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S1. Interpretation of η-parameters in Section 2

We illustrate a simple example to promote better understanding on the model parameters,

especially for autocovariates, denoted by η. Consider two locations s1 and s2, and assume

that the effect of s2 on s1 is of interest when s1 is normal at t − 1. The probability of s1

being diseased at t, pm(s1, t), follows the proposed model (1) given the status of s2 and other

locations at t − 1 and t. Model parameters η012 and η112 will characterize the effect of s2

on s1 as follows. If s2 were both previously and currently normal (Case 1), logit{pm(s1, t)}

would decrease as much as η012(0− κm). If s2 were previously normal but currently diseased

(Case 2), logit{pm(s1, t)} would increase as much as η012(1 − κm). These two cases imply

that strongly linked locations with high value of η012 are more likely to stay healthy (or

be diseased) simultaneously. On the other hand, s1 would always be ill-affected if s2 were

diseased at the previous time (Case 3); logit{pm(s1, t)} will increase as much as η112(1−κm).

There are no other cases for s2 such as being previously diseased but currently normal

because of absorbing feature. Likewise, η0jk and η1jk characterize the effects of sk on sj for

j 6= k. See Table S1 below.

[Table 1 about here.]

S2. Derivation of Joint Distribution in Section 3

We build a negpotenial function Q following Besag (1974) and Kaiser and Cressie (2000) to

derive a valid joint distribution from conditionals. For a fixed subject m and time t whose

previous state is zero (i.e. Ym(sj, t− 1) = 0 and so Ym(sj, t) ∈ P0
mt), the conditional density

of a response Ym(sj, t) at y is

fj{y|Xm, Ym(sk, t− 1), Ym(sk, t) for ∀k 6= j;θ} = pm(sj, t)
y{1− pm(sj, t)}1−y.
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From the model specification in (1), we have its log-conditional density as

log fj{Ym(sj, t)|Xm, Ym(sk, t− 1), Ym(sk, t) for ∀k 6= j;θ}

= Ym(sj, t)
[
XT

mβ +
∑

k∈P0
mt\{j}

η0jk{Ym(sk, t)− κm}+
∑

k∈P1
mt\{j}

η1jk{Ym(sk, t)− κm}
]

− log

(
1 + exp

[
XT

mβ +
∑

k∈P0
mt\{j}

η0jk{Ym(sk, t)− κm}+
∑

k∈P1
mt\{j}

η1jk{Ym(sk, t)− κm}
])

for all Ym(sj, t) in the active set P0
mt. As the above conditionals indicate only pairwise

dependencies, the negpotential function of all responses in the active set has only the first

and second order of cliques, so it has the following permutation invariance form,

Q(Ymt|θ) =
∑

j: Ym(sj ,t)∈Amt

Hj{Ym(sj, t)} +
∑

j:Ym(sj ,t)∈Amt

k: j<k≤Ns

Hj,k{Ym(sj, t), Ym(sk, t)}.

To derive Hj{Ym(sj, t)} and Hj,k{Ym(sj, t), Ym(sk, t)}, we follow Besag (1974) and define

Hj{Ym(sj, t)} = log
fj{Ym(sj, t)|Y ∗m(s−j, t)}
fj{Y ∗m(sj, t)|Y ∗m(s−j, t)}

,

Hj,k{Ym(sj, t), Ym(sk, t)} = log
fj{Ym(sj, t)|Ym(sk, t), Y

∗
m(s−j,−k, t)}fj{Y ∗m(sj, t)|Y ∗m(s−j, t)}

fj{Y ∗m(sj, t)|Ym(sk, t), Y ∗m(s−j,−k, t)}fj{Ym(sj, t)|Y ∗m(s−j, t)}

Choosing Y ∗m(sj, t) = 0 for each j in active set P0
mt, we obtain

Hj{Ym(sj, t)} = Ym(sj, t)
{
XT

mβ −
∑

k∈P0
mt\{j}

η0jkκm −
∑

k∈P1
mt\{j}

η1jkκm

}
,

Hj,k{Ym(sj, t), Ym(sk, t)} =
∑

k∈P0
mt\{j}

η0jkYm(sj, t)Ym(sk, t) +
∑

k∈P1
mt\{j}

η1jkYm(sj, t)Ym(sk, t).

