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§1. Introduction. Let A1;. . . , A, be nonzero real numbers and suppose
that X\IX2 is irrational. In 1955, Davenport and Roth showed [6] that the
values taken by

A,x3 + .. - + A,x3

at integer points ( x i , . . . , xs) are dense on the real line, provided that s>8. In
the present paper we obtain the same result with seven variables.

THEOREM. Let a = 10~4. Let X\,. .., A7 be non-zero real numbers with
Xi/X2 irrational. For each real fi, the inequality

( max |xy|

has infinitely many solutions in integers.

The result is somewhat analogous with Linnik's theorem [7] that Rlti(ji),
the number of representations of n as the sum of seven cubes, is positive for
large n. However, a proof of the above theorem only became a feasible prospect
with the appearance of Vaughan's work [10,11,12]. Vaughan used the Hardy-
Littlewood method to give a good lower bound for Ri,i{n) [10], and then a
lower bound of the expected order of magnitude [12], that is,

for large n. The method of Davenport and Roth is a variant of the Hardy-
Littlewood method. However, the bounds for even moments of smooth Weyl
sums in Vaughan [11] 'just miss' what one would need to initiate a proof of
the Theorem. Recently Wooley [13] gave sharper bounds for 5-th power
moments of such sums, for all real s > 4. These new moment estimates are the
key element in our proof.

We introduce some notation concerning smooth Weyl sums. Denote by
, R) the set of 7?-smooth numbers of size at most P, that is,

) = {ne[l, P] n Z:p| n =>p^R}.

Here and subsequently, p,px,p2, • • •  denote prime numbers. Let A: be a fixed
integer, k ^ 3 . We define the smooth Weyl sum/(a)=/ (a; P, R) by

f(a;P,R)= I e(axk)
xe.cJ(P.R)

[MATHEMATIKA,  42 (1995), 264-277]



CUBIC DIOPHANTINE INEQUALITIES 265

where e(z) denotes e2"'2. Let

Us(P,R)=\\f(a;P,R)\sda.

We shall say that an exponent ns = ns,k is permissible whenever the exponent
has the property that, for each £>0, there exists a positive number 77 =
rj(e, s, k) such that whenever R^P71, one has

In order to prove our Theorem we need the following results about
moments.

PROPOSITION 1. Let £ be the positive root of the polynomial

so that t; = 0-2495681 . . . . Then fx63 = 3 + £, is a permissible exponent.

PROPOSITION 2. The exponent ^20/3,3= 3-7941603 is permissible.

For comparison, Vaughan [11, Theorem 4.4] showed that //63 = 3-25 is
permissible; one would obtain the permissible exponent /i 20/3,3 = 3-83 on combi-
ning this with Holder's inequality and Hua's inequality for the eighth moment.

Proposition 1 is a corollary of [13, Theorem 1.2]. We shall prove Proposi-
tion 2 in Section 2. Owing to the highly iterative nature of the method of [13],
we are forced to calculate a number of intermediate moments. In compensa-
tion, the estimates provided below for each of these moments appear to be the
best deriving from currently available arguments.

Once we have these Propositions, and some further lemmata on Weyl sums
which we assemble in Section 3, we are able to proceed with the proof of the
Theorem in a relatively straightforward fashion. Section 4 reduces the problem
to the estimation of an integral over the real line and deals with the major arc.
This is familiar ground; compare Briidern [3]. In Section 5, we discuss the
minor arc. Proposition 1 yields some initial Diophantine approximation, and
Proposition 2 can then be used to dispose of the most difficult case.

§2. The 20/3-moment. It is convenient to describe an exponent Ss = 8s<k as
associated if  the exponent

l*,  = s/2 + 5t (2.1)

is permissible in the notation of Section 1.
When & = 3 and K 5 w e are able to calculate the permissible exponents ns

by using a simple corollary of [13, Theorem 1.1] which we summarize below
in the form of a lemma.
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LEMMA  1. Let s be a real number with s>2, and suppose that <5j3 and
are associated exponents. Then the exponent Ss+2,3 is associated, where

and

.j _ S2s — 25 s

Proof. We set k = 3 and t = 1 in [ 13, Theorem 1.1] and note equation (2.1)
above.

