A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES V: THE SELF-COMPLEMENT INDEX

JIN AKIYAMA, GEOFFREY EXOO AND FRANK HARARY

Abstract. The self-complement index s(G) of a graph G is the maximum order of an induced subgraph of G whose complement is also induced in G. This new graphical invariant provides a measure of how close a given graph is to being selfcomplementary. We establish the existence of graphs G of order p having s(G) = nfor all positive integers n < p. We determine s(G) for several families of graphs and find in particular that when G is a tree, s(G) = 4 unless G is a star for which s(G) = 2.

§1. The self-complement index and the induced number. Our purpose is to propose invariants which, in some sense, measure the degree to which a graph is self-complementary. To this end we define two related invariants which satisfy this requirement. We then show that the two are equivalent. Throughout we use the notation and terminology of [2]. In particular, all graphs are finite, without loops or multiple lines. The order of a graph G is the number p of points in it. And if X is a set of points in a graph G then we use $\langle X \rangle$ to denote the subgraph of G induced by X.

The self-complement index of a graph G, denoted s(G), is defined as the order of the largest induced subgraph H of G, such that \overline{H} is also induced in G. For a graph G of order p it is clear that $1 \le s(G) \le p$ as we do not include the null graph in the family of graphs; see Figure 1 in [3].

Now a related invariant of a graph G is defined. The *induced number* m(G) is the minimum order of a graph which contains both G and \overline{G} as induced subgraphs.

The first result indicates that s(G) and m(G) are essentially identical. We then proceed to show that s(G) partitions the graphs of order p into p classes which are nonempty except when s(G) = p and $p \equiv 2$ or 3 (mod 4). The number s(G) is then derived for several important families of graphs.

§2. The equivalence of the two invariants.

THEOREM 1. If G is a graph of order p with self-complement index s(G) and induced number m(G), then

$$m(G) = 2p - s(G) \, .$$

Proof. Let s = s(G), m = m(G), and let H of order s be a largest induced subgraph of G whose complement is also induced in G.

To prove the upper bound, we construct a graph F of order 2p-s in which both G and \overline{G} are induced subgraphs. Consider disjoint copies of G and \overline{G} . Let $U \subset V(G)$

[MATHEMATIKA, 27 (1980), 64-68]

J. Akiyama was a Visiting Scholar, 1978–1979, from Nippon Ika University, Kawasaki, Japan.

induce H in G and let $W \subset V(\overline{G})$ induce H in \overline{G} . Let $\phi: U \to W$ be a bijection which gives an automorphism of H. Then F is obtained from $G \cup \overline{G}$ by identifying each $u \in V$ with $\phi(u)$ in W. The order of F is 2p-s, and both G and \overline{G} are induced subgraphs of F, so $m \leq 2p-s$.

To show the lower bound, suppose F' is a graph in which both G and \overline{G} are induced subgraphs. Let X be a set of points of F' inducing G and let Y be a set of points inducing \overline{G} . Now if H' is the subgraph of F' induced by $X \cap Y$, then H' is also an induced subgraph of G since $X \cap Y \subset X$. Observe that $\overline{H'}$ is also an induced subgraph of G. Then because the order of H (a largest induced subgraph of G whose complement is also induced in G) is s, we have $|X \cap Y| \leq s$. Thus, $m \geq |X \cap Y| \geq 2p-s$, as required.

§3. The partition of graphs of order p by s(G). We shall develop an existence theorem for graphs with given self-complement index by showing that for all p and all n < p there exists a graph G of order p with s(G) = n. Figure 1 illustrates such graphs for p = 8, using graph theoretic notation from [3, Ch. 2].

Fig. 1. Examples of 8-point graphs for each possible self-complement index and induced number.

It is well known that self-complementary graphs exist, if, and only if, $p \equiv 0$ or 1 (mod 4). Thus in our terminology there exist graphs of order p with self-complement index p, if, and only if, $p \equiv 0$ or 1 (mod 4).

