
Electronic Companion – To share or not to share? Capacity reservation

in a shared supplier

Anyan Qi

Naveen Jindal School of Management, The University of Texas at Dallas, Richardson, TX 75080,

axq140430@utdallas.edu

Hyun-Soo Ahn

Stephen M. Ross School of Business, University of Michigan, Ann Arbor, MI 48109,

hsahn@umich.edu

Amitabh Sinha

Amazon, Seattle, WA 98109,

amitabsi@amazon.com

In the appendix, we prove the lemmas and propositions, and provide additional results when

there are three buying firms in the supply network.

A. Proof of results in Sections 3 and 4

Following the assumptions in the paper, we consider the case where cτi ≤ (p−w)α where τi ∈ {e, f}

throughout the analysis in this section. Otherwise it is obvious that firms will not reserve any

capacity above L because the capacity reservation price is greater than the expected profit margin

from satisfying the demand when the demand realizes as H. We also assume that the capacity

installation cost γ ≤ (p−w)α.

Proof of Lemma 1. The joint distribution follows from the definition of the conditional proba-

bilities. For example, we have Pr(Di =H,Dj =H) = Pr(Di =H|Dj =H) ·Pr(Dj =H) = βα. For

brevity we skip the detailed derivation for all other cases. Using the joint distribution, we have the

mean of demand is E[Di] =Hα+L(1−α), the variance of demand is V ar[Di] = α(1−α)(H−L)2,

the covariance between the two demands is Cov[Di,Dj] = α(β − α)(H −L)2, and the correlation

between the two demands is

ρ=
Cov[Di,Dj]√

V ar[Di] ·
√
V ar[Dj]

=
β−α
1−α

. (10)

For the joint-distribution to be well-defined, we require β ≥
(
2α−1
α

)+
. Then the lowest (resp., high-

est) demand correlation is obtained by setting β =
(
2α−1
α

)+
(resp., β = 1) in equation (10). �
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Proof of Proposition 1. We prove this proposition by deriving firm i’s best response function

with respect firm j’s capacity reservation level under different capacity types and the equilibrium

capacity reservation level follows by solving the system of best response functions. We show the

derivation of firm 1’s best response, and the other case is symmetric.

When firm 2 chooses exclusive capacity, i.e., τ2 = e, we have firm 1’s profit function as follows:

πτ1e1 (k1, k2) = (p−w)E [min{D1, k1}]− cτ1k1. (11)

Following (11), it is immediate that firm 1’s optimal capacity reservation level is independent of

firm 2’s decision, and the best response of firm 1 is that

kτ1e1 (k2) =H. (12)

When firm 2 chooses first-priority capacity, i.e., τ2 = f , we have firm 1’s profit function as follows:

πτ1f1 (k1, k2) = (p−w)E
[
min

{
D1, k1 + (k2−D2)

+
}]
− cτ1k1. (13)

Following (13), it is immediate that the best response of firm 1 is that

kτ1f1 (k2) =

{
H if cτ1 ≤ (p−w)αβ;

min{H +L− k2, H} if cτ1 > (p−w)αβ.
(14)

We note that firm 2’s best response functions are symmetric to those of firm 1’s. Solving the

system of best response functions of both firms, we obtain the equilibrium capacity reservation

levels as follows.

Scenario (i) Both firms reserve exclusive capacity, i.e., (τ1, τ2) = (e, e). By (12), both firms’ best

response capacity reservation level isH. Thus, in equilibrium, both firms reserveH units of capacity.

Scenario (ii) One firm, say firm 1, reserves exclusive capacity while the other firm reserves first-

priority capacity, i.e., (τ1, τ2) = (e, f). By (12) and (14), we have the best response functions of the

two firms are as follows:

kef1 (k2) =

{
H if ce ≤ (p−w)αβ;

min{H +L− k2, H} if ce > (p−w)αβ;

kef2 (k1) =H.

Solving the system of equations, we have the equilibrium capacity reservation level kefi is as

follows:

kef1 =

{
H if ce ≤ (p−w)αβ,

L if ce > (p−w)αβ;
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kef2 =H.

Scenario (iii) Both firms reserve first-priority capacity, i.e., (τ1, τ2) = (f, f). By (14), we have the

best response functions of the two firms are as follows:

kff1 (k2) =

{
H if cf ≤ (p−w)αβ;

min{H +L− k2, H} if cf > (p−w)αβ;

kff2 (k1) =

{
H if cf ≤ (p−w)αβ;

min{H +L− k1, H} if cf > (p−w)αβ.

Solving the system of equations and selecting the symmetric equilibrium which results in a fair

split of profits between the buying firms1, we have the equilibrium capacity reservation level kffi

is as follows:

kffi =

{
H if cf ≤ (p−w)αβ;
H+L

2
if cf > (p−w)αβ.

