
Received: 10 July 2018 Revised: 4 June 2019 Accepted: 26 July 2019

DOI: 10.1002/sim.8356

R E S E A R C H A R T I C L E

Computationally efficient inference for center effects based
on restricted mean survival time

Xin Wang1,2 Yingchao Zhong1 Purna Mukhopadhyay3 Douglas E. Schaubel1,4

1Department of Biostatistics, University of
Michigan, Ann Arbor, Michigan
2Vertex Pharmaceuticals, Boston,
Massachusetts
3Arbor Research Collaborative for Health,
Ann Arbor, Michigan
4Department of Biostatistics,
Epidemiology, and Informatics, University
of Pennsylvania, Philadelphia,
Pennsylvania

Correspondence
Douglas E. Schaubel, Department of
Biostatistics, Epidemiology, and
Informatics University of Pennsylvania
Blockley Hall Philadelphia, PA 19104.
Email:
douglas.schaubel@pennmedicine.upenn.edu

Funding information
National Institutes of Health,
Grant/Award Number: R01-DK070869
and HHSN276201400001C

Restricted mean survival time (RMST) has gained increased attention in biosta-
tistical and clinical studies. Directly modeling RMST (as opposed to modeling
then transforming the hazard function) is appealing computationally and in
terms of interpreting covariate effects. We propose computationally convenient
methods for evaluating center effects based on RMST. A multiplicative model for
the RMST is assumed. Estimation proceeds through an algorithm analogous to
stratification, which permits the evaluation of thousands of centers. We derive
the asymptotic properties of the proposed estimators and evaluate finite sample
performance through simulation. We demonstrate that considerable decreases
in computational burden are achievable through the proposed methods, in terms
of both storage requirements and run time. The methods are applied to evaluate
more than 5000 US dialysis facilities using data from a national end-stage renal
disease registry.
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1 INTRODUCTION

Restricted mean survival time (RMST) is often of great clinical interest in practice and is gaining increased attention
among biostatisticians. There are now several existing methods to model RMST, with the methods distinguished by their
estimation approaches and assumptions on the censoring mechanism.1-8 Compared to proceeding indirectly by transform-
ing other pivotal functions into RMST, directly modeling RMST has the appeal of straightforward parameter interpretation
and computational convenience.

We propose computationally convenient methods for evaluating center effects based on RMST. A multiplicative model
for the RMST is assumed. In the interest of robustness and flexibility, we avoid making any distributional assumptions
on the underlying survival time. Estimation is based on generalized estimating equations (GEE). Numerical techniques
analogous to stratification permit the simultaneous evaluation of thousands of center effects.

Distinguishing features of the proposed (relative to existing related) methods include the ability to conveniently estimate
a very large number (eg, thousands) of covariate-adjusted center effects. Our methods are motivated by an analysis of
the national end-stage renal disease (ESRD) database, with our objectives being to (a) estimate center effects for each of
the >5000 dialysis facilities in the United States and (b) estimate the effects (on the RMST scale) of many patient-level
covariates. As will be described, the numerical techniques we propose for parameter estimation in this context are quite
different than those in previous related works.6,8 Specifically, we propose a two-stage approach that involves estimating a
regression parameter corresponding to the adjustment covariates at the first stage, with the center effects then estimated
at the second stage. Note that neither the work of Tian et al6 nor the work of Wang and Schaubel8 were developed for
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facility profiling. Their application in this setting would be through a one-stage approach that estimated all parameters
simultaneously and, hence, could be computationally prohibitive.

Although parameter estimation for the RMST model is generally convenient, computational difficulties may arise if
the dimension of the covariate vector is quite large. Standard software packages (eg, R and SAS) typically handle data
sets with tens of thousands of subjects better than they handle several hundred covariates. Examples include clustered
data or data with a high-dimensional covariate. In this report, the terms “cluster,” “facility,” and “center” could be used
interchangeably. In the interest of concreteness, we use the term “center” hereafter, in part due to its connection with
our motivating example. A conventional way to adjust for fixed facility effects in a regression model is to code potentially
very large number of center indicators; this can introduce a high covariate dimension, in turn, greatly increasing the
computational burden and, in some cases, preventing model convergence.

The case we consider in this report involves data characterized by a large number of centers and evaluated in an environ-
ment where fixed center effects are desired.9 The data set that motivates our proposed methods consists of ESRD patients
receiving hemodialysis in the United States. The study population has more than 1 million patients from more than
5000 dialysis facilities. Computational demands are underscored by the requirement of 50 GB of memory under conven-
tional methods. We are interested in evaluating the effect on RMST of some variables historically reported to be important
prognostic factors, including age, race, gender, underlying diagnosis, and comorbidity information. However, facility has
frequently been reported to be a strong predictor of ESRD patient survival. Moreover, it is generally acknowledged that
the prognostic factor distributions may differ markedly by facility. Such considerations are not unique to ESRD; in the
presence of data on subjects treated at different centers, great potential for bias exists if the regression model serving as
the basis for covariate adjustment does not adjust for facility.10

