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1 Appendix A: Asymptotic Multivariate Distribution of T̃k =
{

T̃1(s1), . . . , T̃k(sk)
}
,

k = 1, . . . , K

In this section, we prove that the multivariate distribution of T̃k =
{

T̃1(s1), . . . , T̃k(sk)
}

is a mean zero

Normal distribution with covariance matrix Σk for k = 1, . . . ,K as described in the main text of the

manuscript.

We start from our unstandardized test statistic at analysis time s:

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)},

which can be written as

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ), (1)

where ng(s)/{n1(s) +n2(s)} p→ πg(s). Suppose at analysis time s, combining information of the time to first

event captured in all b follow-up windows of length τ , we record M unique event times {0 ≡ T0 < T1 < ... <

TM < TM+1 ≡ τ}. Then, by Taylor series expansion,

√
ng(s)µ̂g(s, τ) =

√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

−
m∑
j=0

dNg(s, Tj)

Yg(s, Tj)


is asymptotically equivalent in distribution to:
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√
ng(s)

M∑
m=0

(Tm+1 − Tm) exp

−
m∑
j=0

λWg (s, Tj)dTj

 (2)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

 m∑
j=0

−exp

−
m∑
j′=0

λWg (s, Tj′)dTj′

 dNg(s, Tj)

Yg(s, Tj)

 (3)

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

 m∑
j=0

−exp

−
m∑
j′=0

λWg (s, Tj′)dTj′

λWg (s, Tj)dTj

 (4)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)
1

2!
exp

−
m∑
j′=0

λWg (s, Tj′)dTj′


 m∑
j=0

{
dNg(s, Tj)

Yg(s, Tj)
− λWg (s, Tj)dTj

}2

(5)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)[higher order terms] (6)

Terms (5) and (6) converge to zero in probability using similar arguments to those shown in Tayob and

Murray (2014) Appendix A. When terms (2) and (4) are combined into the test statistic, T (s), under the

null hypothesis, they cancel with terms from the other treatment group. Hence, the asymptotic behavior of

T (s) is based on term (3) for groups g = 1, 2, which can be further rewritten as

√
ng(s)

M∑
m=0

(Tm+1 − Tm)

 m∑
j=0

−exp

−
m∑
j′=0

λWg (s, Tj′)dTj′

 dNg(s, Tj)

Yg(s, Tj)



= −
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp{−
m∑
j′=0

λWg (s, Tj′)dTj′}
m∑
j=0

dNg(s, Tj)

Yg(s, Tj)
,

By Taylor series expansion, this term is asymptotically equivalent in distribution to

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

−
m∑
j′=0

λWg (s, Tj′)dTj′

×


m∑
j=0

EdNg(s, Tj)

EYg(s, Tj)
(7)

+

m∑
j=0

[
1

EYg(s, Tj)
[dNg(s, Tj)− EdNg(s, Tj)]−

EdNg(s, Tj)

EYg(s, Tj)2
[Yg(s, Tj)− EYg(s, Tj)]

]
(8)

+[higher order terms]} . (9)
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Using arguments similar to those given in Tayob and Murray (2014), the higher order terms in (9) converge

to zero in probability. When term (7) appears in T (s), it cancels with its corresponding term from the

other treatment group under the null hypothesis. Hence, the asymptotic behavior of T (s) is based on term

(8) which upon noting that EdNg(s, Tj)/EYg(s, Tj) = λWg (s, Tj) and EYg(s, Tj) =
∑b
l=1 Pr(Xgi(s, tl) ≥ Tj)

can be algebraically rearranged as:

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

−
m∑
j′=0

λWg (s, Tj′)dTj′


m∑
j=0

dNg(s, Tj)− Yg(s, Tj)λWg (s, Tj)∑b
l=1 Pr(Xgi(s, tl) ≥ Tj)

or in more standard stochastic integral notation as:

−
√
ng(s)

∫ τ

0

exp

{
−
∫ u2

0

λWg (s, u1)du1

}∫ u2

0

dNg(s, u1)− Yg(s, u1)λWg (s, u1)∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2. (10)

Summarizing the above remarks,

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ)

is asymptotically equivalent in distribution to

√
π1(s)

√
n2(s)

∫ τ

0

exp

{
−
∫ u2

0

λW2 (s, u1)du1

}∫ u2

0

dN2(s, u1)− Y2(s, u1)λW2 (s, u1)∑b
l=1 Pr(X2i(s, tl) ≥ u1)

du2

−
√
π2(s)

√
n1(s)

∫ τ

0

exp

{
−
∫ u2

0

λW1 (s, u1)du1

}∫ u2

0

dN1(s, u1)− Y1(s, u1)λW1 (s, u1)∑b
l=1 Pr(X1i(s, tl) ≥ u1)

du2. (11)

Recall that

Ng(s, u) =

ng(s)∑
i=1

Ngi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ngi(s, tj , u)

and

Yg(s, u) =

ng(s)∑
i=1

Ygi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ygi(s, tj , u).