The negpotential function then takes the form in (2) as

Q(Ymt|θ) =
∑
j∈P0

mt

Ym(sj, t)
{
XT

mβ −
∑

k∈P0
mt\{j}

η0jkκm −
∑

k∈P1
mt\{j}

η1jkκm

}
+

1

2

∑
j∈P0

mt

{ ∑
k∈P0

mt\{j}

η0jkYm(sj, t)Ym(sk, t) +
∑

k∈P1
mt\{j}

η1jkYm(sj, t)Ym(sk, t)
}
.
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and finally, the joint distribution of Ymt in the support set Smt given a complete set of

conditional distributions, denoted by f , can be specified up to a normalizing constant by

Theorem 3 in Kaiser and Cressie (2000).

S3. Proof of Theorem 1 in Section 4

Proof. We first introduce notation to simplify mathematical expressions. For a function

ρ : X× Y→ R, write Pnρ =
∑n

i=1 ρi/n, and Pρ = E(Pnρ). Also define a function ρ(α, y) =

yα − log{1 + exp(α)}. For the binary logistic regression model, we can rewrite the pseudo

loglikelihood function as `c(θ) = Pnρ(X iθ, Yi).

When condition (C2) holds, the second derivative of ρ(α, y) with respect to α is ρ̈(α, y) =

logit−1(α){1− logit−1(α)}, which is positive and bounded away from zero. It indicates that

ρ(α, y) behaves quadratically near α∗ = X iθ
∗ and hence the quadratic margin condition

holds (see, e.g., Section 6.4 of Bühlmann and Van De Geer (2011)), i.e., Pn{ρ(X iθ̂λ, Yi) −

ρ(X iθ
∗, Yi)} ≥ c‖X (θ̂λ − θ∗)‖22/n for some constant c.

Furthermore, the restricted eigenvalue condition (C1) implies that the compatibility condi-

tion required in Theorem 6.4 in Bühlmann and Van De Geer (2011) holds. Combining these

two conditions together, the oracle inequality of the LASSO estimator can be established as

c‖X (θ̂λ−θ∗)‖22/n+λ‖θ̂λ−θ∗‖1 ≤ Pn{ρ(X iθ̂λ, Yi)− ρ(X iθ
∗, Yi)}+λ‖θ̂λ−θ∗‖1 = O(s0λ

2),

which provides asymptotic bounds for both the prediction error and the `1 error, i.e.,

‖θ̂λ−θ∗‖1 = OP(s0λ), ‖X (θ̂λ−θ∗)‖22/n = O(s0λ
2). Under condition (C3), θ̂λ is a consistent

estimator of θ.

Notice that Ĥ = 1
n
X Tdiag

[
π̂1(θ̂λ){1 − π̂1(θ̂λ)}, . . . , π̂n(θ̂λ){1 − π̂n(θ̂λ}

]
X . By condi-

tions (C1) and (C2), Λmin{Ĥ} = min‖u‖2=1 u
T ( 1

n
X Tdiag

[
π̂1(θ̂){1 − π̂1(θ̂)}, . . . , π̂n(θ̂){1 −

π̂n(θ̂}
]
X )u = O{min‖u‖2=1 u

T ( 1
n
X TX )u} = O(Λmin{X TX /n)}. Similarly, Λmax{Ĥ} =

O{Λmax(X TX /n)}, which indicates Ĥ is strictly positive definite. Consider the inverse
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matrix of Ĥ , and define it as Θ̂Ĥ = I. Recall Λmax(Θ) = 1/Λmin(Ĥ), and Λmin(Θ) =

1/Λmax(H), which suggests that Θ̂ is also strictly positive definite with bounded eigenvalues

and hence ‖Θ̂‖2 = Λmax(Θ̂) = O(1). Combing this fact with Sn(θ̂λ) = λκ̂(θ̂λ) → 0 and

θ̂λ → θ∗, we prove the consistency of θ̃ = θ̂λ + Θ̂Sn(θ̂λ), i.e. θ̃ → θ∗ as n→∞.

We next show the asymptotic normality of the biased-corrected estimator. When condition

(C2) holds, the third derivative of ρ(α, y) with respect to α exists and its absolute value is

bounded by 1, which ensures that the second derivative of ρ(α, y) with respect to α is locally

Lipschitz with a universal constant.