It should be noted that the purpose of this report is not to contrast fixed versus random effects as methods for adjusting
for center. Strong cases can be made in either direction, such that the choice of one over the other depends largely on the
data structure at hand and analytic objectives. In our case, covariate effects are of interest, but of equal (or more) interest
are the facility effects. Such results are often of great interest to various stakeholders (eg, regulatory bodies, oversight
committees, insurers). In this particular framework, one reason to prefer fixed versus random facility effects is that a key
assumption of the random effects model (ie, the independence of facility effect and patient characteristics) is unlikely to
hold. Fixed cluster effects are arguably more appropriate when we suspect the individual covariates are correlated with
facility effects. In addition, fixed effect methods have been demonstrated to yield less biased estimators with smaller mean
squared error when the true facility effect is far from the average across facilities.9,11

In the context of ESRD data, conventional methods would involve simultaneous estimation of the parameter vector
corresponding to the covariate vector and the parameters corresponding to the ≈ 5000 facility indicators. As will be
demonstrated, the proposed techniques separate the estimation of center specific baseline RMST from the estimation
of covariate effects. As detailed in Section 2, the techniques we develop can exploit standard software for implementa-
tion, a desirable property for practitioners. The proposed methods yield much faster run times relative to those typically
employed in the generalized linear models (GLMs) setting. In particular, we dissect the model structure and connect it to
the estimation procedure of the stratified proportional hazards model.12,13

The novelty of the methods proposed in this report is primarily from two perspectives. First, to the best of our knowledge,
no previous work has proposed methods for estimating center effects through a direct model of RMST. Second, no previous
report has addressed computational issues likely to arise for RMST modeling in the presence of large data sets. We focus
on center effects (as a frequently occurring instance of high-dimensional categorical covariates) and propose techniques
that greatly reduce storage space and computing time and, hence, are amenable to very large databases.

The remainder of this report is organized as follows. In Section 2, we formulate the data structure, describe the proposed
methods, and then describe the proposed estimation procedures. Large sample properties are derived in Section 3, with
numerical studies conducted in Section 4 in order to assess the accuracy of the proposed procedures in finite samples.
We illustrate our methods in Section 5 through application to the aforedescribed ESRD database. Discussion and possible
future directions are presented in Section 6. R code for carrying out the proposed methods is provided in the Supporting
Information document corresponding to this article.

2 PROPOSED METHODS

We now describe the proposed methods, beginning with the requisite notation.
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2.1 Notation and assumptions
Let i denote the ith patient (i = 1, … ,n) and let gi denote this patient's center, where gi = 1, … , J and J is usually a
relatively large number (eg, J = 1000). To simplify the notation, we create a vector Gi = (Gi1, … ,GiJ)′, where Gij = I(gi = j)
and I(·) represents an indicator variable taking the value 1 when its argument is true and 0 otherwise. That is, Gi will have
all elements equal to 0 except the gith element (which equals 1). Baseline covariates are denoted by Zi, a vector of length p.
Let Di denote the time of death, which is subject to right censoring time Ci. Due to the occurrence of censoring, we observe
the minimum of death and censoring time, Xi = Di ∧ Ci, and hence, we define the death indicator ΔD

i = I(Di ≤ Ci).
Suppose L is the pre-specified truncation time point of interest (eg, 5 years, 10 years, etc). We then define the truncated
survival time and its corresponding indicator by Yi = Di ∧ L and ΔY

i = I(Di ∧ L ≤ Ci), respectively. Our observed data are
then  = {i; i = 1, … ,n}, where i = {Zi,Gi,Xi,Yi,ΔY

i ,Δ
D
i }.

We are interested in average survival up to time L, and the model of interest can be represented in a general sense by
𝜇ij = E(Di ∧ L|Zi, gi = j). Since our intention is to develop a useful tool to evaluate survival based on the information
available at the time origin, we model the RMST as a function of baseline (time 0) covariates. We assume the following
model for the L-year RMST:

𝜇i𝑗 = 𝜇0𝑗 exp
{
𝜷′

0Zi
}
, (1)

where 𝜷0 = (𝛽01, … , 𝛽0p)′ is the covariate effect of interest, and 𝝁0 = (𝜇01, … , 𝜇0J)′ is the center-specific baseline RMST.
Model (1) has the same structure as a GLM with a log link. However, note that the variance structure is unspecified. The
model is equivalent to a model with centers represented by J indicator variables; ie, exp{𝜷′

0Zi + G′
i log(𝝁0)}. For the data

structure of interest in this report, J is usually a large number, such that fitting the model requires careful consideration to
avoid computational difficulties. In order to avoid estimating the J center effects simultaneously, we propose a two-stage
procedure that allows us to separately estimate 𝜷0 and 𝝁0. Note that the dependence of 𝜇ij on L is suppressed throughout
this article.

2.2 Censoring models
In the absence of censoring, E[Gi𝑗Zi{Di ∧ L − 𝜇0𝑗 exp(𝜷′

0Zi)}] = 𝟎. This can serve as the basis for constructing estimat-
ing equations, but requires modification in the presence of censoring. To accommodate censoring, we employ a variant
of Inverse Probability of Censoring Weighting (IPCW).14,15 In our context, IPCW reweights the uncensored (Di ∧ L) val-
ues, such that the weighted data represent the (Di ∧ L) distribution of the target population. We allow the censoring
distribution to depend on the baseline covariates and to differ across centers. Note that covariate-dependent censoring is
quite common. For example, consider an observational study, conducted during a fixed calendar period, with staggered
entry. In this case, subjects who enter later in the observation window would have a different censoring distribution than
those who enter earlier. Covariate-dependent censoring would result if survival time also depended on calendar time (eg,
survival improved, due to therapeutic advances).