�

Proof of Proposition 2. We prove the proposition in two steps. We first discuss the case where

ce = cf , and then discuss the case where ce > cf .

(i) Suppose ce = cf = c. In this case, we show that it is a weakly dominant strategy for firm

1 to choose exclusive capacity. The analysis for firm 2 is similar and omitted for brevity. By

Proposition 1, we have keτ22 ≥ kfτ22 . Therefore, we have

πfτ21 (kfτ21 , kfτ22 ) = (p−w)E

[
min

{
D1, k

fτ2
1 +

(
kfτ22 −D2

)+

1{τ2=f}

}]
− ckfτ21

≤ (p−w)E
[
min

{
D1, k

fτ2
1 + (keτ22 −D2)

+
1{τ2=f}

}]
− ckfτ21

≤ (p−w)E
[
min

{
D1, k

eτ2
1 + (keτ22 −D2)

+
1{τ2=f}

}]
− ckeτ21

= πeτ21 (keτ21 , keτ22 ).

The first inequality follows from keτ22 ≥ kfτ22 . The second inequality follows from equation (2).

Therefore, we have shown that it is a dominant strategy for firm 1 to choose exclusive capacity.

(ii) Suppose ce ≥ cf . In this case, we first show that when the other firm (say firm 1) chooses exclu-

sive capacity, the firm (say firm 2) is better off by choosing first-priority capacity, i.e., πee2 (kee1 , k
ee
2 )≤

πef2 (kef1 , k
ef
2 ). We note that since ce ≥ cf ,

πee2 (kee1 , k
ee
2 ) = (p−w)E [min{D2, k

ee
2 }]− cekee2 ≤ (p−w)E

[
min

{
D2, k

ef
2

}]
− cfkef2 = πef2 (kef1 , k

ef
2 ).
(15)

1 We note that the equilibrium capacity reservation level is not unique when cf > (p−w)αβ. Solving the system of
best response functions, we have the set of all equilibrium capacity reservation levels as {(k1, k2) : k1 +k2 =H+L,k1 ≥
L,k2 ≥L}. In this case, we select the symmetric equilibrium with both firms reserving the same capacity level H+L

2

which results in the same expected profit of both firms.
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We also note that the inequality is strict when ce > cf .

We next show that there exists a threshold c̄e(cf ;β) such that when ce ≤ c̄e(cf ;β), we

have πef1 (kef1 , k
ef
2 ) ≥ πff1 (kff1 , kff2 ); when ce > c̄e(cf ;β), we have πef1 (kef1 , k

ef
2 ) < πff1 (kff1 , kff2 ). We

note that πff1 (kff1 , kff2 ) does not change with respect to ce. Therefore, we need to show that

πef1 (kef1 , k
ef
2 ) ≥ πff1 (kff1 , kff2 ) when ce = cf , and πef1 (kef1 , k

ef
2 ) decreases in ce. Then we derive the

closed-form expression of the threshold.

We note that when ce = cf , we have

πef1 (kef1 , k
ef
2 ) = (p−w)E

[
min

{
D1, k

ef
1 +

(
kef2 −D2

)+}]
− cekef1

≥ (p−w)E
[
min

{
D1, k

ff
1 +

(
kef2 −D2

)+}]
− cekff1

≥ (p−w)E
[
min

{
D1, k

ff
1 +

(
kff2 −D2

)+}]
− cfkff1

= πff1 (kff1 , kff2 ).

The first inequality follows from πef1 (kef1 , k
ef
2 ) = maxk1 π

ef
1 (k1, k

ef
2 ) and the second inequality follows

from kef2 ≥ k
ff
2 in Proposition 1 and ce = cf .

We note that
∂π

ef
1 (k

ef
1 ,k

ef
2 )

∂ce
=−kef1 ≤ 0 when ce < (p−w)αβ or ce > (p−w)αβ because kef2 does

not change with respect to ce for a given cf . We also note that πef1 (kef1 , k
ef
2 ) is continuous at

ce = (p−w)αβ. It follows that πef1 (kef1 , k
ef
2 ) decreases in ce.

We next derive the closed-form solution of the threshold c̄e(cf ;β). We note that ce(cf ;β) sat-

isfies that when ce = ce(cf ;β), we have πef1 (kef1 , k
ef
2 ) = πff1 (kff1 , kff2 ), which gives us the following

equation:

(p−w)E
[
min

{
D1, k

ef
1 +

(
kef2 −D2

)+}]
− ce(cf ;β)kef1 = πff1 (kff1 , kff2 ). (16)

Solving equation (16) for ce(cf ;β) using Proposition 1 and the fact that ce(cf ;β)≥ cf , we obtain

that:

ce(cf ;β) =

{
−(p−w) (H−L)

2L
αβ+ cf

H+L
2L

if β <
cf

(p−w)α
;

cf if
cf

(p−w)α
≤ β.

