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1 | INTRODUCTION

Restricted mean survival time (RMST) is often of great clinical interest in practice and is gaining increased attention among
biostatisticians. There are now several existing methods to model RMST, with the methods distinguished by their estimation
approaches and assumptions on the censoring mechanism |1} 2} (3|4} 51617, 8. Compared to proceeding indirectly by transforming
other pivotal functions into RMST, directly modeling RMST has the appeal of straightforward parameter interpretation and
computational convenience.

We propose computationally convenient methods for evaluating center effects based on RMST. A multiplicative model for the
RMST is assumed. In the interest of robustness and flexibility, we avoid making any distributional assumptions on the underlying
survival time. Estimation is based on generalized estimating equations (GEE). Numerical techniques analogous to stratification
permit the simultaneous evaluation of thousands of center effects.

Distinguishing features of the proposed (relative to existing related) methods include the ability to conveniently estimate
a very large number (e.g., thousands) of covariate-adjusted center effects. Our methods are motivated by an analysis of the
national B istdgerentiliideiné (BSRD pdAgsat e thosup Ubjicavea beingtb ¢ enilnigeraés bieef oesienvbie >5000
dialysis fecildesbsther binitedHStitesc apg ¢bli tdstimaye theeetfeqts faw itha tRIM ST scpled of reradynpaticuteleye] wdvariates. As
will beyfleseribed, (hmBFEiRbCHUARES MAREPETS B BAAMEHENPSIBIBHOB A REUS FANISTEAE aritefifenptdfian those

in previous, related works |6l (8l Specifically, we propose a two-stage approach which involves estimating a regression parameter
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corresponding to the adjustment covariates at the first stage, with the center effects then estimated at the second stage. Note that
neither |6| nor 8| were developed for facility profiling. Their application in this setting would be through a one-stage approach
which estimated all parameters simultaneously and, hence, could be computationally prohibitive.

Although parameter estimation for the RMST model is generally convenient, computational difficulties may arise if the di-
mension of the covariate vector is quite large. Standard software packages (e.g., R and SAS) typically handle data sets with tens
of thousands of subjects better than they handle several hundred covariates. Examples include clustered data, or data with a high-
dimensional covariate. In this report, the terms “cluster”, “facility”, and “center" could be used interchangeably. In the interest
of concreteness, we use the term “center” hereafter, in part due to its connection with our motivating example. A conventional
way to adjust for fixed facility effects in a regression model is to code potentially very large number of center indicators; this
can introduce a high covariate dimension, in turn greatly increasing the computational burden and, in some cases, preventing
model convergence.

The case we consider in this report involves data characterized by a large number of centers and evaluated in an environment
where fixed center effects are desired |9, The data set which motivates our proposed methods consists of end-stage renal dis-
ease (ESRD) patients receiving hemodialysis in the United States. The study population has more than 1 million patients from
more than 5,000 dialysis facilities. Computational demands are underscored by the requirement of 50 GB of memory under
conventional methods. We are interested in evaluating the effect on RMST of some variables historically reported to be impor-
tant prognostic factors, including age, race, gender, underlying diagnosis, and comorbidity information. However, facility has
frequently been reported to be a strong predictor of ESRD patient survival. Moreover, it is generally acknowledged that the prog-
nostic factor distributions may differ markedly by facility. Such considerations are not unique to ESRD; in the presence of data
on subjects treated at different centers, great potential for bias exists if the regression model serving as the basis for covariate
adjustment does not adjust for facility |10

It should be noted that the purpose of this report is not to contrast fixed versus random effects as methods for adjusting for
center. Strong cases can be made in either direction, such that the choice of one over the other depends largely on the data
structure at hand and analytic objectives. In our case, covariate effects are of interest, but of equal (or more) interest are the
facility effects. Such results are often of great interest to various stakeholders (e.g., regulatory bodies, oversight committees,
insurers). In this particular framework, one reason to prefer fixed versus random facility effects is that a key assumption of the
random effects model (i.e., the independence of facility effect and patient characteristics) is unlikely to hold. Fixed cluster effects
are arguably more appropriate when we suspect the individual covariates are correlated with facility effects. In addition, fixed
effect methods have been demonstrated to yield less biased estimators with smaller mean squared error when the true facility
effect is far from the average across facilities 9, [11L

