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NEIGHBORLINESS OF THE SYMMETRIC
MOMENT CURVE

ALEXANDER BARVINOK, SEUNG JIN LEE AND ISABELLA NOVIK

Abstract. We consider the convex hull Bk of the symmetric moment curve
Uk(t)= (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t) in R

2k , where
t ranges over the unit circle S = R/2πZ. The curve Uk(t) is locally neighborly:
as long as t1, . . . , tk lie in an open arc of S of a certain length φk > 0, the convex
hull of the points Uk(t1), . . . ,Uk(tk) is a face of Bk . We characterize the maximum
possible length φk , proving, in particular, that φk > π/2 for all k and that the limit
of φk is π/2 as k grows. This allows us to construct centrally symmetric polytopes
with a record number of faces.

§1. Introduction and main results. The main object of this paper is the
symmetric moment curve that for a fixed k lies in R

2k and is defined by

U (t)= Uk(t)= (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t).

We note that
U (t + π)= −U (t) for all t ∈ R.

Since U is periodic, we consider U to be defined on the unit circle S = R/2πZ.
In particular, for every t ∈ S, the points t and t + π are antipodal points on the
circle.

We define the convex body B ⊂ R
2k as the convex hull of the symmetric

moment curve
B = Bk = conv(U (t) : t ∈ S).

Hence B is symmetric about the origin, B = −B. We note that Bk has a non-
empty interior in R

2k since Uk(t) does not lie in an affine hyperplane.
We are interested in the facial structure of B (a face of a convex body

is the intersection of the body with a supporting affine hyperplane; see, for
example, [1, Ch. II]). The convex body Bk was introduced in [3] in the hope that
an appropriate discretization of Bk produces centrally symmetric polytopes with
many faces (although B2 was considered first by Smilansky [14] within a certain
family of four-dimensional convex bodies). Besides being of intrinsic interest,
such polytopes appear in problems of sparse signal reconstruction (see [5, 13]).
An analogy with the (ordinary) trigonometric moment curve M(t)⊂ R

2k ,

M(t)= (cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt),
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provided the initial motivation. The convex hull of a set of arbitrary n points
on the curve M(t) is the cyclic polytope, which was first investigated by
Carathéodory [4] and later by Motzkin [12] and Gale [7]. In the case of an
odd dimension 2k + 1 one can define the cyclic polytope as the convex hull of n

points on the curve (t, t2, . . . , t2k+1). Cyclic polytopes maximize the number
of faces of all dimensions in the class of polytopes of a given dimension and with
a given number of vertices. This is the famous upper bound theorem conjectured
by Motzkin [12] and proved by McMullen [11]. Such maximizers in the class of
centrally symmetric polytopes are not known at present.

There are certain similarities between the curves M(t) and U (t). An affine
hyperplane in R

2k intersects M(t) in no more than 2k points and it is clear that
the bound 2k cannot be made smaller. An affine hyperplane in R

2k intersects
U (t) in no more than 4k − 2 points (see Theorem 3.1 below) and it is again clear
that the bound 4k − 2 cannot be made smaller in the class of centrally symmetric
curves, since a hyperplane passing through the origin and some 2k − 1 points on
the curve will necessarily intersect the curve also in the antipodal 2k − 1 points.

One crucial feature of the convex hull

C = Ck = conv(M(t) : t ∈ S)

of the standard trigonometric moment curve is that it is neighborly,
namely that for any n 6 k distinct points t1, . . . , tn ∈ S the convex hull
conv(M(t1), . . . , M(tn)) is a face of Ck (see, for example, [1, Ch. II]). One
of our main results is that the convex hull Bk of the symmetric moment curve is
neighborly to a large extent.

THEOREM 1.1. For every positive integer k there exists a number

π

2
< φk < π

such that for an arbitrary open arc Ŵ ⊂ S of length φk and arbitrary distinct

n 6 k points t1, . . . , tn ∈ Ŵ, the set

conv(U (t1), . . . ,U (tn))

is a face of Bk .

It is worth mentioning that Lemma 3.4 below implies that many (but not all)
k-vertex faces of Bk are simplices. More precisely, if F is a face of Bk whose
vertex set is {U (t1), . . . ,U (tk)} where t1, . . . , tk ∈ S lie in an open semicircle,
then F is a (k − 1)-dimensional simplex. Also, since the intersection of faces is
a face, it is enough to verify Theorem 1.1 for n = k.

In what follows, we denote by φk the largest possible value that satisfies
Theorem 1.1. We provide a characterization of φk , which, in principle, allows
one to compute it, at least numerically and at least for moderate values of k.
This characterization is, roughly, as follows. It is not hard to argue that if Ŵ
is an open arc of length φk then there must be a way to move some of the
points t1, . . . , tk ∈ Ŵ towards the endpoints of Ŵ, so that the limit position of
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the affine hyperplane supporting Bk at U (t1), . . . ,U (tk) will touch the curve
U (t) somewhere else. We prove that this limiting configuration is as degenerate
as it can possibly be: each point ti collides with one of the endpoints a or b of
the arc Ŵ so that if q such points collide with a and k − q points with b, then
the necessarily unique affine hyperplane tangent to the symmetric moment curve
U (t) at t = a and t = b with multiplicities 2q and 2k − 2q, respectively, is also
tangent to U (t) at some other point (cf. Theorem 5.1 below).

We have

φ2 = 2π

3
≈ 2.094 395 103

(this follows from results of Smilansky [14]), and we computed

φ3 = π − arccos
3 −

√
5

2
≈ 1.962 719 003

as well as

φ4 = 2 arccos

(

− 1

48
(91 + 336

√
15)1/3 + 119

48(91 + 336
√

15)1/3
+ 29

48

)

≈ 1.870 658 532

(cf. Example 5.2).
It is worth noting that in [3] we were only able to verify that φk > 0, while

in [8] the first explicit lower bound φk >
√

6k−3/2 was established.
We conjecture that for an even k the value of φk in Theorem 1.1 satisfies

φk = 2αk , where αk is the smallest positive root of the equation

cos α + 1 +
k−1
∑

j=1

(−1) j (2 j − 1)!!
(2 j)!! tan2 j α = 0.

Here n!! is the product of positive integers not exceeding n and having the same
parity as n. Some supporting evidence for the conjecture is provided in §7.

Theorem 1.1 allows one to construct 2k-dimensional centrally symmetric
polytopes with n vertices and

(

4 · 2−k − 4−k+1 + O

(

1

n

))(

n

k

)

faces of dimension k − 1, a new record. Indeed, suppose that n = 4m, and
consider a centrally symmetric configuration A = A0 ∪ A1 ∪ A2 ∪ A3 of 4m

distinct points in S, where each set A j contains m distinct points in the vicinity
of jπ/2 for j = 0, 1, 2, 3 so that the length of any arc whose endpoints are in
A j and A( j+1)mod 4 is less than φk . Letting

P = conv(U (t) : t ∈ A),

we observe that P is a centrally symmetric polytope with 4m vertices and at
least 4

(2m
k

)

− 4
(

m
k

)

faces of dimension k − 1. For example, if k = 2 we obtain
a four-dimensional centrally symmetric polytope with 4m vertices such that
approximately 3/4 of all pairs of vertices are guaranteed to span edges of the
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polytope. Curiously, if we consider instead the convex hull of 4m points U2(ti )

for points ti uniformly distributed on the circle S then only about 2/3 of all pairs
of vertices span edges of the resulting four-dimensional centrally symmetric
polytope (see [3]).

In [2], we apply Theorem 1.1 to construct various families of centrally
symmetric polytopes with many faces. Namely, we construct a d-dimensional
centrally symmetric polytope P with about 3d/4 ≈ (1.316)d vertices such that
every pair of non-antipodal vertices of P spans an edge of P . For k > 1, we
construct a d-dimensional centrally symmetric polytope P with an arbitrarily
large number n of vertices such that the number of k-dimensional faces of P is
at least (1 − (δk)

d)
(

n
k+1

)

for some 0< δk < 1 (we have δ1 ≈ 3−1/4 ≈ 0.77 and

δk ≈ (1 − 5−k)1/(6k+4) for k > 1). Finally, for an integer k > 1 and α > 0, we
construct a centrally symmetric polytope P with an arbitrarily large number n

of vertices and of dimension d = k1+o(1) such that the number of k-dimensional
faces of P is at least (1 − k−α)

(

n
k+1

)

.
It is important to note that we are interested in asymptotics of the number of

faces when the dimension is fixed and the number of vertices grows, in contrast
to a number of results in the literature where both the dimension and the number
of vertices grow (see [6, 10, 13]).

