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This paper proves a proposition which says that existence in a spacetime which meets four com-
monly satisfied principles is an equivalence relation by absolute dimensionality, and briefly discusses
three of its implications: (1) the equivalence relation opens the serious possibility for things to
exist in a physical sense without existing in spacetime, (2) it establishes a novel classical geometric
correspondence between proper time intervals and Euclidean distances in a spacetime one dimension
higher, and (3) it may serve as a theoretical tool for checking the internal consistency of higher-

dimensional models of reality.

INTRODUCTION

This paper presents a novel equivalence relation

which connects the so far merely philosophical concept
of existence directly to physics, specifically relativity.
What will here be called the ontic equivalence relation
says that existence in a spacetime is an equivalence
relation by the number of length dimensions charac-
terizing an object. It will be proved for Minkowski
spacetime, but the principles from which it is proved
are essentially satisfied by any reasonable spacetime.
It has definite implications for fundamental physics, of
which three will be discussed here: first, it opens in a
very general manner the serious possibility for things to
exist in a physical sense without existing in spacetime;
second, it establishes a classical correspondence between
proper time intervals and FEuclidean distances in a
one-dimension higher spacetime; third, it may be used
as a theoretical tool to check the internal consistency of
models of reality with extra dimensions.
The organization is as follows: the next section presents
a reinterpretation of special relativistic length contrac-
tion and time dilation which is meant to draw attention
to four obvious yet so far unappreciated spacetime
principles, discussed in the following section. The ontic
equivalence relation is then proved from these four
principles, and the final section briefly discusses the
three implications.

LORENTZ TRANSFORMATIONS
REINTERPRETED

When a body is Lorentz contracted, it can also in-
tuitively be interpreted to take on a weaker three-
dimensional character because while in that case both
its volume and its surface area decrease, volume de-
creases faster. When the focus is on this implication of
length contraction, the term dimensional abatement will
be used. To make this mathematically precise, we define
the relative dimensionality dim..;(a/b) between compact
objects a and b, which in three spatial dimensions is given

by
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Where a is the contracted comparison object, [ dV, its
volume, [ dA, its surface area, b is the uncontracted ref-
erence object, [dVj its volume, and [ dA, its surface
area. This equation defines a dimensionless quantity in
the interval [0,1] which can be interpreted as a quanti-
tative measure of the weakness of the three-dimensional
character (or, in terms of its inverse, the strength of
the two-dimensional character) of a relative to b. If
0 < dimye(afb) < 1, then a has absolute dimensional-
ity 3 but has a weaker three-dimensional character than
b. We will refer to this as dimensional diminution. If
dimyei(a/b) = 0 then a has absolute dimensionality 2,
and we will refer to this as dimensional reduction. Di-
mensional abatement can then be considered an umbrella
term which refers either to dimensional diminution or di-
mensional reduction.

To prove that Lorentz contraction implies dimensional
abatement for any arbitrary three-dimensional compact
shape, consider an arbitrarily shaped three-dimensional
body to be made up of infinitesimal cubical volume ele-
ments. Then, it is trivial to show that when the object is
Lorentz contracted, each of its volume elements becomes
dimensionally abated. Since this is true of every volume
element, it must be true of the object itself.

Let us now consider time dilation. The key idea behind
reinterpreting special relativistic time dilation is to re-
frame time as the duration of existence of something in
spacetime between two spacetime events. Proper time
is reinterpreted as the duration of existence in space-
time between two spacetime events of an observed object,
and coordinate time is reinterpreted as the duration of
existence in spacetime between the same two spacetime
events of the observer (or a class of objects at rest with re-
spect to the observer). When time dilation is interpreted
this way, we will refer to it as ontochronic abatement.
The reinterpretation of time in terms of duration of
existence opens the possibility to connect existence to
physics. To do it formally, we postulate the following



criterion for existence in spacetime: A physical object
exists in Minkowski spacetime if and only if it is charac-
terized by a timelike spacetime interval.

As a plausibility argument, one can argue that it is nat-
ural to express existence in spacetime in terms of a fi-
nite duration of existence. Also, this criterion connects
existence to Lorentz invariance. However, notice that
Lorentz invariance is merely necessary, not sufficient, as
objects characterized by null intervals fail to satisfy the
existence criterion. The case of null intervals will be ad-
dressed in the discussion of the implications of the ontic
equivalence relation.