(17)

In summary, we have proved that there exists a threshold c̄e(cf ;β) such that when ce ≤ c̄e(cf ;β),

we have πef1 (kef1 , k
ef
2 ) ≥ πff1 (kff1 , kff2 ); when ce > c̄e(cf ;β), we have πef1 (kef1 , k

ef
2 ) < πff1 (kff1 , kff2 ).

Combining this result with the earlier result in equation (15) that πee2 (kee1 , k
ee
2 )≤ πef2 (kef1 , k

ef
2 ), we

have shown that when ce ≤ c̄e(cf ;β), one firm chooses exclusive capacity while the other chooses

first-priority capacity; when ce ≥ c̄e(cf ;β), both firms choose first-priority capacity. �
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Proof of Proposition 3. The proof for (ii) follows the proof of (ii) in proposition 2. In what

follows we focus on proving (i). That is, a prisoner’s dilemma equilibrium occurs, where both firms

could have increased their profits if both choosing first-priority capacity, when ce = cf = c. We

first observe that if c≤ (p−w)αβ, we have πee1 (kee1 , k
ee
2 ) = πff1 (kff1 , kff2 ) by Proposition 1. In what

follows, we consider the case where c > (p−w)αβ. In this case, we have

πee1 (kee1 , k
ee
2 ) = πee1 (kee1 , k

ff
2 ) = (p−w)E [min{D1, k

ee
1 }]− ckee1

≤ (p−w)E
[
min

{
D1, k

ee
1 +

(
kff2 −D2

)+}]
− ckee1

≤ πff1 (kff1 , kff2 ).

The first inequality follows the fact that firm 1 is better off if it can access firm 2’s leftover

capacity and the second inequality follows that πff1 (kff1 , kff2 ) = maxk1 π
ff
1 (k1, k

ff
2 ). Therefore, in

equilibrium, both firms choose exclusive capacity, but both firms could have been better off if both

choose first-priority capacity together. Then we have shown that the prisoner’s dilemma occurs. �

Proof of Proposition 4. The result directly follows from the closed-form expression of the thresh-

old ce(cf ;β) in equation (17). �

Proof of Proposition 5. To derive the supplier’s capacity price decision, we first derive the

supplier’s subgame-perfect equilibrium profit for given (ce, cf ) and the choice of capacity types

by the suppliers (τ1, τ2), denoted by πτ1τ2s (ce, cf ). Recall that γ ≤ (p − w)α and cτi ≤ (p − w)α.

By equation (4) and Proposition 1, we have the following supplier’s subgame-perfect equilibrium

profits:

πees (ce, cf ) = 2w [L(1−α) +Hα] + 2 (ce− γ)H. (18)

πefs (ce, cf ) =

{
2w [L(1−α) +Hα] + (ce− γ)H + (cf − γ)H if ce ≤ (p−w)αβ;

w [L(2− 2α+αβ) +Hα(2−β)] + (ce− γ)L+ (cf − γ)H if ce > (p−w)αβ.
(19)

πffs (ce, cf ) =

{
2w [L(1−α) +Hα] + 2 (cf − γ)H if cf ≤ (p−w)αβ;

w [L(2− 2α+αβ) +Hα(2−β)] + (cf − γ) (H +L) if cf > (p−w)αβ.
(20)

Next, we need to consider the optimal combination of the capacity reservation prices (ce, cf ) to

offer while considering the firms’ equilibrium capacity type choice in Proposition 2. Consider the

following three scenarios:

(i). In order to induce (e, e), the supplier should offer c∗e = (p−w)α, and c∗f = c∗e, as πees (ce, cf )

increases in ce in this range; see (18).
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(ii). In order to induce (e, f), the supplier should offer the capacity reservation such that cf <

ce ≤ ce(cf ;β). As (19) increases in cf , it is immediate that πefs (ce, cf )<πefs (ce, ce)≤ πees (ce, cf ).

(iii). In order to induce (f, f), the supplier should offer the capacity reservation such that cf ≤

ce(cf ;β)< ce. As (20) increases in cf , it is immediate that πffs (ce, cf )<πffs (ce, ce)≤ πees (ce, cf ).

To summarize, the supplier should offer the capacity reservation prices such that c∗e = (p−w)α,

and c∗f = c∗e to induce both the buyers to choose exclusive capacity. �

Proof of Lemma 2. Recall that ki ≤H, i= 1,2. By (5), the probability distribution of the residual

demand is as follows:

Dτ1τ2
r (k1, k2) =



2H − k1− k2 w.p. αβ;[
H − k1− (k2−L)+1{τ2=f}

]+
+ (L− k2)+ w.p. (1−β)α;

(L− k1)+ +
[
H − k2− (k1−L)+1{τ1=f}

]+
w.p. (1−β)α;[

L− k1− (k2−L)+1{τ2=f}
]+

+
[
L− k2− (k1−L)+1{τ1=f}

]+
w.p. 1− 2α+αβ.