We prove that π/2 is the limit of neighborliness of Uk(t) as k grows.

THEOREM 1.2. Let φk be the largest number satisfying Theorem 1.1. Then

lim
k−→+∞

φk = π

2
≈ 1.570 796 327.

Our computations strongly suggest that the values φk are monotone
decreasing, but we were unable to prove that.

The complete facial structure of B2 was described by Smilansky [14]: the
zero-dimensional faces are the points U (t) for t ∈ S, the one-dimensional faces
are the intervals [U (a),U (b)], where a, b ∈ S and the length of the shorter arc
with the endpoints a and b is less than 2π/3, and the two-dimensional faces
are the triangles with the vertices

{

U (a),U (b),U (c)
}

, where a, b, c ∈ S are
vertices of an equilateral triangle. There are no other faces of B2.

In [3, 15] the edges (one-dimensional faces) of Bk were completely
characterized. Namely, it was shown in [3] that for a 6= b the interval
[U (a),U (b)] is an edge of Bk if the length of the shorter arc with the endpoints
a, b ∈ S is smaller than π(2k − 2)/(2k − 1), and it was shown in [15] that there
are no other edges.

Already for B3, the complete facial structure is not known; some faces of B3

were computed in [9].
We obtain the following partial result showing some “connectedness” of faces

of Bk .

THEOREM 1.3. Let Ŵ ⊂ S be an open arc with the endpoints a and b

and let Ŵ be the closure of Ŵ. Let t2, . . . , tk ∈ S\Ŵ be distinct points such

that the set Ŵ ∪ {t2, . . . , tk} lies in an open semicircle in S. Suppose that
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the points U (a),U (t2), . . . ,U (tk) lie in a face of Bk and that the points

U (b),U (t2), . . . ,U (tk) lie in a face of Bk . Then for all t1 ∈ Ŵ the set

conv(U (t1), . . . ,U (tk))

is a face of Bk .

Example 1.4. Let k = 3 and let t1, t2, t3 ∈ S be any points such that the length
of the arc with the endpoints t1 and t2 is less than 2π/5, the length of the arc with
the endpoints t2 and t3 is less than 2π/5, and t2 lies between t1 and t3. Then

conv(U (t1),U (t2),U (t3)) (1.4.1)

is a face of B3. Indeed, without loss of generality, we may assume that t2 = 0. If
t1 = 2π/5 and t3 = −2π/5, the triangle (1.4.1) lies in the face of B3 determined
by the equation cos 5t = 1. If we move t3 sufficiently close to t2 = 0, then (1.4.1)
is a face from our estimate of φ3 in Theorem 1.1. Therefore, by Theorem 1.3,
for t1 = 2π/5, t2 = 0, and all −2π/5< t3 < 0, the set (1.4.1) is a face of B3.
Let us now fix some −2π/5< t3 < 0. If we move t1 sufficiently close to t2 = 0
then (1.4.1) is a face by Theorem 1.1. Applying Theorem 1.3 again we conclude
that for all 0< t1 < 2π/5, −2π/5< t3 < 0, and t2 = 0, the set (1.4.1) is a face
of B3.

In the rest of the paper, we prove Theorems 1.1–1.3. In §2, we introduce
the analytic language of raked trigonometric polynomials which supplants the
geometric language of affine hyperplanes in our proofs. We also outline the plan
for the proofs.

§2. Polynomials. The plan of the proofs.

2.1. Raked trigonometric and complex polynomials. We consider raked

trigonometric polynomials of degree at most 2k − 1:

f (t)= c +
k

∑

j=1

a j cos(2 j − 1)t +
k

∑

j=1

b j sin(2 j − 1)t for t ∈ S, (2.1.1)

where c, a j , b j ∈ R. We say that deg f = 2k − 1 if ak 6= 0 or if bk 6= 0.
Equivalently, we can write

f (t)= c + 〈C,U (t)〉,

where C = (a1, b1, . . . , ak, bk) ∈ R
2k and 〈·, ·〉 is the standard scalar product

in R
2k .

Writing

cos nt = eint + e−int

2
and sin nt = eint − e−int

2i
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and substituting z = eit , we associate with (2.1.1) a complex polynomial

P( f )(z)= z2k−1
(

c +
k

∑

j=1

a j

z2 j−1 + z1−2 j

2
+

k
∑

j=1

b j

z2 j−1 − z1−2 j

2i

)

.

(2.1.2)
Hence

deg P( f )6 4k − 2. (2.1.3)

Moreover, if deg f = 2k − 1 then for p = P( f ) we have deg p = 4k − 2 and
p(0) 6= 0. Since

cos(t + a)= cos t cos a − sin t sin a

and
sin(t + a)= sin t cos a + cos t sin a,

for any fixed a ∈ S and any raked trigonometric polynomial f (t), the function

h(t)= f (t + a) for t ∈ S

is also a raked trigonometric polynomial of the same degree.

Definition 2.2. We say that a point t∗ ∈ S is a root of multiplicity m (where
m > 1 is an integer) of a trigonometric polynomial f , if

f (t∗)= · · · = f (m−1)(t∗)= 0

and
f (m)(t∗) 6= 0.

Similarly, we say that a number z∗ ∈ C is a root of multiplicity m of a polynomial
p(z) if

p(z∗)= · · · = p(m−1)(z∗)= 0

and
p(m)(z∗) 6= 0.

Remark 2.3. (1) We note that

conv(U (t1), . . . ,U (tn))

for distinct t1, . . . , tn ∈ S is a face of Bk if and only if there exists a raked
trigonometric polynomial f (t) 6≡ 0 of degree at most 2k − 1 such that (i) each
t j , j = 1, . . . , n, is a root of f of an even multiplicity, and (ii) f has no other
roots. The roots of f should have even multiplicities as for f to determine a
face, the values of f must not change sign on S.

(2) We will often use the following observation: if f is a trigonometric
polynomial with constant term 1 that does not change sign on S then f (t)> 0
for all t ∈ S, since

1

2π

∫

S

f (t) dt = 1.

2.4. Plan of the proofs. In §3, we prove basic facts about the roots of
raked trigonometric polynomials. We bound their number and restrict possible
positions in the circle S (Theorem 3.1). While the total number of roots of a
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raked trigonometric polynomial f with deg f 6 2k − 1 does not exceed 4k − 2,
we prove that the number of roots, counting multiplicities, in any open arc Ŵ ⊂ S

of length less than π may not exceed 2k; moreover, if that number is equal to 2k

then any additional root of f has to lie in the opposite arc Ŵ + π .
In §4, we consider one-parameter families fs(t) of raked trigonometric

polynomials with constant term 1, obtained by fixing some roots of fs(t) and
moving one, possibly multiple, root, so that the total number of controlled roots
is 2k, counting multiplicities, and the roots remain in an open semicircle of S.
We prove that (∂/∂s) fs(t) 6≡ 0 (Theorem 4.2). In geometric terms, Theorem 4.2
implies that if we choose k distinct points t1, . . . , tk lying in an open semicircle
of S, consider the (necessarily unique) affine hyperplane H tangent to the
symmetric moment curve Uk(t) at t1, . . . , tk and then start moving the point
t1, while keeping the points t2, . . . , tn intact, the velocity of the unit normal of
H is never zero.

