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Abstract
Problem: Pyroptosis, inflammatory programmed cell death, is initiated through the 
inflammasome and relies on the pore‐forming actions of the effector molecule gas‐
dermin D. Herein, we investigated whether gasdermin D is detectable in women with 
spontaneous preterm labor and sterile intra‐amniotic inflammation or intra‐amniotic 
infection.
Method of study: Amniotic fluid samples (n = 124) from women with spontaneous 
preterm labor were subdivided into the following groups: (a) those who delivered 
at term (n  =  32); and those who delivered preterm (b) without intra‐amniotic in‐
flammation (n = 41), (c) with sterile intra‐amniotic inflammation (n = 32), or (d) with 
intra‐amniotic infection (n = 19), based on amniotic fluid IL‐6 concentrations and the 
microbiological status of amniotic fluid (culture and PCR/ESI‐MS). Gasdermin D con‐
centrations were measured using an ELISA kit. Multiplex immunofluorescence stain‐
ing was also performed to determine the expression of gasdermin D, caspase‐1, and 
interleukin‐1β in the chorioamniotic membranes. Flow cytometry was used to detect 
pyroptosis (active caspase‐1) in decidual cells from women with preterm labor and 
birth. 
Results: (a) Gasdermin D was detected in the amniotic fluid and chorioamniotic mem‐
branes from women who underwent spontaneous preterm labor/birth with either 
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1  | INTRODUC TION

Preterm birth, the leading cause of perinatal morbidity and mortal‐
ity worldwide,1-3 is often preceded by spontaneous preterm labor,4-8 
a syndrome of multiple etiologies.9 Among the proposed causes of 
preterm labor, intra‐amniotic inflammation represents the only causal 
link to preterm birth.10-22 Intra‐amniotic inflammation can result 
from microbial invasion of the amniotic cavity, referred to as intra‐
amniotic infection (IAI), or can occur in the absence of detectable 
microorganisms using both culture and molecular microbiological 
techniques, known as sterile intra‐amniotic inflammation (SIAI).23-27 
Such an inflammatory process is commonly observed in women with 
preterm labor and intact membranes,24 those with an asymptomatic 
short cervix,25 and those with preterm prelabor rupture of the mem‐
branes.27 Indeed, we provided solid evidence indicating that alarm‐
ins (ie molecules that trigger sterile inflammation28-30) are associated 
with intra‐amniotic inflammation and preterm labor and birth.31-36 
In addition, the systemic37,38 or intra‐amniotic39,40 administration of 
alarmins induces preterm labor and birth in mice. The mechanisms 
whereby alarmins and microbes induce such inflammation involve 
the inflammasome.40-50

The inflammasome is a cytoplasmic multi‐subunit protein com‐
plex that, once assembled, catalyzes the activation of caspase‐151-69 
and the consequent release of the mature forms of the inflammatory 
cytokines IL‐1β and/or IL‐18.70-78 At the cellular level, the end result 
of inflammasome activation is pyroptosis, an inflammatory type of 
programmed cell death characterized by the uncontrolled release of 
cytosolic contents.79-82 A primary effector molecule of pyroptosis 
is gasdermin D, a protein cleaved by the active forms of caspase‐1 
and caspase‐11.83,84 Once cleaved into its active fragments, gasder‐
min D forms pores in the cell membrane,85-88 inducing pyroptotic 
cell death and allowing the release of cytosolic proteins, including 
inflammatory mediators such as IL‐1β.80,85 Importantly, cleaved 
gasdermin D is also released into the extracellular space.89 Thus, 
gasdermin D is an important component of inflammasome activa‐
tion‐induced pathological inflammation, and its detection in biologi‐
cal fluids can serve as an in vivo readout of pyroptosis. Although we 

have shown that inflammasome activation occurs during the patho‐
logical inflammatory process of preterm labor,40,44,46,47 no evidence 
implicating pyroptosis has been generated. Herein, we investigated 
whether spontaneous preterm labor in the setting of sterile intra‐
amniotic inflammation or intra‐amniotic infection is accompanied by 
an increase in gasdermin D concentrations as an in vivo indicator of 
pyroptosis.

