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ISOMORPHIC FACTORISATIONS V: DIRECTED GRAPHS

FRANK HARARY, ROBERT W. ROBINSON AND NICHOLAS C. WORMALD

Abstract. An isomorphic factorisation of a digraph D is a partition of its arcs
into mutually isomorphic subgraphs. If such a factorisation of D into exactly t parts
exists, then t must divide the number of arcs in D. This is called the divisibility
condition. It is shown conversely that the divisibility condition ensures the existence
of an isomorphic factorisation into t parts in the case of any complete digraph. The
sufficiency of the divisibility condition is also investigated for complete w-partite
digraphs. It is shown to suffice when m = 2 and t is odd, but counterexamples are
provided when m = 2 and t is even, and when m = 3 and either t = 2 or t is odd.

§1. Introduction. An isomorphic factorisation of a digraph D = (V, E) is a partition
{Eu E2, ..., E,} of the arc set E such that the spanning sub-digraphs (V, E^), (V,E2),...,
(V, Et) are all isomorphic. If H m (V, EJ we say H divides D and write either H | D or
H e D/t. Also, if D has an isomorphic factorisation into exactly t isomorphic sub-
graphs, we say that D is divisible by t and write t \ D. Similarly, an isomorphic factori-
sation of an ordinary (symmetric) graph G is defined in [4] to be a partition of its
line set which induces isomorphic subgraphs, and the above notation is used in the
analogous fashion for graphs.

For given t and a given digraph D having exactly q arcs, an obvious necessary
condition for the divisibility of D by t is that t divide q. This is called the Divisibility
Condition for D and t. To avoid triviality we always take t > 1. All basic graph
theoretic notation can be found in [2].

In the first paper in this series [4] we showed that whenever G is a complete graph
the Divisibility Condition is sufficient for the divisibility of G by t. The third paper
[5] examined analogous questions for complete r-partite graphs when r > 1. It was
found that when r is 2 the Divisibility Condition is sufficient, but when r is 3 and t is
odd the Divisibility Condition is insufficient for the divisibility of a complete r-partite
graph. Our present objective is to examine complete digraphs and complete multi-
partite digraphs in the same way.

Notation. If G is a graph, then DG is the digraph of G, where DG has a symmetric
pair of arcs for each line of G.

In the next section we show the sufficiency of the Divisibility Condition for the
complete digraph DKP on p points, for all p. In fact, for given p and t, the Divisibility
Condition implies the existence of a self-converse digraph in DKp/t. Complete
r-partite digraphs are examined in Section 3. We show that for r — 2 the Divisibility
Condition is always sufficient when t is odd, but examples of insufficiency exist for all
even /. When r = 3, however, we show that the Divisibility Condition is not sufficient
for any odd / or for t = 2. This insufficiency when t = 2 is also shown to apply for
any r which is divisible by 4. In the final section related problems, results and con-
jectures are considered.

§2. Complete Directed Graphs. Our purpose in this section is to prove that the
Divisibility Condition is sufficient for the existence of a self-converse digraph in
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DKp/t for all p and t. When t is odd this result is a corollary of the Divisibility Theorem
for complete graphs [4], whilst the case when t is even is handled by modifying the
arguments used to prove the Divisibility Theorem.

THEOREM 1. If t divides p(p — 1) then the complete directed graph DKp is divisible
by t. In fact, DKpjt contains a self-converse digraph.

Proof. Five cases will be considered, mainly because the general constructions
employed are not applicable for small values of p and t.

Case 1. t is odd. It follows that 11 p(p — l)/2, so by the Divisibility Theorem of
[4], the complete graph Kp is divisible by t. If G is a graph in Kp/t, then the digraph
of G, namely DG, is a self-converse member of DKJt.

Case 2. t = 2. Consider the complete directed graph DKP with point set
{1,2, ..., p). Let D be the digraph containing exactly the arcs (i, j) for which i < j .
Then D is self-converse and is in DKJ2. (This D is the transitive tournament which
is denoted by Tp in Moon [8].)

Case 3. t = 4. In this case the Divisibility Condition implies that p = m or
m + 1 for m divisible by 4. We give first the construction for p = m, then show how
to modify it for p = m + 1.

Given m = 4s let Au A2, A3 and A4 be four disjoint point sets each of cardinality
s, and consider the complete directed graph DKm with point set

V = A^ u A2 u A3 u A4.