In §5, we prove a characterization (see Theorem 5.1 and Lemma 5.7) of
the value of φk introduced in Theorem 1.1. In analytic terms, we prove that if
Ŵ ⊂ S is an open arc of a certain length and if a raked trigonometric polynomial
f (t) has 2k roots, counting multiplicities, in Ŵ, then f has no other roots in S.
Moreover, we prove that for the maximum possible length φk of such an arc Ŵ,
there are positive even integers ma and mb such that ma + mb = 2k and such
that the unique, up to a non-zero multiple, raked trigonometric polynomial f (t)

of degree 2k − 1 that has a root of multiplicity ma at one endpoint of Ŵ and
a root of multiplicity mb at the other endpoint of Ŵ also has a root of an even
multiplicity in Ŵ + π and does not change its sign on S.

In §6, we prove Theorems 1.1 and 1.3. In particular, we prove that for every
positive integer k there exists a number φk > π/2 with the following property:
if f (t) is an arbitrary raked trigonometric polynomial of degree 2k − 1, with
constant term 1, and such that f (t) has 2k roots, counting multiplicities, in an
open arc Ŵ ⊂ S of length φk and all roots in Ŵ have even multiplicities, then f (t)

is positive everywhere else in S (Theorem 6.1).
In §7, we prove Theorem 1.2. Also, for an even k, we deduce an equation for

the value of 0< α < π/2 such that the unique raked trigonometric polynomial of
degree 2k − 1 with constant term 1 that has roots at t = ±α of multiplicity k each
also has a root of an even multiplicity at t = π while remaining non-negative
on S. We conjecture that φk = 2α.

§3. Roots and multiplicities. We consider raked trigonometric polynomials
f (t) defined by (2.1.1). In this section we prove the following main result.

THEOREM 3.1. Let f (t) 6≡ 0 be a raked trigonometric polynomial of degree

at most 2k − 1, let t1, . . . , tn ∈ S be distinct roots of f in S, and let m1, . . . , mn

be their multiplicities.

(1) We have
n

∑

i=1

mi 6 4k − 2.
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(2) If the constant term of f is 0 and the set {t1, . . . , tn} does not contain a

pair of antipodal points, then

n
∑

i=1

mi 6 2k − 1.

(3) If t1, . . . , tn lie in an open semicircle of S, then

n
∑

i=1

mi 6 2k.

(4) Suppose that t1, . . . , tn lie in an arc Ŵ ⊂ S of length less than π , that

n
∑

i=1

mi = 2k,

and that t∗ ∈ S\Ŵ is yet another root of f . Then t∗ ∈ Ŵ + π .

To prove Theorem 3.1, we establish a correspondence between the roots
of a trigonometric polynomial f (t) and those of the corresponding complex
polynomial p(z)= P( f ) defined by (2.1.2).

LEMMA 3.2. A point t∗ ∈ S is a root of multiplicity m of f (t) if and only if

z∗ = eit∗ is a root of multiplicity m of P( f ).

Proof. Let p = P( f ). It follows from (2.1.2) that

p(eit )= e(2k−1)it f (t). (3.2.1)

Differentiating (3.2.1), we infer by induction that

ir
r

∑

j=1

d j,r ei j t p( j)(eit )=
r

∑

j=0

ir− j c j,r e(2k−1)it · f ( j)(t) for all r > 1,

where the constants c j,r , d j,r are positive integers. Thus, if f (r)(t∗) is zero

for r = 0, 1, . . . , m − 1 and non-zero for r = m, then so is p(r)(eit∗), and vice
versa. The statement now follows. ✷

3.3. Proof of Theorem 3.1. Part (1) follows from Lemma 3.2 and
bound (2.1.3).

If f has a zero constant term, then f satisfies

f (t + π)= − f (t) for all t ∈ S.

Then ti + π is a root of f (t) of multiplicity mi and the proof of part (2) follows
from part (1).

To prove part (3), let g(t)= f ′(t). Then g has a zero constant term. If

n
∑

i=1

mi > 2k,



NEIGHBORLINESS OF THE SYMMETRIC MOMENT CURVE 231

then by Rolle’s theorem the total number of roots of g(t) in the semicircle,
counting multiplicities, is at least 2k, and so g(t)≡ 0 by part (2), which is a
contradiction.

To prove part (4), we assume without loss of generality that t1, . . . , tn is the
order of the roots on the arc Ŵ and let Ŵ̃ be the closed arc with the endpoints
t1 and tn . By Rolle’s theorem, the total number of roots of g(t), counting
multiplicities, in Ŵ̃ is at least 2k − 1, and hence the total number of roots of g(t),
counting multiplicities, in Ŵ̃ ∪ (Ŵ̃ + π) is at least 4k − 2. If t∗ /∈ Ŵ̃ ∪ (Ŵ̃ + π),
then by Rolle’s theorem there is a root of g(t) outside Ŵ̃ ∪ (Ŵ̃ + π), and hence
the total number of roots of g(t) in S, counting multiplicities, is at least 4k − 1.
Thus, by part (1), g(t)≡ 0, which is a contradiction. ✷

We will utilize the following geometric corollary of Theorem 3.1.

LEMMA 3.4. Let t1, . . . , tn ∈ S be distinct points lying in an open semicircle

and let m1, . . . , mn be positive integers such that

n
∑

i=1

mi = 2k.

Then the following 2k vectors,

U (ti )− U (tn) for i = 1, . . . , n − 1,

d j

dt j
U (t)

∣

∣

∣

∣

t=ti

for j = 1, . . . , mi − 1 if mi > 1 and i = 1, . . . , n,

dm1

dtm1
U (t)

∣

∣

∣

∣

t=t1

,

are linearly independent in R
2k .

Proof. Seeking a contradiction, we assume that the vectors are not linearly
independent. Then there exists a non-zero vector C ∈ R

2k orthogonal to all these
2k vectors. Consider the raked trigonometric polynomial

f (t)= 〈C,U (t)− U (tn)〉 for t ∈ S.

Then t1, . . . , tn are roots of f (t). Moreover, the multiplicity of ti is at least mi

for i > 1 and at least m1 + 1 for i = 1. It follows from part (3) of Theorem 3.1
that f (t)≡ 0, which contradicts that C 6= 0. ✷

Finally, we prove that a raked trigonometric polynomial is determined, up to
a constant factor, by its roots of the total multiplicity 2k provided those roots lie
in an open semicircle.

COROLLARY 3.5. Let t1, . . . , tn ∈ S be distinct points lying in an open

semicircle, and let m1, . . . , mn be positive integers such that

n
∑

i=1

mi = 2k.
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Then there exists a unique raked trigonometric polynomial f (t) of degree at most

2k − 1 and with constant term 1, such that ti is a root of f (t) of multiplicity mi

for all i = 1, . . . , n. Moreover, f depends analytically on t1, . . . , tn .

Proof. Such a polynomial f (t) can be written as

f (t)= 〈C,U (t)− U (tn)〉 for t ∈ S,

where C ∈ R
2k is orthogonal to the 2k − 1 vectors

U (ti )− U (tn) for i = 1, . . . , n − 1,

d j

dt j
U (t)

∣

∣

∣

∣

t=ti

for j = 1, . . . , mi − 1 if mi > 1 and i = 1, . . . , n.

By Lemma 3.4, these 2k − 1 vectors span a hyperplane in R
2k−1 and hence, up

to a scalar, there is a unique choice of C . By part (2) of Theorem 3.1, f has
a non-zero constant term if C 6= 0. Therefore, there is a unique choice of C

that makes the constant term of f (t) equal 1. By part (3) of Theorem 3.1 the
multiplicities of the roots ti are exactly mi for i = 1, . . . , n. ✷

Note that in fact deg f = 2k − 1. This follows from part (3) of Theorem 3.1.
We will also need the following “deformation construction”.

LEMMA 3.6. Let f (t) be a raked trigonometric polynomial of degree 2k − 1
such that f (−t)= f (t) for all t ∈ S, and let p = P( f ) be the corresponding

complex polynomial associated with f via (2.1.2). Then p(0) 6= 0 and the

multiset M of roots of p can be split into 2k − 1 unordered pairs {ζ j , ζ
−1
j } for

j = 1, . . . , 2k − 1. Moreover, for any real λ 6= 0, the multiset Mλ consisting of

2k − 1 unordered pairs {ξ j , ξ
−1
j } defined by

ξ j + ξ−1
j = λ(ζ j + ζ−1

j ) for j = 1, . . . , 2k − 1

is the multiset of roots of a certain complex polynomial pλ such that pλ = P( fλ)

for a raked trigonometric polynomial fλ(t) of degree 2k − 1 satisfying fλ(−t)=
fλ(t).