Given the capacity types (τ1, τ2), we note that each of the realized values decreases in ki, i= 1,2.

Thus, by definition of the usual stochastic order (Shaked and Shanthikumar 2007), we have for any

0≤ k1 ≤ k̂1 and 0≤ k2 ≤ k̂2, the residual demand Dτ1τ2
r (k1, k2)≥stDτ1τ2

r (k̂1, k2) and Dτ1τ2
r (k̂1, k2)≥st

Dτ1τ2
r (k̂1, k̂2). Thus, we have Dτ1τ2

r (k1, k2)≥stDτ1τ2
r (k̂1, k̂2). �

Proof of Proposition 6 and Observation 1. Solving the decision problem of (6), we have the

optimal free capacity k∗s(k1, k2; τ1, τ2) should be the smallest ks ∈ [0,+∞) such that

Pr(Dτ1τ2
r (k1, k2)≤ ks)≥

w− r
w

. (21)

Following Lemma 2, it is immediate that k∗s(k1, k2; τ1, τ2) decreases in k1 and k2.

By (21), if w < γ, we have k∗s(k1, k2; τ1, τ2) = 0; if wαβ > γ, then k∗s(k1, k2; τ1, τ2) should be the

smallest ks ∈ [0,+∞) such that

Pr(Dτ1τ2
r (k1, k2)≤ ks)≥

w− r
w

> 1−αβ.

Thus, k∗s(k1, k2; τ1, τ2) = 2H − k1− k2. �

B. Proof of results in Section 5

Similar to the analysis in the base model, we consider the case where ce ≤ (p − w)α and ct ≤

(p−w)α[1 + t̂(1−β)] when solving for the equilibrium reservation levels. Otherwise it is trivial to

show that the firms will not reserve any capacity above the lower bound L when both firms choose

exclusive capacity or transferrable capacity.
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Proof of Proposition 7. We prove the proposition similar to the proof of Proposition 1. We

have buying firm i’s profit in equation (8). The capacity reservation level when both firms choose

exclusive capacity (e, e) is still the same as in Proposition 1. In what follows we discuss the capacity

reservation level in the other two scenarios: (e, t) and (t, t).

We first derive the best response of firm i’s capacity reservation level kτ1τ2i (kj) with respect firm

j’s level kj, with the capacity transfer price t̂i and t̂j respectively. This derivation allows us to

obtain the best response functions for both the (e, t) and (t, t) scenarios by setting t̂i and t̂j at

corresponding appropriate values (specified in each scenario below). There are five cases in total:

Case 1: kj ≤ 2L−H. We have

kτ1τ2i (kj) =



2H − kj if cτi ≤ (p−w)t̂iαβ;

H +L− kj if (p−w)t̂iαβ < cτi ≤ (p−w)t̂iα(2−β);

2L− kj if (p−w)t̂iα(2−β)< cτi ≤ (p−w)t̂i;

H if (p−w)t̂i < cτi ≤ (p−w)[α+ t̂i(1−α)];

L if (p−w)[α+ t̂i(1−α)]< cτi ≤ (p−w);

0 if (p−w)< cτi .

Case 2: 2L−H <kj ≤L. We have

kτ1τ2i (kj) =



2H − kj if cτi ≤ (p−w)t̂iαβ;

H +L− kj if (p−w)t̂iαβ < cτi ≤ (p−w)t̂iα(2−β);

H if (p−w)t̂iα(2−β)< cτi ≤ (p−w)α[1 + t̂i(1−β)];

2L− kj if (p−w)α[1 + t̂i(1−β)]< cτi ≤ (p−w)[α+ t̂i(1−α)];

L if (p−w)[α+ t̂i(1−α)]< cτi ≤ p−w;

0 if p−w< cτi .

Case 3: L< kj ≤H. We have

kτ1τ2i (kj) =



2H − kj if cτi ≤ (p−w)t̂iαβ;

H if (p−w)t̂iαβ < cτi ≤ (p−w)α[β+ t̂j(1−β)];

H +L− kj if (p−w)α[β+ t̂j(1−β)]< cτi ≤ (p−w)α[1 + t̂i(1−β)];

L if (p−w)α[1 + t̂i(1−β)]< cτi ≤ (p−w)[α(2−β) + t̂j(1− 2α+αβ)];

(2L− kj)+ if (p−w)[α(2−β) + t̂j(1− 2α+αβ)]< cτi ≤ p−w;

0 if p−w< cτi .