2  | MATERIAL S AND METHODS

2.1 | Study population

This is a cross‐sectional study that included the following patients: 
(a) women with spontaneous preterm labor who delivered at term 
with a negative amniotic fluid culture and an IL‐6 concentration 
<2.6 ng/mL (n = 32); (b) women with spontaneous preterm labor who 
delivered preterm without IAI or SIAI (n = 41); (c) women with spon‐
taneous preterm labor who delivered preterm with SIAI (n  =  32); 
and (d) women with spontaneous preterm labor who delivered pre‐
term with IAI (n = 19; see diagnostic criteria below). Chorioamniotic 
membrane samples from women in each of the study groups were 
also studied using multiplex immunofluorescence and phenoptics. 
Decidual tissues (decidua parietalis attached to the chorioamniotic 
membranes) from women with preterm labor were used for the de‐
tection of active caspase‐1 by flow cytometry (n = 5). Women with 
multiple gestations or those who had a fetus with chromosomal and/
or sonographic abnormalities were excluded. Maternal and neonatal 
data were obtained by retrospective clinical chart review. Amniotic 
fluid samples were retrieved from the bank of biological speci‐
mens at the Perinatology Research Branch of the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development 
(NICHD), National Institutes of Health (NIH), US Department of 
Health and Human Services (DHHS), Detroit, Michigan. All women 
provided written informed consent prior to the collection of sam‐
ples, and the Institutional Review Boards of Wayne State University 
and NICHD approved the collection and use of materials and clinical 
data for research purposes.

sterile intra‐amniotic inflammation or intra‐amniotic infection, but was rarely de‐
tected in those without intra‐amniotic inflammation. (b) Amniotic fluid concentrations 
of gasdermin D were higher in women with intra‐amniotic infection than in those 
with sterile intra‐amniotic inflammation, and its expression in the chorioamniotic 
membranes was associated with caspase‐1 and IL‐1β (inflammasome mediators). (c) 
Decidual stromal cells and leukocytes isolated from women with preterm labor and 
birth are capable of undergoing pyroptosis given their expression of active caspase‐1.
Conclusion: Pyroptosis can occur in the context of sterile intra‐amniotic inflammation 
and intra‐amniotic infection in patients with spontaneous preterm labor and birth.

K E Y W O R D S
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2.2 | Clinical definitions

Gestational age was determined by the last menstrual period and con‐
firmed by ultrasound examination or by ultrasound examination alone 
if the sonographic determination of gestational age was inconsistent 
with menstrual dating by more than 1  week. Spontaneous preterm 
labor was defined as the presence of regular uterine contractions with 
a frequency of at least 2 every 10 minutes and cervical changes be‐
tween 20 and 36 (6/7) weeks of gestation. Microbial invasion of the 
amniotic cavity (MIAC) was defined as a positive amniotic fluid cul‐
ture and/or a polymerase chain reaction with electrospray ionization 
mass spectrometry (PCR/ESI‐MS; Ibis® Technology—Athogen) test 
result.23,90-93 Intra‐amniotic inflammation was defined as an amniotic 
fluid IL‐6 concentration >2.6 ng/mL.94-98 SIAI was defined as an am‐
niotic fluid IL‐6 concentration >2.6 ng/mL94 without microorganisms 
detected by culture or PCR/ESI‐MS.23-27 IAI (or microbial‐associated 
intra‐amniotic inflammation) was defined as the presence of MIAC 
with intra‐amniotic inflammation.23-27,99-101 Neonatal Apgar scores at 
1 and 5 minutes were determined using previously established crite‐
ria.102-104 Acute histologic chorioamnionitis and acute funisitis were 
diagnosed according to established criteria.105-107

2.3 | Amniotic fluid sample collection

Amniotic fluid samples were obtained by transabdominal amnio‐
centesis under antiseptic conditions and monitored by ultrasound. 
Transabdominal amniocentesis was performed for the detection of 
intra‐amniotic inflammation and/or infection. Samples of amniotic 
fluid were transported to the laboratory in a sterile, capped syringe 
and centrifuged at 1300 g for 10 minutes at 4°C, and the superna‐
tant was stored at −80°C until use. A portion of this amniotic fluid 
was also transported to the clinical laboratory for culture of aero‐
bic/anaerobic bacteria and genital mycoplasmas. The clinical tests 
also included the determination of an amniotic fluid white blood cell 
count,108 a glucose concentration,109 a Gram stain,110 and an IL‐6 
concentration.94,111

2.4 | Placental histopathological evaluation

Placentas were examined histologically by perinatal pathologists 
blinded to clinical diagnoses and obstetrical outcomes. Briefly, three 
to nine sections of the placenta were examined, and at least one full‐
thickness section was taken from the center of the placenta; other 
sections were taken randomly from the placental disk. Acute and 
chronic inflammatory lesions of the placenta (maternal inflammatory 
response and fetal inflammatory response) were diagnosed accord‐
ing to established criteria, including staging and grading.105-107,112,113

2.5 | Determination of gasdermin D concentrations 
in the amniotic fluid

Concentrations of gasdermin D in amniotic fluid samples were 
determined by using a sensitive and specific enzyme‐linked 

immunosorbent assay (ELISA) kit obtained from MyBioSource 
(Cat#MBS9338251). This ELISA kit was initially validated in our 
laboratory prior to the execution of this study. Amniotic fluid con‐
centrations of gasdermin D were obtained by interpolation from 
the standard curve. The inter‐ and intra‐assay coefficients of vari‐
ation were 12.757% and 11.249%, respectively. The sensitivity of 
the assay was 0.249 ng/mL.