Proof. This is [3, Lemma 5.1]. ✷

We call fλ(t) a λ-deformation of f .

§4. Parametric families of trigonometric polynomials.

4.1. Parametric polynomials. Let Ŵ ⊂ S be an open arc. We consider raked
trigonometric polynomials

fs(t)= 1 +
k

∑

j=1

a j (s) cos(2 j − 1)t +
k

∑

j=1

b j (s) sin(2 j − 1)t for t ∈ S,

(4.1.1)
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where a j (s) and b j (s) are real analytic functions of s ∈ Ŵ. We define

gs(t)= ∂

∂s
fs(t),

and so

gs(t)=
k

∑

j=1

a′
j (s) cos(2 j − 1)t +

k
∑

j=1

b′
j (s) sin(2 j − 1)t. (4.1.2)

The goal of this section is to prove the following result.

THEOREM 4.2. Let Ŵ ⊂ S be an open arc, let t2, . . . , tn ∈ S\Ŵ be distinct

points such that the set Ŵ ∪ {t2, . . . , tn} lies in an open semicircle, and let

m1, . . . , mn be positive integers such that

n
∑

i=1

mi = 2k.

For every s ∈ Ŵ, let fs(t) be the unique raked trigonometric polynomial of

degree 2k − 1 with constant term 1 such that for i = 2, . . . , n the point ti is

a root of fs(t) of multiplicity mi and s is a root of fs(t) of multiplicity m1

(cf. Corollary 3.5). Define

gs(t)= ∂

∂s
fs(t).

Then

gs(t) 6≡ 0 for all s ∈ Ŵ.
To prove Theorem 4.2, we use the notion of the wedge product.

4.3. Wedge product. Given linearly independent vectors V1, . . . , V2k−1 ∈
R

2k we define their wedge product

W = V1 ∧ · · · ∧ V2k−1

as the unique vector W orthogonal to the hyperplane spanned by V1, . . . , V2k−1

whose length is the volume of the (2k − 1)-dimensional parallelepiped spanned
by V1, . . . , V2k−1 and such that the basis V1, . . . , V2k−1, W is co-oriented with
the standard basis of R

2k . If vectors V1, . . . , V2k−1 are linearly dependent, we
let

V1 ∧ · · · ∧ V2k−1 = 0.

Suppose that vectors V1(s), . . . , V2k−1(s) depend smoothly on a real
parameter s. We will use the following standard fact:

d

ds
(V1(s) ∧ · · · ∧ V2k−1(s))

=
2k−1
∑

j=1

V1(s) ∧ · · · ∧ V j−1(s) ∧ d

ds
V j (s) ∧ V j+1(s) ∧ · · · ∧ V2k−1(s).

(4.3.1)
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4.4. Proof of Theorem 4.2. For s ∈ Ŵ, consider the following ordered set of
2k − 1 vectors:

U (ti )− U (tn) for i = 2, . . . , n − 1,

d j

dt j
U (t)

∣

∣

∣

∣

t=ti

for j = 1, . . . , mi − 1 if mi > 1 and i = 2, . . . , n,

U (s)− U (tn),

d j

dt j
U (t)

∣

∣

∣

∣

t=s

for j = 1, . . . , m1 − 1 if m1 > 1.

(4.4.1)

Let C(s) be the wedge product of vectors of (4.4.1). By Lemma 3.4, the vectors
of (4.4.1) are linearly independent for all s ∈ Ŵ, and hence C(s) 6= 0 for all s ∈ Ŵ.

For s ∈ Ŵ, define a raked trigonometric polynomial

Fs(t)= 〈C(s),U (t)− U (tn)〉. (4.4.2)

We note that Fs(t) 6≡ 0 for all s ∈ Ŵ. For i = 2, . . . , n, the point ti is a root of
Fs(t) of multiplicity at least mi and s is a root of Fs(t) of multiplicity at least
m1. By part (3) of Theorem 3.1 the multiplicities are exactly mi . Let α(s) be the
constant term of Fs(t). Then

α(s)= −〈C(s),U (tn)〉.

By part (2) of Theorem 3.1

α(s) 6= 0 for all s ∈ Ŵ.

Therefore,

fs(t)= Fs(t)

α(s)
.

Seeking a contradiction, let us assume that gs(t)≡ 0 for some s ∈ Ŵ. We have

gs(t)= ∂

∂s
fs(t)= α(s)(∂/∂s)Fs(t)− α′(s)Fs(t)

α2(s)
.

If gs(t)≡ 0, then

α(s)
∂

∂s
Fs(t)− α′(s)Fs(t)≡ 0,

and (4.4.2) yields that

α(s)C ′(s)− α′(s)C(s)= 0 (4.4.3)

for some s ∈ Ŵ. Let us consider C ′(s), the derivative of the wedge product
of (4.4.1). Applying formula (4.3.1) we note that all of the 2k − 1 terms
of (4.3.1) except the last one are zeros since the corresponding wedge product
either contains a zero vector or two identical vectors. Hence C ′(s) is the wedge
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product of the following ordered set of vectors:

U (ti )− U (tn) for i = 2, . . . , n − 1,

d j

dt j
U (t)

∣

∣

∣

∣

t=ti

for j = 1, . . . , mi − 1 if mi > 1 and i = 2, . . . , n,

U (s)− U (tn),

d j

dt j
U (t)

∣

∣

∣

∣

t=s

for j = 1, . . . , m1 − 2 if m1 > 2 and j = m1.

(4.4.4)

The wedge products (4.4.1) for C(s) and (4.4.4) for C ′(s) differ in two vectors,

A(s)= dm1−1

dtm1−1
U (t)

∣

∣

∣

∣

t=s

and B(s)= dm1

dtm1
U (t)

∣

∣

∣

∣

t=s

if m1 > 1

and

A(s)= U (s)− U (tn) and B(s)= d

dt
U (t)

∣

∣

∣

∣

t=s

if m1 = 1.

Vector A(s) is present in (4.4.1) and absent in (4.4.4) while vector B(s) is absent
in (4.4.1) and present in (4.4.4). Therefore, (4.4.3) implies that the set consisting
of the vector

α(s)A(s)− α′(s)B(s)

and the 2k − 2 vectors common to wedges (4.4.1) and (4.4.4) is linearly
dependent. However, as α(s) 6= 0, this contradicts Lemma 3.4. ✷

We will need the following result.

LEMMA 4.5. Let fs(t) and gs(t) be trigonometric polynomials (4.1.1)

and (4.1.2) respectively and let m be a positive integer.

(1) If t∗ ∈ S is a root of fs(t) of multiplicity at least m for all s ∈ Ŵ, then t∗ is

a root of gs(t) of multiplicity at least m for all s ∈ Ŵ.

(2) If m > 1 and s is a root of fs(t) of multiplicity at least m for all s ∈ Ŵ, then

s is a root of gs(t) of multiplicity at least m − 1 for all s ∈ Ŵ.

Proof. Suppose that

fs(t
∗)= · · · = ∂m−1

∂tm−1
fs(t)

∣

∣

∣

∣

t=t∗
= 0.

Differentiating with respect to s yields part (1).
Suppose that

fs(s)= ∂ j

∂t j
fs(t)

∣

∣

∣

∣

t=s

= 0 for j = 1, . . . , m − 1.

Differentiating with respect to s we obtain

0 = ∂

∂s
fs(t)

∣

∣

∣

∣

t=s

+ ∂

∂t
fs(t)

∣

∣

∣

∣

t=s

= ∂

∂s

∂ j

∂t j
fs(t)

∣

∣

∣

∣

t=s

+ ∂ j+1

∂t j+1
fs(t)

∣

∣

∣

∣

t=s

for j = 1, . . . , m − 1.
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Therefore,

gs(s)= ∂ j

∂t j
gs(t)

∣

∣

∣

∣

t=s

= 0 for j = 1, . . . , m − 2,

and the proof of part (2) follows. ✷

§5. Critical arcs. This section is devoted to verifying the following result.