Let Do be the digraph with point set V containing just those arcs (u, v) for which
u e At and v e A2, ue A± and v e A3, ue A3 and v e A2, or u, v e A4. Then £>0 is
self-converse and is a member of DKJ4. A factorisation of DKm into four digraphs
isomorphic to Do can be obtained as follows. Let <j)  be an automorphism of the point

Do

*l

Fig 1. An isomorphic factorisation of DKm/4 when m = 4s
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set of DKm such that 4>(AX) = A2, <t>(A2) = A3, </)(A3) = A4 and <j)(A4) = Av

Then for i = 1,2 and 3, the map (j> 1 provides an isomorphism between Do and another
digraph, say Dt. The digraphs Do, Dlt D2 and D3 provide the required factorisation,
as illustrated in Figure 1.

Next, let w be a point not in Fand consider the complete directed graph DKm+1

with point set V = V u {w}. Let Do' be the digraph with point set V containing
those arcs in Do together with all arcs (u, w) and (w, u) for which u e AA. It follows
that Do' is self-converse, and is an element of DKm+1/4. An isomorphic factorisation
of DKm+! can be found in the same way as for DKm, this time using the automorphism
of V which agrees with <j>  on V and fixes w.

Case 4. t > 4 is even and p < 4. It follows that (p, t) = (3, 6), (4, 6) or (4, 12).
It is easily seen that in these cases DKp/t contains respectively a single arc, a symmetric
pair of arcs, and a single arc (plus isolates).

Case 5. t > 4 is even and p ^ 5. We use induction on p. First, suppose p < t — 1.
Then since t \ p(j> - 1) and ( > 2 w e have p ^ t - 2. It follows that

2? 2 2

So if m = p(j>- 1)11, we see that (m + l)/2 < (p - l)/2. Therefore, by Lemma 2 of
[4], the complete graph Kp can be line-labelled so that any \{rn +1)/2 consecutive lines
are disjoint, where x denotes the largest integer not exceeding x. Using this
line-labelling of Kp, we label the arcs of DKp with the integers 1, 2, ...,p(p — 1) by
assigning the numbers 2i — 1 and 2i to the two arcs which correspond to the line
labelled i. Any m consecutive arcs will then induce a spanning sub-digraph of DKP

isomorphic to (m/2)DK2 whenw is even, and^(m — \)DK2 together with an isolated
arc when m is odd. Hence DKP is divisible by t, and in both cases the factor digraph
is self-converse.

It can now be assumed that p > t and that DKp_Jt contains a self-converse
digraph D. In the event that p = t, the empty digraph will suffice for D. By using
similar methods to the proof of Lemma 3 in [4], we will construct a digraph in DKp/t
with point set {1, 2, ..., p}. First, take an isomorphic factorisation Dlt D2, ..., Dt of
DKp_t on the point set {t + 1, t + 2, ..., p} with D; s D for all i. To Dt add the
points {1, 2, ..., t}, add all arcs between the points of Dx and the point 1, and add the
symmetric pairs of arcs with endpoints {1, 2}, {1, 3}, ..., {1, (t/2) + 1}, {], (t/2) + 2}
together with the arc (t/2, t). The resultant digraph Hx is self-converse. This is
because t Js 6, so the arc (t/2, t) is disjoint from all other arcs, and because D± is
self-converse. Furthermore, H1 is an element of DKp/t, the i-th digraph in an appro-
priate factorisation of DKP being obtained by permuting the points of Dx so as to
form D( and simultaneously applying the permutation (1 2 ... t)l~l to the points
{1,2, ...,t).

§3. Complete r-partite Directed Graphs. The complete r-partite directed graph
of type (»!, n2,...,«,) is the complement of the disjoint union DK(n,) u ... u DK(nr)
of complete directed graphs and is denoted by DK(n1,n2, ...,nr). As usual, the
complete 2-partite directed graphs are called bipartite while the 3-partite graphs are
called tripartite. In this section we examine the question: For which r and t are all
complete r-partite directed graphs, satisfying the Divisibility Condition, divisible by /?
We demonstrate that for r = 2, this is true, if, and only if, t is odd. For r = 3, on
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the other hand, we know of no value of t such that all complete tripartite directed
graphs satisfying the Divisibility Condition are divisible by t. For t = 2 and for all
odd t we give examples of complete tripartite digraphs satisfying the Divisibility
Condition but not divisible by t.

