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L E T T E R  T O  T H E  E D I T O R

Novel frameshift mutations in DSPP cause dentin dysplasia 
type II

The current classification system of hereditary dentin defects was 
proposed in 1973 (Shields, Bixler, & el‐Kafrawy AM, 1973) based on 
clinical and radiographic information without knowledge of the un‐
derlying molecular pathophysiology: three types of dentinogenesis 
imperfecta (DGI‐I, DGI‐II, and DGI‐III) and 2 types of dentin dyspla‐
sia (DD‐I and DD‐II).

Dentin sialophosphoprotein (DSPP) is the most abundant 
non‐collagenous component in dentin and a member of the acidic 
secretory calcium‐binding phosphoprotein (SCPP) gene family 
(Kawasaki & Weiss, 2006). After DSPP is synthesized, it undergoes 
extensive post‐translational modifications (Yamakoshi, Nagano, 
Hu, Yamakoshi, & Simmer, 2011) and is cleaved into two major 
functional units: an N‐terminal fragment called dentin sialoprotein 
(DSP) and a C‐terminal fragment known as dentin phosphopro‐
tein (DPP) (Yamakoshi & Simmer, 2018). Mutations in DSPP have 
been identified to cause DGI‐II, DGI‐III, and DD‐II (Kim & Simmer, 
2007), and there are some overlapping phenotypes in some cases 
(McKnight, Simmer, Hart, Hart, & Fisher, 2008). Therefore, it has 
been suggested that these three diseases are not separate entities 
but a spectrum of the disease depending on the degree of severity 
(Beattie et al., 2006).

A genotype–phenotype correlation with regard to the frame‐
shift mutations in the DPP region was suggested when N‐termi‐
nal frameshifts in the DPP region were observed in association 
with DD‐II, and more C‐terminal frameshift mutations were found 
to cause DGI‐II (McKnight, Suzanne Hart, et al., 2008). DD‐II like 
frameshift mutations would generate shorter negative charged re‐
peats than DGI‐II like mutations in the N‐terminus of the DPP. A 

reduction of the interaction of the mutant DSPP in the ER with the 
wild‐type DSPP through the Ca2+ bridge in the DD‐II like mutation, 
enabling the secretion of the wild‐type DSPP into the dentin ma‐
trix, was suggested as a molecular basis of the genotype–pheno‐
type correlation (von Marschall, Mok, Phillips, McKnight, & Fisher, 
2012).

In this study, we recruited four families with DD‐II and per‐
formed a mutational analysis, including Sanger sequencing of exons 
and exon–intron boundaries of DSPP and cloning of DPP repetitive 
sequence. The novel mutation identified in families 1 and 2 (Turkish 
families) [c.2134delA, p.(Ser712Alafs*602)] confirms the previous 
genotype–phenotype correlation and extends the range about 
70 bp down to the C‐terminus (Figure 1). The previous exception to 
the correlation was a DD‐II family caused by the c.3135delC [p.(Ser‐
1045Argfs*269)] mutation (Yang et al., 2016), and there were some 
features of DGI‐II such as slight discoloration, bulbous crowns, and 
obliterated pulp chambers in some teeth. Interestingly, family 3 
(Korean family) has an overlapping phenotype with a slight discol‐
oration in the lingual side of the anterior teeth in the proband on the 
DD‐II phenotype, and the location of the mutation [c.3480_3481in‐
sCTGCT, p.(Asp1161Leufs*155)] is similar to a previous family. 
Family 4 (Korean family) has an extremely mild, characteristic DD‐II 
phenotype, and the mutation [c.3179delG, p.(Ser1060Thrfs*254)] 
is also close to the above 2 families. This study confirms the previ‐
ous genotype–phenotype correlation and extends the range of the 
DD‐II‐associated N‐terminus of the DPP region; however, it also 
provides additional exceptions to the previously DGI‐II‐associated 
C‐terminus of the DPP region.
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F I G U R E  1   Pedigree, clinical photograph, panoramic radiograph, sequencing chromatograms of family members and gene diagram of 
DSPP. (a) Pedigree of family 1. (b) Clinical photograph of the proband (III:3) at the age of 8 years. Remaining deciduous teeth show an amber‐
brown discoloration and mild to moderate attrition, but erupting permanent teeth look normal without any discoloration. (c) Panoramic 
radiograph of the proband at the age of 10 years reveals the characteristic thistle tube‐shaped pulp chambers with pulp stones. (d) Clinical 
photograph of the proband of family 3 at the age of 9 years 8 months. Remaining deciduous teeth exhibit a dark brown discoloration and 
severe attrition. Permanent dentition is normal in shape and color in most teeth, but the lingual surfaces of the maxillary anterior teeth show 
a mild brown hue at the cervical area. (e) Sanger sequencing chromatograms of the mutations identified. Wild‐type (wt) and mutant (mut) 
nucleotide sequences are written on the above each chromatogram. The location of the mutations (deletion and insertion) was indicated 
with a red arrow in each chromatogram. Sequences based on the reference sequence for mRNA (NM_014208.3), where the A of the ATG 
translation initiation codon is nucleotide 1. (f) DSPP consists of 5 exons. Boxes indicate exons, and the amino acid numbers encoded by 
the exon are shown below each exon. The white area indicates the non‐coding part, and the blue area indicates DSP region. Orange color 
indicates DPP region (463‐1301 amino acids). The area associated with DD‐II is shown as a green double arrow. The red arrows indicate the 
position of identified mutations in this study [Colour figure can be viewed at wileyonlinelibrary.com]
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