Denote the hazard function for censoring time Ci by 𝜆C
i𝑗(t) for patient i from center j; specifically, 𝜆C

i𝑗(t) =
limh→0h−1P(Xi ∈ [t, t+h),ΔD

i = 0|Xi ≥ t,Zi, gi = 𝑗). Denote the corresponding cumulative hazard by ΛC
i𝑗(t) = ∫ t

0 𝜆C
i𝑗(u)du.

Defining the IPCW weight by Wi𝑗 = exp{ΛC
i𝑗(Yi)}, it can be shown that

E
[
Gi𝑗ΔY

i Wi𝑗Zi
(

Yi − 𝜇0𝑗 exp
{
𝜷′

0Zi
})]

= 𝟎. (2)

In practice, 𝜆C
i𝑗(t) is rarely known and needs to be estimated from the observed data. For this purpose, we assume the

following Cox model for censoring:
𝜆C

i𝑗(t) = 𝜆C
0𝑗(t) exp

{
𝜽′

0Zi
}
, (3)

which can be fitted by reversing the “event/censoring” roles of D and C.
The use of Cox regression is well established in the context of IPCW, and the above censoring assumption can eas-

ily accommodate both covariate-independent and covariate-dependent censoring. After estimating �̂� and Λ̂C
0𝑗(t) through

standard partial likelihood16 and Breslow17 estimators, respectively, we can estimate the IPCW weights, Wij = P(Ci >

Yi|Zi,Gi = j,Yi)−1, by Ŵi𝑗 = exp{exp(�̂�
′
Zi)Λ̂C

0𝑗(Yi)}. We then substitute the estimated weights Ŵ = (Ŵ1, … , Ŵn)′ in place
of their corresponding true values W = (W1, … ,Wn)′.

Several notes regarding model (3) are in order at this juncture. First, note that dependence of the C distribution on
center is accommodated through the center-stratified baseline hazard. Second, generally, it would be preferable to use
all data to estimate model (3). However, doing so assumes proportionality across (0, 𝜏], which is more restrictive than a
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proportionality assumption across (0,L]. Therefore, if proportionality is violated and if L ≪ 𝜏 (eg, L = 1 year, 𝜏 = 5 years),
then it may be preferable to artificially censor subjects at L for the purposes of estimating model (3). We return to the
discussion of the censoring distribution in Section 6.

2.3 Estimating equations
Based on the zero-mean property given in (2), we construct the following estimating equations:

J∑
𝑗=1

n∑
i=1

Gi𝑗Wi𝑗ΔY
i Zi(Yi − 𝜇i𝑗) = 𝟎

n∑
i=1

Gi𝑗Wi𝑗ΔY
i (Yi − 𝜇i𝑗) = 0, 𝑗 = 1, … , J.

Substituting Ŵ for W, we can estimate 𝜷0 and 𝝁0 from following p + J working estimating equations:

J∑
𝑗=1

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i Zi

(
Yi − 𝜇0𝑗 exp

{
(𝜷′

0Zi
})

= 𝟎, (4)

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i
(

Yi − 𝜇0𝑗 exp
{
𝜷′

0Zi
})

= 0, 𝑗 = 1, … , J. (5)

Solving (4) and (5) simultaneously implies simultaneous estimation of p + J parameters, which is subject to numerical
instability when J is quite large. Instead, we propose estimating 𝜷0 first through iteration and then estimating 𝝁0 through
J separate closed-form expressions. Along these lines, we define

S(k)
𝑗 (𝜷,W) =

∑n
i=1 Gi𝑗Wi𝑗ΔY

i exp{𝜷′Zi}Z⊗k
i∑n

i=1 Gi𝑗
, (6)

S𝑗 (𝜷,W) =
S(1)
𝑗 (𝜷,W)

S(0)
𝑗 (𝜷,W)

, (7)

for j = 1, … , J and k = 0, 1, 2. Note that, for a vector a, we define a⊗0 = 1, a⊗1 = a, and a⊗2 = a′a. Using (6) and (7), we
can rewrite estimating equations (4)-(5) as follows:

J∑
𝑗=1

n∑
i=1

Gi𝑗{Zi − S𝑗(𝜷, Ŵ)}Ŵi𝑗ΔY
i Yi = 𝟎, (8)

𝜇0𝑗 =
∑n

i=1 Gi𝑗Ŵi𝑗ΔY
i Yi∑n

i=1 Gi𝑗Ŵi𝑗ΔY
i exp{𝜷′Zi}

, 𝑗 = 1, … , J. (9)

The algebra underlying the equivalence of (4)-(5) and (8)-(9) is provided in Section 2.4. Note that (8) is free of the
center-specific parameters 𝝁0 and that (9) is a closed-form calculation of 𝝁0, allowing us to separately estimate 𝜷0 and 𝝁0.