THEOREM 5.1.
(1) For every k > 1 there exists a non-empty open arc Ŵ ⊂ S with the

following property: if t1, . . . , tn ∈ Ŵ are distinct points and m1, . . . , mn are

positive even integers satisfying

n
∑

i=1

mi = 2k,

then the unique raked trigonometric polynomial f (t) of degree 2k − 1 with

constant term 1 that has each point ti as a root of multiplicity mi , has no other

roots in S. Moreover, f (t)> 0 for all t ∈ S.

(2) Let Ŵ ⊂ S be an open arc as in part (1) of the maximum possible length

and let a and b be the endpoints of Ŵ. Then there are positive even integers ma

and mb such that ma + mb = 2k and such that the unique raked trigonometric

polynomial f (t) of degree 2k − 1 with constant term 1 that has a root at t = a

of multiplicity ma and a root at t = b of multiplicity mb is non-negative on S and

has a root (of necessarily even multiplicity) in the arc Ŵ + π .

(3) Fix positive even integers ma and mb such that ma + mb = 2k. Let Ŵ ⊂ S

be an open arc of length less than π and let a be an endpoint of Ŵ. For b ∈ Ŵ
let fb(t) be the unique raked trigonometric polynomial of degree 2k − 1 with

constant term 1 that has a root at t = a of multiplicity ma and a root at t = b

of multiplicity mb. Let x, y, z ∈ Ŵ be distinct points such that y lies between a

and z and x lies between a and y. Suppose that fy(t)> 0 for all t ∈ S and that

fy has a root (of necessarily even multiplicity) in the arc Ŵ + π . Then fx (t) is

positive for all t ∈ S\{a, x} while fz(t) is negative for some t ∈ S.

Let us denote for a moment the maximum possible length of an arc Ŵ
satisfying part (1) of Theorem 5.1 by ψk . In Lemma 5.7 below we prove that
ψk = φk , the maximum length of an arc with the neighborliness property of
Theorem 1.1.

Example 5.2. Suppose that k = 2. The only possible set of multiplicities
in part (2) of Theorem 5.1 is ma = 2 and mb = 2. The polynomial f (t)=
1 − cos 3t has roots at t = ±2π/3 and a root at t = 0, all of multiplicity 2, while
remaining non-negative on S. Combining parts (3) and (2) of Theorem 5.1 we
conclude that

ψ2 = 2π

3
≈ 2.094 395 103.

Suppose that k = 3. The only possible set of multiplicities in part (2) of
Theorem 5.1 is ma = 2 and mb = 4. The polynomial f (t)= 1 − cos 5t has
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roots at t = 0,±2π/5, and t = ±4π/5, all of multiplicity 2, while remaining
non-negative on S. Applying to f (t) the deformation of Lemma 3.6 with
λ= 1/ cos(π/5) results in the polynomial fλ(t) that has a root of multiplicity
4 at t = π , roots of multiplicity 2 at the points ±α such that

cos α = cos(2π/5)

cos(π/5)
= 3 −

√
5

2
,

and no other roots. Hence fλ(t) does not change its sign on S. Scaling fλ,
if necessary, to make the constant term 1, we ensure that fλ(t) is non-negative
on S. It follows by Theorem 5.1 that

ψ3 = π − α = π − arccos
3 −

√
5

2
≈ 1.962 719 003.

Suppose that k = 4. There are two possibilities for multiplicities ma and mb

in part (2) of Theorem 5.1. We have either ma = 2 and mb = 6 or ma = mb = 4.
It turns out that the arc satisfying the latter conditions is shorter. As follows from
Proposition 7.6 below, we have ψ4 = 2α, where α > 0 is the smallest positive
root of the equation

cos α + 1 − 1
2 tan2 α + 3

8 tan4 α − 5
16 tan6 α = 0.

Computations show that

ψ4 = 2 arccos

(

− 1

48
(91 + 336

√
15)1/3 + 119

48(91 + 336
√

15)1/3
+ 29

48

)

≈ 1.870 658 532.

In this case, the raked trigonometric polynomial f of degree 7 that has roots of
multiplicity 4 at t = ±ψ4/2 also has a root of multiplicity 2 at t = π .

In general, our computations suggest that in part (2) of Theorem 5.1 one
should always choose ma = mb = k if k is even and ma = k + 1 and mb = k − 1
if k is odd, but we have been unable to prove that.

To prove Theorem 5.1, we need some technical results on convergence of
trigonometric polynomials.

5.3. Convergence of trigonometric polynomials. All raked trigonometric
polynomials (2.1.1) of degree at most 2k − 1 form a real (2k + 1)-dimensional
vector space, which we make into a normed space by letting

‖ f ‖ = max
t∈S

| f (t)|

for a trigonometric polynomial f . For a complex polynomial p of degree at most
4k − 2 we define

‖p‖ = max
z:|z|=1

|p(z)| = max
z:‖z|61

|p(z)|,
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where the last equality follows by the maximum modulus principle for
holomorphic functions. We note that

‖P( f )‖ = ‖ f ‖
for any trigonometric polynomial f . We define the convergence of trigonometric
and complex polynomials with respect to the norm ‖ · ‖.

LEMMA 5.4. Fix a positive integer m. For a positive integer j , let A j ⊂ S

be a non-empty closed set and let f j (t) be a trigonometric polynomial of degree

at most 2k − 1 that has at least m roots, counting multiplicities, in A j . Suppose

that A j+1 ⊂ A j for all j , and let

B =
∞
⋂

j=1

A j .

Suppose further that for some trigonometric polynomial f we have

f = lim
j−→+∞

f j .

Then f has at least m roots, counting multiplicities, in B.

Suppose, in addition, that f 6≡ 0, m = 2k, B lies in an open semicircle, and

that for every j the multiplicities of all roots of f j in A j are even. Then the

multiplicities of all roots of f in B are even.

Proof. Let p j = P( f j ). By Lemma 3.2, p j is a complex polynomial that can
be written as

p j (z)= (z − z1 j ) · · · (z − zmj )q j (z), (5.4.1)

where q j (z) is a complex polynomial of degree at most 4k − 2 − m and
z1 j , . . . , zmj are not necessarily distinct complex numbers of modulus 1 whose
arguments lie in A j . In addition,

lim
j−→+∞

p j = p,

where p(z)= P( f ). From this and (5.4.1) we infer that the numbers

max
z:|z|= 1

2

|q j (z)|

are uniformly bounded from above. Since all norms on the finite-dimensional
space of complex polynomials of degree at most 4k − 2 are equivalent and since
max

z:|z|= 1
2

|q j (z)| is also a norm, it follows that the norms ‖q j‖ are uniformly

bounded from above. (We consider the circle |z| = 1/2 instead of |z| = 1 to make
sure that the factors z − z1 j , . . . , z − zmj in (5.4.1) are all separated from 0.)
Hence we can find a subsequence { jn} such that

lim
n−→+∞

q jn = q

for some complex polynomial q and

lim
n−→+∞

zi jn = z∗
i where z∗

i ∈ B for i = 1, . . . , m.
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Then, necessarily
p(z)= (z − z∗

1) · · · (z − z∗
m)q(z).

Hence by Lemma 3.2 the raked trigonometric polynomial f (t) has at least m

roots in B, counting multiplicities. If m = 2k and p 6≡ 0, part (3) of Theorem 3.1
implies that z∗

1, . . . , z∗
m are the only roots of p(z) in B. The result follows. ✷

The following lemma plays the crucial role in our proof of Theorem 5.1.

LEMMA 5.5. Let Ŵ ⊂ S be an open arc with the endpoints a and b and

let Ŵ be its closure. Let t2, . . . , tn ∈ S\Ŵ be distinct points such that the set

Ŵ ∪ {t2, . . . , tn} lies in an open semicircle, and let m1, . . . , mn be positive even

integers such that
n

∑

i=1

mi = 2k.