Case 4: H <kj ≤ 2H −L. We have

kτ1τ2i (kj) =



H if cτi ≤ (p−w)t̂jα;

2H − kj if (p−w)t̂jα< cτi ≤ (p−w)α[β+ t̂j(1−β)];

L if (p−w)α[β+ t̂j(1−β)]< cτi ≤ (p−w)[αβ+ t̂j(1−αβ)];

(H +L− kj)+ if (p−w)[αβ+ t̂j(1−αβ)]< cτi ≤ (p−w)[α(2−β) + t̂j(1− 2α+αβ)];

(2L− kj)+ if (p−w)[α(2−β) + t̂j(1− 2α+αβ)]< cτi ≤ p−w;

0 if p−w< cτi .
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Case 5: 2H −L< kj. We have

kτ1τ2i (kj) =



H if cτi ≤ (p−w)t̂jα;

L if (p−w)t̂jα< cτi ≤ (p−w)t̂j;

2H − kj if (p−w)t̂j < cτi ≤ (p−w)[αβ+ t̂j(1−αβ)];

(H +L− kj)+ if (p−w)[αβ+ t̂j(1−αβ)]< cτi ≤ (p−w)[α(2−β) + t̂j(1− 2α+αβ)];

(2L− kj)+ if (p−w)[α(2−β) + t̂j(1− 2α+αβ)]< cτi ≤ p−w;

0 if p−w< cτi .

We next derive the equilibrium capacity reservation levels.

Scenario (e, t). We note that under the scenario of (e, t), firm 1’s best response functions can

be obtained by setting t̂1 = 0 and t̂2 = t̂ in each of the five cases above. Similarly, firm 2’s best

response functions can be obtained by setting t̂1 = 1 and t̂2 = t̂. Solving for the system of best

response functions, we obtain the equilibrium capacity reservation levels in Proposition 7.

Scenario (t, t). We consider the symmetric case where both firms have the same capacity transfer

price, i.e., t̂1 = t̂2 = t̂. We then obtain the equilibrium capacity reservation levels as shown in

Proposition 7 by solving the system of best response functions of both firms. �

Proof of Proposition 8 We prove the proposition in two steps. We first derive the threshold of

c̃e(ct;β, t̂) and then derive the threshold of ĉe(ct;β, t̂).

(i) By Proposition 7, we have that the equilibrium profit of firm 2 under scenario (e, e) as follows:

πee2 (kee1 , k
ee
2 ) =(p−w)E [min{D2, k

ee
2 }]− cekee2 = (p−w)[L(1−α) +Hα]− ceH.

Therefore, we have πee2 (kee2 , k
ee
2 ) decreases in ce.

We also notice that under the scenario of (e, t), the profit of firm 2 for given (k1, k2) as follows:

πet2 (k1, k2) =(p−w)E
[
min

{
D2 + t̂min

{
(D1− k1)+, (k2−D2)

+
}
, k2
}]
− ctk2

For any given ct and k2, we have πet2 (k1, k2) decreases in k1, and by Proposition 7 we have ket1

decreases in ce. It follows that we have πet2 (ket1 , k
et
2 ) = maxk2 π

et
2 (ket1 , k2) increases in ce.

Therefore, solving for the equation of πee2 (kee1 , k
ee
2 ) = πet2 (ket1 , k

et
2 ) considering ce as the unknown

variable, let c∗e ≥ 0 denote the solution if it exists and set c∗e = 0 if the solution does not exist. Then,

we define c̃e(ct;β, t̂), c∗e. It follows that when ce ≤ c̃e(ct;β, t̂), we have πee2 (kee1 , k
ee
2 )≥ πet2 (ket1 , k

et
2 )

and by symmetry πee1 (kee1 , k
ee
2 )≥ πte1 (kte1 , k

te
2 ), which implies that both firms choose exclusive capac-

ity in equilibrium.

(ii) We observe that πtt1 (ktt1 , k
tt
2 ) does not change with respect to ce. In what follows, we show

that either πet1 (ket1 , k
et
2 ) decreases in ce, or πet1 (ket1 , k

et
2 )≤ πtt1 (ktt1 , k

tt
2 ). We consider the three regions
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depending on the value of ct: ct ∈ [0, (p−w)t̂αβ], ct ∈ ((p−w)t̂αβ, (p−w)α], and ct ∈ ((p−w)α, (p−

w)α[1 + t̂(1−β)]].