THEOREM 2. The Divisibility Condition is sufficient for the existence of a digraph
in DK(m, n)\tfor all m and n, if, and only if, t is odd.

Proof. Suppose t is odd. Then t \ 2mn implies 11 mn, so by Theorem 1 of [5],
the complete bipartite graph Kmi „  is divisible by t. Thus G e Km< Jt for some graph G,
and its digraph DG is therefore a member of DK(m, n)/t.

Suppose on the other hand that t is even. We shall show that if m = st/2 where
s > 3 is odd, the digraph DK(m, 1) is not divisible by t even though the Divisibility
Condition is satisfied. Suppose to the contrary that there is some D e DK(m, l)/f.
It follows that D has precisely s arcs. As a consequence of the structure of DK(m, 1),
these arcs must all be adjacent at one point, u say. As s > 3, the point u either has in-
degree greater than 1 or out-degree greater than 1. Therefore, in any subdigraph of
DK(m, 1) isomorphic to D, the point u of D must coincide with the point of in degree
m in DK(m, 1). So if u has in-degree k in D, it follows that m = tk. This contradicts
the choice of m = st/2 where s is odd.

We next consider complete tripartite directed graphs. It was shown in [5] that if
t > 1 is odd and m > t{t + 1), the complete tripartite graph K(l, \,m) is not
divisible by 3. This was done by considering the degrees of the points in a hypothetical
member of K{\, 1, m)/t. If out-degrees are considered instead, the same argument
suffices to prove the following.

THEOREM 3. If t > 1 is odd and m > t(t + 1), then DK(l, 1, m)/t is empty.

For r = 3 and t even, we do not have a result as broad as Theorem 3; all we have
is the following counterexample to the sufficiency of the Divisibility Condition
when t — 2.

THEOREM 4. If m > 5 is odd, then DK(l, 2, m)/2 is empty.

Proof. Assume m > 5 is odd and suppose DK(l,2,m)/2 is nonempty. In
D = DK(1, 2, m) let a be the point of degree m + 2, bt and b2 the points of degree
m + 1, and cl5 ..., cm the points of degree 3. Let D' and D" denote the two spanning
subdigraphs of an isomorphic factorisation of D into two parts. For any point u of
D, let u' denote the out degree of u in D', and u" the out-degree of u in D". Also,
let 4> be a permutation of the points of D which maps £>' to D".

We first note that a' + a" = m + 2. Since m is odd, this means either

a' > (m + 2)/2 or a" > (m + 2)/2;

we can assume a' > (m + 2)/2, if necessary interchanging D' and D". Now, 4>(a)
cannot be a because a' # a", and (j>(a) cannot be ct for any i because c" < 3 whereas
a' > 3 since m > 5. Thus<p(a) = bt oib2; take</>(a) = b1,if necessary interchanging
by and b2. It follows that ft/' = a' and V = m + 1 - a' < m/2.

Now suppose b2' > (m + l)/2. It follows that <j)(b2)' > {m + l)/2 > 3, so
<j>(b 2) = a or b2. But a" = m + 2 - a' < (m + 2)/2, and thus a" < (m + l)/2,
which disallows <j)(b2) = a. Hence <j>{b 2) = b2, so b2 = b2", which contradicts
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b2 > (m + l)/2. On the other hand, if b2' < (m + l)/2, it follows that b2" >
(m + l)/2,anditcanbeseenthat()!>~1(Z)2)mustconsequentlybeZ)1. T h u s V =b2" >
(m +1)/2, which contradicts by < m/2. We must conclude that b2 = b2" = (m +1)/2.
Moreover, this means that ^'^{b^ can only be b2, as a' > (m + 2)/2 and V < m/2,
while Cy < 3 < (m + l)/2. Since 4>(by) # a, we therefore have (j>~1(a) = c} and
§(by) = ck for some; and &. As 4> fixes 62, </>(c*) is either a (in which case j = k) or
ct for some / ^ k. We consider these two possibilities separately, and reach a con-
tradiction in each case.