For s ∈ Ŵ, let fs(t) be the unique raked trigonometric polynomial of degree

2k − 1 with constant term 1 that has a root of multiplicity mi at ti for i =
2, . . . , n and a root of multiplicity m1 at t = s. If both fa(t) and fb(t) are

non-negative on S, then for every s ∈ Ŵ, the trigonometric polynomial fs(t) is

positive on S\{s, t2, . . . , tn}.
Proof. Let us consider

gs(t)= ∂

∂s
fs(t)

as in Theorem 4.2. By Lemma 4.5, for all s ∈ Ŵ, the point ti is a root of gs(t) of
multiplicity at least mi for i = 2, . . . , n and s is a root of gs(t) of multiplicity
at least m1 − 1. Let S+ be an open semicircle containing Ŵ and the points
t2, . . . , tn .

Seeking a contradiction, let us assume that ft1(t
∗)= 0 for some t1 ∈ Ŵ and

some t∗ ∈ S\{t1, t2, . . . , tn}. By part (4) of Theorem 3.1, t∗ ∈ S+ + π . We have
fa(t

∗)> 0 and fb(t
∗)> 0. Therefore, the function

s 7−→ fs(t
∗)

attains a local minimum in Ŵ at some point s∗. Then

gs∗(t∗)= 0 and fs∗(t∗)6 0.

Since fs∗(t) has a constant term of 1, we obtain

fs∗(t)+ fs∗(t + π)= 2 for all t ∈ S,

and hence
t∗ + π 6= s∗, t2, . . . , tn.

Since the constant term of gs∗(t) is 0, part (2) of Theorem 3.1 implies that
gs∗(t)≡ 0. This however contradicts Theorem 4.2.

Hence for every s ∈ Ŵ the trigonometric polynomial fs(t) has no roots
other than s, t2, . . . , tn . By Remark 2.3(2), we have fs(t) > 0 for all t ∈
S\{s, t2, . . . , tn}. ✷
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5.6. Proof of Theorem 5.1. To prove part (1), let us choose a point t∗ ∈ S

and let us assume, seeking a contradiction, that there is a nested sequence of
open arcs

Ŵ1 ⊃ Ŵ2 ⊃ · · · ⊃ Ŵi ⊃ · · · (5.6.1)

such that
∞
⋂

j=1

Ŵ j = {t∗},

and such that for every j there is a raked trigonometric polynomial f j (t) of
degree 2k − 1, with constant term 1, with 2k roots, counting multiplicities,
in Ŵ j and a root somewhere else on the circle. By part (4) of Theorem 3.1,
that additional root must lie in Ŵ j + π . Let h j (t) be the scaling of f j to
a trigonometric polynomial of norm 1. Then there is a subsequence of the
sequence h j (t) converging to a raked trigonometric polynomial h. In particular,
‖h‖ = 1, and hence h(t) 6≡ 0. It follows from Lemma 5.4 that t∗ is a root of h of
multiplicity at least 2k and that t∗ + π is a root of h. Since both t∗ and t∗ + π

are roots of h(t), we obtain that h(t) has a zero constant term and that t∗ + π is,
in fact, a root of h(t) of multiplicity at least 2k. Hence part (1) of Theorem 3.1
implies that h(t)≡ 0, which is a contradiction.

By Remark 2.3(2), a trigonometric polynomial with constant term 1 that does
not change its sign on S is non-negative on S. Finally, the example of polynomial
1 − cos(2k − 1)t shows that the length of an arc Ŵ in part (1) is less than π .

To prove part (2), we construct a nested sequence of open arcs (5.6.1) such
that

∞
⋂

j=1

Ŵ j = Ŵ,

where Ŵ is the closure of Ŵ. By our assumption, for every j there is a raked
trigonometric polynomial f j (t) of degree at most 2k − 1 that has 2k roots
counting multiplicity in Ŵ j and a root elsewhere, necessarily in Ŵ j + π . As
in the proof of part (1), let us scale f j (t) to a trigonometric polynomial h j (t)

such that ‖h j‖ = 1 and construct the limit trigonometric polynomial h. Then
h 6≡ 0, and, by Lemma 5.4, h has roots t1, . . . , tn ∈ Ŵ of even multiplicities
m1, . . . , mn such that m1 + · · · + mn = 2k, and a root t∗ ∈ Ŵ + π . By part (2)
of Theorem 3.1, h has a non-zero constant term.

We rescale h to a raked trigonometric polynomial f (t) with constant term 1.
Then each ti is a root of f (t) of multiplicity mi and f (t∗)= 0.

Our assumption that Ŵ is of maximum possible length implies that the
endpoints a and b of Ŵ are roots of f (t). Our goal is to show that for every
i = 1, . . . , n we have either ti = a or ti = b; that is, that there are no roots
inside Ŵ.

Seeking a contradiction, let us assume that t1 ∈ Ŵ. We choose a closed
arc A ⊂ Ŵ with the endpoints x and y, containing t1 in its interior and such
that ti /∈ A for i = 2, . . . , n. For s ∈ A, let fs(t) be the raked trigonometric
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polynomial of Theorem 4.2 that has a root at t = s of multiplicity m1 and a root
at ti of multiplicity mi for i = 2, . . . , n. In particular,

fs = f if s = t1.

We observe that

fs(t)> 0 for all t ∈ S and all s ∈ A.

Indeed, if fs(t0) < 0 for some t0 ∈ S then a trigonometric polynomial f̂ with
constant term 1 that has a root of multiplicity m1 at s and roots of multiplicity
mi at some points t̂i ∈ Ŵ sufficiently close to ti will also satisfy f̂ (t0) < 0, which
contradicts the definition of Ŵ. Hence fx (t)> 0 for all t ∈ S and fy(t)> 0 for all
t ∈ S. Lemma 5.5 then implies that f (t∗)= ft1(t

∗) > 0, which is contradiction.
To prove part (3), we note that for any b ∈ Ŵ sufficiently close to a, by part (1)

of the theorem we have fb(t) > 0 for all t ∈ S\{a, b}. We can choose such a
point b so that x lies between b and y and then fx (t) > 0 for all t ∈ S\{a, x} by
Lemma 5.5. Assume now that fz(t)> 0 for all t ∈ S. Then by Lemma 5.5 we
have fy(t) > 0 for all t ∈ S\{a, y}, which is a contradiction. ✷

LEMMA 5.7. Letψk be the maximum length of an open arc Ŵ in Theorem 5.1

and let φk be the maximum length of an open arc Ŵ in Theorem 1.1. Then

ψk = φk .

Proof. From Remark 2.3(1) it follows immediately that φk > ψk .
Let Ŵ ⊂ S be an open arc of length ψk with the endpoints a and b and let

Ŵ̃ ⊃ Ŵ be a closed arc with the endpoints a and c strictly containing Ŵ and
lying in an open semicircle. By part (2) of Theorem 5.1 there exist positive
even integers ma and mb such that ma + mb = 2k and a raked trigonometric
polynomial f (t) of degree 2k − 1 and with constant term 1 that has a root at
t = a of multiplicity ma , a root at t = b of multiplicity mb, and some other root
t∗ ∈ Ŵ + π . For s ∈ Ŵ̃ let fs(t) be the unique raked trigonometric polynomial of
degree 2k − 1 with constant term 1 that has a root of multiplicity ma at t = a and
a root of multiplicity mb at t = s. Seeking a contradiction, let us assume that for
any distinct t1, . . . , tk ∈ Ŵ̃, the unique raked trigonometric polynomial of degree
2k − 1 and with constant term 1 that has roots of multiplicity two at t1, . . . , tk
remains non-negative on the entire circle S. As in §5.6, using the limit argument,
we conclude that fc(t)> 0 for all t ∈ S. This, however, contradicts part (3) of
Theorem 5.1 since fb has a root in Ŵ + π .