2.6 | Multiplex immunofluorescence and phenoptics

Five‐micrometer‐thick sections of formalin‐fixed, paraffin‐embed‐
ded chorioamniotic membranes (amnion and choriodecidua) of pa‐
tients from our study groups were cut and mounted on SuperFrost 
Plus microscope slides. Multiplex immunofluorescence staining was 
performed using the Opal 7 kit (Cat#NEL811001KT; PerkinElmer), 
according to the manufacturer's instructions. Prior to multiplex im‐
munofluorescence staining, each analyte was individually optimized 
with single antibody staining combined with different fluorescent 
TSA® reagents (PerkinElmer). After deparaffinization, slides were 
placed in antigen retrieval (AR) buffer and boiled using a microwave 
oven. Following blocking to eliminate non‐specific binding, slides 
were incubated with antibodies against gasdermin D (Cat#20770‐1‐
AP; Proteintech), caspase‐1 (CAT#MA5‐16215; Invitrogen), or IL‐1β 
(Cat#NBP1‐19775; Novus Biologicals) at room temperature. The 
slides were then washed and incubated with Opal Polymer HRP 
Ms+Rb (Cat#ARH1001EA; PerkinElmer). Next, the slides were incu‐
bated with one of the following fluorescent TSA® reagents included 
in the Opal 7 kit to detect each antibody staining: Opal 520, Opal 
570, or Opal 690 (dilution 1:100). After washing, the slides were 
counterstained with Spectral DAPI (Cat#FP1490; PerkinElmer) 
and mounted using ProLong Diamond Antifade Mountant (Life 
Technologies). Autofluorescence slides as well as slides stained with 
isotype (negative controls) were included. Multiplex staining was 
performed by consecutively staining slide‐mounted tissues using the 
same antibody concentrations and conditions validated through sin‐
gleplex staining. Each previous primary and secondary antibody was 
removed by boiling in AR buffer before the application of the next 
primary antibody. After multiplex staining, the slides were imaged 
using the Vectra Polaris Multispectral Imaging System (PerkinElmer) 
and images were analyzed and converted to immunohistochemistry 
view using the InForm 2.4.1 image analysis software (PerkinElmer).

2.7 | Determination of active caspase‐1 in decidual 
cells using flow cytometry

Decidual cells were isolated from the decidua parietalis as previ‐
ously described,114 with minor modifications. Briefly, the decidua 
parietalis was separated from the chorioamniotic membranes, 
and the decidual tissues were homogenized using a gentleMACS 
Dissociator (Miltenyi Biotec) in StemPro Accutase Cell Dissociation 
Reagent (Life Technologies). Homogenized tissues were incubated 
for 45 minutes at 37°C with gentle agitation. After incubation, tis‐
sues were washed in sterile 1X phosphate‐buffered saline (PBS; 
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Life Technologies) and filtered through a 100‐μm cell strainer 
(Falcon, Corning Life Sciences Inc). The resulting cell suspension 
was centrifuged at 300 g for 10 minutes at 4°C, resuspended in 
5 mL of 1X PBS, and gently layered over 5 mL of Polymorphprep 

(Accurate Chemical & Scientific Corporation). The cell suspension/
Polymorphprep gradient was then centrifuged at 500  g and 4°C 
for 30 minutes, after which the mononuclear cell layer was care‐
fully pipetted into a clean tube and washed in 1X PBS at 300  g 

TA B L E  1   Clinical and demographic characteristics of the study population

Patients with preterm 
labor who delivered at 
term (n = 32)

Patients with preterm labor who delivered preterm

P‐value

Without intra‐amniotic 
inflammation or infec‐
tion (n = 41)

With sterile intra‐
amniotic inflamma‐
tion (n = 32)

With intra‐amniotic 
infection (n = 19)

Maternal age (y; median [IQR])a 23 (20.8‐25) 23 (20‐26) 24 (20‐28) 23 (20‐26) .6

Body mass index (kg/m2; median 
[IQR])a

21.6 (19.8‐29.5)c 24.2 (20.8‐28.8)c 27.5 (23‐33.3)c 24.4 (21.5‐32.8)c .1

Primiparityb 18.8% (6/32) 29.3% (12/41) 31.3% (10/32) 21.1% (4/19) .6

Race/ethnicityb .8

Black 96.9% (31/32) 85.4% (35/41) 87.5% (28/32) 94.7% (18/19)