We define:

Zij{µ̂g(s, τ)} =

∫ τ

0

exp

{
−
∫ u2

0

λWg (s, u1)du1

}∫ u2

0

dNgi(s, tj , u1)− Ygi(s, tj , u1)λWg (s, u1)du1∑b
l=1 Pr{Xgi(s, tl) ≥ u1}

du2

and

Zi{µ̂g(s, τ)} =

b∑
j=1

Zij{µ̂g(s, τ)}.
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We can write equation (11) as

T ∗(s) =
√
π1(s)

√
n2(s)

∑n2(s)
i=1 Zi{µ̂2(s, τ)}

n2(s)
−
√
π2(s)

√
n1(s)

∑n1(s)
i=1 Zi{µ̂1(s, τ)}

n1(s)
. (12)

Note that Zi{µ̂g(s, τ)} only depends on patient i and is independent and identically distributed for

i = 1, . . . , ng(s). As a result, the multivariate central limit theorem can be used to determine the asymptotic

joint distribution of {T ∗(s1), . . . ,T ∗(sk)} , k = 1, . . . ,K, when each statistic is formulated as in equation

(12). As a result, the covariance matrix of {T ∗(s1), . . . ,T ∗(sk)} with component Cov {T ∗(sk1),T ∗(sk2)},

can be estimated using empirical covariances of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, for g = 1, 2, where

appropriate, as follows.

First, without loss of generality, assume sk1 ≤ sk2 so that ng(sk1) ≤ ng(sk2) with ng(sk1) patients

contributing (correlated) data from both analysis times. Then

Cov {T ∗(sk1),T ∗(sk2)}

=

2∑
g=1

Cov

[√
π3−g(sk1)

√
ng(sk1)

∑ng(sk1
)

i=1 Zi{µ̂g(sk1 , τ)}
ng(sk1)

,
√
π3−g(sk2)

√
ng(sk2)

∑ng(sk2
)

i=1 Zi{µ̂g(sk2 , τ)}
ng(sk2)

]
.

=

2∑
g=1

√
π3−g(sk1)

√
π3−g(sk2)

ng(sk1)√
ng(sk1)ng(sk2)

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,

which is asymptotically equivalent to

=

2∑
g=1

√
π3−g(sk1)π3−g(sk2)ψg(sk1 , sk2)Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,

where for group g = 1, 2, ψg(sk1 , sk2) is the limiting proportion of patients entered at sk1 of those eventually

entered by sk2 , that is estimated by ng(sk1)/ng(sk2). Therefore, we can estimate Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

with the empirical covariance of sample realizations of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, that is,

Ĉov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1
)∑

i=1

[zi{µ̂g(sk1 , τ)} − z̄{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

.

where zi{µ̂g(s, τ)} and z̄{µ̂g(s, τ)} are defined in terms of zij{µ̂g(s, τ)} in main manuscript Section 3. How-

ever, this estimation can be improved upon by updating zij{µ̂g(sk1 , τ)} with quantities that that do not

depend on analysis time and thus can be estimated better using the full data at the later analysis time

sk2 . In particular, since both dNgi(sk1 , tj , u1)/Ygi(sk1 , tj , u1) and dNgi(sk2 , tj , u1)/Ygi(sk2 , tj , u1) estimate
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λgi(tj , u1)du1, and the latter term uses more data, we replace dNgi(sk1 , tj , u1) with

Ygi(sk1 , tj , u1)
dNgi(sk2 , tj , u1)

Ygi(sk2 , tj , u1)
.

Similarly, we replace Yg(sk1 , u1)/ng(sk1), which is an estimate of
∑b
l=1 Pr{Tgi(sk1 , tl) ≥ u1}Pr{Cgi(sk1 , tl) ≥

u1}, with ng(sk2
)∑

i=1

I{Tgi ≥ u1 + tl}
ng(sk2)

ng(sk1
)∑

i=1

I{Cgi(sk1) ≥ u1 + tl}
ng(sk1)

 .
Here, terms involving the event time are estimated using updated data, while terms involving the censoring

distribution remain relevant to analysis time sk1 . Putting these modifications together gives us

z̃ij{µ̂g(sk1 , τ)} =

∫ τ

0

exp{−
∫ u2

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[∫ u2

0
b∑
l=1

ng(sk2
)∑

i=1

I{Tgi ≥ u1 + tl}
ng(sk1

)∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj , u1)

{
dNgi(sk2 , tj , u1)

Ygi(sk2 , tj , u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2.

as an updated version of zij{µ̂g(sk1 , τ)} for use in covariance terms. So that we replace the zij{µ̂g(sk1 , τ)}

terms in zi{µ̂g(sk1 , τ)} and z̄{µ̂g(sk1 , τ)} with z̃ij{µ̂g(sk1 , τ)} to obtain z̃i{µ̂g(sk1 , τ)} and ¯̃z{µ̂g(sk1 , τ)}.