Case 1. (f>(ck) = a. It follows that the permutation <j>  contains the 3-cycle (abyCk).
If the arc (a, by) is in D', it follows that (by, ck) e D", so (by, ck) £ D', and following
on from this we have (ck, a) $ D", (ck, a) e D', (a, by) e D" and thus (a, by) $ D'.
A similar contradiction is reached if (a, by) e D".

Case 2. <j)(ck) — c,. It follows that ^>~1(cJ) = ch for some h =£ j . Then D does
not contain the arc (ch, Cj), so in particular, neither does D'. Using the same type of
argument as in Case 1, we find therefore that D' contains (cj, a), D" contains (a, by),
D' contains (by, ck) and hence D" contains (ck, ct) which is a contradiction.

We conclude that D/2 is empty for odd m > 5, which proves the theorem.
Another result shown in [5] was that, if 4 | (/• + 1) and m > r + I, then the

complete (r + l)-partite graph K(r: \,m) is not divisible by 2, where K(r : 1, m) has
r parts consisting of a single point and one part containing m points. As in the case
of Theorem 3, the following corresponding result for directed graphs is obtained by
considering out-degrees rather than degrees in the proof.

THEOREM 5. Let DK(r : 1, m) be the complete (r + l)-partite directed graph with
r parts of cardinality 1 and one part of cardinality m. If 41 (r + 1) and m > r + 1,
then DK(r : 1, m) is not divisible by 2.

§4. Related Problems. We have been studying various complete r-partite directed
graphs and different values of / in an attempt to find precisely when the Divisibility
Condition is sufficient to ensure the existence of an isomorphic factorisation.
Sufficiency was shown for all complete directed graphs with any t, and for all complete
bipartite directed graphs with any odd t. Counterexamples to sufficiency were found
with r = 2 for any even t, and with r = 3 for any odd t > I and for t = 2. We
conjecture that for any t > 1, there is a complete tripartite directed graph D such
that D and t satisfy the Divisibility Condition but D/t is empty.

One can of course consider the sufficiency of the Divisibility Condition for more
general classes of digraphs, as for example the symmetric digraphs. Each symmetric
digraph is of the form DG for some graph G. The number of arcs in DG is even, and
we can ask for which graphs G does 2 actually divide DG ? A survey of the graphs on
p < 5 points reveals that DG/2 is nonempty for all such graphs except when G is
isomorphic to Kli3 or to the graph H in Figure 2. Of course DKlt 3 is one of the

H:

Fig. 2 A graph H with Z>H/2 empty
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counterexamples provided in the proof of Theorem 2, but the other graph, H, is not.
The general question appears to be difficult.

A number of authors have approached isomorphic factorisations of complete
digraphs and complete bipartite digraphs as problems in combinatorial designs.
A survey of recent results is given by Bermond and Sotteau [1], and a detailed transla-
tion of the language of block designs into the language of graphs and their factors is
given in [6]. The most general results are due to Wilson [9], who showed that for
every digraph D there is a lower bound N0(D) such that D | DKP for all p > N0(D)
satisfying certain obvious necessary conditions. In special cases more is known about
N0(D). For example N0(D) is determined in [3] to be 0 when D is any oriented
4-cycle, and Kohler [7] has shown for the directed 6-cycle Z6 that when p ^ 12,
Z6 | DKP, if, and only if, p > 6 and p = 0, 1, 3 or 4 (mod 6). In the latter, it is also
shown that Z2k \ DKP if p s 1 (mod 2k) and that Z2k | DKm, „ if k\m and n > k.

What distinguishes the factorisation problem considered in the present series of
papers is that the number of parts t for the factorisation is held constant. Studies
motivated by design theory generally hold the factor itself constant. There is also an
intermediate class of problems in which the number of factors increases linearly with
the number of points in the graph to be factored. Such is the case with factorisations
of complete graphs into spanning subgraphs which are unions of cycles; when the
cycles are all of the same length such a factorisation is called a resolvable design
(see [6]). The tantalising open problem of P. J. Kelly also falls into this intermediate
class. He conjectured [8, p. 7] that if T is any regular tournament on p points then
Zp | T. This requires a factorisation of Tinto exactly (p — l)/2 copies of Zp.

We conclude by conjecturing that the Divisibility Condition does suffice for the
family of complete multipartite digraphs of the form DK{m, m, ..., m), analogous to
the conjecture for graphs in [5].
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