When k = 3 and s > 6 one obtains superior permissible exponents by employ-
ing an estimate of [13, Lemma 3.4] within the argument of [13, §4].

LEMMA 2. Define the integer x = x(k) by

11, when k = 3, and when & > 8 andk is even
r(k) = -,

(0, otherwise.

Let s and t be real numbers with 0< t< 1 and s + 2t>4. Write v = s(l —1/4)~\
Suppose that nStk and /*„,*  are permissible exponents. Then ns+2,,k is permissible,
where

and

t + (4-t)no-4fi1
e=-

Proof. Suppose that u and t are real numbers with 0 < t < 1 and u + 2t>4,
and write s = u + 2t. Take <p to be a real number with 0<?>< \/k to be chosen
later, and write

M=P, H=PM'k and Q = PM[. (2.2)

We apply the argument of [13, §4], setting v = u(l-t/4)~l in the application
of Lemma 3.4 of that paper. We may suppose that fiUtk and nv,k are permissible
exponents. Then as in [13, §4] (see in particular (4.2) and (4.3)), our choice
for q> is

p=min (8, \/k),

where
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We may now mimic the argument of the proof of Theorem 1.1 in §4 of [13]
to deduce that

is permissible, from which the lemma follows immediately.

In the remainder of the paper, we assume that k = 3.

COROLLARY. Let s be a real number with s>2, and suppose that 8sj and
.3 are associated exponents. Then the exponent 5i+2,3 is associated, where

and

Proof. We set fc = 3 and t= 1 in Lemma 2, and note equation (2.1).

Proof of Proposition 2. We estimate the 20/3-moment in steps (a)-(h)
below. %

(a) 0<5<4. By combining [13, Lemma 2.1] with (2.1), we find that the
exponent 8S = 0 is associated.

(b) J = 5, 6. The proof of [13, Theorem 1.2] shows that the exponents 86 =
0-2495682 and <55 = 0- 0880919 are associated.

(c) s = 9/2. We apply Lemma 1 with s — 5/2. Thus we deduce from (a)
that whenever 85 is an associated exponent, then so is

x 53s

5

Consequently, from (b), we deduce that <59/2 = 0-0269356 is an associ-
ated exponent.

(d) s= 16/3. We apply Holder's inequality to interpolate linearly between
available associated exponents <55 and 86. Thus, whenever 85 and 86
are associated exponents, then so is

It therefore follows from (b) that 8]6/3 = 0-1419174 is an associated
exponent.

(e) s= 14/3. We apply Lemma 1 with s = 8/3. Thus we deduce from (a)
that whenever 8l6/i is an associated exponent, then so is

g 4^16/3
14/3

1 6 / 3) '

Thus, in view of (d), we find that 8W3 = 0-0456850 is an associated
exponent.
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(f) 5= 13/2. We apply the Corollary with $ = 9/2. Then we deduce that
whenever 59/2 and 56 are associated exponents, then so is

no

5.3/2= < M l - 0 ) + —

4

where

d

9 + 356-459 / 2'
Consequently, it follows from (b) and (c) that 5i3/2 = 0-4053175 is an
associated exponent.

(g) 5 = 56/9. We aply Holder's inequality to interpolate linearly between
available associated exponents 86 and 8\i/2. Thus, whenever 86 and
8 n/2 are associated exponents, then so is

856/9 = 9"6 + 9813/2 •

Thus we find from (b) and (f) that 556/9 = 0-3187902 is an associated
exponent.

(h) 5 = 20/3. We apply the Corollary with s= 14/3. Thus we deduce that
whenever 8,4/3 and <556/9 are associated exponents, then so is

where

~ 45)4/3

9 + 3556/9-4514/3'

Consequently, from (e) and (g), it follows that 520/3 = 0-4608269 is an
associated exponent.

Proposition 2 now follows from (h) on recalling (2.1).