White 0% (0/32) 7.3% (3/41) 6.3% (2/32) 5.3% (1/19)

Hispanic 0% (0/32) 4.9% (2/41) 3.1% (1/32) 0% (0/19)

Other 3.1% (1/32) 2.4% (1/41) 3.1% (1/32) 0% (0/19)

Gestational age at amniocentesis 
(wk; median [IQR])a

31.4 (30.4‐32.9) 31.4 (27‐32.7) 25.2 (23.3‐29.9) 28 (23.1‐31.5) <.001

Gestational age at delivery (wk; 
median [IQR])a

38.7 (37.4‐39.4) 34.3 (32.1‐36) 26.1 (24.3‐31.1) 28.1 (23.1‐32.4) <.001

Birthweight (g)a 3072.5 (2900‐3388.8) 2260 (1612.5‐2491.3)c 849 (565‐1530) 1120 (560.5‐1980) <.001

Apgar score at 1 min (median 
[IQR])a

9 (8‐9) 8 (7‐9)c 5.5 (2‐8) 4 (1.5‐7.5) <.001

Apgar score at 5 min (median 
[IQR])a

9 (9‐9) 9 (8‐9)c 7 (5.8‐9) 7 (2.5‐8) <.001

Acute histologic chorioamnionitisb

Stage 1 (Early acute subchorioni‐
tis or chorionitis)

13.3% (4/30)c 11.1% (4/36)c 24.1% (7/29)c 11.1% (2/18)c .5

Stage 2 (Acute chorioamnionitis) 16.7% (5/30)c 19.4% (7/36)c 13.8% (4/29)c 22.2% (4/18)c .8

Stage 3 (Necrotizing 
chorioamnionitis)

0% (0/30)c 2.8% (1/36)c 27.6% (8/29)c 61.1% (11/18)c <.001

Acute funisitisb

Stage 1 (Chorionic vasculitis or 
umbilical phlebitis)

13.3% (4/30)c 11.1% (4/36)c 20.7% (6/29)c 27.8% (5/18)c .3

Stage 2 (Umbilical arteritis) 3.3% (1/30)c 2.8% (1/36)c 6.9% (2/29)c 44.4% (8/18)c <.001

Stage 3 (Necrotizing funisitis) 0% (0/30)c 2.8% (1/36)c 3.5% (1/29)c 0% (0/18)c .8

Note: Data are given as median (interquartile range) and percentage (n/N).
aKruskal‐Wallis test. 
bFisher's exact test. 
cFew missing data. 

TA B L E  2   Amniotic fluid gasdermin D concentrations above or below the limit of detection (0.249 ng/mL) in the study groups

Gasdermin concentration
Preterm labor who deliv‐
ered at term

Preterm labor who delivered preterm

Without intra‐amniotic 
inflammation

With sterile intra‐amniotic 
inflammation

With intra‐am‐
niotic infection

>0.249 ng/mL 3.1% (1/32) 4.9% (2/41) 50% (16/32) 89.5% (17/19)

<0.249 ng/mL 96.9% (31/32) 95.1% (39/41) 50% (16/32) 10.5% (2/19)

Note: Data are given as percentage (n/N).
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for 10 minutes at 4°C. The cells were then resuspended in 100 µL 
of stain buffer (BD Biosciences), and the following extracellular 
fluorochrome‐conjugated monoclonal anti‐human antibodies 
were added to the cell suspension: CD45‐AlexaFluor700 (clone 

H130, cat# 560566, BD Biosciences), CD15‐BV650 (clone H198, 
cat# 564232, BD Biosciences), CD14‐BV605 (clone M5E2, cat# 
301833, BioLegend), CD3‐APC‐Cy7 (clone SK7, cat#557832, BD 
Biosciences), and CD19‐PE‐Cy5 (clone HIB19, cat# 555414, BD 

Group comparisons Relative risk P value

Preterm labor who delivered preterm without intra‐am‐
niotic inflammation vs Preterm labor who delivered at 
term

1.2 (0.52‐2.74) .7

Preterm labor who delivered preterm with sterile intra‐
amniotic inflammation vs Preterm labor who delivered 
at term

2.76 (1.83‐4.19) <.001

Preterm labor who delivered preterm with intra‐amni‐
otic infection vs Preterm labor who delivered at term

15.58 (4.05‐59.99) <.001

Preterm labor who delivered preterm with sterile intra‐
amniotic inflammation vs Preterm labor who delivered 
preterm without intra‐amniotic inflammation

3.06 (1.96‐4.76) <.001

Preterm labor who delivered preterm with intra‐amni‐
otic infection vs Preterm labor who delivered preterm 
without intra‐amniotic inflammation

18.34 (4.71‐71.5) <.001

Preterm labor who delivered preterm with intra‐amni‐
otic infection vs Preterm labor who delivered preterm 
with sterile intra‐amniotic inflammation

4.64 (1.2‐17.85) .004

Note: Relative risks are shown with 95% confidence intervals. P‐values were obtained using the 
chi‐square test.