Given the existence criterion, we can then define a func-
tion 3g : O — {0,1} which maps the collection of all
physical objects in the domain of physics O to the num-
bers 1 and 0, depending on whether an object satisfies
the existence criterion or not. If it does, its spacetime
ontic value is 1, and it is 0 otherwise. The collection
of objects which satisfy the criterion is then the set of
spacetime objects S c O.

A quantitative measure of relative duration of existence
in spacetime is defined by taking the ratio of the proper
time interval between two spacetime intervals of the ob-
served object, 7, to the proper time interval of a reference
object 7, between the same two spacetime events:
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We will call this relative ontochronicity. When the
reference object is the observer, 7, = ¢, the coordinate
time. As with relative dimensionality, this ratio is a
dimensionless number in the interval [0,1]. It can be
interpreted as a factor which indicates how much the
duration of existence of an observed object in spacetime
between two spacetime events is decreased relative
to that of the observer. Notice that ont,e(a/b) is
similar to, but distinct from, the inverse Lorentz factor
v l= ‘fi—;. If 0 < onte1(a/b) < 1, then this means that an
object satisfies the existence criterion but its duration
of existence in spacetime between the two spacetime
events has diminished relative to that of the observer,
and so this will be called ontochronic diminution. If
ontre(a/b) = 0, then this implies that the object fails the
existence criterion, so this will be called ontic reduction.
Ontochronic abatement can then be considered an um-
brella term which encompasses ontochronic diminution
and ontic reduction.

The proof that special relativistic time dilation im-
plies ontochronic abatement follows trivially from
re-interpreting the proper time of an object as its
observed duration of existence in spacetime, and
coordinate time as the duration of existence in space-
time of the observer, between two given spacetime events.

FOUR SPACETIME PRINCIPLES

The reinterpretation of length contraction and time di-
lation, along with the conceptual structure constructed
to articulate it, draws attention to four spacetime princi-
ples for which we were unable to find previous discussion
in the physics literature [1]. They consist of two invari-
ance and two symmetry principles, and the absence of
their explicit discussion in the literature likely reflects
the fact that under the standard interpretation of the
Lorentz transformations, their physical significance is too
obscure:

e Invariance of Absolute Dimensionality: The
absolute dimensionality of any compact body is
invariant under spacetime coordinate transforma-
tions.

¢ Homodimensionality of Space: The dimension-
ality of every (mazimally dimensional) space-like
hypersurface of Minkowski spacetime is everywhere
the same.

e Invariance of Spacetime Ontic Value: The
spacetime ontic value of any compact body is invari-
ant under spacetime coordinate transformations.

¢ Homodimensionality of Time: The dimension-
ality of every timelike hypersurface of Minkowski
spacetime is everywhere the same.

The Lorentz transformations obey these principles. It

is not possible to violate the invariance of absolute di-
mensionality or of spacetime ontic value by means of a
Lorentz transformation, the former because length con-
traction can never lead to dimensional reduction for
speeds v < ¢, while less than complete length contraction
can never be attained for v = ¢, and the latter because
proper time is Lorentz invariant.
The Lorentz transformations also obey the homodimen-
sionality principles because while spacetime coordinates
may change according to the transformations, the num-
ber of components and their decomposition into n spatial
components and one time component does not change.

PROOF OF THE
ONTIC EQUIVALENCE RELATION

It is useful to observe the following:

I. The two invariance principles together cou-
ple absolute dimensionality to spacetime on-
tic value. This is analogous to how the Lorentz
transformations couple length contraction to time
dilation, or, when reinterpreted, dimensional to on-
tochronic diminution. The two invariance princi-
ples together extend this coupling to that between



dimensional and ontic reduction because they both
imply v = oo.

II. The two homodimensionality principles to-
gether ensure that the coupling of absolute
dimensionality to spacetime ontic value holds
globally. In the absence of the homodimensionality
principles, the coupling of the two invariance prin-
ciples may only hold locally because in regions in
which the dimensionality of maximally dimensional
spacelike or timelike hypersurfaces is different inside
than outside of those regions, the absolute dimen-
sionality could decouple from spacetime ontic value.
The two homodimensionality principles require that
Minkowski spacetime everywhere decomposes into
n+ 1 spacetime dimensions and thereby ensure that
the coupling of absolute dimensionality and ontic
value holds everywhere.