In view of Remark 2.3(1), it follows that for some distinct t1, . . . , tk ∈ Ŵ̃, the
convex hull

conv(U (t1), . . . ,U (tk))

is not a face of Bk . Hence φk 6 ψk . ✷

§6. Neighborliness of the symmetric moment curve. In this section we prove
Theorems 1.1 and 1.3. Our proofs are based on the following main result.
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THEOREM 6.1. For every positive integer k there exists a number π > φk >

π/2 such that if Ŵ ⊂ S is an open arc of length φk , if t1, . . . , tn ∈ Ŵ are distinct

points, and m1, . . . , mn are positive even integers such that

n
∑

i=1

mi = 2k,

then the unique raked trigonometric polynomial f (t) of degree 2k − 1 with

constant term 1 that has a root of multiplicity mi at ti for i = 1, . . . , n is positive

everywhere else on the circle S.

The proof is based on Theorem 5.1 and the following lemma.

LEMMA 6.2. Let f (t) be the raked trigonometric polynomial of degree

2k − 1 with constant term 1 that has a root of multiplicity 2m at t = 0 and a

root of multiplicity 2n at t = π/2, where m and n are positive integers such that

m + n = k. Then f (t) has no other roots in the circle S.

Proof. We have

f (t)= 1 +
k

∑

j=1

a j cos(2 j − 1)t +
k

∑

j=1

b j sin(2 j − 1)t

for some real a j and b j . In addition,

f ′(0)= · · · = f (2m−1)(0)= 0 and f ′(π/2)= · · · = f (2n−1)(π/2)= 0.
(6.2.1)

Let

a(t)=
k

∑

j=1

a j cos(2 j − 1)t and b(t)=
k

∑

j=1

b j sin(2 j − 1)t,

so that

f (t)= 1 + a(t)+ b(t) and f ′(t)= a′(t)+ b′(t). (6.2.2)

Observe that

d2r−1

dt2r−1
a(t)

∣

∣

∣

∣

t=0
= 0 and

d2r

dt2r
b(t)

∣

∣

∣

∣

t=0
= 0 (6.2.3)

for any positive integer r , and

d2r

dt2r
a(t)

∣

∣

∣

∣

t=π/2
= 0 and

d2r−1

dt2r−1
b(t)

∣

∣

∣

∣

t=π/2
= 0 (6.2.4)

for any positive integer r .
Combining (6.2.1)–(6.2.4) we conclude that t = 0 is a root of a′(t) of

multiplicity at least 2m − 1 and a root of b′(t) of multiplicity at least 2m.
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Similarly, t = π/2 is a root of a′(t) of multiplicity at least 2n and a root of
b′(t) of multiplicity at least 2n − 1. Since f (0)= 0, we obtain that a(t) 6≡ 0,
and hence a′(t) 6≡ 0. Also since f (π/2)= 0, it follows that b(t) 6≡ 0, and hence
b′(t) 6≡ 0. By part (2) of Theorem 3.1, the trigonometric polynomial a′(t) has a
root of multiplicity 2m − 1 at t = 0, a root of multiplicity 2n at t = π/2 and no
other roots in the circle S, while the trigonometric polynomial b′(t) has a root
of multiplicity 2m at t = 0, a root of multiplicity 2n − 1 at t = π/2 and no other
roots in the circle.

We conclude that the functions a(t) and b(t) are monotone on the interval
0< t < π/2. Since a(0)= −1 and a(π/2)= 0, we infer that a(t) is monotone
increasing for 0< t < π/2, and hence a(t) < 0 for all 0< t < π/2. Since
b(0)= 0 and b(π/2)= −1, we obtain that b(t) is monotone decreasing for
0< t < π/2, and therefore b(t) < 0 for all 0< t < π/2. As

a(t + π)= −a(t) and b(t + π)= −b(t),

it follows that a(t) > 0 for π < t < 3π/2 and b(t) > 0 for π < t < 3π/2.
Therefore,

f (t)> 1 for all π 6 t 6 3π/2.

The latter equation yields the result, as by part (4) of Theorem 3.1, a root t∗ of
f (t) distinct from 0 and π/2, if exists, must satisfy π 6 t∗ 6 3π/2. ✷

6.3. Proof of Theorem 6.1. By part (1) of Theorem 5.1, there exists a
number ηk > 0 such that if a raked trigonometric polynomial f (t) of degree
2k − 1 and with a constant term 1 has roots at t = 0 and t = ηk with positive even
multiplicities summing up to 2k, then f (t) is positive everywhere else. It follows
from Lemmas 6.2 and 5.5 that the same remains true for all 0< ηk 6 π/2. Using
the shift f (t) 7−→ f (t + a) of raked trigonometric polynomials, we conclude
that for every arc Ŵ ⊂ S of length not exceeding π/2, a raked trigonometric
polynomial f (t) of degree 2k − 1 with constant term 1 that has roots of
even multiplicities summing up to 2k at the endpoints of Ŵ remains positive
everywhere else in S. The proof now follows from part (2) of Theorem 5.1. ✷

6.4. Proofs of Theorems 1.1 and 1.3. Theorem 1.1 follows from
Theorem 6.1 and Remark 2.3(1), while Theorem 1.3 follows from Remark 2.3(1)
and Lemma 5.5. ✷

§7. The limit of neighborliness. In this section, we prove Theorem 1.2. Our
goal is to construct a raked trigonometric polynomial fk(t) of degree 2k − 1
such that fk(t) has a root of multiplicity 2k − 2 at t = 0, roots of multiplicity 2
each at t = ±βk for some π/2< βk < π , and such that fk(t)> 0 for all t ∈ S. It
then follows from Theorem 5.1 and Lemma 5.7 that φk 6 βk , and, establishing
that βk −→ π/2 as k grows, we complete the proof.

LEMMA 7.1. The function

f (t)= sin2k−1 t

is a raked trigonometric polynomial of degree 2k − 1.
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Proof. We have

sin2k−1 t =
(

eit − e−it

2i

)2k−1

= 1

(−4)k−1

1

2i

2k−1
∑

j=0

(

2k − 1

j

)

(−1) j ei(2k−2 j−1)t

= 1

(−4)k−1

k−1
∑

j=0

(

2k − 1

j

)

×
(

(−1) j ei(2k−2 j−1)t + (−1)2k−1− j ei(2 j−2k+1)t

2i

)

= 1

(−4)k−1

k−1
∑

j=0

(

2k − 1

j

)

(−1) j sin(2k − 2 j − 1)t. ✷

LEMMA 7.2. For k > 1 let

hk(t)=
∫ t

0
sin2k−1(τ ) dτ.

Then hk(t) is a raked trigonometric polynomial of degree 2k − 1 and t = 0 is a

root of hk(t) of multiplicity 2k. Moreover,

hk(t)= (2k − 2)!!
(2k − 1)!!

(

1 − (cos t)

k−1
∑

j=0

(2 j − 1)!!
(2 j)!! sin2 j t

)

,

where we agree that 0!! = (−1)!! = 1.

Proof. From Lemma 7.1, hk(t) is a raked trigonometric polynomial of degree
2k − 1. Moreover, hk(0)= 0 and h′

k(t)= sin2k−1 t , from which it follows that
t = 0 is a root of hk(t) of multiplicity 2k. Since

h1(t)=
∫ t

0
sin τ dτ = 1 − cos t,

and since for n > 1
∫ t

0
sinn τ dτ = −1

n
(sinn−1 t)(cos t)+ n − 1

n

∫ t

0
sinn−2 τ dτ,

we obtain by induction that

∫ t

0
sin2k−1 τ dτ = (2k − 2)!!

(2k − 1)!!

(

1 − cos t

k−1
∑

j=0

(2 j − 1)!!
(2 j)!! sin2 j t

)

,

as claimed. ✷

LEMMA 7.3. Let hk(t) be the trigonometric polynomial defined in

Lemma 7.2 and let

Fk(t)= sin2(t)hk−1(t)− hk(t).
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Then there exists a unique
π

2
< βk < π

such that

Fk(βk)= 0.

In addition,

lim
k−→+∞

βk = π

2
.

Proof. From Lemma 7.2, we deduce

Fk

(

π

2

)

= hk−1

(

π

2

)

− hk

(

π

2

)

= (2k − 4)!!
(2k − 3)!! − (2k − 2)!!