TA B L E  3   Association between the 
frequency of amniotic fluid gasdermin 
D concentrations >0.249 ng/mL and 
the presence of sterile intra‐amniotic 
inflammation or intra‐amniotic infection 
in women who underwent spontaneous 
preterm labor

F I G U R E  1   Amniotic fluid gasdermin 
D concentrations in women with 
spontaneous preterm labor. Extracellular 
gasdermin D (ng/mL) was measured 
in amniotic fluid of women with 
spontaneous preterm labor who 
delivered at term (n = 32) and those who 
delivered preterm without intra‐amniotic 
inflammation (n = 41), with sterile intra‐
amniotic inflammation (n = 32), or with 
intra‐amniotic infection (n = 19). Data 
are shown as box plots, with boxes 
representing the interquartile range, 
and midlines representing the median. 
Whiskers extend to the most extreme 
data point which is no more than 1.5 
times the interquartile range. Outliers are 
shown as individual dots
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Biosciences). The cells were then incubated at 4°C for 30 minutes 
in the dark and washed in stain buffer at 300 g for 10 minutes to 
remove excess antibody, followed by a second wash in 1X PBS. 
The cells were resuspended in 290 µL of 1X PBS and immediately 
used for intracellular active caspase‐1 staining.

Detection of active caspase‐1 to determine pyroptosis was 
performed using the FAM‐FLICA Caspase‐1 Assay Kit (cat# 97, 
ImmunoChemistry Technologies), following the manufacturers' instruc‐
tions. Briefly, a 30X FAM‐FLICA solution was prepared in 1X PBS and 
10 µL of the prepared solution was added to the cell suspension. The 
cells were incubated at 37°C for 30 minutes followed by two washes in 
1X apoptosis wash buffer (ImmunoChemistry Technologies) at 300 g for 
10 minutes. After the second wash, red blood cell lysis was performed 
by resuspending the cells in 1 mL of 0.8% ammonium chloride solu‐
tion (STEMCELL Technologies) and incubating the cells for 5 minutes 
at 37°C. The cell suspension was then washed in stain buffer at 300 g 
for 10 minutes and resuspended in 0.5 mL of stain buffer. Finally, im‐
mediately prior to flow cytometer acquisition, 1 µL of 4′,6‐diamidino‐2‐
phenylindole (DAPI) solution (1  µg/mL, cat# D9542, Sigma‐Aldrich) 
was added to the cell suspension. The cells were acquired using the 
BD LSRFortessa Flow Cytometer (BD Biosciences) and BD FACSDiva 
6.0 software (BD Biosciences). The analysis and figures were performed 
using FlowJo software version 10 (FlowJo, LLC). Active caspase‐1 and 
DAPI‐positive cells were considered to be pyroptotic.

2.8 | Statistical analysis

Data were analyzed using IBM SPSS version 19.0 software (IBM 
Corporation) and R statistical language and environment (www.r-
proje​ct.org). For patient demographics, the Fisher's exact test was 
used to compare proportions between groups and the Kruskal‐
Wallis test was used for comparing continuous variables between 
groups. To determine the association between amniotic fluid gas‐
dermin D concentrations and the presence of SIAI or IAI, the num‐
ber of women with an amniotic fluid gasdermin D concentration 
above the limit of detection (LOD, 0.249  ng/mL) was determined 
for each study group. The associations between amniotic fluid gas‐
dermin D concentrations >0.249 ng/mL and the presence of SIAI 
or IAI were determined using a chi‐square test for proportions, 
with relative risk(RR) estimates and P‐values obtained using the 
epiR package in R. The Wilcoxon signed‐rank test was also used to 
compare gasdermin D concentrations between the two groups in 
which concentrations were above the detection limit for a majority 
of patients. Statistical analyses for gasdermin D included adjust‐
ment for gestational age at sampling. A P‐value <.05 was considered 
significant.

3  | RESULTS

3.1 | Characteristics of the study population

Amniotic fluid samples from 124 patients with spontaneous preterm 
labor were included in this study. The demographic and clinical char‐
acteristics of the study population are displayed in Table 1. Neonates 
whose mother had spontaneous preterm labor and delivered pre‐
term with either SIAI or IAI had a lower median birthweight and 
Apgar scores at 1 and 5 minutes compared to those born to women 
without intra‐amniotic inflammation who delivered at term or pre‐
term (Table 1). The prevalence of both acute histologic chorioamnio‐
nitis and acute funisitis was significantly different among the study 
groups, with the highest frequency occurring in patients with sponta‐
neous preterm labor who delivered preterm with SIAI or IAI (Table 1).

