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Each year approximately 5.5 million people die due to a stroke in the world1 and 

this number could continue to rise with an aging population. The factors leading to a 

stroke are non-modifiable or genetic and modifiable such as smoking, hypertension, 

diabetes mellitus, diet rich in fats and salt, and other environmental factors. The 

modifiable factors serve as the key in preventing ischemic and hemorrhagic stroke. Our 

understanding of the pathomechanisms of brain injury in hemorrhagic stroke (Axial 

Hemorrhage: Intracerebral hemorrhage (ICH), Extraxial Hemorrhage: Subarachnoid 

hemorrhage (SAH), Intraventricular hemorrhage (IVH), Epidural and Subdural 

Hemorrhage), the less common subtype of stroke, has improved significantly during the 

past two decades. The bench side research in the field of cellular injury post ICH, 

culminated in the first world ICH meeting at University of Michigan in 2005, under the 

guidance of Dr. Julian T. Hoff. In the same vein, the current issue of CNSNT is a 

collection of various articles depicting the cellular/subcellular level of understanding of 

acute, subacute, and chronic cell injury in hemorrhagic stroke and some related 

therapeutic options.

Cerebral hemorrhage leads to direct cerebral injury and then secondary injuries 

related to edema formation, inflammation, and a rise in intracranial pressure with 

consequent decline in cerebral perfusion pressure. Early brain injury following an 

episode of hemorrhage is mediated partly by early erythrolysis, within the first 24 hours 

2. The hemoglobin burden then gets digested by hemoxygenase thus releasing the 

neurotoxin, iron. Iron mediated toxicity in the form of tissue edema, inflammation, 

cellular death has been demonstrated in the rat and pig ICH models in great detail and 

has been reproduced by independent laboratories. The release of iron has effects on 

the blood brain barrier, endothelial-pericyte interaction, veins and glymphatics which 

mediate glial and axonal injury. Ischemic preconditioning is being investigated for its 

role in potential protection from delayed ischemic neurological deficit that results in 20 – 

30% of patients with SAH due to vasospasm. In this regard, it is interesting to note that 
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hyperbaric oxygen pretreatment in rat ICH model reduces related injury by regulating 

polarization of microglial cells 3. This shows that there is room to investigate the oxygen 

equilibrium in the cellular and extracellular environment and how it can be modulated to 

offer neuroprotection in hemorrhagic stroke.

White matter injury post ICH/SAH is an important pathological factor in patient 

outcomes. White matter injury can be secondary to the mechanical injury post 

hemorrhage, and it can also occur as a combination of injury to oligodendrocytes as 

well as damage to axons. Mediators like lipocalin-2 have been demonstrated to be 

protective to hemorrhage mediated white matter injury in a mouse SAH model 4. 

Unfortunately, white matter injury after ICH has not been well studied 5. In the current 

issue, Kang and Yao review the role of oligodendrocytes in ICH inducing white matter 

injury6. 

Spontaneous or secondary IVH is a marker of poor prognosis for hemorrhagic 

stroke. Severe IVH, caused by extension from ICH or SAH, leads to hydrocephalus and 

has a greater risk of hemorrhage-associated morbidity. However, the mechanisms of 

brain hemorrhage-induced hydrocephalus are not well understood. In this special issue, 

Wan et al. demonstrated that activation of epiplexus cells is associated with SAH- and 

thrombin-induced hydrocephalus 7. The effect of thrombin in hydrocephalus 

development may be through protease-activated receptor-1 8.

In parallel, translation of the animal ICH model cellular understanding of 

pathomechanisms to human subjects is gradually coming to fruition. This is coming in 

the form of magnetic resonance imaging (MRI) which can pick up susceptibility from iron 

in the hemoglobin and otherwise in the intracellular and extracellular environment. 

Investigators have demonstrated that just like in rat and pig 9,10 ICH models, tissue iron 

in the periphery of the hematoma can be picked up in the humans too. The 

concentration of iron in the hematoma is very high but currently there is no reliable 

measurement of iron concentration can be performed within it. On the other hand, in the 

periphery of the hematoma, such susceptibility compared to the tissue background can 

be picked up and quantified in the human subjects 11. The investigators at University of 

Michigan have also put forth the hypothesis that whether hemoglobin and its 
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degradation products are within or without red blood cells, it dictates the type of signal 

on MRI 12. This phenomenon of T2* non hypointensity, related to early erythrolysis, 

demonstrated in the animal models, is being investigated in the humans with MRI 13. 

Currently, no definite intervention has been shown to be beneficial for ICH, be it 

hematoma evacuation14,15 or iron chelation treatment such as deferoxamine16.  

However, there is significant enthusiasm as MISTIE III has shown that patients who 

have greater than 75% of their ICH evacuated are clinically significantly better than 

those managed conservatively. In addition, iDEF has reported better clinical results at 6 

months post ICH that approach significance for those patients receiving deferoxamine 

vs. placebo.  In both of these treatments, preventing secondary injury to brain tissue is 

mediated favorably by removal of deposited iron. Thus, a well validated MRI based 

assessment of tissue iron concentration in the periphery of the hematoma will be very 

useful for monitoring treatment of hemorrhagic stroke patients with iron chelation agents 

(e.g. deferoxamine). The evaluation of iron concentration post ICH/SAH treatment could 

serve as a marker not only of treatment but also of long-term clinical outcome.

In summary, the future of hemorrhagic stroke research is looking bright and 

imaging based cellular brain injury pathways can be better established and understood 

on MRI. A lot more work is needed to validate MRI based biomarkers and its correlation 

with functional outcome in hemorrhagic stroke patients. The editors commend the 

authors for presenting a collection of articles at the cutting edge of understanding the 

underlying mechanisms of cerebral injury post ICH & SAH. 
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