(2k − 1)!! > 0

and

Fk(π)= −hk(π)= −2
(2k − 2)!!
(2k − 1)!! < 0.

Moreover,

F ′
k(t)=2(sin t)(cos t)hk−1(t)−h′

k(t)+ sin2(t)h′
k−1(t)=2(sin t)(cos t)hk−1(t).

In particular, F ′
k(t) < 0 for π/2< t < π , and hence Fk(t) is decreasing on the

interval π/2< t < π . Since Fk(π/2) > 0 and Fk(π) < 0, there is a unique
π/2< βk < π such that Fk(βk)= 0.

To find the limit behavior of βk , we use the expansion

(1 − x)−1/2 =
∞
∑

j=0

(2 j − 1)!!
(2 j)!! x j for real − 1< x < 1.

Substituting x = sin2 t we obtain

∞
∑

j=0

(2 j − 1)!!
(2 j)!! sin2 j t = − 1

cos t
provided π/2< t < π.

Hence from Lemma 7.2, for π/2< t < π we have

hk(t) = (2k − 2)!!
(2k − 1)!!

(

1 − (cos t)

( ∞
∑

j=0

(2 j − 1)!!
(2 j)!! sin2 j t

−
∞
∑

j=k

(2 j − 1)!!
(2 j)!! sin2 j t

))

= (2k − 2)!!
(2k − 1)!!

(

2 + (cos t)

∞
∑

j=k

(2 j − 1)!!
(2 j)!! sin2 j t

)

and

(2k − 3)!!
(2k − 4)!! Fk(t) = 2 sin2 t − 2

2k − 2

2k − 1

+ (cos t)

∞
∑

j=k

(

(2 j − 3)!!
(2 j − 2)!! − 2k − 2

2k − 1

(2 j − 1)!!
(2 j)!!

)

sin2 j t.
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It follows that Fk(t) < 0 for every π/2< t < π such that sin2 t 6

(2k − 2)/(2k − 1). Since Fk(t) is decreasing for π/2< t < π , we conclude that

sin2 βk >
2k − 2

2k − 1
, (7.3.1)

and hence
lim

k−→+∞
βk = π

2
,

as desired. ✷

LEMMA 7.4. Let hk(t) be the trigonometric polynomial defined in

Lemma 7.2 and let βk be the number defined in Lemma 7.3. Let

fk(t)= sin2(βk)hk−1(t)− hk(t).

Then fk(t) is a raked trigonometric polynomial of degree 2k − 1 such that t = 0
is a root of fk(t) of multiplicity 2k − 2, t = ±βk are the roots of multiplicity 2

each and fk(t)> 0 for all t ∈ S.

Proof. It follows by Lemma 7.2 that fk(t) is a raked trigonometric
polynomial of degree 2k − 1 and that t = 0 is a root of fk(t) of multiplicity
at least 2k − 2. From the definition of βk in Lemma 7.3, we conclude that t = βk

is a root of fk(t). Moreover, since

f ′
k(t)= sin2k−1 t − (sin2 βk) sin2k−3 t,

we have f ′(βk)= 0, so the multiplicity of the root at t = βk is at least 2. By
part (3) of Theorem 3.1, the multiplicities of the roots at t = 0 and t = βk are
2k − 2 and 2 respectively and there are no other roots of fk(t) in the open arc
0< t < π . Also, by Lemma 7.2 and (7.3.1), we have

fk(π)= 2 sin2(βk)
(2k − 4)!!
(2k − 3)!! − 2

(2k − 2)!!
(2k − 1)!! > 0.

Since fk(−t)= fk(t), we conclude that t = −βk is a root of fk(t)> 0 of
multiplicity 2 and that fk(t) > 0 for all t 6= 0,±βk . ✷

7.5. Proof of Theorem 1.2. Let ψk be the maximum length of an open arc
satisfying part (1) of Theorem 5.1. It follows from Lemma 7.4 that ψk 6 βk , and
hence from Lemma 5.7 that φk 6 βk . Lemma 7.3 then yields the proof. ✷

All available computational evidence suggests that for even k the smallest
length of the arc in part (2) of Theorem 5.1 is achieved when the multiplicities
ma and mb are equal: ma = mb = k. The following results provides an explicit
equation for the length of such an arc.

PROPOSITION 7.6. Suppose that k is even. Let αk > 0 be the smallest

number such that the necessarily unique raked trigonometric polynomial f (t)

of degree 2k − 1 with constant term 1 that has roots at t = αk and t = −αk of
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multiplicity k each also has a root t∗ elsewhere in S. Then t∗ = π and αk is the

smallest positive root of the equation F(α)= 0 where

F(α)= cos α + 1 +
k−1
∑

j=1

(−1) j (2 j − 1)!!
(2 j)!! tan2 j α. (7.6.1)

Proof. We note that the raked trigonometric polynomial f̃ (t)= f (−t) also
has a root of multiplicity k at t = αk and a root of multiplicity k at t = −αk . By
Corollary 3.5, we must have f̃ (t)= f (t), and hence

f (t)= 1 +
k

∑

j=1

a j cos(2 j − 1)t

for some real a1, . . . , ak . Then the raked trigonometric polynomial f ′(t) has
roots at t = αk , −αk , αk + π , and −αk + π of multiplicity k − 1 each as well as
roots at t = 0 and t = π . By part (1) of Theorem 3.1, f ′(t) has no other roots
and ak 6= 0. By part (4) of Theorem 3.1, the root t∗ must lie in an open arc Ŵ
with the endpoints αk + π and −αk + π . From the definition of αk , it follows
that f (t)> 0 for all t ∈ Ŵ, and hence t∗ is a local minimum of f (t). Thus
f ′(t∗)= 0, and so t∗ = π . Moreover, t∗ = π is a root of f (t) of multiplicity 2.

We choose

λ= 1

cos αk

in Lemma 3.6 and consider the λ-deformation fλ(t) of f (t). Let

p = P( f ) and pλ = P( fλ).

Since αk and −αk are roots of f (t) of multiplicity k each, the complex numbers
eiαk and e−iαk are roots of p of multiplicity k each. Then z = 1 is a root of pλ(z)

of multiplicity 2k, and hence t = 0 is a root of fλ of multiplicity 2k.
As t = π is a root of f of multiplicity 2, it follows that z = −1 is a root of

p(z) of multiplicity 2. Thus,

−1 + sin αk

cos αk

and
−1 − sin αk

cos αk

(7.6.2)

are roots of pλ(z).
Since t = 0 is a root of multiplicity 2k of fλ(t) the trigonometric

polynomial fλ(t) should be proportional to the trigonometric polynomial hk(t)

of Lemma 7.2. Therefore,

pλ(z) = γ z2k−1
(

1 −
(

z + z−1

2

)(

1 +
k−1
∑

j=1

(2 j − 1)!!
(2 j)!!

(

z − z−1

2i

)2 j))

for some γ 6= 0. (7.6.3)

Substituting either of the roots of (7.6.2) in (7.6.3), we obtain the desired
equation

F(αk)= 0.
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Suppose now that some number 0< α < π/2 also satisfies the equation
F(α)= 0. Then

−1 + sin α

cos α
and

−1 − sin α

cos α
(7.6.4)

are roots of polynomial q = P(hk), where hk(t) is the trigonometric polynomial
of Lemma 7.2. Let us choose λ= cos α and let gλ(t) be the λ-deformation of
hk(t) as in Lemma 3.6. Let qλ = P(gλ). Since the numbers introduced in (7.6.4)
are roots of q, we conclude that z = −1 is a root of multiplicity 2 of qλ(z), and
hence t = π is a root of multiplicity 2 of gλ(t). Similarly, since t = 0 is a root
of multiplicity 2k of hk(t), we conclude that z = 1 is a root of multiplicity 2k of
q(z), and hence the numbers eiα and e−iα are roots of qλ, each of multiplicity k.
Therefore, t = α and t = −α are roots of gλ(t), each of multiplicity k. It then
follows, by minimality of αk , that α > αk , which completes the proof. ✷
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