In the context of ESRD data, conventional methods would involve simultaneous estimation of the parameter vector corre-
sponding to the covariate vector and the parameters corresponding to the = 5, 000 facility indicators. As will be demonstrated,
the proposed techniques separate the estimation of center specific baseline RMST from the estimation of covariate effects. As
detailed in Section 2, the techniques we develop can exploit standard software for implementation, a desirable property for prac-
titioners. The proposed methods yield much faster run times relative to those typically employed in the generalized linear models
setting. In particular, we dissect the model structure and connect it to the estimation procedure of the stratified proportional
hazards model (12} [13|

The novelty of the methods proposed in this report is primarily from two perspectives. First, to the best of our knowledge, no
previous work has proposed methods for estimating center effects through a direct model of RMST. Second, no previous report
has addressed computational issues likely to arise for RMST modeling in the presence of large data sets. We focus on center
effects (as a frequently occurring instance of high dimensional categorical covariates) and propose techniques which greatly
reduce storage space and computing time and, hence, are amenable to very large databases.

The remainder of this report is organized as follows. In Section 2, we formulate the data structure, describe the proposed
methods, and then describe the proposed estimation procedures. Large sample properties are derived in Section 3, with numerical
studies conducted in Section 4 in order to assess the accuracy of the proposed procedures in finite samples. We illustrate our
methods in Section 5 through application to the afore-described ESRD database. Discussion and possible future directions are
presented in Section 6. R code for carrying out the proposed methods is provided in the Supporting Information document
corresponding to this article.
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2 | PROPOSED METHODS

We now describe the proposed methods, beginning with the requisite notation.

2.1 | Notation and assumptions

Let i denote the i’th patient (i = 1, ..., n) and let g; denote this patient’s center, where g; = 1, ..., J and J is usually a relatively
large number (e.g., J = 1,000). To simplify the notation, we create a vector G; = (G, ..., G,;)’, where G, =1(g =j)and I(-)
represents an indicator variable taking the value 1 when its argument is true and O otherwise. That is, G; will have all elements
equal to 0 except the g;th element (which equals 1). Baseline covariates are denoted by Z, a vector of length p. Let D, denote the
time of death, which is subject to right censoring time C;. Due to the occurrence of censoring, we observe the minimum of death
and censoring time, X; = D, A C; and, hence, we define the death indicator AP = I(D; < C,). Suppose L is the pre-specified
truncation time point of interest (e.g., 5 years, 10 years, etc). We then define the truncated survival time and its corresponding
indicator by Y; = D; A L and AiY = I(D; A L £ C)), respectively. Our observed data are then O = {O;; i = 1,...,n}, where
O,={Z.G.,X.Y,,AY AP}

We are interested in average survival up to time L, and the model of interest can be represented in a general sense by y;; =
E (D,- ANL|Z, g = j). Since our intention is to develop a useful tool to evaluate survival based on the information available
at the time origin, we model the RMST as a function of baseline (time 0) covariates. We assume the following model for the
L-year RMST,

Hij = Hoj eXp{ﬂ()Zi}, (1)

where B, = (By;, ... fy,) is the covariate effect of interest, and py = (4oy, ..., Ho;)' is the center-specific baseline RMST.
Model (I) has the same structure as a GLM with a log link. However, note that the variance structure is unspecified. The
model is equivalent to a model with centers represented by J indicator variables; i.e., exp{ ﬂéZ ;+ G: log(u)}. For the data
structure of interest in this report, J is usually a large number, such that fitting the model requires careful consideration to avoid
computational difficulties. In order to avoid estimating the J center effects simultaneously, we propose a two-stage procedure
which allows us to separately estimate ff; and y. Note that the dependence of y;; on L is suppressed throughout this article.