2.4 Equivalence of systems (8)-(9) and (4)-(5)
Solving (5) yields

𝜇0𝑗 =
∑n

i=1 Gi𝑗Ŵi𝑗ΔY
i Yi∑n

i=1 Gi𝑗Ŵi𝑗ΔY
i exp{𝜷′Zi}

, 𝑗 = 1, … , J,
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which, for fixed 𝜷, is equal to (9). Then, substituting this expression for 𝜇0 j into (4) yields

=
J∑

𝑗=1

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i YiZi −

J∑
𝑗=1

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i exp{𝜷′Zi}Zi

∑n
k=1 Gk𝑗Ŵk𝑗ΔY

k Yk∑n
k=1 Gk𝑗Ŵk𝑗ΔY

k exp{𝜷′Zk}

=
J∑

𝑗=1

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i YiSi −

J∑
𝑗=1

n∑
k=1

Gk𝑗Ŵk𝑗ΔY
k Yk

S(1)
𝑗 (𝜷, Ŵ)

S(0)
𝑗 (𝜷, Ŵ)

=
J∑

𝑗=1

n∑
i=1

Gi𝑗Ŵi𝑗ΔY
i Yi

{
Si − S𝑗(𝜷, Ŵ)

}
,

which is equal to (8).

2.5 Fitting the proposed model using Cox regression software
Exploiting the connections between the proposed estimating equations and proportional hazards regression, we now
describe an algorithm for estimating parameters from model (1) using Cox regression software. The steps are as follows.

(i) Estimate the censoring hazard Λ̂C
i𝑗(t) from model (3) by unweighted partial likelihood and the Breslow estimator.

Construct IPCW weights by Ŵi𝑗 = exp{Λ̂C
i𝑗(Yi)} for i = 1, … ,n.

(ii) Create a data set where each subject i has a row containing {Zi, gi, Ŵ†
i𝑗 ,Δ

1
i ,X1

i ,Offi}, where Ŵ†
i𝑗 = Ŵi𝑗ΔY

i Yi, Δ1
i = 1,

X1
i = 1 and Offi = − log(Yi).

(iii) Fit a stratified inverse-weighted Cox model to the data set created in Step (ii), with gi serving as strata, covariate Zi,
weight Ŵ†

i𝑗 , token “follow-up time” X1
i (set to 1 for all i) and “death indicator” Δ1

i (also set to 1 for all i), and offset
Offi. Note that ties should be handled by Breslow option.

We justify this algorithm algebraically in Appendix , although some immediate comments are in order. The inverse
weighting in Step (i) is implied by Section 2. The use of a “token” follow-up time (equal for all subjects) and death indicator
reconcile the software's expectation of an integration over time with the property that (8) and (9) invoke one contribution
per subject (hence, with no associated integral). Note that the follow-up time could be any nonnegative number, so long
as it is set equal for all subjects. Step (iii) can be implemented by several statistical software packages. It has been tested
by the authors in R and SAS.

The algorithm is quite fast, even for very large data sets, owing to the stratification. The resulting coefficient and baseline
hazard serve as our proposed estimators 𝜷 and �̂�.

Note that the procedure described by Steps (i), (ii), and (iii) above treats the Ŵi𝑗 as fixed. We outline a justification for
this shortcut in Section 3, between Theorem 1 and Theorem 2.

2.6 Center effects
Note that {𝜇01, …𝜇0J} represent the center-specific baseline RMST and, analogous to center-specific intercepts, do not
represent center-specific contrasts. For settings where contrasts between centers are of interest, we propose the following
rescaling:

𝜂𝑗 =
𝜇0𝑗

w′𝝁0
𝑗 = 1, … , J,

where w = (w1, … ,wJ)′ is a pre-specified weight vector with w′1 = 1. An example of w would be w = (1, … , 1)′∕J, ie,
equal weight across all J centers. The rescaled 𝜼 = (𝜂1, … , 𝜂J) represents a vector of covariate-adjusted contrasts, with
element j contrasting center j with the overall weighted average center. Note that the weighted average of the contrasts is
equal to 1 (ie, w′�̂� = 1), which is a desirable property for interpretation purposes.

3 ASYMPTOTIC PROPERTIES

Regularity conditions are as specified in the Supplementary Information document. These conditions can be relaxed at
the expense of additional technical development.
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Our main asymptotic results are summarized in the following three theorems, with proofs for each presented in
Appendix.

