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1. The thickness selection of the absorber layer 

The absorber layer should be much thinner than the wavelength to avoid intrinsic 

absorption in this layer at 𝜆𝑐 , so the electric field intensity in this layer can be 

approximated to be constant. Resultantly, the electric field intensities at the 2-3 

interface (E(z = 𝑑4 + 𝑑)) and the 3-4 interface (E(z = 𝑑4)) can both be approximated 

to zero since the absorber layer is placed at the position where E(𝜆𝑐) ~ 0 to achieve high 

reflectivity. Therefore, the reflection coefficients at these two interfaces should be close 

to -1 due to the coincidence of forward electric field and reflected electric field, that is: 

𝑟345 =
𝑟34+𝑟45𝑒2𝑖𝛽4

1+𝑟34𝑟45𝑒2𝑖𝛽4
→ −1,                                         (1)                

𝑟2345 =
𝑟23 + 𝑟345𝑒2𝑖𝛽3

1 + 𝑟23𝑟345𝑒2𝑖𝛽3
→ −1,                                    (2) 

where 𝑟𝑝𝑞 =
𝑚𝑝−𝑚𝑞

𝑚𝑝+𝑚𝑞
, 𝑚𝑝= 𝑛𝑝 + 𝑖𝑘𝑝 is the complex refractive index of layer p, 𝛽4 =

2𝜋𝑛4𝑑4/𝜆𝑐, 𝛽3 = 2𝜋(𝑛 + 𝑖𝑘)𝑑/𝜆𝑐. By substituting Equation (1) into Equation (2), we 

get  

𝑟2345 =
𝑟23−𝑒2𝑖𝛽3

1−𝑟23𝑒2𝑖𝛽3
→ −1.                                            (3)  

It yields 

𝑒2𝑖𝛽3 = exp (−
4𝜋𝑘𝑑

𝜆𝑐
) ∗ exp (𝑖

4𝜋𝑛𝑑

𝜆𝑐
) → 1,                        (4)  

which requires 
4𝜋𝑛𝑑

𝜆𝑐
→ 2𝑚𝜋 (𝑚 = 0,1, … ). Considering the skin depths of common 

metals, 
4𝜋𝑛𝑑

𝜆𝑐
 should be close to 0, thus 𝑑 ≪

𝜆𝑐

4𝜋𝑛
. 

 

 

 

 



2. The design of high-purity red and green color filters 

 

Figure S1. (a) The calculated ideal complex refractive indices (n, k) of the absorber layer in a 

wavelength range from 400 nm to 600 nm for producing highly pure red color filters when the 

thickness d is fixed to 12 nm, 16 nm and 20 nm, respectively. Comparisons of (b) the refractive 

indices and (c) extinction coefficients of the ideal absorber material, single lossy medium Ge, W 

and the W/Ge bilayer film in the case of d = 16 nm for the red color filter. 

For high-purity red color filters, the thickness of the middle Ta2O5 layer is fixed at 

d4 = 130 nm corresponding to the half-wave optical thickness of 𝜆𝑐 = 630 nm and the 

thickness of the top Ta2O5 layer is fixed at d2 = 44 nm corresponding to the quarter-

wave optical thickness of the target wavelength 𝜆0 = 400 nm, where the reflection gets 

suppressed. The wavelength region of zero reflectivity should be from 400 nm to 600 

nm. Figure S1a plots the calculated ideal n and k at different wavelengths when the 

absorber layer thickness d is 12, 16 and 20 nm, respectively. The ideal n and k can be 

effectively adjusted by changing the thickness of the absorber layer. Besides, the values 

of the ideal n and k gradually decrease when increasing the thickness d from 12 to 20 

nm. Figure S1b and Figure S1c compare the complex refractive indices of the ideal 

absorber material, single lossy medium germanium (Ge), tungsten (W) and the W/Ge 

bilayer film in the case of d = 16 nm. It is obvious that the effective (n, k) of the bilayer 

absorber comprised of 8 nm W and 8 nm Ge is closer to the ideal (n, k).  

(a) (b) (c)



 

Figure S2. (a) The calculated ideal complex refractive indices (n, k) of the absorber layer in two 

wavelength regions (400 ~ 500 nm and 600 ~ 700 nm) for producing highly pure green color filters 

when the thickness d is fixed to 12 nm, 16 nm and 20 nm, respectively. Comparisons of (b) the 

refractive indices and (c) extinction coefficients of the ideal absorber material, single metal Au, Ni 

and the Au/Ni bilayer film in the case of d = 20 nm for the green color filter. 