2.2 | Censoring models

In the absence of censoring, E[G;Z,{D; A L — py; eXp(ﬂf)Z )11 = 0. This can serve as the basis for constructing estimating
equations, but requires modification in the presence of censoring. To accommodate censoring, we employ a variant of Inverse
Probability of Censoring Weighting (IPCW) 14} [15! In our context, IPCW re-weights the uncensored (D; A L) values, such that
the weighted data represent the (D; A L) distribution of the target population. We allow the censoring distribution to depend
on the baseline covariates and to differ across centers. Note that covariate-dependent censoring is quite common. For example,
consider an observational study, conducted during a fixed calendar period, with staggered entry. In this case, subjects who enter
later in the observation window would have a different censoring distribution than those who enter earlier. Covriate-dependent
censoring would result if survival time also depended on calendar time (e.g., survival improved, due to therapeutic advances).
Denote the hazard function for censoring time C; by /ll.cj(t) for patient i from center j; specifically, /ll.cj(t) =lim,_,h ' P(X; €
[t,t+h),AP =0|X; > 1, Z,, g = j). Denote the corresponding cumulative hazard by Aicj(t) = fot Aicj(u)du. Defining the IPCW

weight is given by W, = exp{AS(Yi)}, it can be shown that
E [GijA,YVVijZi <Yz — Ho; eXp{ﬁf)Z,-})] =0. )

In practice, AS(I) is rarely known and needs to be estimated from the observed data. For this purpose, we assume the following
Cox model for censoring,
A0 = A5, (D expl6, Z, ), 3)
which can be fitted by reversing the ‘event/censoring’ roles of D and C.
The use of Cox regression is well-established in the context of IPCW, and the above censoring assumption can easily accom-
modate both covariate-independent and covariate-dependent censoring. After estimating 0 and //igj () through standard partial
likelihood (16 and Breslow [17 estimators, respectively, we can estimate the IPCW weights, W, = P(C, > Y,|Z,, G, = j,Y))™',
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by I//IZ ;= exp{exp(@/z ,-)/A\gj(Yi)}. We then substitute the estimated weights W= (171\/1, cees 171\/,,)’ in place of their corresponding
true values W = (W, ..., W,).

Several notes regarding model (3)) are in order at this juncture. First, note that dependence of the C distribution on center are
accommodated through the center-stratified baseline hazard. Second, generally, it would be preferable to use all data to estimate
model (3). However, doing so assumes proportionality across (0, ], which is more restrictive than a proportionality assumption
across (0, L]. Therefore, if proportionality is violated and if L << 7 (e.g., L = 1 year, = = 5 years), then it may be preferable to
artificially censor subjects at L for the purposes of estimating model (3. We return to the discussion of the censoring distribution
in Section 6.

2.3 | Estimating equations

Based on the zero-mean property given in (2)), we construct the following estimating equations:

ZZG WA Z (Y, — ) = 0

j=1i=

ZG WAY (Y, — ;) =0, j=1,...J.
Substituting W for W, we can estimate B, and p, from following p + J working estimating equations:

ZZG WA Z, (Y, — pg;exp{(BLZ,)) = O]

j=1i=
ZG WAY (Y, — o explByZ,}) =0, j=1,...J. 5)

Solving (@) and () simultaneously imphes simultaneous estimation of p+J parameters, which is subject to numerical instability
when J is quite large. Instead, we propose estimating f, first through iteration, and then estimating p, through J separate
closed-form expressions. Along these lines, we define:

Y G WA expl B Z,) 23"

i1 Gy
— sV (B W)
S;BW) = —5——s @)
S (B.W)
forj = 1,...,J and k = 0, 1, 2. Note that, for a vector a, we define a®® = 1, a®' = a, and a® = a’a. Using (6) and (7), we
can rewrite estimating equations (@)-(5) as follows:

sEBwW) = : (6)

J n
> X Gyl Z, = 5, WNW,a]Y, =, ®)

j=1i=1

2in Gy W, ATY,
Y, G, W,AY exp(fZ,)
The algebra underlying the equivalence of (@)-(5) and (8)-(9) is provided below in Section 2.4. Note that (§) is free of the
center-specific parameters y, and that (9) is a closed-form calculation of u, allowing us to separately estimate f, and p.

Ho; = j=1,..,J. ©)

2.4 | Equivalence of systems (8)-(9) and (4)-(5)

Solving (3)) yields .
X Gy WiATY, =1 J

—— o
Y G W AT exp(B'Z,)

Hoj =
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which, for fixed g, is equal to (E[) Then, substituting this expression for y; into (FI_:[) yields

= Z ZG W,AYY,Z,

J n n W AY
—~ G W, ATY,
_ Z Z G,j V‘/UAIY exp{ﬁlzi }Z, - Zk—l/\kj Yk] k k,
i=1 i=1 Y1 G Wi AL exp{ B’ Z )}

J
J n J n (1)(ﬂ W)
= GlI/JZA[YKSI - Gk Wk 0 .~
,zl‘ a ,zl‘ ; Y S“”(ﬁ W)

which is equal to (8).