Theorem 1. Under regularity conditions (a)-(g), as n → ∞, 𝜷 converges in probability to 𝜷0 and n1∕2(𝜷 − 𝜷0) converges
to a zero-mean Normal with variance A(𝜷0)−1B(𝜷0)A(𝜷0)−1 with A(𝜷0) and B(𝜷0) defined as follows:

A(𝜷) =
J∑

𝑗=1
E

{
Gi𝑗ΔY

i Wi𝑗Yi

(
s(2)𝑗 (𝜷)

s(0)𝑗 (𝜷)
− s𝑗(𝜷)⊗2

)}
B (𝜷,W) = E

[ J∑
𝑗=1

Gi𝑗
{

bi𝑗 (𝜷,W)
}⊗2

]
,

where

bi𝑗 (𝜷,W) =
{

Zi − S𝑗 (𝜷,W)
}

Wi𝑗ΔY
i
(

Yi − 𝜇i𝑗
)
+ K (𝜷,𝜽,W)𝚯(𝜽)−1Ui𝑗(𝜽)

+

L

∫
0

H𝑗 (u; 𝜷,𝜽,W)

r(0)𝑗 (u;𝜽)
dMC

i𝑗(u),

K(𝜷,𝜽,W) =
J∑

𝑗=1
E
{

Gi𝑗𝝐i(𝜷,W)Di(𝜽)′
}
,

Ui𝑗(𝜽) =
J∑

𝑗=1
Gi𝑗

𝜏

∫
0

{
Zi − r𝑗(u;𝜽)

}
dMC

i𝑗(u),

H𝑗(t;𝜷,𝜽,W) = E
[
𝝐i(𝜷,W) exp{𝜽′Zi}Ri(t)

]
,

with MC
i𝑗(t) = Gi𝑗{NC

i (t) − ∫ t
0 Ri(u) exp(𝜽′Zi)𝜆C

0𝑗(u)du} as the censoring martingale and where NC
i (t) = I(Xi ≤ t,ΔD

i = 0)
represents the censoring counting process.

The consistency of 𝜷 holds by the Inverse Function Theorem,18 while the proof of asymptotic normality follows through
the combination of various Taylor series expansions and the Cramer-Wold Theorem. This sandwich variance with B as the
middle matrix treats IPCW weights as estimated from the data, which well reflects the reality. However, the calculation
of this variance could be complicated. A useful short cut involves replacing the middle matrix B with

B∗ (𝜷,W) = E

[ J∑
𝑗=1

Gi𝑗
{

b∗
i𝑗 (𝜷,W)

}⊗2
]
,

where b∗
i𝑗(𝜷,W) = {Zi − S𝑗(𝜷,W)}Wi𝑗ΔY

i (Yi − 𝜇i𝑗) is the first and primary component of the original bij(𝜷,W). This
short cut treats the IPCW weights as fixed rather than estimated. Although it does not fully reflect the actual estimating
procedure, this short cut is much easier to calculate and should serve as a useful substitute for the more complicated
variance estimator implied by Theorem 1, particularly since the primary source of variation is still captured. We evaluate
this variance estimator through simulation in Section 4.

Theorem 2. Under regularity conditions (a)-(g), as n → ∞, �̂�0 converges in probability to𝝁0 and n1∕2(�̂�0−𝝁0) converges
to a zero-mean Normal with variance V𝜇 , where

V𝜇 = E
⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩
⎛⎜⎜⎝
𝜌−1

1 s(0)1 (𝜷)−1Gi𝑗Wi1ΔY
i (Yi − 𝜇i𝑗)

⋮
𝜌−1

J s(0)J (𝜷)−1Gi𝑗WiJΔY
i (Yi − 𝜇i𝑗)

⎞⎟⎟⎠ −
J∑

𝑗=1
Gi𝑗

(
𝜇01 · · · 0
⋮ ⋱ ⋮
0 · · · 𝜇0J

)( s1(𝜷)′
⋮

sJ(𝜷)′

)
bi𝑗 (𝜷,W)

⎫⎪⎬⎪⎭
⊗2⎤⎥⎥⎥⎦ ,

where 𝜌j = P(gi = j), a marginal probability which can be estimated by 𝜌𝑗 = n𝑗∕n.
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Theorem 3. Under regularity conditions (a)-(g), as n → ∞, �̂� converges in probability to 𝜼0 and n1∕2(�̂� − 𝜼0) converges
to a zero-mean Normal with variance V𝜂 , where

V𝜂 =
(
𝝁′

0w
)−4 (

𝝁′
0wIJ − 𝝁0w′)V𝜇

(
𝝁′

0wIJ − w𝝁′
0
)
,

and with IJ denoting a J × J identity matrix.

The proofs of Theorem 2 and Theorem 3 proceed by applying the Delta Method to the results of Theorem 1.

4 SIMULATION STUDY

In this section, we first evaluate the finite sample properties of the proposed methods. We then compare the proposed
method to a conventional one-stage method of estimating the center effects and regression parameter simultaneously.
The conventional methods, which create 0/1 indicator variates for each center, then solve estimating equations (4)-(5)
simultaneously; this can be implemented in R using the package geepack.8

We generated the number of patients across J = 50 centers from a multinomial distribution with equal weights 1∕J and
the total sample size n. Four total sample sizes are tested: n = 2500, n = 5000, n = 10 000, and n = 20 000. Death times
were generated from an Exponential with mean {𝜇†

0𝑗 exp(𝛽†1 Z1i + 𝛽†2 Z2i)}−1, where Z1i and Z2i each follow independent
Normal(0, 1) distributions. We set 𝛽†1 = 0.5, 𝛽†2 = 1 and let 𝜇†

01, … , 𝜇†
0J range from 0.158 to 0.550 with an equal increment.