In order to obtain high-purity green color filters, zero reflectivity should be achieved 

in two wavelength ranges (400 ~ 500 nm and 600 ~ 700 nm) at the same time. The 

(a)
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thickness of the middle Ta2O5 layer is fixed at d4 = 228 nm corresponding to one 

wavelength optical thickness of 𝜆𝑐 = 525 nm. At this thickness, a narrower reflection 

bandwidth can be created by the second-order F-P cavity resonance mode, resulting in 

better color purity. The thickness of the top Ta2O5 layer is fixed at d2 = 26 nm 

corresponding to the one-eighth wavelength optical thickness of the target wavelength 

𝜆0 = 460 nm, where the reflection gets suppressed. The much thinner thickness of the 

AR layer for the green color filter is resulted from the non-trivial reflection phase shift 

of ~ 0.5π occurring at the 2-3 interface at the wavelength of 𝜆0 (See more details at 

Figure S3). Figure S2a shows the calculated ideal n and k at different wavelengths when 

the absorber layer thickness d is 12, 16 and 20 nm, respectively. Obviously, the ideal (n, 

k) values in the short wavelength range and long wavelength range are quite different. 

Similar to that of blue and red color filters, the overall ideal (n, k) values also exhibit a 

decreasing trend as the absorber layer thickness d increases from 12 to 20 nm. Figure 

S2b and Figure S2c compare the complex refractive indices of the ideal absorber layer, 

single metal Au, Ni and the Au/Ni bilayer film in the case of d = 20 nm. It is apparent 

that the bilayer absorber comprised of 14 nm Au and 6 nm Ni provides a better match 

between their effective (n, k) and the ideal (n, k) in this two wavelength ranges.  

 

 

 



 

Figure S3. The top reflection phase shift (the black curve) and the bottom reflection phase shifts 

(the colored curves) in the top Ta2O5 AR layers for the proposed bilayer absorbers-based RGB 

reflective color filters. 

It is worth noting that the AR layer thickness d2 equals to the one-eighth 

wavelength optical thickness of 𝜆0 for the designed green color filter, which is much 

different from the regular quarter-wave optical thickness of 𝜆0 for the red and blue 

colors. Figure S3 shows the bottom and top reflection phase shifts in top Ta2O5 layers 

for the proposed RGB color filters. It can be seen that the bottom reflection phase shifts 

are close to 0 at the wavelengths of 𝜆0 = 600 nm for the blue color and 𝜆0 = 400 nm 

for the red color, while the bottom reflection phase shift is ~ 0.5π at 𝜆0 = 460 nm for 

the green color. All the top reflection phase shifts are equal to −π. In order to satisfy 

the AR resonance condition, the propagation phase shift should be π for blue and red 

colors, and 0.5π for the green color, so that the net phase shifts are equal to a multiple 

of 2π. Therefore, d2 should be fixed at 
𝜆0

4𝑛2
 for blue and red colors and 

𝜆0

8𝑛2
 for the 

green color, respectively. 



 

Figure S4. (a) A schematic diagram of a high-purity green color filter based on the Ti/Cu bilayer 

absorber. The lossless TiO2 is applied for the dielectric layer and the AR layer. (b) The simulated 

and measured reflection spectra of the designed green color filter in (a), which both exhibit the 

maximum reflectivity exceeding 80%.  

The relatively low reflection intensities of the proposed RGB color filters in Figure 

2e resulted from the lossy property of Ta2O5 can be further improved by using a lossless 

dielectric material, such as TiO2. According to the presented design principle, a kind of 

high-purity green reflective color filter adopting TiO2 as the AR layer and the dielectric 

layer is designed as illustrated in Figure S4a. In this device, A bilayer film comprised 

of 7 nm Ti and 9 nm Cu is employed as the absorber layer. Obviously, a reflection peak 

at the wavelength of 532 nm with the reflectivity surpassing 80% appears in both the 

simulated and measured reflection spectra shown in Figure S4b. Besides, the device 

exhibits very low reflectivity in two undesired wavelength ranges of 400 ~ 500 nm and 

600 ~ 700 nm, resulting in very high color purity. The calculated color coordinates 

(simulation (0.296, 0.596) and experiment (0.292, 0.587)) are very close to the standard 

Green (0.3, 0.6) utilized in liquid crystal displays (LCDs). 

Al 100 nm

TiO2 232 nm

Cu 9 nm

TiO2 26 nm

Ti 7 nm

(a) (b)



3. The RGB color filters with improved color purity by using different bilayer 

absorbers 

 

Table S1. The detailed 1931 CIE (x, y) coordinates in Figure 2f. The color coordinates of standard 

RGB colors utilized in liquid crystal displays (LCDs) are also displayed.  

CIE (x, y) coordinates Red Green Blue

lossy medium #1 (0.636, 0.360) (0.346, 0.564) (0.210, 0.088)

lossy medium #2 (0.537, 0.315) (0.360, 0.553) (0.157, 0.092)

bilayer_simulation (0.640, 0.330) (0.303, 0.600) (0.151, 0.062)

bilayer_experiment (0.620, 0.313) (0.307, 0.592) (0.153, 0.062)

Standard color (0.640, 0.330) (0.300, 0.600) (0.150, 0.060)



 

Figure S5. Comparison of the simulated reflection spectra of red (a, b), green (c, d) and blue (e, f) 

color filters based on suitable bilayer absorbers (black solid curves), single lossy medium absorbers 

(red dashed curves correspond to lossy medium #1 and blue dashed curves correspond to lossy 

medium #2) in the case of the other two absorber layer thicknesses. Their chromaticity coordinates 

calculated from the simulated spectra in the CIE 1931 color space are shown in the dotted boxes. 

