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1 Appendix A: Asymptotic Multivariate Distribution of .7}, = {%(51), .

k=1,... K
In this section, we prove that the multivariate distribution of T = {91(51)7 el ﬁk(sk)} is a mean zero
Normal distribution with covariance matrix X for K = 1,..., K as described in the main text of the
manuscript.

We start from our unstandardized test statistic at analysis time s:
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which can be written as
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where ny(s)/{n1(s) +na(s)} 2 my(s). Suppose at analysis time s, combining information of the time to first
event captured in all b follow-up windows of length 7, we record M unique event times {0 =Ty < T} < ... <

Trr < Tary1 = 7). Then, by Taylor series expansion,
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is asymptotically equivalent in distribution to:
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Terms (5) and (6) converge to zero in probability using similar arguments to those shown in Tayob and

Murray (2014) Appendix A. When terms (2) and (4) are combined into the test statistic, 7 (s), under the

null hypothesis, they cancel with terms from the other treatment group. Hence, the asymptotic behavior of

T (s) is based on term (3) for groups g = 1,2, which can be further rewritten as
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By Taylor series expansion, this term is asymptotically equivalent in distribution to
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Using arguments similar to those given in Tayob and Murray (2014), the higher order terms in (9) converge
to zero in probability. When term (7) appears in 7 (s), it cancels with its corresponding term from the
other treatment group under the null hypothesis. Hence, the asymptotic behavior of 7 (s) is based on term
(8) which upon noting that EdNgy(s,T;)/EY,(s, T;) = A} (s, Tj) and EY,(s, Tj) = Z?:l Pr(Xg(s,t1) > Tj)

can be algebraically rearranged as:
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or in more standard stochastic integral notation as:
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Summarizing the above remarks,
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is asymptotically equivalent in distribution to
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We can write equation (11) as
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Note that Z;{jis(s,7)} only depends on patient ¢ and is independent and identically distributed for
i=1,...,n4(s). As aresult, the multivariate central limit theorem can be used to determine the asymptotic
joint distribution of {J*(s1),..., 7 *(sk)},k = 1,..., K, when each statistic is formulated as in equation
(12). As a result, the covariance matrix of {7*(s1),...,.7*(sr)} with component Cov {T*(sk, ), T*(sk,)},
can be estimated using empirical covariances of Z;{fi,(sk,,7)} and Z;{fi4(sk,,7)}, for ¢ = 1,2, where
appropriate, as follows.

First, without loss of generality, assume si, < sg, so that ng(sy,) < ng(sk,) with ng(sx,) patients

contributing (correlated) data from both analysis times. Then
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which is asymptotically equivalent to
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where for group g = 1,2, ¥4(sk,, Sk,) is the limiting proportion of patients entered at sj, of those eventually
entered by sy, , that is estimated by ng(sk, )/ng(sk,). Therefore, we can estimate Cov [Z;{jig(Sk,,T)}, Zi{ftg(Sks, T)}]

with the empirical covariance of sample realizations of Z;{fiq(sx,,7)} and Z;{fi4(sk,,T)}, that is,
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where z;{f14(s,7)} and Z{{i4(s,7)} are defined in terms of z;; {{i4(s,7)} in main manuscript Section 3. How-
ever, this estimation can be improved upon by updating z;;{fi4(sk,,7)} with quantities that that do not
depend on analysis time and thus can be estimated better using the full data at the later analysis time

Sky- In particular, since both dNg;(sk,,t;,u1)/Ygi(sk,,t5,u1) and dNg;(Sk,,t;,u1)/Ygi(Sk,,t;,u1) estimate



Agi (tj, uy)duq, and the latter term uses more data, we replace dNg; (8, ,t5,u1) with
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Similarly, we replace Yy (sg,, u1)/ng(sk, ), which is an estimate of 2?21 Pr{Ty;(sk,,t1) > u1 }Pr{Cgyi(sk,, t1) >
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Here, terms involving the event time are estimated using updated data, while terms involving the censoring

distribution remain relevant to analysis time sg,. Putting these modifications together gives us
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as an updated version of z;;{fi4(sk,,7)} for use in covariance terms. So that we replace the z;;{fig(sk,,7)}

terms in z;{fiy(sk,,7)} and Z{f14(sk,, )} with Z;;{fig(sk,,7)} to obtain Z;{fiy(sk,,T)} and g{ﬂg(skl,r)}.

And we update the empirical covariance as
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For the standardized version of test statistic, f(sk), Sk = S1,...,SK, we work with the corresponding

standardized form of the more tractible random variable that is asymptotically equivalent in distribution,

namely,
7 (51 |
Va(sk)ot(sk) + i (sk)o3 (sk)

which also gives T an asymptotic mean zero multivariate Normal distribution with covariance matrix Y.
Because the test statistic is standardized to have variance 1.0. We only need to estimate the off-diagonal
elements oy, k, via

Cov{T*(sk,), T*(sky)}
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Section 3 in the main manuscript gives estimates 74(si) for sp = sg,, g, and &3 (8k,) using the most up-
to-date information. Estimate &7 (sy,) in equation (13) for g = 1,2 is modified by replacing z;{fig(sx,,7)}

with Z;;{f1g(sk,,7)}. Therefore, we have
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2 Appendix B: Simulated Cumulative Power in the Special Case
with Independent Recurrent and Terminal Event Distributions

Figure S1 shows simulated power for the group sequentially monitored CL, TM and LR statistics when all
events within each individual are statistically independent, but otherwise have marginal distributions as
given in section 5 of the main manuscript. The CL statistic (triangles) had the highest power in this special

case, followed closely by the TM statistic (circles) and distantly by the LR method(+).

3 Appendix C: Additional Simulation Results



Cumulative Power under the Independent Case
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Figure S1: Simulated Cumulative Power in the Special Case with Independent Recurrent and Terminal Event
Distributions (TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)
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Figure S2: Cumulative Power at Each Analysis Time by Varying Levels of Correlation between Recurrent
Events (Rows) and Correlation between Recurrent and Terminal Events (Columns).

(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test; XMT: Xia, Murray and
Tayob (2018).)

T Data is not shown for the case with low p1 and high ps since this covariance structure was difficult to construct.
Intuitively, it is difficult to have gap times weakly correlated with one another and at the same time all highly
correlated with the terminal event time.

* Low, medium to high correlations between recurrent events are generated from p; = 0.3,0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from p2 =0.3,0.5 and 0.7,
respectively.
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Figure S3: Cumulative Power at Each Analysis Time by Varying Levels of Correlation between Recurrent
Events (Rows) and Correlation between Recurrent and Terminal Events (Columns).

(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)

T Data is not shown for the case with low p1 and high ps since this covariance structure was difficult to construct.
Intuitively, it is difficult to have gap times weakly correlated with one another and at the same time all highly
correlated with the terminal event time.
* Low, medium to high correlations between recurrent events are generated from p; = 0.3,0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from p2 =0.3,0.5 and 0.7,

respectively.