The true parameter values corresponding to E(Di ∧ L|Zi, gi) were determined empirically based on a sample size of 10
million. The censoring time also followed an Exponential distribution with hazard 𝜆C

0𝑗 exp(𝜃1Z1i + 𝜃2Z3i), where two cen-
soring patterns are tested, resulting in ≈15% and ≈30% censoring. The first censoring pattern uses 𝜽 = (0.4, 0.1)′ and with
𝜆C

01, … , 𝜆C
0J ranging from 0.0108 to 0.05 with an equal increment. The second censoring pattern uses 𝜽 = (0.5,−0.5)′ and

sets 𝜆C
01, … , 𝜆C

0J to range from 0.712 to 0.810 with an equal increment. The specification that centers with higher (lower)
death rate have higher (lower) censoring probability serves to balance the percent censored across centers. The perfor-
mance of the proposed methods is evaluated at two different truncation points: L = 1.8 and L = 5.4, which represent
approximately the 50th and 75th percentiles, respectively, of the death time distribution.

4.1 Finite-sample properties of the proposed methods
For brevity, we present the simulation results for L = 1.8 and L = 5.4. As shown in Table 1, the magnitude of the
bias decreases generally as sample size increases. Average standard error (ASE) is calculated using the aforementioned
shortcut (which treats the estimated Ŵ as known) and is on average very close to empirical standard deviation (ESD).
The coverage probability (CP) corresponding to ASE is quite close to 95%, except in a few scenarios under the heavier
censoring setup. We omit the simulation results corresponding to the standard error estimator derived from Theorem 1,
since the results are very similar to those presented for the shortcut formula.

Figure 1 show plots of the ASE versus ESD with respect to the rescaled center effects, �̂�, under light and heavy censoring
for L = 1.8 and L = 5.4. As sample size increases, the ASEs more closely approximate the corresponding ESDs. Note that
the ASE tends to overestimate the ESD; this is likely due to having treated the estimate weights as fixed.19

4.2 Comparison between proposed and conventional methods
In the Supporting Information document, we present results for the conventional method with respect to the estimated
regression parameter and rescaled center effects. Performance is very similar to the proposed methods. As shown in
Figure 2, the conventional method of estimating the rescaled center effects has very similar performance to the proposed
methods.

To illustrate the difference in the run time between our proposed methods and a standard weighted GLM approach
(which would simultaneously estimate the covariate and center parameters), we choose L = 1.8 under the first cen-
soring setup aforedescribed. Run times are presented for J = 25, 50, 100, 200, 400, 600, 800, 1000 and on average
50, 60, 70, 80, 90, 100 patients per center, respectively. Each run time is calculated using the average across 10 replicates.
Relative to the proposed methods, the conventional method runs much slower and result in approximately a 10-fold to
3000-fold increase in run time required to estimate the model. This is depicted in Figure 2, when number of centers
ranges from J = 50 to J = 500. The savings in computation time offered by our proposed algorithm increases rapidly with
increasing J and also with increasing average number of patients per center.
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TABLE 1 Simulation results: L = 1.8 and L = 5.4
under light and heavy censoring

L Censoring Parameter n BIAS ESD ASE CP (%)
1.8 ≈15% 𝛽1 = −0.132 2500 0.002 0.010 0.009 94

5000 0.001 0.007 0.007 93
10 000 0.001 0.005 0.005 95

𝛽2 = −0.264 2500 0.002 0.010 0.010 93
5000 0.001 0.007 0.007 95

10 000 0.000 0.005 0.005 94
≈ 30% 𝛽1 = −0.132 2500 0.004 0.010 0.010 93

5000 0.002 0.008 0.007 93
10 000 0.001 0.005 0.005 96

𝛽2 = −0.264 2500 0.002 0.010 0.010 94
5000 0.001 0.007 0.007 95

10 000 0.001 0.005 0.005 96
5.4 ≈ 15% 𝛽1 = −0.227 2500 0.004 0.014 0.014 95

5000 0.002 0.010 0.010 94
10 000 0.001 0.007 0.007 95

𝛽2 = −0.456 2500 0.004 0.015 0.014 92
5000 0.003 0.010 0.010 95

10 000 0.001 0.007 0.007 94
≈ 30% 𝛽1 = −0.227 2500 0.016 0.018 0.018 86

5000 0.010 0.013 0.013 90
10 000 0.005 0.009 0.010 92

𝛽2 = −0.456 2500 0.006 0.017 0.016 93
5000 0.003 0.012 0.012 94

10 000 0.002 0.008 0.008 95

Abbreviations: ASE, average standard error; CP, coverage probability; ESD, empirical
standard deviation.

FIGURE 1 True and estimated values and standard deviation of �̂� for L = 1.8 and L = 5.4. A, Estimation for L = 1.8; B, Estimation for
L = 5.4; C, Standard error for L = 1.8; D, Standard error for L = 5.4
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FIGURE 2 Computation time for our proposed and conventional methods with different J 's and number of patients per center

Another disadvantage of using conventional methods to fit model (1) is that such an approach requires large storage
to create the center indicators for a large data set. For example, the data set that motivated our methods (with > 5000
centers and >1 million patients) requires R to allocate ≈ 50 GB to create all the center indicators using the common data
types, and about 10 GB if special packages are used (eg, sparseMatrix). In contrast, fitting model (1) through our proposed
methods does not require the creation of center indicators, which greatly reduces the storage requirements.