We also studied the possibility of using effective absorbing medium to improve 

the color purity of RGB reflective color filters in the case of the other two absorber 

(0.550, 0.328)

(0.492, 0.321)

(0.512, 0.302)

(0.646, 0.330)

(0.568, 0.325)

(0.513, 0.347)

(0.152, 0.052)

(0.313, 0.284)

(0.168, 0.079)

(0.150, 0.063)

(0.183, 0.071)

(0.169, 0.089)

(0.297, 0.581)

(0.387, 0.475)

(0.302, 0.405)

(0.355, 0.572)

(0.398, 0.521)

(0.352, 0.541)

(a) (b)

(c) (d)

(e) (f)



layer thicknesses (d = 12 and 20 nm for red and blue colors; d = 12 and 16 nm for green 

colors). Figure S5 shows the simulated reflection spectra for RGB color filters using 

single lossy media and bilayer films as the absorber layers. Obviously, optical 

absorptions in the wavelength range of non-target colors (500 ~ 700 nm for blue color 

filters, 400 ~ 600 nm for red color filters, 400 ~ 500 nm and 600 ~ 700 nm for green 

color filters) are significantly enhanced by using suitable bilayer absorbers for all the 

color filters. As a result, RGB color filters based on ultrathin bilayer absorbers show 

higher color purity than those employing single lossy medium absorbers, which can be 

further confirmed by comparing their color coordinates displayed in the dotted boxes. 

All the complex refractive indices of the materials used for our simulations are obtained 

from ellipsometry measurements as depicted in Figure S6. 

 



 

Figure S6. (a)-(d) The complex refractive indices of lossy materials and dielectric materials that are 

used for the calculations. The refractive indices (n) and extinction coefficients (k) are obtained using 

a spectroscopic ellipsometer (M-2000, J. A. Woollam) and are displayed with solid and dashed lines, 

respectively.  
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Figure S7. Comparison of the simulated reflection spectra of (a) blue, (b) green and (c) red color 

filters employing different absorbing medium. All black curves in (a-c) correspond to the ultrathin 

bilayer absorbers for high-purity RGB color filters discussed in the main text. All red curves 

correspond to the ultrathin bilayer absorbers after exchanging the positions of lossy medium #1 and 

lossy medium #2. All blue curves correspond to the effective absorbing media with the calculated 

effective complex refractive indices (n, k). The structural parameters of other layers are fixed for all 

three colors. 

In order to verify the applicability of effective medium theory in our design 

concept, we compared the reflection spectra of RGB color filters employing the 

proposed ultrathin bilayer absorbers in Figure 2, the bilayer absorbers after exchanging 

the positions of lossy medium #1 and lossy medium #2, and the corresponding effective 

absorbing media with the calculated effective indices (n, k), as shown in Figure S7. For 

all the RGB color filters, their optical responses are basically consistent, including high 

reflectivity in the wavelength range of the target colors and high absorption of undesired 

wavelengths when using three kinds of absorber media mentioned above. The slight 

deviation of resonance wavelengths and reflection intensities in their spectra is mainly 

due to the difference of reflection phase shifts occurring at bilayer absorber/Ta2O5 

interfaces. Therefore, the effective absorbing medium theory can be applied to explain 

the improved color purity of our designed structures. 

(a) (b) (c)



 

Figure S8. Spectra comparisons of the designed blue color filter with and without the top Ta2O5 AR 

layer, indicating that the top Ta2O5 AR layer can greatly reduce the broadband reflection outside the 

blue color range. 

 

 

 

 

 

 



 

Figure S9. Visualization of color change with the incident angle on the CIE 1931 chromaticity 

diagram. 
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Figure 2. (a) A schematic view of the proposed high-color-purity RGB reflective color filters using 

bilayer absorbers. Two ultrathin lossy films (lossy medium #1 and lossy medium #2) can be regarded 

as an effective absorbing medium with the complex refractive index (n, k) and the total thickness d. 

(b-d) Comparison of the simulated reflection spectra of RGB color filters employing single lossy 

medium #1, lossy medium #2 and the corresponding bilayer as the absorber layer. (e) The simulated 

and measured reflection spectra of the proposed RGB color filters based on bilayer absorbers at 

(a) (b)

(c) (d)

(e) (f) lossy medium #1

lossy medium #2

bilayer-simulation

bilayer-experiment



normal incidence. Insets show the optical images of fabricated RGB devices on silicon substrates 

(Scale bars: 1.0 cm). (f) The calculated chromaticity coordinates corresponding to all the reflection 

spectra shown in (b-e) in the CIE 1931 chromaticity diagram. 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. (a)-(c) The simulated and (d)-(f) measured angle-resolved reflection spectra of the 

proposed RGB reflective colors based on bilayer absorbers under unpolarized light incidence. (g) 

Photographic images of the fabricated samples taken at oblique incidence of 10°, 30°, 45° and 60°. 

The scale bars are 1.0 cm. 
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