included all eight regions of the genome identified as

affecting TDH3 promoter activity in a prior cross between the BY

and RM11 strains, seven of which had eQTL alleles with effects

in the same direction (Albert et al. 2014; Fig. S2E). Six of these

seven eQTLs with effects mapped in the same direction of the

first M22 × BY cross and the previously published RM11 × BY

crosses were also identified with the more stringent FDR cutoff

of 3% (|G’|>10; Fig. 2E). In the second M22 × BY mapping

experiment, we observed eQTL between M22 and BY with the

same direction of effect as eQTL identified between RM11 and

BY for four of the eight previously identified eQTLs (Fig. S2D).

In all, more than 100 eQTLs have been identified for these closely

related crosses, with the majority of eQTLs identified in two in-

dependent crosses. These results suggest that the differences in

eQTLs mapped among strains are unlikely to be explained by low

reproducibility of the mapping procedure, but rather reflect real

differences in the genetic architecture of trans-regulatory varia-

tion affecting TDH3 promoter activity among strains.

Taken together, our data suggest that despite stabilizing se-

lection limiting variation in TDH3 expression, there are hundreds

of genetic variants segregating within S. cerevisiae that impact

TDH3 promoter activity in trans. This number of variants is

substantially more than suggested by prior work, indicating that

trans-regulatory variation is more polygenic than typically appre-

ciated. These variants (1) differ among strains, (2) cause increases

and decreases in TDH3 promoter activity with similar frequen-

cies, and (3) are located in hundreds of distinct regions in the

genome. In the wild, even more loci are expected to harbor varia-

tion affecting TDH3 expression because the shared reporter gene

used in our experimental design eliminated variation in the TDH3

promoter and was blind to variation affecting posttranscriptional

regulation of TDH3. Our experimental design was also unable

to determine interactions between cis- and trans-regulatory vari-

ation, epistatic interactions among regulatory variants, the ef-

fect size of individual eQTL, or the specific SNPs responsible

for each eQTL’s effects. Nonetheless, the prevalence and distri-

bution of loci we identified are similar to recent mapping ex-

periments in S. cerevisiae that also had high power to detect

loci with opposing effects on quantitative traits (Jakobson and

Jarosz 2019). They are also consistent with models of complex

traits, such as the “omnigenic model” (Boyle et al. 2017; Wray

et al. 2018; Liu et al. 2019); our work specifically supports the

idea that many casual variants have trans-regulatory effects on

expression.

Although it might seem counterintuitive to find such exten-

sive genetic variation affecting a trait whose variance appears to

have been limited by stabilizing selection, theoretical work has

previously shown that stabilizing selection acting on quantitative

traits can maintain abundant cryptic genetic variation with off-

setting effects (Lande 1976; Dover and Flavell 1984; Turelli 1984;

Barton 1986, 1989). The pervasiveness of genetic variants with

opposing effects on expression is consistent with the recurrent

observation of compensatory evolution in genomic comparisons

of gene expression within and among species (Goncalves et al.

2012; Schaefke et al. 2013; Coolon et al. 2014; Mack et al. 2016;

Verta et al. 2016; Metzger et al. 2017). This variation may form the

basis for developmental systems drift in which phenotypes stay

stable over evolutionary time, but the molecular components re-

sponsible for the phenotype change (True and Haag 2001; Brachi

et al. 2010; Gordon and Ruvinsky 2012; Pavlicev and Wagner

2012): with many combinations of alleles available that can pro-

duce the same trait value, changes in the regulation of a trait that

do not alter the trait value might be common. Additional genetic

mapping experiments that have similar power to resolve closely

linked loci and detect alleles with very small effects are needed to

determine whether the complex genetic architecture observed for

the trans-regulation of the TDH3 gene in S. cerevisiae is common

to other genes, traits, and organisms.