For convenience, a spacetime in which both homodimen-
sionality principles hold will be defined to be isodimen-
stonal. It is now very easy to prove the following propo-
sition from the four principles:  Physical existence in
Minkowski spacetime is an equivalence relation by abso-
lute dimensionality.

Proof: An equivalence relation is determined by the
properties of reflexivity, symmetry and transitivity. Con-
sider an n-dimensional compact object A subject to the
above principles. By the the coupling of ontic value to
absolute dimensionality (I.), it must exist in an n + 1-
dimensional Minkowski spacetime region. By the isodi-
mensionality of Minkowski spacetime (IL.), this region is,
in fact, all of n + 1-dimensional spacetime. In particular,
A exists in the n + 1-dimensional Minkowski spacetime
in which its proper time is timelike, so in the spacetime
in which it exists. This proves reflexivity. Now consider
an m-dimensional compact object B. By the same argu-
ment as given for reflexivity, it must exist in an m + 1-
dimensional spacetime. Suppose A exists in the same
spacetime as B. This implies that the proper time of A
is timelike in the spacetime in which the proper time of
B is timelike, so the proper time of B is timelike in the
spacetime in which the proper time of A is timelike, and
hence, B exists in the same spacetime as A. This proves
symmetry. Finally, consider an [-dimensional compact
object C. By the same argument as given for reflexivity,
it must exist in an [+ 1-dimensional spacetime. Now sup-
pose that B exists in the same spacetime as C, and that
A exists in the same spacetime as B. Thus, the proper
time of B is timelike in the spacetime in which the proper
time of C is timelike, and the proper time of A is time-
like in the spacetime in which the proper time of B is
timelike. But that implies that the proper time of A is
timelike in the spacetime in which the proper time of C'
is timelike, and hence A exists in the same spacetime as
C. This proves transitivity. m

THREE IMPLICATIONS OF THE ONTIC
EQUIVALENCE RELATION

The ontic equivalence relation induces a partition on
the collection of all physical objects in the domain of
physics into equivalence classes based on an object’s ab-
solute dimensionality, such that each equivalence class
of n-dimensional classes can only exist in an n + 1-
dimensional Minkowski spacetime. This has a number
of implications, but here we will focus on just three.

e The ontic equivalence opens the serious pos-

sibility for things to exist in a physical sense
without existing in spacetime. As lightspeed
objects are dimensionally reduced, they belong to
a different ontic equivalence class than spacetime
objects. This is a consequence of the more general
implication of the ontic equivalence relation that
in any given n + 1-dimensional spacetime, the pos-
sibility is open for things to exist without existing
in that spacetime, namely when their absolute di-
mensionality is other than n. On the other hand,
it is probably fair to say that under the current
scientific paradigm existence in a physical sense is
equated with existence in spacetime (setting spec-
ulative frameworks aside).
The mathematics of special relativity gives hints
that equating physical existence with existence in
spacetime is incorrect: the fact that the duration
of existence in spacetime of a lightspeed object
is always zero between any two spacetime events,
and the fact that it is impossible to obtain a four-
volume, i.e. a spacetime region, by integrating a
three-volume in the lightlike direction already sug-
gest that lightspeed objects do not exist in space-
time. Indeed, if we already accepted this, then
likely our first argument to justify it would be that
no spacetime observer can transform to a lightspeed
rest frame! But standard special relativity cannot
tell us directly that lightspeed objects do not exist
in spacetime because it does not contain any con-
cept of existence. Embedding it via the existence
criterion makes this explicit and gives meaning to
features of special relativity which could previously
only be regarded as meaningless curiosities. Some-
times, paradigm changes happen precisely when
seemingly meaningless curiosities in a model of re-
ality are recognized to carry novel significance, and
arguably, the birth of special relativity itself was
due to such a development [2].

e The ontic equivalence relation establishes
a novel classical geometric correspondence.
Because of dimensional reduction, lightspeed ob-
jects must by the ontic equivalence relation exist
in a 2+ 1 dimensional spacetime. The mathemat-
ics of special relativity gives hints of this: As an



object approaches the speed of light, its direction
of motion and its time direction are both observed
to approach the lightlike direction. In the limit of
¢, they both become lightlike [3]. But that means
that in a lightspeed frame, our spacetime is a vec-
tor space with a linearly dependent set of vectors,
which in turn implies that in a lightspeed frame,
3 + 1 spacetime has too many dimensions. Also,
special relativity is clear that in such a frame there
are only two independent spacelike directions.