In the Supporting Information document, we present simulation results for an additional setup where 20 of the centers
( j = 1, … , 10, 41, … , 50) have 25 subjects, with the remaining centers having 50 subjects. Residual bias is increased for
centers with 25 subjects. We do not endorse the proposed methods for centers with < 25 subjects.

5 ANALYSIS OF US DIALYSIS FACILITIES

We applied the proposed methods to analyze survival times for ESRD patients, using data obtained from the United States
Renal Data System (USRDS). We included all patients initiating renal replacement therapy (RRT) on hemodialysis in
the United States between January 1, 2004, and December 31, 2014. We excluded patients with a prior kidney transplant
and patients aged <18 at the time of RRT initiation. For each patient, follow-up started at the date of RRT initiation and
continued until the earliest of the following four events: death, transplantation, loss to follow-up, or 12/31/2014. The
event of primary interest is death. We have n = 1 061 403 patients from J = 5301 ESRD facilities. Approximately, 64%
of patients are observed to die. We chose L = 5 years as the truncation point. Out of n = 1 061 403 patients, 55% were
observed to die before L, 27% were censored before L, and 18% were truncated at L.

Prognostic factors historically reported as being important and, hence, included in our analysis include the following:
calendar year of RRT initiation (centered at 2004), age at RRT initiation (centered at 50 years and scaled by 5), gender,
race (Caucasian, Asian, Black, and Other), ethnicity (Hispanic or not), primary renal diagnosis (glomerulonephritis (GN),
diabetes, hypertension, and others), and 10 binary indicators of comorbidity conditions: cancer, diabetes, athlerosclerotic
heart disease (ASHD), congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), cerebrovascular
accident (CVA), peripheral vascular disease (PVD), elicit drug use, smoking status (current/former, non), and alcohol
consumption. The RMST model of mortality includes the aforementioned covariates as predictors and J = 5301 ESRD
Network facilities as centers. The Cox model for censoring includes the same set of covariates and is stratified by center.
Estimated coefficients for the RMST model are displayed in Table 2.

The center effect is evaluated by both center-specific RMST 𝜇j and rescaled 𝜂j. Figure 3 shows the histogram of the
J = 5301 center-specific 𝜇𝑗 's, the majority of which lie between 3.5 and 5. Each 𝜇0 j can be interpreted as the estimated
5-year RMST for a patient from facility j with all covariates equal to 0. As implied by Table 2, such a “reference” patient
would be age 50, initiate dialysis in 2004, be a non-Hispanic male Caucasian, have a GN as a primary renal diagnosis, and
no comorbid conditions.
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TABLE 2 Analysis of USRDS data: estimated covariate effects
on RMST (L = 5 years)

Covariate 𝜷 SE p exp𝜷
(Age-50)/5 (Years) −0.057 0 < 0.001 0.945
Initiation year-2004 −0.041 0 < 0.001 0.960
Gender (vs male)
female −0.003 0.002 0.060 0.997
Ethnicity (vs non-Hispanic)
Hispanic 0.139 0.003 < 0.001 1.149
Race (vs Caucasian)
Asian 0.147 0.004 < 0.001 1.158
Black 0.11 0.002 < 0.001 1.116
Other −0.041 0.008 < 0.001 0.960
Primary renal diagnosis (vs GN)
Diabetes −0.025 0.003 < 0.001 0.975
Hypertention −0.016 0.003 < 0.001 0.984
Other −0.117 0.004 < 0.001 0.890
Comorbidity (vs no)
ASHD 0.009 0.002 < 0.001 1.010
Cancer −0.196 0.004 < 0.001 0.822
CHF −0.15 0.002 < 0.001 0.861
COPD −0.141 0.003 < 0.001 0.868
CVA −0.08 0.003 < 0.001 0.923
Diabetes −0.022 0.003 < 0.001 1.022
Drug use −0.096 0.007 < 0.001 0.908
PVD −0.102 0.003 < 0.001 0.903
Tobacco use −0.011 0.003 < 0.001 0.989
Alcohol use −0.132 0.007 < 0.001 0.876

Abbreviations: ASHD, athlerosclerotic heart disease; CHF, congestive heart fail-
ure; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular acci-
dent; PVD, peripheral vascular disease; RMST, restricted mean survival time; SE,
standard error; USRDS, United States Renal Data System.

FIGURE 3 Histogram of
estimated J = 5301
center-specific restricted mean
survival time (RMST) 𝜇j 's

Figure 4 displays the point and interval estimates (95% confidence level) of rescaled 𝜂j's. A total of 656 (12%) of facilities
are significantly below average 5-year RMST, while 582 (11%) are significantly above average. There were 4063 (77%)
facilities that were not significantly different from the average 5-year RMST.