3.2 | Amniotic fluid gasdermin D concentrations in 
women with spontaneous preterm labor

Amniotic fluid gasdermin D concentrations above the LOD(0.249 ng/
mL) were determined in each study group as shown in Table 2. Few 
patients with spontaneous preterm labor who delivered either at 
term or preterm without SIAI or IAI had amniotic fluid gasdermin D 
concentrations above the LOD (preterm labor who delivered at term: 
3.1% [1/32]; preterm labor who delivered preterm without SIAI or 
IAI: 4.9% [2/41]; Table 2). Fifty percent (16/32) of patients with spon‐
taneous preterm labor who delivered preterm with SIAI had amniotic 
fluid gasdermin D concentrations above the LOD, whereas 89.5% 
(17/19) of patients who underwent spontaneous preterm labor and 
delivered preterm with IAI had an elevated gasdermin D concentra‐
tion (Table 2).

No differences were observed in the frequency of gasdermin D 
detection between patients with spontaneous preterm labor and 
birth without intra‐amniotic inflammation and those with sponta‐
neous preterm labor who delivered at term without intra‐amniotic 
inflammation RR 1.2, P = .7; Table 3). We then examined the asso‐
ciation between gasdermin D concentrations and the presence of 
SIAI or IAI in patients with spontaneous preterm labor and birth. The 
frequency of detected amniotic fluid gasdermin D was higher in pa‐
tients with spontaneous preterm labor and birth with either SIAI (RR 
2.76, P < .001) or IAI (RR 15.58, P < .001) compared to those with 
preterm labor who delivered at term (Table 3). Moreover, the fre‐
quency of detected amniotic fluid gasdermin D was higher in patients 
with preterm labor and birth with either SIAI (RR 3.06, P < .001) or 
IAI (RR 18.34, P < .001) compared to those with preterm labor and 
birth without intra‐amniotic inflammation (Table 3). Importantly, the 

F I G U R E  2   Gasdermin D expression in the chorioamniotic membranes of women who underwent spontaneous preterm labor without 
intra‐amniotic inflammation. Representative multiplex immunofluorescence images showing the brightfield view, cell segmentation map, 
nuclear staining (4′,6‐diamidino‐2‐phenylindole, DAPI, blue), and protein expression of gasdermin D (green), caspase‐1 (yellow), and IL‐1β 
(red) in the chorioamniotic membranes from women who underwent preterm labor and delivered at term (upper rows, left merged image) or 
preterm (bottom rows, right merged image) without intra‐amniotic inflammation. Merged images show the co‐localization of gasdermin D, 
caspase‐1, and IL‐1β expression. Images taken at 200× magnification. Scale bars = 100 µm
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frequency of detected amniotic fluid gasdermin D (RR 4.64, P = .004, 
Table 3), as well as its concentration (P < .001, Figure 1), was higher 
in patients with preterm labor and birth with IAI compared to those 
with SIAI. These results indicate that intra‐amniotic inflammation 
induced either by microbes (IAI) or alarmins (SIAI) is significantly as‐
sociated with the presence of gasdermin D, the effector molecule of 
pyroptosis, in amniotic fluid of patients with preterm labor and birth.

3.3 | Gasdermin D in the chorioamniotic 
membranes of women with spontaneous 
preterm labor

The co‐expression of gasdermin D, caspase‐1, and IL‐1β was low in the 
chorioamniotic membranes of women who underwent spontaneous 
preterm labor and delivered at term or preterm without intra‐amni‐
otic inflammation, and there were no evident differences in expres‐
sion of these molecules between these two study groups (Figure 2). 
Yet, gasdermin D was highly expressed in the chorioamniotic mem‐
branes of patients with spontaneous preterm labor who delivered 
preterm with either SIAI or IAI (Figure 3). Moreover, gasdermin D 
expression in these study groups was detected along with caspase‐1 
and IL‐1β in the chorioamniotic membranes, which is likely indicative 
of inflammasome‐mediated pyroptosis (Figure 3). Additional experi‐
ments exploring the expression of active caspase‐1 by non‐leuko‐
cytes and leukocytes isolated from the decidual tissues of women 
with spontaneous preterm labor and birth were also performed. We 
report that decidual cells from women with preterm labor and birth 
can undergo pyroptosis given that such cells expressed active cas‐
pase‐1 and had a permeable cell membrane (DAPI+ cells; Figure 4A). 
The main leukocyte populations expressing active caspase‐1 were 
macrophages and neutrophils (Figure 4B). Decidual T cells and B cells 
expressed minimal or no detectable active caspase‐1, respectively 
(data not shown). These findings suggest that pyroptosis can occur in 
the chorioamniotic membranes and decidual tissues of women with 
spontaneous preterm labor and birth.