Methods
YEAST STRAINS AND GROWTH CONDITIONS

Strains used in this work are listed in Table S1. To determine

variability in TDH3 expression segregating within S. cerevisiae,

we used haploid, MATalpha versions of 85 natural S. cerevisiae

strains created in previous work (MacLean et al. 2017). For each
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strain, we inserted a PTDH3-YFP reporter at the HO locus using

a standard lithium acetate transformation approach with minor

alterations (Cubillos et al. 2009; MacLean et al. 2017). The in-

serted reporter contained a copy of the 678 bp TDH3 promoter

from the BY strain (entire intergenic region 5’ of the TDH3 cod-

ing sequence), a YFP coding sequence, a CYC1 terminator, and

a NatMX4 drug resistance marker. For 60 strains, we obtained

successful integration and correct sequence of the reporter. Prior

work indicates that the location of the reporter, or the use of a fu-

sion of YFP to native TDH3, has consistent effects on expression

and we thus expect that this experiment primarily is reporting on

trans-regulatory variation among strains (Metzger et al. 2016).

Unless noted, all yeast growth was performed at 30°C in YPD

(1% Difco yeast extract, 2% peptone, and 2% glucose).

MEASUREMENT OF YFP EXPRESSION

The trans-regulatory effects on TDH3 promoter activity for each

strain were estimated by measuring YFP expression from the

PTDH3-YFP reporter. Strains were first revived from glycerol

stocks on YPG (1% Difco yeast extract, 2% peptone, and 2%

glycerol) at 30°C. After 24 h, each strain was inoculated into

liquid YPD in a 96-well plate. For each plate, YFP positive

(PJW1139) and YFP negative (PJW880) strains were included

at specific locations in the 96-well plate as controls. This struc-

ture was replicated to solid YPD using a pin tool. To generate

replicates, colonies were pin-tool replicated after 24 h into twelve

96-well plates containing 500 µL of liquid YPD and grown for 24

h. Cultures were then diluted 1/20 into fresh 500 µL of YPD and

grown for an additional 4 h. Samples were diluted 1/10 into 500µL

PBS and analyzed on an Accuri C6 flow cytometer connected to

an Intellicyt autosampler.

Data were processed using the same procedure as described

in Duveau et al. (2018). Briefly, hard gates were used to remove

flow cytometry artifacts and instances where multiple cells

entered the flow cytometry detector at the same time based

on estimates of cell size. For each sample, the most abundant

monomorphic population was identified and the effect of cell

size on fluorescence removed. For each event in a sample, the

YFP levels were converted to estimates of mRNA expression

using the formula E(mRNA) = exp(–7.820027 × E[YFP]),

which was based on a direct comparison of YFP fluorescence and

mRNA abundance first reported in Duveau et al. (2018). From

these estimates, the population median was calculated. Using the

control strains, linear models were used to remove batch effects

such as differences among plates and variation due to the position

of a sample (row and column) within a plate. Twelve replicate

samples from each strain were combined to estimate strain av-

erages. Four strains—NCYC110 (PJW1041), EM93 (PJW1055),

YIIc17 E5 (PJW1038), and DBVPG3591 (PJW1053)—were

excluded from analysis due to inconsistent measurements among

replicates caused by flocculation and cell settling.

The effects of naturally occurring cis-regulatory variants

on TDH3 promoter activity within S. cerevisiae used data from

Metzger et al. 2015 (Flow Repository FR-FCM-ZZBN). The ef-

fects of new mutations on TDH3 promoter activity used data from

Metzger et al. 2016 (Flow Repository FR-FCM-ZZNR). The orig-

inal flow cytometry data from these previous studies were repro-

cessed with the same procedure as used in the current work.

TESTING FOR EVIDENCE AND IMPACTS OF

SELECTION

We used the Brownian motion/Ornstein–Uhlenbeck framework to

test for the presence of stabilizing selection on trans-acting factors

affecting TDH3 promoter activity. We followed the approach of

Bedford and Hartl (2009). Briefly, two models of quantitative

trait evolution were fit to the observed expression values and

phylogenetic relationships among strains. The Brownian motion

model allowed for trait values to diverge linearly with time, while

the Ornstein–Uhlenbeck model included an additional parameter

that reflects the action of stabilizing selection. We tested whether

the Ornstein–Uhlenbeck model fit significantly better than the

Brownian motion model using a chi-square distribution with a

single degree of freedom.