Moreover the following properties follow immediately from the definition of selfcomplement index, and so the proofs are omitted.

THEOREM 2. Let G be a graph of order p.

(1)
$$s(G) = s(\overline{G})$$
.

- (2) s(G) = p, if, and only if, G is self-complementary.
- (3) If H is a maximal induced self-complementary subgraph of G, then $s(G) \ge |V(H)|$.

We shall find it convenient to use the following ternary and the quaternary operations which were introduced in [1] and [2]. Following the notation and terminology of [3], the join $G_1 + G_2$ of two graphs is the union of G_1 and G_2 with the complete bigraph having point sets V_1 and V_2 , and the corona $G_1 \circ G_2$ of two graphs G_1 with p points v_i and, G_2 is obtained from G_1 and p copies of G_2 by joining each point v_i of G_1 with all the points of the *i*-th copy of G_2 . We shall require two related ternary operations denoted $G_1 + G_2 + G_3$ and $G_1 + G_2 \circ G_3$. The ternary operation written $G_1 + G_2 + G_3$ on three disjoint graphs is defined as the union of the two joins $G_1 + G_2$ and $G_2 + G_3$. On the other hand, the ternary operation $G_1 + G_2 \circ G_3$ is defined as the union of the join $G_1 + G_2$ with the corona $G_2 \circ G_3$. Thus this resembles the composition of the path P_3 , not with just one other graph, but with three graphs, one for each point of the path. Figure 2a illustrates the "random" graph $K_4 - e = K_1 + K_2 + K_1$ and Figure 2b illustrates the graph $A = K_1 + K_2 \circ K_1$. Of course, the quaternary operation $G_1 + G_2 + G_3 + G_4$ is defined similarly and Figure 2c shows the graph $K_1 + C_5 + K_1 + K_1$ which will occur in the proof of Theorem 3.

Fig. 2. Examples illustrating the ternary and quaternary operations.

THEOREM 3. For all p and all positive integers n < p, there exists a graph G of order p with s(G) = n.

Proof. We consider four cases according to whether $n \equiv 0, 1, 2$ or 3 (mod 4).

Case 0. $n \equiv 0 \pmod{4}$. Let H be a self-complementary graph of order n. Then if $G = H \cup \overline{K}_{p-n}$, we have s(G) = n.

Case 1. $n \equiv 1 \pmod{4}$. This case is handled exactly as Case 0.

Case 2. $n \equiv 2 \pmod{4}$. Let H be a self-complementary graph of order n-1and let $G = (H+K_1) \cup \overline{K}_{p-n}$. Then s(G) = n since $H+K_1$ and $H \cup K_1 = \overline{H+K_1}$ are maximal complementary induced subgraphs of G. The maximality follows, since any larger induced subgraph H' contains either two isolated points or is $(H+K_1) \cup K_1$. But, if H' contained two isolated points, then $\overline{H'}$ would have two points of degree $d \ge n-1$. But G does not have two such points. On the other hand, if $H' = (H+K_1) \cup K_1$, it is easy to verify that $\overline{H'}$ is not induced in G.

Case 3. $n \equiv 3 \pmod{4}$. Let H be a self-complementary graph of order n-2. Define the graph G to be $(K_1 + H + K_1 + K_1) \cup \overline{K}_{p-n-1}$. It now follows that s(G) = n since $H + K_1 + K_1$ and $(H + K_1) \cup K_1 = H + K_1 + K_1$ are maximal complementary induced subgraphs of G. The maximality of the induced subgraph $H + K_1 + K_1$ of order n is easily verified as in the preceding case.

§4. The self-complement index of some families of graphs. We now derive the self-complement index for several important families of graphs. It is convenient to write G > H when H is an induced subgraph of G.