4  | DISCUSSION

4.1 | Principal findings of the study

Herein, we report that (a) extracellular gasdermin D is commonly 
detected in the amniotic fluid of women who underwent spon‐
taneous preterm labor/birth with either sterile intra‐amniotic in‐
flammation or intra‐amniotic infection, and was rarely detected in 
those without intra‐amniotic inflammation; (b) both the frequency 
of detected amniotic fluid gasdermin D and its concentration were 
higher in women with intra‐amniotic infection than in those with 
sterile intra‐amniotic inflammation; (c) gasdermin D was highly ex‐
pressed in the chorioamniotic membranes of patients with either 
sterile intra‐amniotic inflammation or intra‐amniotic infection and 
was associated with the inflammasome mediators caspase‐1 and 
IL‐1β; and (d) non‐leukocytes and leukocytes (eg macrophages and 
neutrophils) expressed active caspase‐1 in the decidua of women 

with preterm labor and birth. Collectively, these findings show that 
pyroptosis can occur in the amniotic cavity, chorioamniotic mem‐
branes, and decidua of women with spontaneous preterm labor 
and birth.

4.2 | Pyroptosis in spontaneous preterm labor with 
intra‐amniotic inflammation induced by microbes

Herein, we found that an increased frequency of detected extra‐
cellular gasdermin D in amniotic fluid is significantly associated 
with the presence of intra‐amniotic infection in patients with 
spontaneous preterm labor and birth. Previous studies have dem‐
onstrated a clinical role for gasdermin D as a marker for pyrop‐
tosis both in affected tissues, as shown in the livers of patients 
with alcoholic hepatitis115 as well as in biological fluids such as 
plasma in patients with acute respiratory distress syndrome and 
sepsis.116 In the intra‐amniotic cavity, the cells present in this 
compartment117,118 are a possible source of gasdermin D, par‐
ticularly the innate immune cells (ie neutrophils and monocytes/
macrophages) that are increased in women with intra‐amniotic in‐
fection.108,117-122 Gasdermin D has a dual purpose in neutrophils: 
forming pores that allow for the release of IL‐1β during pyropto‐
sis89,123-125 and partially mediating the release of neutrophil ex‐
tracellular traps (NETs),126-128 which can be found in the amniotic 
cavity and chorioamniotic membranes of women with intra‐amni‐
otic infection.122,129 Macrophages, in which pyroptosis was first 
described and characterized,79,80,130 have also been shown to dis‐
play gasdermin D‐mediated secretion of IL‐1β in response to mi‐
crobes or their products.83,84,125,131,132 Moreover, keratinocytes, 
a major cellular component of amniotic fluid,133-137 have been 
shown to express inflammasome components and mediators such 
as IL‐1β.138,139 Thus, both innate immune cells and epithelial cells 
may contribute to amniotic fluid concentrations of gasdermin D in 
women who undergo spontaneous preterm labor with intra‐amni‐
otic infection. Yet, additional experimentation is required to inves‐
tigate the origin of gasdermin D in amniotic fluid.

Another possibility is that the adaptive immune cells (T cells) in 
amniotic fluid may also release gasdermin D. This is supported by 
the fact that T cells undergo caspase‐1‐mediated pyroptosis in re‐
sponse to viral infections such as HIV,140-143 although gasdermin D 
expression was not demonstrated in these studies. Further research 
is needed to investigate whether T cells release gasdermin D as a 
mechanism of pyroptosis in the amniotic cavity of women with spon‐
taneous preterm labor and intra‐amniotic infection.

Amniotic fluid immune cells can release gasdermin D; yet, the cho‐
rioamniotic membranes and placenta may be the primary sources of 
this pyroptosis effector molecule in the amniotic cavity. Herein, we 
show that the expression of gasdermin D is highest in the chorioam‐
niotic membranes of patients with preterm labor and intra‐amniotic 
infection and that decidual cells including leukocytes (macrophages 
and neutrophils) are capable of expressing active caspase‐1. This is in 
line with previous work demonstrating that patients with spontaneous 
preterm labor with acute histologic chorioamnionitis, a placental lesion 
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F I G U R E  3   Gasdermin D expression in the chorioamniotic membranes of women with spontaneous preterm labor and sterile intra‐
amniotic inflammation or intra‐amniotic infection. Representative multiplex immunofluorescence images showing the brightfield view, cell 
segmentation map, nuclear staining (4′,6‐diamidino‐2‐phenylindole, DAPI, blue), and protein expression of gasdermin D (green), caspase‐1 
(yellow), and IL‐1β (red) in the chorioamniotic membranes from women who underwent preterm labor and birth with sterile intra‐amniotic 
inflammation (upper rows, left merged image) or intra‐amniotic infection (bottom rows, right merged image). Merged images show the co‐
localization of gasdermin D, caspase‐1, and IL‐1β expression. Images taken at 200× magnification. Scale bars = 100 µm
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associated with intra‐amniotic infection,105,106,112,144-150 have an ele‐
vated expression of inflammasome components and mediators in the 
chorioamniotic membranes.44 Furthermore, the ultrasound‐guided 