2.5 | Fitting the proposed model using Cox regression software

Exploiting the connections between the proposed estimating equations and proportional hazards regression, we now describe
an algorithm for estimating parameters from model (I)) using Cox regression software. The steps are as follows:

(i) Estimate the censormg hazard AC(t) from model by unweighted partial likelihood and the Breslow estimator. Construct
IPCW weights by W, = exp{AC(Y)} fori=1,.

(ii) Create a data set where each subject i has a row containing {Z, g;, V/IZI A} , Xil, Off;}, where I//[Zj = VAViinYYi, A} =1,
X! =1 and Off; = —log(Y)).

(iii) Fit a stratified inverse-weighted Cox model to the data set created in Step (ii), with g; serving as strata, covariate Z,,
weight VVI;, token ‘follow-up time’ X i‘ (set to 1 for all i) and ‘death indicator’ Ai1 (also set to 1 for all i), and offset Off;.
Note that ties should be handled by Breslow option, which is default in SAS, but not R.

We justify this algorithm algebraically in Appendix A, although some immediate comments are in order. The inverse weighting
in Step (i) is implied by Section 2. The use of a ‘token’ follow-up time (equal for all subjects) and death indicator reconcile the
software’s expectation of an integration over time with the property that (§) and (9) invoke one contribution per subject (hence,
with no associated integral). Note that the follow-up time could be any non-negative number, so long as it is set equal for all
subjects. Step (iii) can be implemented by several statistical software packages. It has been tested by the authors in R and SAS.

The algorithm is quite fast, even for very large data sets, owing to the stratification. The resulting coefficient and baseline
hazard serve as our proposed estimators ﬁ and J.

Note that the procedure described by steps (i), (ii) and (iii) above treats the W as fixed. We outline a justification for this
shortcut in Section 3, between Theorem 1 and Theorem 2.

2.6 | Center effects

Note that { ug, ... 4oy } represent the center-specific baseline RMST and, analogous to center-specific intercepts, do not represent
center-specific contrasts. For settings where contrasts between centers are of interest, we propose the following rescaling,

Hoj
w'py
where w = (wy, ..., w;) is a pre-specified weight vector with w’1 = 1. An example of w would be w = (1,...,1)'/J, ie.,
equal weight across all J centers. The rescaled n = (7, ..., ;) represents a vector of covariate-adjusted contrasts, with element
J contrasting center j with the overall weighted average center. Note that the weighted average of the contrasts equals 1 (i.e.,
w'fi = 1), which is a desirable property for interpretation purposes.

;/]j: j=1,...,J,
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3 | ASYMPTOTIC PROPERTIES

Regularity conditions are as specified in the Supplementary Information document. These conditions can be relaxed at the
expense of additional technical development.
Our main asymptotic results are summarized in the following three theorems, with proofs for each presented in Appendix B.

Theorem 1. Under regularity conditions (a)-(g), as n — oo, 23 converges in probability to B, and n'/ Z(E — pP,) converges to a
zero-mean Normal with variance A(B,)~' B(B,)A(B,)~" with A(B,) and B(p,,) defined as follows:

! s7B)
Ap) = Z E {GijA?]VVini < - - Ej(ﬂ)®2>} BB, W)=E l

p= sPB)

J

J

G;; {b;; (B W)}®2] ;
=1
where

b, (B, W) = {Zi _Ej 8, W)} VViinY (Y: - #ij)
+ K(B,6,W)0©)"'U,;(6)

[ H, (5,6, W)
+/—
0

J
K(B,0.W) = Y E{G,e,(8,W)D(6) },
j=1

7 T
U, = ZG,.J./{Z,.—Fj(u;e)}dMg(u),
j=1 0

H;(t;8,.0,W) = E [e,(B, W)exp{60' Z,} R,(1)] ,

with Mg(t) =G, {Nic(t)—fot R;(u) exp(O’Z[)ﬂgj(u)du} as the censoring martingale and N€ (1) = I(X, < t, AP = 0) represents
the censoring counting process.