The existence of lightspeed objects in 2 + 1-
dimensional spacetime can be interpreted in terms
of a classical and a quantum picture.

The classical picture is that as a lightspeed object
traverses a null geodesic in spacetime, it defines a
rest frame on a null-plane, so that what is in 2+ 1
dimensions the passage of proper time corresponds
in 3 + 1 dimensions to motion in space. Since the
rest frame in a null-plane has to be represented in
3 + 1 dimensions necessarily in an atemporal man-
ner (due to the connection between existence in a
spacetime and timelike proper time), it suggests a
novel interpretation of the fact that the stabilizer
subgroup of the Poincaré group (‘Wigner’s little
group’) for massless objects is isomorphic to F(2),
the group of isometries in the Euclidean plane [4].
As the correspondence involves analogous quan-
tities associated with spaces of different dimen-
sionality, we will for clarity use left subscripts to
indicate the total number of dimensions of the
space with which the quantity is associated. Let
3d : E® - [0,00) be the distance function for
three-dimensional Euclidean space, and 37+ : M3 —
[0,00) be the timelike plus zero (indicated by
adding *) interval function [5] for three-dimensional
Minkowski spacetime, then

¢: 3T* —> 3d (3)

will be called the classical T * —d duality. Tt re-
flects the fact that, unlike certain other relations
such as set membership, existence in a spacetime is
not inherited by a one-dimension higher embedding
spacetime, an immediate consequence of the ontic
equivalence relation.

In [6], it was implicitly shown that classical elec-
trodynamics obeys the classical 7 * —d duality, as
the magnetic force field of an infinite line current
can be reinterpreted as the line integral of a two-
dimensional Coulomb force field such that a spatial
distance covered by the line integral corresponds
to the worldline of a Coulomb source in a two-
dimensional leaf of a foliation of space normal to
the direction of the current (i.e. really a worldline
in 2+ 1 dimensions). This reconceptualization per-
mits the recognition of geometric relationships be-
tween Maxwell’s equations not evident in the stan-

dard formulation.

Obviously, 37* is distinct from 47%, the timelike
plus zero interval characterizing objects in 3 + 1
spacetime. It would be interesting to investigate
whether positing that the classical 7 * —d duality
also holds for 47*, at least at galactic or cosmolog-
ical scales, suggests novel theoretical approaches to
elucidating the nature of dark matter and/or dark
energy [7].

The quantum picture effectively dissociates the 2+1
spacetime from definite trajectories in 3 + 1 space-
time. In order to make this dissociation explicit,
but also in order to promote 2+1 dimensional space-
time with a Lorentzian signature to an equal foot-
ing to our own repository of existence, we propose
to give it its own name and call it areatime. An
investigation fleshing out the connection between
quantum theory and the concept of areatime is
in preparation but will be considered outside the
scope of this article.

The ontic equivalence relation may be used
as a tool for identifying hidden inconsis-
tencies in spacetime models with extra
dimensions.  Although the ontic equivalence
relation was derived for Minkowski spacetime, it
is easy to see that it holds much more generally
because the four spacetime principles from which
it was derived are essential to all candidate
models of spacetime one would take seriously.
For instance, the very definition of a manifold M
equipped with a metric g essentially[8] presupposes
isodimensionality. Similarly, we would likely
consider a violation of the invariance principles
to be unphysical. The generality of the principles
therefore allows the ontic equivalence relation to
be used as a novel consistency check on models of
reality which posit extra dimensions, even if the
spacetimes involved are not Minkowski.

Any model in which both the four spacetime
principles hold and m-dimensional objects are
supposed to exist in n + 1-dimensional spacetime,
where m # n, is a candidate for being inconsistent.
For instance, models obeying the four principles
which assume that fields, especially fields of par-
ticles with a timelike proper time, can propagate
into additional dimensions are likely inconsistent.
However, if in such models our spacetime is
merely effectively four-dimensional but actually
has the same dimensionality as the embedding
space (the so-called “thick brane solutions”[9]),
then the inconsistency may be avoided. Similarly,
if the objects in a string theory model, which
requires 9 + 1 dimensions [10], are considered
only effectively three-dimensional but are actually
nine-dimensional, then this inconsistency may also



be averted.

Again, whether there actually is an inconsistency
or not depends on the details of each model,
but the ontic equivalence relation gives a new
theoretical tool for researchers who investigate
them.
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