Region 1: ct ∈ [0, (p−w)t̂αβ]. In this case, it is immediate that πet1 (ket1 , k
et
2 ) decreases in ce when

ce ≤ (p−w)α[β + t̂(1− β)]. When (p−w)α[β + t̂(1− β)]< ce ≤ (p−w)[αβ + t̂(1−αβ)]), we have

the equilibrium reservation level as (L,2H −L), and it follows that

πet1 (ket1 , k
et
2 ) = πet1 (L,2H −L)

≤ (p−w)E
[
min

{
D1,L+

(
1− t̂

)
min

{
(D1−L)+, (2H −L−D2)

+
}}]
− (p−w)α[β+ t̂(1−β)]L

= (p−w)[L(1−α) +Hα]− (p−w)αt̂H − (p−w)αβ(1− t̂)L

≤ (p−w)[L(1−α) +Hα]− (p−w)αβt̂H ≤ πtt1 (ktt1 , k
tt
2 )

When (p − w)[αβ + t̂(1 − αβ)]) < ce ≤ (p − w)α, we have the equilibrium reservation level as

(0,2H), and it follows that

πet1 (ket1 , k
et
2 ) = (p−w)E

[(
1− t̂

)
min

{
D1, (2H −D2)

+
}]

= (p−w)[L(1−α) +Hα]− (p−w)αt̂H − (p−w)(1−α)t̂L

≤ (p−w)[L(1−α) +Hα]− (p−w)αβt̂H ≤ πtt1 (ktt1 , k
tt
2 )

Region 2: ct ∈ ((p−w)t̂αβ, (p−w)α]. In this case, we have πet1 (ket1 , k
et
2 ) = πet1 (ket1 ,H). It follows

that πet1 (ket1 , k
et
2 ) decreases in ce.

Region 3: ct ∈ ((p−w)α, (p−w)α[1+ t̂(1−β)]]. In this case, we have that πet1 (ket1 , k
et
2 ) decreases

in ce when ce ∈ [0, (p−w)α[β+ t̂(1−β)]] as the equilibrium capacity reservation levels remain the

same. When ce = (p−w)α[β+ t̂(1−β)], we have

πet1 (ket1 , k
et
2 ) = (p−w)[L(1−α) +Hα]− (p−w)α[β+ t̂(1−β)]H (22)

We also have that πet1 (ket1 , k
et
2 ) decreases in ce when ce ∈ ((p−w)α[β+ t̂(1−β)], (p−w)α] as the

equilibrium reservation levels remain the same. When ce ∈ ((p−w)α[β + t̂(1− β)], (p−w)α], we

have

πet1 (ket1 , k
et
2 )≤ (p−w)[L+ (H −L)(1− t̂)α(1−β)]− (p−w)α[β+ t̂(1−β)]L (23)

Then we have equation (22)-RHS of equation (23)= 0. Therefore, we have πet1 (ket1 , k
et
2 ) decreases

in ce.

Summarizing the analysis for the three regions, we have that πet1 (ket1 , k
et
2 ) decreases in ce, or is

either less than πtt1 (ktt1 , k
tt
2 ).
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Therefore, solving for the equation of πet1 (ket1 , k
et
2 ) = πtt1 (ktt1 , k

tt
2 ) considering ce as the unknown

variable, let c†e ≥ 0 denote the solution if it exists and set c†e = 0 if the solution does not exist. Then,

we define ĉe(ct;β, t̂),max{c†e, c̃e(ct;β, t̂)}. It follows that when ce > ĉe(ct;β, t̂), both firms choose

transferrable capacity. When c̃e(ct;β, t̂)< ce ≤ ĉe(ct;β, t̂), one firm chooses exclusive capacity while

the other chooses transferrable capacity. �

Proof of Proposition 9 We note that the supplier’s profit with given capacity reservation levels

(k1, k2) and capacity types (τ1, τ2) as follows:

πτ1τ2s (k1, k2) =
2∑

i,j=1,i6=j

{
wE

[
min

{
Di, ki + (kj −Dj)

+
1{τj=t}

}]
+ (cτi − γ)ki

}
. (24)

To derive the supplier’s capacity reservation price decisions, we first derive the supplier’s

subgame-perfect equilibrium profit πτ1τ2s (ce, ct) for given (ce, ct) and the capacity types (τ1, τ2).

By Proposition 7 and equation (24), we have the following supplier’s subgame-perfect equilibrium

profits under the scenario (e, e) and (t, t) respectively:

πees (ce, ct) = 2w [L(1−α) +Hα] + 2 (ce− γ)H. (25)

πtts (ce, ct) =

{
2w [L(1−α) +Hα] + 2 (ct− γ)H if ct ≤ (p−w)α[β+ t̂(1−β)];

w [L(2− 2α+αβ) +Hα(2−β)] + (ct− γ) (H +L) if ct > (p−w)α[β+ t̂(1−β)].

(26)

For (e, t), we note that for the case with the total capacity reservation 2H, the optimal capacity

reservation price bundle should be ce ≤ (p−w)α and ct ≤ (p−w)α; see Proposition 7. This case,

however, is dominated by the profit under (e, e) when ce = (p−w)α in equation (25). For the case

with total capacity reservation H + L, the optimal capacity reservation price bundle should be

ce = (p−w)α and ct = (p−w)α[1 + t̂(1−β)]. This case, however, is dominated by the profit under

(t, t) when ct = (p−w)α[1 + t̂(1− β)]; see (26). Therefore, we can restrict attention to comparing

equations (25) and (26).