In addition to this standard approach, we developed a method

for identifying the action of natural selection on quantitative traits

that uses empirically determined effects of new mutations to gen-

erate a neutral model of evolution for that specific trait. To inform

this model, we used previously collected data on the effects on

TDH3 promoter activity due to new mutations. Briefly, this prior

work used ethyl methanesulfonate (EMS) to induce mutations in

an isogenic yeast population containing the PTDH3-YFP reporter

and used FACS to isolate �1500 individual genotypes irrespective

of their YFP expression. Each isolated mutant contained �32 mu-

tations relative to the reference strain, the overwhelming majority

of which are expected to be trans-acting with respect to TDH3

promoter activity (only two mutations in the TDH3 promoter are

expected among all individuals; Metzger et al. 2016). To estimate

how TDH3 promoter activity could evolve in the absence of nat-

ural selection, we generated a neutral distribution by sampling

effects from this mutational distribution, combining the effects of

mutations multiplicatively. We repeated this process 10,000 times

to create a distribution of effects on TDH3 promoter activity ex-

pected under neutrality for a given number of mutations.

To test for natural selection, we compared the effects of

changes in TDH3 promoter activity due to trans-regulatory differ-

ences among S. cerevisiae strains to our empirically derived neu-

tral model. To account for the phylogenetic relationships among

strains, we used a S. cerevisiae phylogeny estimated from whole

genome polymorphism data to estimate how many mutations had
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likely occurred along each branch (MacLean et al. 2017). We

estimated ancestral TDH3 trans-regulation on the S. cerevisiae

phylogeny using ACE and estimated likelihoods by simulation

(Paradis et al. 2004). This approach was necessary because the

neutral model of TDH3 promoter activity evolution is based on

nonnormally distributed data that preclude the assumption of time

reversibility that allows for explicit calculation of the effects on

expression on an unrooted phylogeny without identifying the di-

rection of expression changes. We then compared the changes in

trans-regulatory effects along each branch to the corresponding

distribution of effects derived from our neutral model. For each

branch, we calculated the likelihood of the observed change in ex-

pression along that branch given the number of mutations that had

occurred. We combined the likelihoods over all observed branches

to determine the likelihood of the complete set of observed expres-

sion values and changes in expression on the phylogeny. Observed

likelihoods less than expected under neutrality are consistent with

positive selection for a new phenotypic value, whereas likelihoods

greater than expected under neutrality are consistent with pheno-

typic constraint due to natural selection. Although there are bio-

physical limits on expression, the current modeling framework

allows expression to increase or decrease without bounds. What

these limits are and how they relate to the current expression level

is unknown. Practically, as long as naturally occurring expression

levels are not at a biophysical limit, natural selection can still be

detected with this test. Because both increases and decreases in

expression were observed among strains, new mutations, and seg-

regants during mapping, this issue is unlikely to have substantially

altered our conclusion.

The inference of ancestral states used for this test assumes

that the expression value for each ancestral node is the average of

the descendent node values weighted by the branch lengths. To

test the robustness of our inference to phylogenetic uncertainty

and this assumption of ancestral state values, we repeated the

analysis using genetic distance among strains instead of phylo-

genetic branch lengths to estimate the number of mutations that

had occurred among strains. To avoid double counting of individ-

ual strains, we used each strain exactly once in the comparison.