From the Taylor expansion of ρ̇(X iθ, y) and the Lipschitz conditions on ρ̈(X iθ, y) for ∀θ ∈

Nδ(θ
∗), we have ρ̇(X T

i θ̂λ, Yi) = ρ̇(X T
i θ
∗, Yi)+ ρ̈(X T

i θ̂λ, Yi)X T
i (θ̂λ−θ∗)+O(|X T

i (θ̂λ−θ∗)|2).

Therefore,

θ̂λ + Θ̂Sn(θ̂λ)− θ∗

=θ̂λ + Θ̂Pn{ρ̇(X T
i θ̂λ, Yi)X i} − θ∗

=θ̂λ − θ∗ + Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iρ̈(X T

i θ̂λ, Yi)X T
i (θ̂λ − θ∗) + X iO(|X T

i (θ̂λ − θ∗)|2)}

=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Pn{X iρ̈(X T
i θ̂λ, Yi)X T

i }(θ̂λ − θ∗)]

=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Ĥ(θ̂λ − θ∗)]

=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Ĥ(θ̂λ − θ∗)]

= Θ∗Pn{ρ̇(X T
i θ
∗, Yi)X i}︸ ︷︷ ︸

T1

+ Θ̂Pn{X iO(|X T
i (θ̂λ − θ∗)|2)}︸ ︷︷ ︸

T2

+ (Θ̂−Θ∗)Pn{ρ̇(X T
i θ
∗, Yi)X i}︸ ︷︷ ︸

T3

(A1)
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When conditions (C1)–(C3) hold, by Hölder’s inequality, the second term in (A1) is

‖T2‖∞ = ‖Θ̂Pn{X iO(|X T
i (θ̂λ − θ∗)|2)}‖∞ ≤ O(Pn{‖Θ̂X i‖∞|X T

i (θ̂λ − θ∗)|2})

≤ O(Pn{‖Θ̂‖1‖X i‖∞|X T
i (θ̂λ − θ∗)|2})

≤ O(Pn{
√
p‖Θ̂‖2‖X i‖∞|X T

i (θ̂λ − θ∗)|2})

= O(
√
p‖X T (θ̂λ − θ∗)‖22/n) = O(

√
ps∗λ2) = op(1/

√
n)

Notice that we consider the case with p < n, and hence ‖Θ̂−Θ∗‖1 = O(1/
√
n). By Hölder’s

inequality, the third term in (A1) is as follows

‖T3‖∞ ≤ ‖Θ̂−Θ∗‖1‖Pn{ρ̇(X T
i θ
∗, Yi)X i}‖∞ = ‖Θ̂−Θ∗‖1‖{Yi − logit−1(X T

i θ
∗)}X i‖∞

= ‖Θ̂−Θ∗‖1‖Pn{Yi − logit−1(X T
i θ
∗)}‖1‖PnX i‖∞ ≤ op(1/

√
n)

We now consider n1/2A(θ̃−θ∗) = n1/2AT1+n1/2A(T2+T3). For any A ∈ Ar with fixed r,

we have ‖n1/2A(T2 + T3)‖∞ ≤ ‖A‖1‖
√
n(T2 + T3)‖∞ = or(1)

Also recall the Fisher information for the logistic regression is J∗ = var{ 1

n
X T (Y − π∗)},

and the Hessian information is H∗ = 1
n
X Tdiag

[
π∗1(1 − π∗1), . . . , π∗n(1 − π∗n)

]
X , where π∗i =

logit−1{X i(κi)
Tθ∗}. From conditions (C1) and (C2), both J∗ and {H∗}−1 exist. WhenAAT

is positive definite with bounded eigenvalues, Σ−1/2 exists.

From the central limit theorem and the theory of unbiased estimating equation theory (see,

e.g., Chapter 3 of Song (2007)), we have n1/2AT1
d−→Nr(0,AΘ∗J∗Θ∗AT ).

Finally, we prove that

n1/2Σ−1/2A(θ̃ − θ∗) d−→Nr(0, Ir)
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Table S1: Illustrating η-parameters that describe the effect of s2 on the probability of s1
being diseased, pm(s1, t), which depends on the status of s2 at previous and current times.

Ym(s2, t− 1) Ym(s2, t) change in logit{pm(s1, t)}
Case 1 0 0 η012(0− κm)
Case 2 0 1 η012(1− κm)
Case 3 1 1 η112(1− κm)