When the capacity types are (e, e), the supplier’s profit is maximized at c∗e = (p−w)α. When

the capacity types are (t, t), the supplier’s profit is maximized either at c†t = (p−w)α[β+ t̂(1−β)]

with the equilibrium capacity reservation levels (H,H), or c∗t = (p − w)α[1 + t̂(1 − β)] with the

equilibrium capacity reservation levels (H+L
2
, H+L

2
). The first case is dominated by (e, e), where the

capacity reservation price is higher with the same capacity reservation level and the same resulting

capacity utilization. Therefore, to understand the supplier’e preference between the two outcomes.

we only need to compare the supplier’s profit in the second case with the optimal profit under

(e, e). Taking the difference of the supplier’s profit in these two scenarios, we have:

πees (c∗e, c
∗
t )−πtts (c∗e, c

∗
t ) =2w [L(1−α) +Hα] + 2 [(p−w)α− γ]H
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−w [L(2− 2α+αβ) +Hα(2−β)]−
{

(p−w)α[1 + t̂(1−β)]− γ
}

(H +L).
(27)

We compare equation (27) to 0 and define t , (H−L)[(p−w)α+wαβ−γ]
(H+L)(p−w)α(1−β) . Then we have if t̂ ≤ t, the

supplier should set capacity reservation prices such that c∗e = (p−w)α and c∗e ≤ c̃e(ct;β, t̂), and both

firms choose exclusive capacity. If t̂ > t, the supplier sets capacity reservation prices (c∗e, c
∗
t ) such

that c∗t = (p−w)α[1 + t̂(1− β)] and c∗e ≥ ĉe(ct;β, t̂), and both firms choose transferrable capacity.

�

Proof of Proposition 10 We note that Pareto improvement over the equilibrium outcome in

Proposition 5 is possible only if the supplier chooses the capacity reservation prices to induce the

equilibrium capacity type of (t, t) with reservation level
(
H+L

2
, H+L

2

)
. By Proposition 9, we have

that when t̂ > t, the supplier’s profit is higher when the equilibrium capacity type of (t, t) with

reservation level
(
H+L

2
, H+L

2

)
is induced. We just need to find the condition under which the buying

firms’ profit is also higher in this scenario.

We have the buying firm’s profit difference in these two cases as follows. Recall that c∗e = (p−w)α

and c∗t = (p−w)α[1 + t̂(1−β)]. We have:

πtt1 (c∗e, c
∗
t )−πee1 (c∗e, c

∗
t ) =(p−w)

[
L

(
1−α+

αβ

2

)
+H

(
α− αβ

2

)]
− (p−w)α[1 + t̂(1−β)]

H +L

2

− (p−w)[L(1−α) +Hα] + (p−w)αH

=(p−w)
α(1−β)

2

[
H −L− t̂(H +L)

]
(28)

Letting equation (28) ≥ 0, we have if t̂ ≤ H−L
H+L

, then πtt1 (c∗e, c
∗
t ) ≥ πee1 (c∗e, c

∗
t ). Let t̄ , H−L

H+L
, and

then the buying firms are also better off compared to the equilibrium outcome in Proposition 5 if

t̂≤ t̄.

Finally, to ensure the set [t, t̄] is non-empty, we just need

t̄− t=
H −L
H +L

− (H −L)[(p−w)α+wαβ− γ]

(H +L)(p−w)α(1−β)
=

(H −L)(γ− pαβ)

(H +L)(p−w)α(1−β)
≥ 0.

Therefore, if β ≤ γ
pα

, the set is non-empty. The condition also coincides with the condition that

the supply chain profit, which is the sum of buying firms’ and supplier’s profits, is higher under

(t, t) for the given (c∗e, c
∗
t ). The supply chain efficiency improvement is derived as follows.

When both firms choose transferrable capacity, we have the supply chain profit as

πttc (c∗t ) = p(2− 2α+αβ)L+ pα(2−β)H − γ(H +L).
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When both firms are induced to choose exclusive capacity, we have the supply chain profit as

πeec (c∗e) = 2p(1− 2α+αβ)L+ 2pα(1−β)(L+H) + 2pαβH − 2γH.

Therefore, we have the efficiency improvement ∆% as follows:

∆% =
πttc (c∗t )−πeec (c∗e)

πttc (c∗t )
=

(H −L)(γ− pαβ)

p(2− 2α+αβ)L+ pα(2−β)H − γ(H +L)
.

�

C. Additional analysis with three buying firms

In the paper, we have focused on the scenario with two buying firms to illustrate the key tradeoffs.