The consistency of ﬁ holds by the Inverse Function Theorem 18|, while the proof of asymptotic normality follows through the
combination of various Taylor series expansions and the Cramer-Wold Theorem. This sandwich variance with B as the middle
matrix treats [IPCW weights as estimated from the data, which well reflects the reality. However, the calculation of this variance
could be complicated. A useful short cut involves replacing the middle matrix B with

J Q2
B*(B,W)=E lZG,—, {b;*j(ﬂ,W)} ] ;
j=1

where bfj BW)={Z, - 5}. B, W)} VVl-jA?'(Yi — H;;) is the first and primary component of the original b;;(B, W'). This short
cut treats the [IPCW weights as fixed rather than estimated. Although it does not fully reflect the actual estimating procedure,
this short cut is much easier to calculate and should serve as a useful substitute for the more complicated variance estimator
implied by Theorem 1, particularly since the primary source of variation is still captured. We evaluate this variance estimator
through simulation in Section 4.

Theorem 2. Under regularity conditions (a)-(g), as n — 0, i, converges in probability to p, and n'/?(fi, — u,) converges to a
zero-mean Normal with variance V' e where

o'y B Gy WA (Y, - )
- E 3
15 B G WAl (Y= )
®2
G;| ¢ -
1 0 ... poy J\5,(BY

where p; = P(g; = j), a marginal probability which can be estimated by ﬁj =n;/n.

J Hop --- O Y[ 5,(B)
71 B b; (B, W) ,

J
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Theorem 3. Under regularity conditions (a)-(g), as n — co, 7 converges in probability to i, and n'/?(7j — n,) converges to a
zero-mean Normal with variance Vn, where

—4
V= (mow) " (mgwl ;= pow') V., (Howl; —wii)
and with I'; denoting a J X J identity matrix.

The proofs of Theorem 2 and Theorem 3 proceed by applying the Delta Method to the results of Theorem 1.

4 | SIMULATION STUDY

In this section, we first evaluate the finite sample properties of the proposed methods. We then compare the proposed method
to a conventional one-stage method of estimating the center effects and regression parameter simultaneously . The conventional
methods, which create 0/1 indicator variates for each center, then solve estimating equations (4)-(3) simultaneously; this can be
implemented in R using the package geepack 8.

We generated the number of patients across J = 50 centers from a multinomial distribution with equal weights 1/J and the
total sample size n. Three total sample sizes are tested: n = 2,500, n = 5,000, n = 10,000 and » = 20, 000. Death times were
generated from an Exponential with mean { ygj exp(ﬁlT Z,;+ ﬂg Z,)}~!, where Z,; and Z,, each follow independent Normal(0, 1)
distributions. We set ﬂ;r =0.5, ﬁ; = 1 and let plgl, e /42; , range from 0.158 to 0.550 with an equal increment. The true parameter
values corresponding to E(D; A L|Z,, g;) were determined empirically based on a sample size of 10 million. The censoring time
also followed an Exponential distribution with hazard /lgj exp(0, Z,; + 0, Z5;), where two censoring patterns are tested, resulting
in #15% and ~30% censoring. The first censoring pattern uses @ = (0.4,0.1)" and with Agl, cees AgJ ranging from 0.0108 to 0.05
with an equal increment. The second censoring pattern uses 8 = (0.5, —0.5)" and sets /lgl, e AgJ range from 0.712 to 0.810
with an equal increment. The specification that centers with higher (lower) death rate have higher (lower) censoring probability
serves to balance the percent censored across centers. The performance of the proposed methods is evaluated at two different
truncation points: L = 1.8 and L = 5.4, which represent approximately the 50th and 75th percentiles, respectively, of the death
time distribution.

4.1 | Finite-sample properties of the proposed methods

For brevity, we present the simulation results for L = 1.8 and L = 5.4. As shown in Table[I] the magnitude of the bias decreases
generally as sample size increases. Average Standard Error (ASE) is calculated using the afore-mentioned short-cut (which
treats the estimated W as known), and is on average very close to empirical standard deviation (ESD). The coverage probability
(CP) corresponding to ASE is quite close to 95%, except in a few scenarios under the heavier censoring setup. We omit the
simulation results corresponding to the standard error estimator derived from Theorem 1, since the results are very similar to
those presented for the short-cut formula.

