IC-P-112 THE PATTERN OF CEREBRAL HYPOMETABOLISM AND ITS ASSOCIATION WITH CLINICAL RATINGS IN COGNITIVELY NORMAL OLDER ADULTS WITH AND WITHOUT SIGNIFICANT FIBRILLAR AMYLOID BURDEN: FINDINGS FROM THE ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE

Hillary Protas¹, Kewei Chen¹, Cole Reschke¹, Auttawut Roontiva¹, Xiaofen Liu¹, Stephanie Parks¹, Wendy Lee¹, Robert Bauer, III¹, Napatkamon Ayutyanont², Pradeep Thiyyagura¹, Robert Koeppe³, William Jagust⁴, Norman Foster⁵, Michael Weiner⁶, Adam Fleisher¹, Eric Reiman¹ ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE (ADNI)⁷, ¹Banner Alzheimer's Institute, Phoenix, Arizona, United States; ²Banner Alzheimer's Institute; Arizona Alzheimer's Consortium, Phoenix, Arizona, United States; ³University of Michigan, Ann Arbor, Michigan, United States; ⁴University of California, Berkeley, Berkeley, California, United States; ⁵University of Utah, Salt Lake City, Utah, United States; ⁶University of California San Francisco, San Francisco, Utah, United States; ⁷University of California, San Diego, California, United States. Contact e-mail: hillary.protas@bannerhealth.com

Background: It has been suggested that fibrillar amyloid- b (A b) begins to accumulate prior to regional cerebral metabolic rate for glucose (CMRgl) and clinical declines. In this study, a voxel-based partial least squares (PLS) algorithm was used to 1) characterize the CMRgl pattern that best distinguished cognitively normal "fibrillar A β positive and negative" older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), 2) compare the resulting FDG PET PLS subject scores in the A β positive and negative subjects, and 3) compare the extent to which these scores were associated with lower clinical ratings in each of the two subject groups. Methods: A b positivity was characterized in 225 cognitively normal subjects, 76 ± 6 years of age, using a mean cortical-to-cerebellar florbetapir SUVR threshold previously found to be associated with moderate or frequent neuritic plaques (Fleisher et al., 2011). A PLS routine in SPM environment was used to characterize the CMRgl pattern that best distinguished the resulting 71 A β positive and 154 A β negative subjects, characterize and compare their resulting FDG PET PLS subject scores, characterize and compare the extent to which the PLS scores were associated with clinical decline using the MMSE or ADAS-Cog, and determine the extent to which findings were solely attributable to fibrillar A β burden or APOE e 4 gene dose in each subject group. Results: The CMRgl pattern that best distinguished the A β positive from A β negative subjects included significantly lower measurements in posterior cingulate, parietal, and temporal regions. The resulting FDG PET PLS scores were significantly different in the A β positive and negative groups (p=8e-12). They were significantly associated with poorer MMSE and ADAS-Cog scores in the A β positive group(r=-0.50, p=9.1e-6; r=0.52,p=3.0e-6) but only significant for ADAS-cog in the A β negative group(r=0.16,p=0.05). The PLS score associations with MMSE or ADAS-Cog were stronger in the A β positive than in A β negative subjects(p=4.3e-4,p=2.2e-3). These results remained after correction for fibrillar A b or APOE- e 4 gene dose. Conclusions: Fibrillar A b burden in cognitively normal older adults is associated with a characteristic pattern of cerebral metabolism, and the metabolic pattern in those with fibrillar A β positive had stronger associations with poorer clinical ratings.

IC-P-113 CEREBROSPINAL FLUID BETA-AMYLOID 42, TAU, PTAU181 AND RESTING STATE FUNCTIONAL CONNECTIVITY

Liang Wang¹, Matthew Brier¹, Abraham Snyder², Jewell Thomas³, Anne Fagan⁴, Chengjie Xiong², Tammie Benzinger², David Holtzman⁴, John Morris⁴, Beau Ances², ¹Washington University in St. Louis, St. Louis, Missouri, United States; ²Washington University School of Medicine, St. Louis, Missouri, United States; ³Washington University in St. Louis, St. Louis, Missouri, United States; ⁴Washington University, St. Louis, Missouri, United States. Contact e-mail: liangwangni@gmail.com Background: Cerebrospinal fluid (CSF) biomarkers detect early pathologic changes of Alzheimer's disease (AD). AD is associated with reduced default mode network (DMN) integrity as measured by resting state functional connectivity magnetic resonance imaging (rs-fcMRI). We assessed the relationship between rs-fcMRI measures of DMN integrity and CSF biomarker abnormalities in cognitively normal individuals. Methods: A total of 207 cognitively normal individuals, as assessed by the clinical dementia rating scale (CDR), underwent CSF assays of amyloid- Aß 42 (Aß 42), tau, and phosphorylated tau 181 (ptau 181) as well as rs-fcMRI (Table 1). The DMN was assessed by region-of-interest based and voxel-wise whole-brain 181 was independently associated with reduced DMN integrity, with the most prominent decreases in functional connectivity observed between the posterior cingulate and medial temporal regions. Observed reductions in functional connectivity were not attributable to age or structural atrophy in the posterior cingulate and medial temporal areas. A similar pattern of functional connectivity decrease was observed in both region-of-interest based and voxel-wise analyses for decreased CSF AB 42 or increased CSF ptau 181 (Figure 1). Conclusions: Both $A\beta$ and tau pathology affect DMN integrity prior to clinical onset of AD.

Figure 1. Voxel-wise analyses assessing functional connectivity of the posterior cingulate cortex (PCC) and medial temporal lobe (MTL) in cognitively normal individuals with abnormal levels of cerebrospinal fluid (CSF) $A\beta_{42}$ or ptau₁₈₁ **A**: PCC functional connectivity compared between CSF $A\beta_{42}$ -negative vs. CSF $A\beta_{42}$ -positive; **B**: PCC functional connectivity compared between CSF ptau₁₈₁-negative vs. CSF ptau₁₈₁-positive; **C**: MTL functional connectivity compared between CSF $A\beta_{42}$ -negative vs. CSF $A\beta_{42}$ -positive; **D**: MTL functional connectivity compared between CSF ptau₁₈₁-negative vs. CSF ptau₁₈₁-positive. Functional connectivity maps were compared using random effects analyses. Maps display random effects decreases in correlations (hot color) and anti-correlations (cold color) in each comparison. Maps were thresholded at a voxel-level |Z| > 2.5 and cluster size > 35 voxels, uncorrected for multiple comparisons.