intra‐amniotic administration of a microbial product, lipopolysac‐
charide, induces inflammasome activation in the murine fetal mem‐
branes, indicating that pyroptosis occurs in the amniotic cavity prior 

F I G U R E  4   Expression of active caspase‐1 in decidual cells from women with preterm labor and birth. A, Representative flow cytometry 
gating strategy showing the expression of active caspase‐1 (FLICA) in non‐leukocytes (CD45‐ cells) and leukocytes (CD45+ cells) isolated 
from the decidua of women with preterm labor and birth. B, Representative flow cytometry plots showing the expression of active 
caspase‐1 (FLICA) in macrophages (CD45+CD14+ cells) and neutrophils (CD45+CD15+ cells) in the decidual tissues from women with 
preterm labor and birth. Red quadrants indicate pyroptotic cells (active caspase‐1+ and permeable cell membrane, DAPI+). N = 5
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to preterm birth.47 In the clinical setting, inflammasome activation 
and pyroptosis could also be triggered by genital mycoplasmas,151-154 
the most commonly found bacteria in women with preterm labor and 
intra‐amniotic infection.23,155-161 Together, these findings implicate in‐
flammasome‐mediated pyroptosis in the mechanisms that lead to an 
intra‐amniotic inflammatory response in patients with spontaneous 
preterm labor with proven intra‐amniotic infection.

4.3 | Pyroptosis in spontaneous preterm labor with 
sterile intra‐amniotic inflammation

In the current study, we report that women with spontaneous pre‐
term labor and sterile intra‐amniotic inflammation had a greater fre‐
quency of detected amniotic fluid gasdermin D; yet, this was lower 
than in women with intra‐amniotic infection. This finding is consist‐
ent with our recent study showing that patients with spontaneous 
labor at term (ie physiological inflammation19,31,162-166) had higher 
amniotic fluid concentrations of gasdermin D compared to those 
who delivered at term without labor.167 In the context of preterm 
labor with sterile intra‐amniotic inflammation, gasdermin D could 
be released by amniotic fluid leukocytes, keratinocytes/epithelial 
cells, or other cellular components of amniotic fluid as well as by 
the chorioamniotic membranes and decidual stromal cells and leu‐
kocytes. This concept is supported by the fact that alarmins can 
initiate inflammasome‐mediated inflammatory responses in both 
immune168-173 and non‐immune cells172,174 and that the treatment 
of chorioamniotic membrane explants with the alarmin HMGB1 up‐
regulates the expression of inflammasome components and released 
products.43 In addition, ultrasound‐guided intra‐amniotic adminis‐
tration of the alarmin S100B induces activation of the inflammasome 
in the murine fetal membranes prior to preterm birth.40 Along with 
clinical studies showing that there is inflammasome activation in the 
chorioamniotic membranes and amniotic fluid of women with pre‐
term labor and sterile intra‐amniotic inflammation,46 these data sug‐
gest that alarmins can induce inflammasome‐mediated pyroptosis in 
patients with spontaneous preterm labor and birth.

An important observation that requires further study is that de‐
cidual cells and leukocytes, mostly macrophages and neutrophils, 
can undergo pyroptosis in women with preterm labor and birth. It 
would be interesting to investigate whether decidual cells express 
differential amounts of active caspase‐1 and mature IL‐1β in differ‐
ent clinical scenarios: intra‐amniotic infection vs sterile intra‐amni‐
otic inflammation.

5  | CONCLUSION

The data presented herein provide evidence that the effec‐
tor molecule of pyroptosis, gasdermin D, can be detected in the 
amniotic fluid and chorioamniotic membranes of patients with 
spontaneous preterm labor and either intra‐amniotic infection or 
sterile intra‐amniotic inflammation. Moreover, amniotic fluid gas‐
dermin D concentrations in patients with intra‐amniotic infection 
are greater than in those with sterile intra‐amniotic inflammation. 

These findings suggest that pyroptosis driven by either microbes 
or alarmins is a central pathway associated with pathological intra‐
amniotic inflammatory responses in patients with spontaneous 
preterm labor and birth. The current study provides insight into 
the immune mechanisms underlying the human syndrome of pre‐
term labor. 
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