§3. Lemmata on Weyl sums. Let e be a sufficiently small positive constant
and let r\ be sufficiently small as a function of e. Constants implicit in ' < ' or
lO' notation will depend at most on s. If

we write axB.

LEMMA  3. Let N=465767,

0i = 38416AT\ 02=411«W~I, 03 = 45668Ar
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and define g(a) =g(P; a) by

e(a(p,...p5yf).
PeXpisi2Pe> P/(p,...p5)<y^2P/(pl...ps)

(1SSISS5)

Then

3+26i+e\g(P;a)\6da<P

Proof. This is (a trivial variant of) the case f = 5 of Briidern [4].

Notice that the exponent in Lemma 3 is a little worse than Vaughan's value
6,3 = 3.25 mentioned in Section 1. In compensation we have Lemma 5 below,

where we make good use of the long inner summation over y. Lemma 4 is the
stronger counterpart for an 'ordinary' Weyl sum.

LEMMA  4. Let A^Py4*- e. Suppose that

Then there are coprime integers b, r such that

Proof. See for example the Lemma in [1], §4.

LEMMA  5. Let B$>PS/9. Let g be as in Lemma 3. If \g(P; /?)| ̂ B then
there are coprime a, q with

Proof. Let

JI={p x...p5:P
e<<p&2P e%

k(a,Z) = £ e(«z3).
Z<:*i2Z

We have

g(a)= £ k(am\P/m).

We write 0O = 1 - 0i - 02 -... - d5 = 0-494 . . . and Y= P00. For meM we have
P / m x r .
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Given meM, we may choose coprime b, r with

If r> Fthen, by Weyl's inequality,

while for

k(am\P/m)<$}
3 -aw —II +r i/2+e.

This follows at once from [8, Lemma 6.1]. We see that

k(am3,P/m)<Yy4+e

unless

Consequently,

(3.1)

where M' is the subset of M such that (3.1) holds. But

so that

3am —
r

- i

For convenience write m = mim2 with wi =p\P2Pi, m2 =PAPS • For any m =
' we may choose coprime c, J (depending only on mt) such that

ami —
1

Then

so that

am --
cm2

r 9/4.

*sY9/4>

cm\ b

s r

+ i -ly-9/4
2 '
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It follows that r = s(s, m\)~\ and hence

271

(3.2)

The last sum extends over mx =p1p2p3(Pe'<p i^2Pei).
We now repeat this line of argument. The sum in (3.2) may be restricted

to those m\ for which

\ (3.3)

?4+05)+£y-3 (34)

a
a —

We now choose coprime a, q,

V 3 / 2'
For those mx satisfying (3.3), (3.4),

c am]
s q qP3/2 '

after a short computation. Thus s = q/(q, m\) and

a
a —

q

- i

a
a —

q

- i

The lemma follows at once.

LEMMA  6. Let

f(a)=
P<xsi2P

Let

Then

J \f(a)\4da<P) + e

Proof. See for example Briidern [2], proof of (4.6).
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LEMMA  7. Let l^B^P1/4e. Let g(B) = {ae[Q, 1]: |/(o)| >PB~1}.
Then

\f(a)\'da*P'B.
J

Proof. By Lemma 6,

J \f\3da^p-'B\ \f\Ada<PeB.

§4. The Davenport-Heilbronn method. According to Davenport [5] for
every integer r there is a function K: U-*U with

K(-a) = K(a), K(a)<C(r) min (1, \a\~r)

whose Fourier transform satisfies

and 0 < ^ ( a ) < l for l / 3 < | a | < l .
In proving our Theorem we may assume Xt > 0, X2 < 0 (change xy into

if necessary). Let

(in the notation of Lemma 3), and

/*,(«)=

where X=/'/log /". Now consider

(4.1)= J
By a familiar argument (see e.g. [3], §3), it suffices to prove that ^V(P)-*cc as
P runs through some sequence of positive numbers tending to infinity.

Let

f = {a:\a\>F°+ '}.