And we update the empirical covariance as

Ĉov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1
)∑

i=1

[z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

.

For the standardized version of test statistic, T̃ (sk), sk = s1, . . . , sK , we work with the corresponding

standardized form of the more tractible random variable that is asymptotically equivalent in distribution,

namely,

T ∗(sk)√
π2(sk)σ2

1(sk) + π1(sk)σ2
2(sk)

.

which also gives T̃k an asymptotic mean zero multivariate Normal distribution with covariance matrix Σk.

Because the test statistic is standardized to have variance 1.0. We only need to estimate the off-diagonal

elements σk1k2 via

σ̂k1k2 =
Ĉov {T ∗(sk1),T ∗(sk2)}√

π̂2(sk1)σ̃2
1(sk1) + π̂1(sk1)σ̂2

2(sk1)
√
π̂2(sk2)σ̃2

1(sk2) + π̂1(sk2)σ̂2
2(sk2)

. (13)
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Section 3 in the main manuscript gives estimates π̂g(sk) for sk = sk1 , sk2 and σ̂2
g(sk2) using the most up-

to-date information. Estimate σ̃2
g(sk1) in equation (13) for g = 1, 2 is modified by replacing zij{µ̂g(sk1 , τ)}

with z̃ij{µ̂g(sk1 , τ)}. Therefore, we have

σ̂k1k2 ={π̂2(sk1)σ̃2
1(sk1) + π̂1(sk1)σ̃2

2(sk1)}− 1
2 {π̂2(sk2)σ̂2

1(sk2) + π̂1(sk2)σ̂2
2(sk2)}− 1

2

×
2∑
g=1

√
π̂3−g(sk1)π̂3−g(sk2)ψ̂g(sk1 , sk2)

( ng(sk1
)∑

i=1

{ng(sk1)− 1}−1

× [z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}] [zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
)
.

(14)

2 Appendix B: Simulated Cumulative Power in the Special Case

with Independent Recurrent and Terminal Event Distributions

Figure S1 shows simulated power for the group sequentially monitored CL, TM and LR statistics when all

events within each individual are statistically independent, but otherwise have marginal distributions as

given in section 5 of the main manuscript. The CL statistic (triangles) had the highest power in this special

case, followed closely by the TM statistic (circles) and distantly by the LR method(+).

3 Appendix C: Additional Simulation Results
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Figure S1: Simulated Cumulative Power in the Special Case with Independent Recurrent and Terminal Event
Distributions (TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)

7



Low

Medium

High

Low Medium High†
Type
equation
here.

Co
rr

el
at

io
n 

be
tw

ee
n 

re
cu

rr
en

t e
ve

nt
s*

Correlation between recurrent and terminal events&

●

●

●
●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●
●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

● TM
CL
LR
XMT

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

●

●

●

●

0.
0

0.
4

0.
8

Po
we

r

12 24 36 48
Calendar Analysis Time 

 s (Months)

Figure S2: Cumulative Power at Each Analysis Time by Varying Levels of Correlation between Recurrent
Events (Rows) and Correlation between Recurrent and Terminal Events (Columns).
(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test; XMT: Xia, Murray and
Tayob (2018).)
† Data is not shown for the case with low ρ1 and high ρ2 since this covariance structure was difficult to construct.
Intuitively, it is difficult to have gap times weakly correlated with one another and at the same time all highly
correlated with the terminal event time.
∗ Low, medium to high correlations between recurrent events are generated from ρ1 = 0.3, 0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from ρ2 = 0.3, 0.5 and 0.7,
respectively.
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Figure S3: Cumulative Power at Each Analysis Time by Varying Levels of Correlation between Recurrent
Events (Rows) and Correlation between Recurrent and Terminal Events (Columns).
(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)
† Data is not shown for the case with low ρ1 and high ρ2 since this covariance structure was difficult to construct.
Intuitively, it is difficult to have gap times weakly correlated with one another and at the same time all highly
correlated with the terminal event time.
∗ Low, medium to high correlations between recurrent events are generated from ρ1 = 0.3, 0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from ρ2 = 0.3, 0.5 and 0.7,
respectively.
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