We then sampled which strains were compared 10,000 times to

generate a distribution of observed effects.

eQTL MAPPING

Genomic regions responsible for differences in TDH3 promoter

activity were identified by eQTL mapping. We crossed strains

YPS1000 (PJW1057), SK1 (PJW1016), and M22 (PJW1072)

that were MATalpha, nourseothricin resistant, and contained

the PTDH3-YFP reporter to a version of BY (PJW1240; Fig. S4)

that was MATa, G418 resistant, and contained the PTDH3-YFP

reporter. This common BY mapping strain also contained a red

fluorescent protein (RFP) marker at its mating type locus (Chin

et al. 2012). Detailed methods for the creation of the common

mapping strain are below. For each cross, we selected diploids

using a combination of nourseothricin and G418 resistance and

choose a single colony to ensure homogeneity in the genetic

background. Hybrids for each cross were then sporulated

(Fig. S2B, P.0). To do so, hybrids were grown on GNA (1% Difco

yeast extract, 3% Difco nutrient broth, and 5% glucose) media

for 12–16 h, transferred to KAc plates, and maintained at room

temperature until at least 50% of the cells had sporulated. Cells

were then washed twice in 1 mL of water and incubated with

200 µL of 0.3 mg/mL 100T zymolyase for 1 h with agitation.

Next, cells were washed with 1 mL of water and resuspended in

100 µL of water. Cells were vortexed for 2 min to stick spores

to the tube wall. The supernatant was removed and 1 mL of

water was added. Without agitation, this 1 mL was removed

and a second 1 mL of H2O was added. This 1 mL was also

removed and 1 mL of triton-X (0.02%) was added. Samples

were sonicated on ice for 10 s at medium power (3.5 on a Sonic

Dismembrator Model 100, Fisher). Spores were confirmed to

be separated and diploids absent by visual inspection under a

microscope.

After spore isolation, the population was split into thirds. One

third was added to 1 mL YPD, grown to saturation overnight, and

then frozen at –80°C as a glycerol stock. The second third was

sorted for the absence of the RFP marker using FACS on a FACS

canto II at the University of Michigan Flow Cytometry Core

(Fig. S2B, P.1). Because all MATa and diploid strains express

RFP, this sorting captures only MATalpha cells. For each cross,

we collected >106 individuals lacking RFP fluorescence (Fig.

S2B, F.1). These were incubated with 1 mL YPD and grown for

24–28 h. The final third was used to initiate additional rounds of

crossing by plating onto YPD. After growth overnight, sporulation

and spore isolation was repeated. Isolated spores from the second

round of sporulation were plated onto YPD and sporulated a final

time. After this third round of sporulation, cells lacking RFP

fluorescence were again collected (Fig. S2B, F.3).

To identify the genetic basis of differences in YFP expression

among strains, cells were transferred to 1 mL PBS and cells with

the 5% highest (Fig. S2B, H.1.1 and H.3.1) or the 5% lowest

(Fig. S2B, L.1.1 and L.3.1) YFP expression corrected for cell size

were sorted from cells within the middle 80% of the cell size

distribution based on forward scatter (FSC-H). For each sample,

100,000 individuals were collected from each tail. Each sorted

population was grown in liquid YPD for 20 h after which one

half was frozen. To further enrich genotypes with high and low

YFP expression within the sorted populations, the second half

of each sample was used to initiate two additional rounds of

sorting. For each round, the same sorting procedure as above was

followed with one exception; populations originally sorted for

high YFP expression were only sorted for high YFP expression
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and populations sorted for low YFP expression were only sorted

for low YFP expression.

After all selection steps were completed, samples were re-

vived from glycerol stocks and grown in 1 mL of YPD for 2 h.

DNA was extracted from each sample using the Purgene Yeast Kit

from Qiagen. DNA concentration was determined using a Qubit,

and Illumina Nextera XT libraries were prepared following the

manufacturers guidelines. Barcodes for each sample are listed in

Table S2. Library quality was assessed using the bioanalzyer and

all samples were pooled equally using concentration estimates

from the Qubit. Sequencing was performed on a HiSeq 2000 us-

ing 125 bp paired end sequencing at the University of Michigan

Sequencing Core. Sequencing barcodes are listed in Table S2.