Figure [1| show plots of the ASE versus ESD with respect to the re-scaled center effects, %, under light and heavy censoring
for L = 1.8 and L = 5.4. As sample size increases, the ASEs more closely approximate the corresponding ESDs. Note that the
ASE tend to overestimate the ESD; this is likely due to having treated the estimate weights as fixed 19l

4.2 | Comparison between proposed and conventional methods

In the Supporting Information document, we present results for the conventional method with respect to the estimated regres-
sion parameter and re-scaled center effects. Performance is very similar to the proposed methods. As shown in Figure 2, the
conventional method of estimating the rescaled center effects has very similar performance to the proposed methods.

To illustrate the difference in the run time between our proposed methods and a standard weighted GLM approach (which
would simultaneously estimate the covariate and center parameters), we choose L = 1.8 under the first censoring set-up afore-
described. Run times are presented for J = 25, 50, 100, 200, 400, 600, 800, 1000 and on average 50, 60, 70, 80, 90, 100
patients per center, respectively. Each run time is calculated using the average across 10 replicates. Relative to the proposed
methods, the conventional method runs much slower and result in approximately a 10— to 3000—fold increase in run time
required to estimate the model. This is depicted in Figure 2| when number of centers ranges from J = 50 to J = 500. The

This article is protected by copyright. All rights reserved.
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Table 1 Simulation results: L = 1.8 and L = 5.4 under light and heavy censoring

L  Censoring  Parameter n BIAS ESD ASE CP(%)

1.8 ~15% py=-0.132 2500 0.002 0.010 0.009 94
5000 0.001 0.007 0.007 93

10000 0.001 0.005 0.005 95

p, =-0264 2500 0.002 0.010 0.010 93

5000 0.001 0.007 0.007 95

10000 0.000 0.005 0.005 94

~ 30% py=-0.132 2500 0.004 0.010 0.010 93
5000 0.002 0.008 0.007 93

10000 0.001 0.005 0.005 96

p, =-0264 2500 0.002 0.010 0.010 94

5000 0.001 0.007 0.007 95

10000 0.001 0.005 0.005 96

5.4 ~ 15% py=-0227 2500 0.004 0.014 0.014 95
5000 0.002 0.010 0.010 94

10000 0.001 0.007 0.007 95

p, =-0456 2500 0.004 0.015 0.014 92

5000 0.003 0.010 0.010 95

10000 0.001 0.007 0.007 94

~ 30% py=-0227 2500 0.016 0.018 0.018 86
5000 0.010 0.013 0.013 90

10000 0.005 0.009 0.010 92

p, =-0456 2500 0.006 0.017 0.016 93

5000 0.003 0.012 0.012 94

10000 0.002 0.008 0.008 95

savings in computation time offered by our proposed algorithm increases rapidly with increasing J and also growing average
number of patients per center.

Another disadvantage of using conventional methods to fit model (T) is that such an approach requires large storage to create
the center indicators for a large data set. For example, the data set which motivated our methods (with > 5,000 centers and >1
million patients), requires R to allocate =~ S0GB to create all the center indicators using the common data types, and about 10GB
if special packages are used (e.g., sparseMatrix). In contrast, fitting model (I)) through our proposed methods does not require
the creation of center indicators, which greatly reduces the storage requirements.

In the Supporting Information document, we present simulation results for an additional set-up where 20 of the centers
(G =1,...,10,41, ...,50) have 25 subjects, with the remaining centers having 50 subjects. Residual bias is increased for centers
with 25 subjects. We do not endorse the proposed methods for centers with < 25 subjects.

S | ANALYSIS OF U.S. DIALYSIS FACILITIES

We applied the proposed methods to analyze survival times for end-stage renal disease (ESRD) patients, using data obtained
from the United States Renal Data System (USRDS). We included all patients initiating renal replacement therapy (RRT) on
hemodialysis in the United States between January 1, 2004 and December 31, 2014. We excluded patients with a prior kidney
transplant and patients aged <18 at the time of RRT-initiation. For each patient, follow-up started at the date of RRT initiation
and continued until the earliest of the following four events: death, transplantation, loss to follow-up, or 12/31/2014. The event
of primary interest is death. We have n = 1,061, 403 patients from J = 5,301 ESRD facilities. Approximately 64% of patients
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Figure 1 True and estimated values and standard deviation of 7 for L = 1.8 and L = 5.4
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Figure 2 Computational time for our proposed and conventional methods with different J’s and number of patients per center
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are observed to die. We chose L = 5 years as the truncation point. Out of n = 1,061,403 patients, 55% were observed to die
before L, 27% were censored before L, and 18% were truncated at L.