In this section, we consider the scenario with three buying firms and illustrate the impact of more

firms by comparing the equilibrium capacity levels to those when there are two buying firms. We

focus on the symmetric equilibria with all firms choosing the same type of capacity reservation and

reserving the same capacity levels.

We next derive the expected profit of the firms given the capacity type choices, and then compare

the equilibrium capacity reservation levels to those when there are two buying firms as a first

attempt to analyze the more complicated scenario. We denote the expected profit of firm i as

πτ1τ2τ3i (k1, k2, k3), where τi ∈ {e, f, t} is the capacity type choice of firm i, and ki is the capacity

reservation level of firm i. We also denote firm i’s equilibrium capacity reservation level as kτ1τ2τ3i ,

given the reservation types of (τ1, τ2, τ3).

If all buying firms choose the exclusive capacity, then firm i’s profit is as follows, where i ∈

{1,2,3}:

πeeei (k1, k2, k3) = (p−w)E [min{Di, ki}]− ceki. (29)

If all buying firms choose the first-priority capacity, the issue of capacity allocation arises when

two firms need additional capacity while one firm has leftover. We consider the following intuitive

allocation rule. In the capacity allocation case, the leftover capacity is initially allocated evenly

between the other two firms requesting leftover capacity; furthermore, if one firm does not use up

the allocated leftover capacity while the other firm needs more, then the rest of leftover from the

former can also be used by the latter. We have firm i’s profit as follows, where i, j, k ∈ {1,2,3},

i 6= j, j 6= k, and i 6= k:

πfffi (k1, k2, k3) =(p−w)E [min{Di, ki}]
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+ (p−w)E

min

(Di− ki)+,
(kj−Dj)

+

2
+ (kk−Dk)

+

2
+
[
(kj−Dj)

+

2
− (Dk− kk)+

]+
+
[
(kk−Dk)

+

2
− (Dj − kj)+

]+



− cfki (30)

If all buying firms choose the transferrable capacity with the capacity transfer price t̂, then the

issue of demand allocation also arises when one firm needs additional capacity while two firms

have leftover. We consider a similar intuitive allocation rule as in the capacity allocation case. In

the demand allocation case, the extra demand is initially allocated equally to the other two firms

with leftover capacity; furthermore, if one firm’s leftover capacity cannot satisfy all the allocated

extra demand while the other firm still has leftover capacity after satisfying the allocated extra

demand, then the remainder of the extra demand of the former will also be allocated to the latter.

In the capacity allocation case, we apply the same allocation rule as in the first-priority capacity

case discussed above. Then, with the allocation rules specified, we have firm i’s profit as follows,

where i, j, k ∈ {1,2,3}, i 6= j, j 6= k, and i 6= k:

πttti (k1, k2, k3) =(p−w)E [min{Di, ki}]

+ (p−w)t̂E

min


(Dj−kj)+

2
+ (Dk−kk)+

2
+
[
(Dj−kj)+

2
− (kk−Dk)

+
]+

+
[
(Dk−kk)+

2
− (kj −Dj)

+
]+ , (ki−Di)

+




+ (p−w)(1− t̂)E

min

(Di− ki)+,
(kj−Dj)

+

2
+ (kk−Dk)

+

2
+
[
(kj−Dj)

+

2
− (Dk− kk)+

]+
+
[
(kk−Dk)

+

2
− (Dj − kj)+

]+



− ctki (31)

In each of the scenarios above, we derive the symmetric equilibrium capacity numerically utilizing

the numerical testing bed in Section 6. We use the following default parameters (if not changed

as a variable in the analysis): the market price p = 15, the wholesale price w = 5, the capacity

installation cost γ = 7, the marginal distribution for demand i is normal with mean µi = 10 and

standard deviation σi = 1, the demand correlation ρ= 0, and the capacity reservation cost cτi = 4

for τi ∈ {e, f, t}.

We make the following observations from Figure 1. First, as the transfer price t̂ increases, firms’

have a higher valuation of the reserved capacity, and therefore, both the equilibrium capacity ktt

and kttt increase. Second, when the transfer price is low (t̂≤ 0.6), the equilibrium capacity ktt is

higher than the equilibrium capacity kttt; when the transfer price is high (t̂ > 0.6), the equilibrium

capacity ktt is lower than the equilibrium capacity kttt. Thus, although the impact of the transfer
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Figure 1 Equilibrium capacity comparison.
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Note. kff (resp., kfff ) is the value of ktt (resp., kttt) when t̂= 0. Thus, the plot is omitted from the figure.

price on the equilibrium capacity is qualitatively the same (in terms of the monotonicity of the

equilibrium capacity), there could be subtle differences. It could be interesting for future research

to investigate the impact with additional firms involved in the capacity reservation games.
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