THEOREM 4. The self-complement indexes of complete graphs, complete bigraphs, complete graphs plus one endline, cycles, and complete graphs plus two independent endlines, all of order p, are given by:

- (1) $s(K_p) = 1$;
- (2) $s(K_{m,n}) = 2$, m+n = p and $\max\{m, n\} \ge 2$;
- (3) $s(K_{p-1} \cdot K_2) = 3$;
- (4) $s(C_p) = 4$;
- (5) $s(K_{p-4} + K_2 \circ K_1) = 5, p \ge 5$.

Proof. (1) By Theorem 2(3), $s(G) \ge 1$ for all graphs G since K_1 is trivially an induced subgraph of any graph.

Conversely, if $s(G) \ge 2$, then G must have two non-adjacent points, and since any pair of points of K_p are adjacent, $s(K_p) = 1$.

(2) Let G be a complete bigraph $K_{m,n}$. Since G contains both K_2 and \overline{K}_2 as induced subgraphs, $s(G) \ge 2$. Let H be a graph of order 3 and assume that G > H and $G > \overline{H}$. Since H or \overline{H} contains P_3 or K_3 as an induced subgraph, $G > P_3$ and $G > \overline{P}_3 = K_2 \cup K_1$, or $G > K_3$ and $G > \overline{K}_3$. However, both cases are impossible for $K_{m,n}$.

(3) Let G be a graph $K_{p-1} \cdot K_2$. Since G contains P_3 and $\overline{P}_3 = K_2 \cup K_1$ as induced subgraphs, $s(G) \ge 3$. Let H be a graph of order 4 and assume that G > H and $G > \overline{H}$. Either H or \overline{H} must contain as an induced subgraph one of the following: $\overline{K}_4, K_2 \cup \overline{K}_2, P_3 \cup K_1, 2K_2, K_{1,3}$ or P_4 . Therefore, G must also contain one of them as an induced subgraph, which is impossible for $G = K_{p-1} \cdot K_2$ since G contains neither \overline{K}_3 nor $2K_2$ as an induced subgraph.

(4) If $p \ge 6$, the cycle C_p contains P_4 as an induced subgraph and so $s(C_p) \ge 4$. For any 5 points W of C_p , the graph $\langle W \rangle$ contains C_3 , a contradiction as no larger cycle contains a triangle.

(5) Let G be the graph $K_{p-4}+K_2 \circ K_1$, $p \ge 5$. Since G contains a selfcomplementary graph $A = K_1 + K_2 \circ K_1$ of order 5 as an induced subgraph, we have $s(G) \ge 5$. If G contains an induced subgraph H of order 6 such that \overline{H} is also induced in G, then either H or \overline{H} contains at most seven lines since $\binom{6}{2} = 15$. But the subgraph induced by any 6 points of G contains at least 8 lines. Thus s(G) = 5.

By Theorem 4(2), every star has self-complement index 2. We now determine this

index for all other trees.

THEOREM 5. For any tree T other than a star,

$$s(T) = 4$$
.

Proof. Note that all trees with at most 3 points are stars. Unless T is a star, T contains P_4 as an induced subgraph, so that $s(T) \ge 4$. Now we show the reverse inequality. Assume that $s(T) \ge 5$, that is, there exists a subtree H of G of order 5 such that T > H and $T > \overline{H}$. This is impossible since \overline{H} must then contain a cycle.

References

- 1. J. Akiyama and F. Harary. "A graph and its complement with specified properties III: Girth and circumference", Int'l J. Math. and Math. Sci., 2 (1979), 685–692.
- 2. J. Akiyama and F. Harary. "A graph and its complement with specified properties IV: Counting selfcomplementary blocks", J. Graph Theory, to appear.
- 3. F. Harary. Graph theory (Addison-Wesley, Reading, Massachusetts, 1969).
- 4. F. Harary and R. C. Read. "Is the null graph a pointless concept?" Graphs and combinatorics (R. Bari and F. Harary, eds.), Springer Lecture Notes, 406 (1974), 37-44.

University of Michigan, Department of Mathematics, Ann Arbor, M1 48109, U.S.A. 05C99: COMBINATORICS; Graph theory.

Received on the 11th of December, 1979.