Prognostic factors historically reported as being important and, hence, included in our analysis include: calendar year of RRT
initiation (centered at 2004), age at RRT initiation (centered at 50 years and scaled by 5), gender, race (Caucasian, Asian, Black,
and Other), ethnicity (Hispanic or not), primary renal diagnosis (glomerulonephritis (GN), diabetes, hypertension, and others),
and 8 binary indicators of comorbidity conditions: cancer, diabetes, athlerosclerotic heart disease (ASHD), congestive heart
failure (CHF), chronic obstructive pulmonary disease (COPD), cerebrovascular accident (CVA), peripheral vascular disease
(PVD), elicit drug use, smoking status (current/former, non), and alcohol consumption. The RMST model of mortality includes
the afore-mentioned covariates as predictors and J = 5,301 ESRD Network facilities as centers. The Cox model for censoring
includes the same set of covariates and is stratified by center. Estimated coefficients for the RMST model are displayed in Table
2

The center effect is evaluated by both center-specific RMST u; and rescaled #;. Figureshows the histogram of the J = 5,301
center-specific I ;’s, the majority of which lie between 3.5 and 5. Each p,; can be interpreted as the estimated 5-year RMST for
a patient from facility j with all covariates equal to 0. A implied by Table 2, such a ‘reference’ patient would: be age 50; initiate
dialysis in 2004; be a non-Hispanic male Caucasian; have a GN as a primary renal diagnosis; and no comorbid conditions.

Figuredisplays the point and interval estimates (95% confidence level) of rescaled 7;’s. A total of 656 (12%) of facilities are
significantly below average 5-year RMST, while 582 (11%) are significantly above average. There were 4,063 (77%) facilities
that were not significantly different from the average 5-year RMST.

It took R approximately 11.33 minutes to calculate the IPCW weights; 2.65 minutes to estimate our proposed methods; then
another 4.65 hours to calculate the standard error for fi. However, it requires R to allocate about 50GB memory to create the
data needed for conventional methods, which is impossible for most of the local computers. Thus, in this particular example,
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Table 2 Analysis of USRDS data: Estimated covariate effects on RMST (L = 5 years)

Covariate 23 SE p expﬁ
(Age-50)/5 (Years) -0.057 0 < 0.001 0.945
Initiation year-2004 -0.041 0 < 0.001 0.960

Gender (vs male)
female -0.003 0.002 0.060 0.997
Ethnicity (vs non-Hispanic)

Hispanic 0.139 0.003 <0.001 1.149
Race (vs Caucasian)

Asian 0.147 0.004 <0.001 1.158

Black 0.11 0.002 <0.001 1.116

Other -0.041 0.008 < 0.001 0.960
Primary Renal Diagnosis (vs GN)

Diabetes -0.025 0.003 < 0.001 0.975

Hypertention -0.016 0.003 <0.001 0.984

Other -0.117 0.004 < 0.001 0.890

Comorbidity (vs no)

ASHD 0.009 0.002 <0.001 1.010

Cancer -0.196 0.004 < 0.001 0.822

CHF -0.15 0.002 <0.001 0.861

COPD -0.141 0.003 < 0.001 0.868

CVA -0.08 0.003 <0.001 0.923

Diabetes -0.022 0.003 < 0.001 1.022

Drug use -0.096 0.007 < 0.001 0.908

PVD -0.102 0.003 < 0.001 0.903

Tobacco use -0.011 0.003 < 0.001 0.989

Alcohol use -0.132 0.007 < 0.001 0.876

Figure 3 Histogram of estimated J = 5,301 center-specific RMST u;’s

Proportion

o 35 0 45 50
Estimated center-specific AMST

storage considerations alone preclude a meaningful comparison between the proposed and conventional GLM procedures with
respect to run times.
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Figure 4 Point estimator and confidence interval of J = 5,301 rescaled j’s

Estimated rescaled center-specific RMST

280 300
Center

6 | DISCUSSION

In this report we have developed a computationally attractive way to carry out facility profiling in terms of RMST. The proposed
methods accommodate the estimation of fixed center effects through a normalized center effect measure. The methods are
applicable large data numbers of both subjects and centers, as demonstrated through both simulation studies and the analysis of
a large registry database. Computational advantages include great reductions in storage requirements and run times relative to
conventional methods. We have demonstrated that our proposed methods have good finite-sample performance.