It is easy to see that for a suitable choice of r = r(s), the contribution  of &~ to
is 0(1); compare [3], p. 54.
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On the 'major arc' Jt we can give satisfactory approximations to /i and
gi- Let

IB

=\

Then, for

/1(a) = u(A,a,PAr1/3) + O(l)

= XTl/3v(a,P) + O(l), (4.2)

by Theorem 4.1 of Vaughan [8]. Similarly, for

Theorem 2 of Vaughan [9] yields

g 2 ( a ) = £ ( U ( A 2 ^ . ^
1"

')• (4.3)

Here

T= I! I -x(logP)- 5. (4.4)
I*S<*S5 pt>i<p^2PmPi

For

p-s/2<\a\^P~2-e (4.5)

we claim that

\g2(a)\<Pa/9. (4.6)

For suppose the contrary. By Lemma 5 there are coprime integers a, q with

\X2a-a/q\ 4q~]/3p-26/9<q-[P~2. (4.7)

We cannot have q=l, since then a = 0 and

which contradicts (4.5). Consequently we may deduce from (4.7) that

Again, this contradicts (4.5) and we have established (4.6).
Combining (4.2), (4.3)

for | a\<P~5/2, while
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when (4.5) holds. Thus, abbreviating the integrand in (4.1),

r
J

I« I<A

+ c / />8 / 9 f ( i +

. . . h7e{an)Kda

\v(a,P)\%...,

v(a, P)\)\hi... h7\daj. (4.8)
- i

Integration by parts yields

i

With the trivial bound hj= O(P) we get

\v(a, P)\ |A3 . . . hlda^P3 log P. (4.9)

From the bound h3 = ©(P) and

jw
we get

I |/!3.../j7|rfa«JP
3+£. (4.10)

- 1

Combining (4.9) and (4.10), the O term in (4.8) is

«P4-1 / 1 0. (4.11)

By following through the argument on p. 55 of [3], we find that
p-S/2

I \v{a,P)\%...h7Ke(an)da>P4-\ (4.12)

We may now obtain

f\g2h • • • h7e(an)Kda$>P4~e (4.13)

on assembling (4.8), (4.11) and (4.12).
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§5. The minor arc. Since K(a)<£\, our Theorem will follow from (4.13)
once we show that

I \-2e (5.1)

Let

By Holder's inequality,

- / - vl/6 7 / /• \ l /6

\Ag2h3 • • • hy\da^Pi/4+s\ \gi\eda I FI
J \J / 7=3
E «•

It is clear that

J \g2{a)\6da<P°] \g2(a)\6da (5.2)

o

and similarly for hs. It follows from Proposition 1 and Lemma 3 that

[ 1/iftAs • • • /,7|^a^/'3/4+£+<T(P3+025129)1/6(P3+0-24957)5/6

Next, we treat the set

By Holder's inequality

.1/8

J |/i«2*3 • • • h7\da<\sap !/-(«)

F

where

f i x | j x 3-79417 +<r<4-2e.

Here we have used the definition of F, the analogue of (5.2), Lemma 6, Hua's
inequality and Proposition 2.
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It remains to treat those a with |/i(a)| >P4 /5. We begin with

G= {as™: |/,(o)| >P4/5, \g2(a)\ ^P*/9}.

By Holder's inequality,

• • . h7\da<(sup |g2(a)|2/3jy |/,|3daj
a

( J )
where

Here we have used the definition of G, the analogue of (5.2), Lemma 7 and
Hua's inequality.

The set which remains is

H= {ae™: |/,(a)| >P4/5, \g2(a)\ >PS/9}

and it is at this stage that we must restrict P to the values

P=q2/i

(q a denominator of a convergent to the irrational number Ai/A2). We split H
into <9((log P)2) sets

with /> 4 / 5<^</> , P8/9^B^P. Because of the Diophantine approximation
provided by Lemmata 4 and 5, we may follow the argument in Baker [1],
pp. 89-90 to bound the Lebesgue measure of H(A, B) by

Consequently, with trivial bounds on hj,

\fig2h3...h7\da<$P5+9

H

We have established (5.1), and the Theorem follows.
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