QTL IDENTIFICATION

After sequencing, samples were processed to identify individual

eQTL. First, Sickle was used to remove low-quality bases from

each read using default setting (Joshi and Fass 2011). Next, Cu-

tadapt was used to remove any adapter sequence from read ends

(flags -e 0.2 -O 3 -m 15; Martin 2011). Samples were aligned to the

S228c reference genome using bowtie2 (flags -I 0 -X 1000 –very-

sensitive-local; Langmead and Salzberg 2012) and then sorted

and indexed using samtools (Li et al. 2009). Overlapping reads

were clipped using clipOverlap in bamUtil. SNPs were jointly

called within each paired set of samples selected for high and low

YFP fluorescence using freebayes (Garrison and Marth 2012).

Identified SNPs were required to reach at least 20% frequency in

at least one of the two paired samples and be observed at least

four times across both samples.

For each pair of samples, SNPs were filtered based on quality

and depth. Each SNP was required to have depth of at least 20 to

ensure adequate power, a depth below 500 to reduce the number

of SNPs called in low complexity sequences, a mapping qual-

ity score of greater than 30, and imbalance scores for left/right,

center/end, and forward/reverse for SNP position within reads of

less than 30. At each position, only the two highest likelihood

alleles were retained, with any other alleles observed assumed to

result from sequencing errors. For each SNP, we calculated a G

statistic using a likelihood ratio test of alternative and reference

alleles within the high and low selected populations (Magwene

et al. 2011). For SNPs where the alternative allele had a higher

frequency than the reference allele in the high selected popula-

tion relative to the low selected population, we maintained the

sign of G. For SNPs where the alternative allele had a lower fre-

quency than the reference allele in the high selected population

relative to the low selected population, we flipped the sign of G.

We then calculated G’ by averaging these estimates over a 40 kb

window centered on each individual SNP using a tri-cube kernel

function (Magwene et al. 2011). To identify QTL peaks, we lo-

cated all local maxima and minima in G’. We called significant

peaks those with G’ > 5 or G’ < –5. The 95% confidence in-

terval on the location of each peak was defined as the distance

needed for G’ to drop by 5 from the peak. Local peaks whose

confidence intervals overlapped in location were merged into a

single peak. The G’ cutoff value was chosen to be conservative

based on changes in SNP frequency from prior work (Magwene

et al. 2011). We also compared allele frequency, G, and G’ for

SNPs before and after sorting cells randomly with respect to YFP

fluorescence for the M22 × BY cross. This experiment identified

11 eQTLs, giving a false discovery rate of approximately 10% for

the mapping experiments reported in the main text. To determine

how the specific G’ cutoff affects our analyses, we additionally

conducted all analyses using a stricter G’ cutoff of 10, which corre-

sponds to an FDR of 3%. Statistics for both cutoffs are included in

Tables S5–S9.

CREATION OF MAPPING STRAIN

Determining the genetic and molecular mechanisms underlying

complex phenotypes often requires identifying the causative ge-

netic loci and nucleotides contributing to these traits (Rausher and

Delph 2015). However, in the yeast Saccharomyces cerevisiae,

the primary laboratory strains, S288c and its descendants, have

several phenotypes that limit their usefulness in high throughput

mapping approaches.

For example, S. cerevisiae isolates from the wild readily

undergo meiosis under nutrient starvation and the majority of

individual diploids sporulate. By contrast, S288c enters meiosis

slowly and only a small proportion of individuals successfully

complete meiosis, even under ideal conditions (Deutschbauer and

Davis 2005; Gerke et al. 2006). Because genetic mapping requires

recombination, and thus, meiosis, the limited meiotic abilities of

S288c reduces the number and speed at which mapping popula-

tions can be created.

In addition to poor sporulation, S288c and its descendants

generate petite cells lacking mitochondria with high frequency.

As a consequence, these individuals cannot perform aerobic res-

piration and often have altered phenotypes compared to wild-type

individuals (Chen and Clark-Walker 1999). Because linking phe-

notypes to their genomic location requires high-quality pheno-

typing, additional variation introduced by petite individuals can

reduce the accuracy and power of genetic mapping.