We applied our methods to ESRD analysis and out of J = 5,301 ESRD facilities detected about 12% facilities significantly
below and 11% significantly above average in terms of 5-year RMST. This proportion might be inflated, which suggests perhaps
employing an empirical null method 20, |9, [11l We expect that, under an empirical null, considerably fewer centers would be
flagged as significantly different from average.

The parameter choice of the weights depends on the research objective of the analysis. Our data analysis uses equal weight
across all the center so that the resulted weighted average is not dominated by the large centers. This way it is easier to detect
the centers with unusual performance. Some other reasonable choices include center-size proportional weights, resulting into
the national average; this choice carries more interpretability but is driven by large centers.

It should be notes that the identification of y,; in model @) requires that at least some subjects in center j have potential
follow-up time > L;i.e, P(C; > L|G; = j, Z,) > 0. If not, then Ho; cannot be estimated. More broadly, Ho; unlikely to be
estimated with meaningful precision unless > 5 subjects have potential follow-up time > L. The choice of L is always an issue
in the direct modeling of RMST; the issue is more pervasive in the context of facility profiling.

The methods developed in this article require the assumed RMST model to be correctly specified. Moreover, the computational
techniques really quite heavily on the multiplicative structure in model (T)). Analogous developments for other classes of RMST
models may also be possible.
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APPENDIX

A JUSTIFICATION OF ALGORITHM IN SECTION 2.5

Here, we introduce some additional notation, for the sole purpose of establishing the requisite connections between (8), (9) and
the Cox score equations. Along these lines, consider the following stratified Cox model,

A0 = A (exply' Z,),
for the death hazard of a patienti € {1,...,n} from cluster j € {1,...,J} with baseline covariate Z,. Naturally, we are not
assuming that this model holds; we only introduce it since Cox regression software is designed to fit models with this structure.
We set N,T(t) and Rl.T(t) as the counting process for death and at-risk indicator, respectively. As implemented by, for example,
R and SAS, y and Agj can be estimated from the estimating equations given below with weights VVI.T(I) = 1. A variant of the
standard estimating equation is well developed by weighting with I/ViT(t) as IPCW weights 5l

Our goal is to coerce the software (e.g., coxph in R, phreg in SAS) to fit model (I) by solving estimating equations (8)-(9).
As such, we now establish connections between @])-@]} and the IPCW version of the Cox score equations:

J n z .
3 Z/G,.jl?/;(u){z,. — Sy, WHN] W) = 0, (Al)
j=1i=1 4

X GyW,wd N/ w) .
/ , — = A (0).j=1,....J, (A2)
Y GuWweply ZYRw)

0
where for k =0, 1, 2,
Y GWiwexply' Z Y RN ZE"
SOy wh = 2= —, (A3)
Zi=1 GijVV,-j(t) exp{y'Z;}R; (1)
SVty, wh

SV ty, wh

Sty Wh = (A4)

First, remove the integral signs from -, such that only the increment at time u is considered. Next, replace Ijl\/[j(u) with
171\/,- jAfY,., then set Rj(u) =1and le.T(u) = 1. By this point, it is clear that u is arbitrary and can be set to any positive integer
(i.e., the same integer for all i). To conform with the software, we can set u equal to any positive number; here, we set u = 1.
Then (AT)-(A2) are equivalent to our (8)-(9) after adding an offset — log(Y;) to the linear predictor.

Combining the above information implies that our proposed model can be fitted using standard Cox regression software, with
the data set augmented such that: (a) observation time set to 1 for each subject; (b) 171\/1 jAlYY,- used for a weight; (c) —log(Y;)

used for an offset; (d) center serve as strata.

SUPPORTING INFORMATION

A Supporting Information document is available as part of the online article.
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