It took R approximately 11.33 minutes to calculate the IPCW weights, 2.65 minutes to estimate our proposed methods,
and then another 4.65 hours to calculate the standard error for �̂�. However, it requires R to allocate about 50 GB memory
to create the data needed for conventional methods, which is impossible for most of the local computers. Thus, in this par-
ticular example, storage considerations alone preclude a meaningful comparison between the proposed and conventional
GLM procedures with respect to run times.
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FIGURE 4 Point estimator
and confidence interval of
J = 5301 rescaled 𝜂j 's. RMST,
restricted mean survival time

6 DISCUSSION

In this report, we have developed a computationally attractive way to carry out facility profiling in terms of RMST. The
proposed methods accommodate the estimation of fixed center effects through a normalized center effect measure. The
methods are applicable large data numbers of both subjects and centers, as demonstrated through both simulation studies
and the analysis of a large registry database. Computational advantages include great reductions in storage require-
ments and run times relative to conventional methods. We have demonstrated that our proposed methods have good
finite-sample performance.

We applied our methods to ESRD data and out of J = 5301 ESRD facilities detected about 12% facilities significantly
below and 11% significantly above average in terms of 5-year RMST. This proportion might be inflated, which suggests
perhaps employing an empirical null method.9,11,20 We expect that, under an empirical null, considerably fewer centers
would be flagged as significantly different from average.

The parameter choice of the weights depends on the research objective of the analysis. Our data analysis uses equal
weight across all the center so that the resulted weighted average is not dominated by the large centers. This way, it is
easier to detect the centers with unusual performance. Some other reasonable choices include center-size proportional
weights, resulting into the national average; this choice carries more interpretability but is driven by large centers.

It should be noted that the identification of 𝜇0 j in model (1) requires that at least some subjects in center j have potential
follow-up time ≥ L; ie, P(Ci > L|Gi = j,Zi) > 0. If not, then 𝜇0 j cannot be estimated. More broadly, 𝜇0 j unlikely to be
estimated with meaningful precision unless ≥ 5 subjects have potential follow-up time ≥ L. The choice of L is always an
issue in the direct modeling of RMST; the issue is more pervasive in the context of facility profiling.

The methods developed in this article require the assumed RMST model to be correctly specified. Moreover, the com-
putational techniques really quite heavily on the multiplicative structure in model (1). Analogous developments for other
classes of RMST models may also be possible.
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JUSTIFICATION OF ALGORITHM IN SECTION 2.5

Here, we introduce some additional notation, for the sole purpose of establishing the requisite connections between (8)-(9)
and the Cox score equations. Along these lines, consider the following stratified Cox model:

𝜆†i𝑗(t) = 𝜆†0𝑗(t) exp{𝜸′Zi},

for the death hazard of a patient i ∈ {1, … ,n} from cluster j ∈ {1, … , J} with baseline covariate Zi. Naturally, we are
not assuming that this model holds; we only introduce it since Cox regression software is designed to fit models with this
structure. We set N†

i (t) and R†
i (t) as the counting process for death and at-risk indicator, respectively. As implemented by,
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for example, R and SAS, 𝜸 and 𝜆†0𝑗 can be estimated from the estimating equations given below with weights W†
i (t) = 1.

A variant of the standard estimating equation is well developed by weighting with W†
i (t) as IPCW weights.5

Our goal is to coerce the software (eg, coxph in R, phreg in SAS) to fit model (1) by solving estimating equations (8)-(9).
As such, we now establish connections between (8)-(9) and the IPCW version of the Cox score equations

J∑
𝑗=1

n∑
i=1

𝜏

∫
0

Gi𝑗Ŵ†
i𝑗(u)

{
Zi − S

†
𝑗 (u; 𝜸,W†)

}
dN†

i (u) = 𝟎, (A1)

t

∫
0

∑n
i=1 Gi𝑗W†

i𝑗(u)dN†
i (u)∑n

i=1 Gi𝑗W†
i𝑗(u) exp{𝜸′Zi}R†

i (u)
= Λ†

0𝑗(t), 𝑗 = 1, … , J, (A2)

where, for k = 0, 1, 2,

S(k)†
𝑗 (t; 𝜸,W†) =

∑n
i=1 Gi𝑗W†

i𝑗(t) exp{𝜸′Zi}R†
i (t)Z

⊗k
i∑n

i=1 Gi𝑗W†
i𝑗(t) exp{𝜸′Zi}R†

i (t)
, (A3)

S
†
𝑗 (t; 𝜸,W†) =

S(1)†
𝑗 (t; 𝜸,W†)

S(0)†
𝑗 (t; 𝜸,W†)

. (A4)

First, remove the integral signs from (A1)-(A2), such that only the increment at time u is considered. Next, replace Ŵ†
i𝑗(u)

with Ŵi𝑗ΔY
i Yi, then set R†

i (u) = 1 and dN†
i (u) = 1. By this point, it is clear that u is arbitrary and can be set to any positive

integer (ie, the same integer for all i). To conform with the software, we can set u equal to any positive number; here, we
set u = 1. Then, (A1)-(A2) are equivalent to our (8)-(9) after adding an offset − log(Yi) to the linear predictor.

Combining the above information implies that our proposed model can be fitted using standard Cox regression software,
with the data set augmented such that (a) observation time set to 1 for each subject, (b) Ŵi𝑗ΔY

i Yi used for a weight, (c)
− log(Yi) used for an offset, and (d) center serve as strata.
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