Finally, upon meiosis yeast generate both a and α haploids.

These haploids will readily reform diploids if not prevented, thus

introducing additional variation due to ploidy into a mapping pop-

ulation. Current techniques for limiting the recreation of diploids

suffer from a lack of throughput and poor specificity (Tong et al.

2001). As a consequence, the power to map the genetic basis of

recessive traits in yeast is reduced.

To overcome these deficiencies, we modified S288c to in-

crease its sporulation rate and density, reduce the frequency at
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which it generated petites, and to express a fluorescent marker that

allowed easy identification of mating type. To accomplish these

goals, we obtained several strains derived from S288c. These

strains vary in their mating type and auxotrophies, facilitating

crossing. In addition, these strains differ at a set of alleles derived

from natural S. cerevisiae strains that either improve sporula-

tion rate or lower petite frequency. These include versions of

TAO3 and RME1 that increase sporulation rate (Deutschbauer

and Davis 2005) and versions of SAL1, CAT5, and MIP1 that de-

crease petite frequency (Dimitrov et al. 2009). An allelic variant

at MKT1 has also been identified that affects both sporulation

and petite frequency. However, while the wild-type S288c MKT1

allele decreases sporulation rate, it also substantially reduces pe-

tite frequency compared to the alternative allele and we kept the

S288c version (Deutschbauer and Davis 2005; Dimitrov et al.

2009).

Through a series of crosses, transformations, and sporula-

tions, we isolated a single individual that contained the desired

set of alleles and was free of all auxotrophies except for ura3�0

(Fig. S4). We retained the URA3 auxotrophy to facilitate future ge-

netic manipulation by the delitto perfetto method, which requires

5-FOA counter-selection and therefore a starting strain that is ura-

(Storici and Resnick 2006). To facilitate the creation of the correct

strain, we tracked the allelic identity of each segregating locus us-

ing pyrosequencing (Tables S3 and S4). After identification, the

isolated individual was turned into a diploid and sporulated to

generate isogenic a and α haploids. To the a haploid, we intro-

duced a red fluorescent protein into the MAT locus (Chin et al.

2012). This marker allows identification of individuals based on

their mating type using FACS. Using this marker, populations

containing millions of individuals of the same mating type can be

collected in minutes. Finally, both a and α strains contain a TDH3

promoter driving YFP expression located at the HO gene to facili-

tate mapping of mutations and polymorphisms influencing TDH3

expression.

Growth was performed using YPD. For crosses involving

auxotrophies, synthetic complete media was used, minus the ap-

propriate amino acids (1.7 g yeast nitrogen base, 5 g ammonium

sulfate, 20 g glucose per 1 L water; 20 g agar for solid plates).

Sporulation was induced by growth on YPD plates for 24 h at

room temperature, followed by plating on KAc plates at room

temperature (10 g potassium acetate, 0.5 g glucose per 1 L wa-

ter; 20g agar for solid plates). Ascus walls were dissolved prior

to tetrad dissections by incubating spores in 200 µL zymolyase

(1 mg/mL 20T) for 1 h without shaking.

To create homozygous diploids from haploids, strains were

transformed with plasmid pCM66. pCM66 contains a galac-

tose inducible copy of HO and a selective nourseothricin resis-

tance marker. After transformation, nourseothricin resistant cells

were grown with galactose as the sole carbon source at 30°C

without shaking for 8 h to induce expression of HO. This al-

lowed for mating type switching and subsequent mother–daughter

cell mating to produce diploids. Cells were streaked for sin-

gle colonies on YPD plates and the ploidy of single colonies

checked by colony PCR using mating-type specific primers.

Diploid colonies were streaked onto fresh, nonselective, YPD

plates and assayed for loss of nourseothricin resistance, and thus

pCM66.

Pyrosequencing was used to follow sporulation and petite

QTN. Methods are as described in Wittkopp (2012). PCR primers

used are Table S3. Dispensation order for pyrosequencing is in

Table S4.
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